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Abstract This study provides a new hyper-heuristic design
using a learning-based heuristic selection mechanism
together with an adaptive move acceptance criterion. The
selection process was supported by an online heuristic subset
selection strategy. In addition, a pairwise heuristic hybridiza-
tion method was designed. The motivation behind building
an intelligent selection hyper-heuristic using these adaptive
hyper-heuristic sub-mechanisms is to facilitate generality.
Therefore, the designed hyper-heuristic was tested on a num-
ber of problem domains defined in a high-level framework,
i.e., HyFlex. The framework provides a set of problems with
a number of instances as well as a group of low-level heuris-
tics. Thus, it can be considered a good environment to mea-
sure the generality level of selection hyper-heuristics. The
computational results demonstrated the generic performance
of the proposed strategy in comparison with other tested
hyper-heuristics composed of the sub-mechanisms from the
literature. Moreover, the performance and behavior analysis
conducted for the hyper-heuristic clearly showed its adaptive
characteristics under different search conditions. The princi-
ples comprising the here presented algorithm were at the
heart of the algorithm that won the first international cross-
domain heuristic search competition.
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1 Introduction

New problem domains or variants of existing problems have
progressively entered the literature. They draw the attention
of researchers to develop effective solution strategies. The
performance of the developed algorithms tends to vary over
different problems or even over problem instances belong-
ing to a particular problem. In order to alleviate this situa-
tion, algorithm selection strategies have been studied. The
primary goal of these strategies is to determine the best algo-
rithm for the target problem instances. Even if this is a useful
approach, it misses the possible improvement opportunities
due to varying algorithm performance in the course of the
solution process. Selection hyper-heuristics follow a deeper
selection approach by managing a number of given low-level
search strategies during the search thereby relying on their
strengths and weaknesses (Burke et al. 2003a).

In the literature, the number of studies concerning hyper-
heuristics is exponentially growing. Burke et al. (2010a)
classified these hyper-heuristics based on the type of the pro-
vided feedback mechanisms and the nature of the heuris-
tic search space. Three categories of feedback mechanisms
are considered: hyper-heuristics with online learning, offline
learning, and no learning. In online learning, the learning
process occurs during the search process. Choice function
(Cowlingetal.2001), reinforcement learning (Nareyek 2003;
Ozcan et al. 2010), learning automata (Misir et al. 2009) are
some examples of online learning. In contrast, offline learn-
ing refers to learning before starting the search. In particu-
lar, case-based reasoning (Burke et al. 2006b) and learning
classifier systems (Marin-Blazquez and Schulenburg 2007,
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Ross et al. 2002) work in an offline manner. Some hyper-
heuristic components without any learning device are also
available. An example is the simple random heuristic selec-
tion mechanism (Cowling et al. 2001). Hyper-heuristics are
categorised with respect to the nature of the given heuris-
tics as selection hyper-heuristics and generation hyper-
heuristics. The aforementioned studies interested in the
selection hyper-heuristics executing over constructive or per-
turbative heuristics. This type of hyper-heuristics also con-
tain various meta-heuristic components such as tabu search
(Burke et al. 2003b), genetic algorithms (Han and Kendall
2003), simulated annealing (Dowsland et al. 2007; Burke et
al. 2012), and ant colony optimisation (Burke et al. 2005). On
the other hand, there exist some hyper-heuristics that aim to
generate the low-level heuristics. Burke et al. (2006a), Burke
et al. (2007), Fukunaga (2008), Bader-El-Den et al. (2009),
and Burke etal. (2010b) utilised genetic programming to gen-
erate low-level heuristics designed for the problem instances.

According to the initial definition, hyper-heuristics have
been designed to raise the level of generality (Burke et al.
2003a). Placing a domain barrier preventing any problem-
dependent data transition from or to hyper-heuristics is
the foremost rule for reaching generality. This basic prin-
ciple leads hyper-heuristics to focus on managing low-
level search strategies instead of directly solving a problem
instance. Therefore, it is required to design a hyper-heuristic
that has the ability to govern different heuristic sets while
profiting maximally from their capabilities. HyFlex is a
software framework that empowers hyper-heuristic devel-
opers to test their approaches across a range of problems
proposed by Ochoa et al. (2012). In its current version, six
problem domains are available, i.e., max SAT, bin pack-
ing, permutation flowshop scheduling, personnel schedul-
ing, travelling salesman, and vehicle routing. Related to
each problem domain, a number of perturbative heuristics
have been implemented from four main heuristic types,
namely mutational heuristics, crossover operators, ruin-
recreate heuristics, and hill climbers. The detailed description
of these problems, the characteristics and origins of instances
as well as the definition of the heuristics were given in Curtois
et al. (2010), Hyde et al. (2010b), Hyde et al. (2010a), and
Viazquez-Rodriguez et al. (2010). In addition to these fea-
tures, HyFlex provides an opportunity to change the effect of
mutational heuristics and hill climbers. Moreover, it is pos-
sible to keep some of the solutions in memory for further
use.

In this study, a selection hyper-heuristic is implemented
on HyFlex and an experimental performance analysis on
the available problems is conducted. The proposed hyper-
heuristic has been developed as a general adaptive strat-
egy for the six problem domains and the given heuristic
sets. It consists of a dynamic heuristic selection mechanism
and a move acceptance strategy evolving with the changing
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characteristics of the search environment. Experimental
results confirm that the developed hyper-heuristic can pro-
vide significant performance improvement compared to other
hyper-heuristics tested on the problem instances. It should be
mentioned here that the proposed hyper-heuristic is the fore-
runner of the hyper-heuristic that won the first international
cross-domain heuristic search challenge (CHeSC 2011).!

In the remainder of this paper, the generality requirements
for hyper-heuristics are succinctly discussed. The underlying
components of the proposed hyper-heuristic are presented in
Sect. 3. Next, the experimental results are discussed in Sect. 4.
In the last section, the paper is summarised and concluded
with a discussion on future research.

2 Generality requirements

A generic selection hyper-heuristic should be capable of
managing a diverse range of heuristic sets utilised for solving
distinct problems. Although the capability of solving as many
problems as possible is the primarily mentioned focus, the
main concern should be the management of different heuris-
tic sets. This objective implicitly embraces the aim of solving
various problems anyhow. The characteristics of the existing
low-level heuristics may require distinct management strate-
gies because each heuristic may have various advantages and
disadvantages. These features should be interpreted relying
on the dynamic performance of the heuristics and experimen-
tal limits such as the given execution time. And the heuristic
set as a whole should be used in synergy. For this purpose,
a heuristic selection mechanism should consist of particular
analysis components to facilitate the adaptivity of the selec-
tion process, Table 1.

2.1 Heuristic set features

An analysis tool or a learning component should be designed
based on a set of characteristics that determine the behavior
of the heuristics. The first characteristic is the heuristic set
size. A heuristic set with many heuristics has a higher prob-
ability of finding satisfactory solutions regarding a problem
instance. Conversely, such a set can be hard to manage due
to the availability of many options to select. The quality of
heuristics depends critically on the set size. If the heuristics
have similar performance, then the set size can make no dif-
ference. Since this is uncommon, it is required to employ
effective learning strategies. The second feature is the speed
of the heuristics. This characteristic may affect the number of
decision steps for the selection process. Hence, it is required
to interpret this element in combination with the improvement
capabilities of the heuristics. The heuristic specialisation is

1 http://www.asap.cs.nott.ac.uk/external/chesc2011/
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Table 1 The distribution of heuristic types for the given problem domains (heuristic indexes are shown in parentheses)

Heuristic Type Bin Packing Max SAT Perm. Flowshop Pers. Scheduling TSP VRP
Mutation 3(0,3,5) 6(0,1,2,3,4,5) 5(0,1,2,3,4) 1(11) 5(0,1,2,3,4) 3(0,1,7)
Crossover 1(7) 2(9,10) 4 (11,12, 13, 14) 3(8,9,10) 4(9,10,11,12) 2(5,6)
Ruin-recreate 2(1,2) 1(6) 2(5,6) 3(5,6,7) 1(5) 2(2,3)
HillClimber 2 (4,6) 2(7,8) 4(7,8,9,10) 500,1,2,3,4) 3(6,7,8) 3(4,8,9)
Total 8 11 15 12 13 10

another factor. A heuristic dedicated to solving a constraint or
improving an objective can be considered in this category. In
addition, heuristics generating only improving or equal qual-
ity solutions such as hill climbers or any other strict heuristic
behavior fall in this category. This feature list can obviously
be extended. The main purpose should be the usage of the
most relevant and effective features (Alpaydin 2010, ch.6) in
a collaborative way to predict the future performance of the
heuristics.

2.2 Parameter and rule settings

Parameter-free strategies are interesting from a generality
perspective. Even though such methodologies are called
parameter-free, their behavior depends on some predeter-
mined values or rules. For instance, simple random is a
parameter-free heuristic selection mechanism that gives an
equal selection chance to each heuristic. The simple random
is parameter-free since its parameters are set from the begin-
ning. The improving or equal move acceptance mechanism
is also considered a parameter-free approach.

However, this method is based on a predetermined rule
in which only better or equal quality solutions are accepted.
This means that, the move acceptance method is parameter
free, yet not rule-free. All similar methods show that pro-
viding a totally independent mechanism seems impossible.
Instead, the proposed algorithms should be able to control
their parameters or rules according to the search space and
the environmental settings with the aim of decreasing the
user effect on the algorithm’s performance.

3 Hyper-heuristic

A traditional selection hyper-heuristic requires a selection
mechanism to determine the best heuristic to apply at each
decision step. In addition, it needs a move acceptance strategy
to check whether the constructed/visited solution is accepted
with regard to its quality and the current state of the search.
These consecutive operations are performed until the stop-
ping condition is met. In this study, a new heuristic selec-
tion mechanism and a move acceptance strategy including

additional components are proposed (Fig. 1). In the following
paragraphs, these sub-mechanisms are explained in detail.

3.1 Heuristic selection

3.1.1 Adaptive dynamic heuristic set

Misir et al. (2010) and Bilgin et al. (2012) studied a dynamic
heuristic set strategy for the heuristic selection process.
The motivation behind this approach is determining elite
heuristic subsets during specific iteration intervals. Simi-
lar approaches aiming to eliminate heuristics were stud-
ied in Burke et al. (2003b), Chakhlevitch and Cowling
(2005), Kendall and Hussin (2005a), and Kendall and Hussin
(2005b). The dynamic heuristic set strategy was carried out
by eliminating heuristics that are expected to perform worse
compared to the rest and keep the best ones with respect to
some performance criteria.

pi = i (Cpes@ + 1) (remain/ 1. spen(®) ]
x b+ w2 (fpimp 1)/ 1p.spem (D)
=3 (fp.ars 0/ tp.spent(®) + wa (fimp 1)/ tspens )
—ws (furs )/ tpene () (M

po I im0 Cpbea() >0
0, otw.

These criteria reflect the performance changes of the
heuristics during the search. Performance changes are deter-
mined based on the number of new best solutions found,
the total fitness improvement and disimprovement per unit
execution time. These elements are used according to their
importance for the search process. For instance, finding a new
best solution is more crucial than improvement without a new
best solution. That is, a heuristic that reaches a new best solu-
tion is considered a higher quality heuristic. This information
was gathered during a phase composed of a predetermined
number of iterations. In the new selection strategy, i.e., adap-
tive dynamic heuristic set (ADHS), an updated version of
this performance metric is proposed.

A weighted sum of different performance elements was
used to determine the quality of different search strategies.
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Fig. 1 A selection hyper-heuristic framework

Table 2 The performance metric variables for the adaptive dynamic
heuristic set strategy

Variable Definition

Cp best(@) The number of new best solutions found by
heuristic i during a phase

Simp (D) The total fitness improvement by heuristic i

fuwrs (@) The total fitness worsening by heuristic i

Sp.imp (@) The total fitness improvement by heuristic i
during a phase

Tpowrs (@) The total fitness worsening by heuristic i
during a phase

tspent (i) The time spent by heuristic i until now

tp,spent (i) The time spent by heuristic i during a phase

tremain The remaining time to finish the whole search
process

w; The weight of jth performance element
(je{l -5

Equation (1) presents the details of the performance mea-
surement for each heuristic. The definition of the variables
is given in Table 2. The weights are set as {w] >> wy >>
w3 >> wq >> ws} to provide a strict priority between the
given performance elements. Thus, for instance, if the first
performance element of a heuristic has the highest value, then
the rest of the performance elements have no effect on the
overall p; of the corresponding heuristic.

In the performance criterion, the first performance ele-
ment is related to the heuristic’s capability of finding a new
best solution. In the aforementioned studies, this element
was just a counter of new best solutions found by a heuris-
tic. However, it may cause particular difficulties especially
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if certain heuristics can find new best solutions only after a
long time. For that reason, it can be useful to apply a heuris-
tic that may find more new best solutions during the given
execution time. Otherwise, a relatively slow heuristic can
stay in the heuristic set regardless of its speed because of
finding new best solutions. In addition, it is important to use
Cp vest (i) + 1 rather than C) pest (i) for preventing the same
type of slow heuristics. The second element is used to select
improving heuristics and the third element is employed to
choose heuristics that deteriorate solutions less. The last two
elements have a similar aim, but their values are independent
from phases. They are calculated using the values collected
until that moment.

The number of phases where a heuristic stays out of an
elite heuristic setis denoted by the tabu duration. For decreas-
ing user dependency, the tabu duration and the number of
iterations for one phase are calculated based on the number
of heuristics available in the elite heuristic subset. The tabu
duration is set to d = +/2n where n shows the number of
heuristics and the phase length (pl) is defined as the product
of the tabu duration and a constant value (phgacior = 500).
These values are recalculated at the end of each phase. Since
the calculated p; values are a combination of different quan-
tities and noisy, the performance values are converted into a
quality index (Q1 € [1, n]) value. A heuristic with the lowest
pi gets 1, the others get one unit more based on their order.
The average (avg) of these Q1 values is calculated to deter-
mine the heuristics that will be excluded. Tabu heuristics also
attend this calculation with Q7 = 1.

ave = {(ZQI)/;@J @)
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Tabu duration adaptation The tabu duration of a specific
heuristic is increased if it is successively excluded. In other
words, the tabu duration is specifically determined for each
heuristic using d as the base value. This is required since
the proposed exclusion procedure gets a tabu heuristic back
whenever its tabu status expires.

Phase length adaptation The number of iterations per
phase is determined by pl = d * phgycior. However, this value
is updated based on the speed of the non-tabu heuristics for
fairness purposes. For that purpose, at the end of each phase,
the time spent per move concerning each non-tabu heuristic is
calculated and the total of all (#sypset) 1S used to determine the
next phase length. In the following equations, the simple for-
mula for calculating the new phase length is given. A prede-
fined constant value is assigned t0 phirequested that denotes the
number of phases requested during the whole search process.
For this study, phrequested = 100. The duration of a phase
(phduration) 1s calculated by dividing the total execution time
by phrequested- The resulting value is divided by #5ypset to reach
the new pl’. If the calculated value is smaller than pl, then it
is utilised as the new phase length. This process is repeated
at the end of each phase.

Phduration = total/ Phrequested 3)
pl" = phauration/ tsubset

The utilised constant values as well as the provided rules
for adaptation purposes regarding the ADHS are set based
on the idea of giving chance to all the existing heuristics in
the heuristic set to show their performance.

3.1.2 Learning automata

A learning automaton is a finite-state machine that aims at
learning the optimal action out of a set of actions (A =
{ai, ..., a,}) through interaction with an environment in a
trial and error manner (Thathachar and Sastry 2004). During a
learning process, the environmental response (8(¢) € [0, 1])
to the selected action is used to update a probability vec-
tor p consisting of the selection probabilities of the actions.
The update operation is carried out using an update scheme
(U). The update scheme of the learning automata is based
on Egs. (4) and (5). Equation (4) refers to the update opera-
tion for the applied action and Eq. (5) is used to update the
probabilities of the remaining actions.

pit +1) = pi(t) + 11 )1 — pi(1))

=X (1 = B(2)) pi (1)

if a; is the action taken at time step ¢ “4)
pit+1)=pj)—r B(t)p;(1)

+ a1 =B — D7 = pj0)]

ifa; # a; (&)

A learning automaton with a linear update scheme,
linear reward-inaction, was employed as a heuristic selec-
tion mechanism in Misir et al. (2009). During the learn-
ing process, actions were considered low-level heuristics
and heuristics that found new best solutions were rewarded.
The changing heuristic probabilities were used like roulette
wheel selection. In this study, a linear reward-punishment
scheme is used to update heuristic probabilities with respect
to finding a new best solution, improving the current solu-
tion, worsening the current solution and finding a solution
with equal quality as the current solution. Related learning
rates were set in a decreasing manner in the given order as
{x1 = 0.1,A; = 0.01, 22 = 0.002, 12 = 0.001} with-
out extensive tuning. The first two learning rates are for
rewarding due to finding new best solutions and improv-
ing solutions. The last two learning rates are used to pun-
ish heuristics due to finding worse solutions and solutions
with the same quality. Differently from the above men-
tioned application of the learning automaton, it is just used to
keep track of performance changes during different phases
of the dynamic heuristic set process. In the beginning of
each phase, the learning probabilities are reset. In addi-
tion, different learning rates are used for different heuris-
tics. The underlying idea behind this approach is to project
the speed of heuristics to the probability updates because it
would be unfair to use the same reward/punishment for a
very slow and a fast heuristic (Bowling and Veloso 2001).
For instance, HyFlex contains local search heuristics that
only return improving or equal solutions. These are gen-
erally expected to be more time consuming compared to
other heuristic types. For that reason, the performance differ-
ences among heuristics should be related to their speed. The
learning rate of the heuristics are determined using Eq. (6).
Cmax refers to the number of moves spent per unit time
by the fastest heuristic. C; move denotes the same value for
heuristic i. The resulting value (Apy) is used as a multi-
plier for the initial learning rate. If this multiplier makes
the related learning rate increase more than its predeter-
mined limit, then the learning rate is set to a predetermined
value.

}\mu]t = Cmax/ci,move (6)
3.1.3 Relay hybridisation

The heuristics are divided into two types: mutational heuris-
tics and hill climbers in Ozcan et al. (2008). They were
used within four different frameworks. One of the frame-
works, Fc, offers selecting a mutational heuristic first and
applying a pre-determined hill climber to the visited solu-
tion by the selected mutational heuristic. The experimental
results showed that F¢ is a very effective strategy to use.
In this study, we proposed a relay hybridisation approach to
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determine a pair of heuristics that can be used consecutively,
like Fc, to find superior results. For that purpose, a list of
the best heuristics, when applied just after a specific heuris-
tic, is determined. This list is updated in a First-In-Last-Out
manner, by adding a new heuristic to the end of the list
and removing the first one to keep the size of the heuris-
tic set fixed if the list is full. After applying a relatively
worse performing heuristic based on the provided perfor-
mance metric, a heuristic is randomly chosen from its list
and applied to the solution generated by this heuristic. Since
the heuristic list can include different heuristics more than
once, a random selection strategy chooses a heuristic among
weighted heuristics. For instance, in a list size of 10, a spe-
cific heuristic may be present five times while the rest of the
list may be occupied by the other heuristics. In such a list, the
probability of selecting the five-times occurring heuristic is
50 %. That is, even if the selection mechanism is random, the
end product is a weighted selection mechanism like roulette
wheel.

Algorithm 1: Relay hybridisation

Input: list size lg;ze > 0; p,p’ € [0,1]
if p < (Cphase/pl) then
select LLH;4p, and apply to S — S’;
if size(l;) > 0 and p’ <= 0.5 then
‘ select a LLH from I; and apply to S’ — S'/;
else
‘ select a LLH,,onTaby and apply to S — S”;
end

Tk W N

end

This strategy is applied based on Cppase / pI. Cphase denotes
the number of iterations passed within a phase. A random
probabilistic value p € [0, 1] is generated and the relay
hybridisation is applied if p < (Cphase/p!). The pseudocode
of the method is depicted in Algorithm 1.

Figure 2 shows an example of the relay hybridisation. In
this example, applying heuristic pairs involving LLH> ~~
LLHs and LLH; ~» LL H3 generated new best solutions
before. Whenever LL H; is called and if the relay hybridis-
ation is decided to be used, then it is determined whether a
consecutive heuristic is randomly chosen from the heuristics
that are currently available in the heuristic subset or from its
pair list. The selected heuristic is consecutively applied to
the solution at hand. If the resulting solution is a new best
solution, then the selected heuristic is added to the end of the
list.

For some problem domains with some heuristic sets, it
may not be possible to find effective heuristic pairs. There-
fore, a similar tabu strategy used for the heuristic exclusion
process is employed. If no new best solution is found by the
relay hybridisation after a phase, then this feature is disabled
for one phase. Furthermore, if this consecutively happens,
then the tabu duration is increased by 1. This value stays the
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Fig. 2 Relay hybridisation

same whenever the tabu duration reaches its upper bound. If
it can find a new best solution again, then the tabu duration
is set to its initial value, 1.

Heuristic adaptation HyFlex provides an opportunity to
modify some of the heuristics in an informed manner. It is
possible to increase or decrease the perturbation effect of a
mutational heuristic. In addition to that, it is also allowed
to change the search depth of local search heuristics. In the
proposed approach, the intensity of the mutational heuristics
and the search depth of the hill climbers was updated only for
the relay hybridisation. If a hill climber can find a new best
solution more than fives times, then its search depth is set to
1.0. Otherwise, its value is set to (0.1 + (phpassed/pl) x 0.4).
DPhpassed is the number of iterations passed during the current
phase. The second part is used also for the mutation operators.

3.2 Move acceptance

Move acceptance mechanisms are very effective on the per-
formance of hyper-heuristics (Ozcan et al. 2008). They deter-
mine the way to traverse the search space. One of the main
concerns of the move acceptance mechanisms is the accept-
ability of worsening solutions. Accepting a worsening solu-
tion is a widely accepted strategy to prevent from getting
stuck around a solution. Misir et al. (2009) proposed a move
acceptance strategy, i.e., iteration limited threshold accept-
ing (ILTA), which accepts worsening solutions in a controlled
manner. ILTA immediately accepts improving or equal solu-
tions. If the hyper-heuristic cannot find new best solutions
during a pre-determined number of iterations, then a wors-
ening solution is accepted. This operation is decided based
on the value of the best solution found and a constant value
determining a range. An adaptive version of ILTA (AILTA)
was proposed by Misir et al. (2010). In this move acceptance,
a second and higher range value is determined. If the hyper-
heuristic cannot find a new best solution using a given range
value, then this range value is increased to enable accepting
much worse solutions. This is required to get rid of local
optima.
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Algorithm 2: AILLA Move Acceptance
Input: i =1, K >k>0,1>0

for j=0 to I-1 do besti;s(j) = f(Sinitial)

if adapt_iterations > K then

[uy

2 if i <l —1 then
3 | i++
end
end
4 if f(S’) < f(S) then
5 S5
6 w_tterations = 0
7 if f(S’) < f(Sp) then
8 Sy «— S’
9 =1
10 adapt_iterations = 0
11 besty;st.remove(last)
12 besty;st-add(0, f(Sp))
end
13 else if f(S') = f(S) then
14 ‘ S« 5
15 else
16 w_tterations + +
17 adapt_iterations + +
18 if w_iterations > k and f(S’) < best;;s¢(i) then
19 ‘ S «— 8’ and w_iterations = 0
end
end

In the proposed hyper-heuristic, the underlying idea
behind list-based threshold accepting (Lee et al. 2002) and
late acceptance (Burke and Bykov 2008) was employed to
decrease the parameter dependency of AILTA. The new move
acceptance strategy, i.e., adaptive iteration limited list-based
threshold accepting (AILLA), accepts worsening solutions
using the fitness values of the previously visited best solu-
tions. The best fitness encountered previously is used as the
first threshold value. If it is not good enough to find a new
best solution, then a higher fitness from the list (best;s; with
[ size) is used to decide about the acceptability of worsening
solutions. The pseudocode of AILLA is presented in Algo-
rithm 2. Other versions of AILLA were studied in Misir et al.
(2011Db,a). Besides, the iteration limit (k) is updated whenever

a new best solution is found. Equation (7) shows the details
of this update process. iteTejapsed is the number of iterations
elapsed and fexec refers to the total execution time.

(=1 xk+ iterelapsed)/L _ cw=0
(U =1) xk+ 258 kx05 xtf)/l, otw.

tf = (fexec — telapsed)/texec @)
cw = Literelapsed/ kJ

k=

4 Experiments

Experiments were carried out on the six problems within
HyFlex, namely max SAT (Hyde et al. 2010a), bin pack-
ing (Hyde et al. 2010b), permutation flow shop (Vazquez-
Rodriguez et al. 2010), personnel scheduling (Curtois et al.
2010), travelling salesman, and vehicle routing problems
(Walker et al. 2012). HyFlex provides 12 instances for the
first four problems and ten instances for the last two Hyde
and Ochoa (2011). Each instance was tested for ten runs.
Each run is executed 10 min using Pentium Core 2 Duo
3 GHz PCs with 3.23 GB memory. In addition to the devel-
oped hyper-heuristic, nine additional hyper-heuristics were
tested. They are combinations of simple random (SR) selec-
tion with AILLA, simulated annealing (SA) (Bilgin et al.
2010), late acceptance (LATE) (Demeester et al. 2010), great
deluge (GD) (Kendall and Mohamad 2004), and improving
or equal (IE) move acceptance mechanisms. Moreover, these
acceptance mechanisms together with the adaptive dynamic
heuristic set (ADHS) strategy are used as a part of the hyper-
heuristic pool.

4.1 Computational results

Table 3 presents the score of the tested hyper-heuristics across
six problem domains based on the scoring system used for
CHeSC’2011. The detailed experimental results for each

Table 3 Comparison of all the tested hyper-heuristics based on CHeSC’2011 scoring system (higher values are better)

Bin Packing Max SAT Perm. Flowshop Pers. Scheduling TSP VRP OverAll
ADHS-AILLA 108 54 96 92 76 82 508
ADHS-LATE 77 73 90 54 68 66 428
ADHS-SA 37 91.5 75.5 99 73 75 451
ADHS-GD 40 3 16 11 43 15 128
ADHS-IE 71 22.5 80.5 77 69 42 362
SR-AILLA 56 51.5 47 24 22 35 235.5
SR-LATE 30 59 37 4 15 32 177
SR-SA 2 100 9 36 0 22 169
SR-GD 2 0 9 4 22 0 37
SR-IE 45 13.5 8 40 2 21 129.5

Bold values show the highest (best) values for each problem and for the overall performance
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Table 4 The results of the hyper-heuristics on the bin packing problem

Inst. ADHS-AILLA ADHS-LATE ADHS-SA

Min Avg Std Min Avg Std Min Avg Std
1 0.00605 0.00688 0.00049 0.00648 0.00679 0.00022 0.01151 0.01668 0.00354
2 0.00667 0.00714 0.00036 0.00664 0.00709 0.00040 0.01227 0.01614 0.00453
3 0.02044 0.02107 0.00047 0.02078 0.02204 0.00080 0.02119 0.02288 0.00110
4 0.01970 0.02100 0.00113 0.02225 0.02354 0.00063 0.02118 0.02393 0.00144
5 0.00034 0.00119 0.00178 0.00457 0.00494 0.00025 0.00721 0.01135 0.00389
6 0.00306 0.00324 0.00012 0.00364 0.00383 0.00014 0.00887 0.01175 0.00347
7 0.01076 0.01396 0.00219 0.00971 0.01321 0.00273 0.03783 0.07749 0.01890
8 0.01930 0.02243 0.00166 0.02213 0.03240 0.00608 0.04623 0.08209 0.02556
9 0.04775 0.04886 0.00131 0.04643 0.05196 0.00418 0.04593 0.04875 0.00211
10 0.01234 0.01427 0.00137 0.01385 0.01596 0.00154 0.01165 0.01499 0.00185
11 0.10843 0.10851 0.00004 0.10875 0.10890 0.00014 0.11040 0.11386 0.00288
12 0.02102 0.02455 0.00218 0.02881 0.03313 0.00348 0.02680 0.02984 0.00199
Inst. ADHS-GD ADHS-IE SR-AILLA

Min Avg Std Min Avg Std Min Avg Std
1 0.01191 0.01628 0.00288 0.00657 0.00803 0.00173 0.00697 0.00763 0.00113
2 0.01191 0.01529 0.00301 0.00678 0.00748 0.00036 0.00704 0.00786 0.00040
3 0.02111 0.02327 0.00168 0.02167 0.02280 0.00068 0.02095 0.02266 0.00086
4 0.02192 0.02423 0.00150 0.02157 0.02418 0.00159 0.01981 0.02271 0.00166
5 0.00717 0.01321 0.00315 0.00034 0.00203 0.00218 0.00034 0.00297 0.00226
6 0.00888 0.01213 0.00312 0.00312 0.00335 0.00015 0.00309 0.00326 0.00015
7 0.04795 0.06845 0.01448 0.01095 0.01471 0.00200 0.01108 0.01512 0.00148
8 0.05609 0.07818 0.01673 0.02127 0.02462 0.00246 0.03019 0.03311 0.00141
9 0.04455 0.04869 0.00265 0.04934 0.05121 0.00271 0.08321 0.08769 0.00395
10 0.01274 0.01453 0.00125 0.01560 0.01854 0.00219 0.02653 0.02911 0.00211
11 0.11082 0.11362 0.00274 0.10853 0.10857 0.00004 0.10961 0.10996 0.00049
12 0.02611 0.03010 0.00181 0.02379 0.02876 0.00313 0.04767 0.05566 0.00926
Inst. SR-LATE SR-SA SR-GD

Min Avg Std Min Avg Std Min Avg Std
1 0.00758 0.01035 0.00144 0.03504 0.03605 0.00047 0.03581 0.03722 0.00162
2 0.00754 0.00841 0.00112 0.03513 0.03582 0.00057 0.03509 0.03633 0.00134
3 0.02232 0.02387 0.00092 0.02424 0.02530 0.00064 0.02557 0.02673 0.00075
4 0.02220 0.02383 0.00120 0.02578 0.02712 0.00090 0.02820 0.03018 0.00103
5 0.00542 0.00593 0.00028 0.01968 0.02023 0.00051 0.01967 0.02027 0.00040
6 0.00403 0.00411 0.00005 0.01749 0.01903 0.00141 y 0.01737 0.0189%4 0.00145
7 0.01657 0.01867 0.00230 0.09120 0.09990 0.00469 0.09939 0.10265 0.00365
8 0.07247 0.07468 0.00183 0.10301 0.10749 0.00255 0.10513 0.10810 0.00194
9 0.09462 0.09663 0.00160 0.09067 0.09512 0.00327 0.09456 0.09682 0.00180
10 0.02885 0.03024 0.00116 0.02868 0.03017 0.00101 0.02904 0.03051 0.00072
11 0.11243 0.11357 0.00064 0.11996 0.12060 0.00061 0.11993 0.12041 0.00053
12 0.05269 0.05424 0.00197 0.05072 0.05497 0.00223 0.05140 0.05340 0.00147
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Table 4 continued
Inst. SR-1E
Min Avg Std

1 0.00740 0.01009 0.00174
2 0.00756 0.00874 0.00155
3 0.02170 0.02412 0.00195
4 0.02286 0.02518 0.00152
5 0.00034 0.00385 0.00186
6 0.00325 0.00346 0.00015
7 0.00995 0.01335 0.00264
8 0.03810 0.04285 0.00248
9 0.07949 0.08659 0.00458
10 0.02561 0.02858 0.00186
11 0.10922 0.10934 0.00011
12 0.04581 0.05251 0.00595
Table 5 The results of the hyper-heuristics on the max SAT problem
Inst. ADHS-AILLA ADHS-LATE ADHS-SA

Min Avg Std Min Avg Std Min Avg Std
1 7 8.8 2.39 3 7.6 3.31 4 6.3 1.25
2 21 24.8 2.15 19 22.9 247 19 21.9 2.23
3 15 19.3 2.71 16 18.6 2.01 15 18.5 2.01
4 5 13.7 4.67 8 11.2 2.57 4 9.2 3.82
5 25.3 11.82 3 9.6 9.19 7 15.3 10.51
6 14 41.1 14.35 8 20.8 15.89 7 15.4 9.82
7 7 1.56 7 8.2 1.23 6 7.3 1.25
8 6.7 0.95 5 8.5 1.51 5 6.6 0.84
9 10.4 1.78 9 11.7 2.58 6 8.7 1.16
10 213 215.9 1.52 211 213.9 3.60 209 213.6 2.91
11 7 16.6 4.62 6 10.1 3.07 2 7.1 2.77
12 8 9.9 1.79 7 9.9 2.02 8 10 1.94
Inst. ADHS-GD ADHS-IE SR-AILLA

Min Avg Std Min Avg Std Min Avg Std
1 18 354 20.04 7 11.9 3.81 6 11 4.52
2 34 51.3 18.33 23 26.2 2.49 19 25.8 4.98
3 28 48.5 25.87 17 20.9 2.64 18 21.6 2.63
4 14 26.1 16.98 8 14.7 4.00 11.6 3.31
5 10 314 21.43 22.6 11.47 16.8 11.38
6 44 72.8 30.75 43 51 4.45 10 27.5 15.71
7 9 12.4 1.78 8 9.5 1.78 8.3 1.06
8 9 13.2 5.51 8 9.6 1.17 7.7 0.67
9 11 18.1 7.58 11 13.8 2.44 9.6 0.97
10 219 249.9 33.84 213 218.9 4.53 211 213.2 1.75
11 17 29.4 11.95 17 22.7 3.86 14.4 4.01
12 10 14.9 3.54 10 12.2 1.55 8 10 1.15
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Table 5 continued

Inst. SR-LATE SR-SA SR-GD

Min Avg Std Min Avg Std Min Avg Std
1 6 9.4 3.20 5 8.2 2.15 235 2544 12.34
2 21 24 2.16 19 22.3 2.45 256 275.2 12.25
3 14 19.4 2.46 17 19.7 2.58 262 280.8 12.46
4 7 10.2 1.99 8.4 3.17 146 154.7 5.79
5 4 134 11.62 5 11.5 8.29 135 155.5 10.63
6 6 11.2 4.10 14 32.7 11.75 244 255.6 11.93
7 5 8.6 1.58 6.6 0.97 22 33.6 6.96
8 6 8.6 1.78 6.4 0.84 24 35.6 6.95
9 8 9.9 1.20 8.4 0.70 34 53.6 8.37
10 211 215.6 2.46 211 212.8 1.75 295 339.9 21.76
11 9 12.2 2.04 5.2 2.49 197 232 22.04
12 9 11.1 1.10 7 9.2 1.03 40 55.4 7.26
Inst. SR-IE

Min Avg Std
1 11 16 3.30
2 23 26.6 2.50
3 17 20.3 2.21
4 26 29.9 3.18
5 22 37.9 7.25
6 39 54.2 6.66
7 10.4 2.32
8 9.6 1.96
9 10 12.2 1.81
10 211 216.4 3.98
11 19 31.3 5.98
12 11 13.1 1.60

problem domain are presented in Tables 4, 5, 6, 7, 8, and
9. Among the tested hyper-heuristics, ADHS—-AILLA gets
the highest score, 508 (out of 680). ADHS—SA and ADHS-
LATE follow it with the scores of 451 and 458, respectively.
ADHS-AILLA performs the best for the bin packing, permu-
tation flowshop scheduling, travelling salesman, and vehicle
routing problems. It comes second after ADHS—SA for the
personnel scheduling domain. Its worst performance comes
for the max SAT problem as the fifth hyper-heuristic.

For the hyper-heuristics with SR, AILLA provides the
best results based on their overall performance. This indi-
cates that the proposed move acceptance strategy is effective
while dealing with different heuristic sets for different prob-
lem domains. Furthermore, its adaptive nature increases its
robustness.

The performance difference between the hyper-heuristics
with ADHS and SR demonstrate the effectiveness and con-
tribution of the selection mechanism. The reason behind this
result is the availability of different heuristics with respect
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to their speed and improvement capabilities. ADHS intelli-
gently determines elite heuristic subsets during the run and
explores effective heuristic pairs. The following subsections
discuss the hyper-heuristics’ performance for each problem
domain separately.

4.1.1 Bin packing

For the bin packing problem, experimens showed that
ADHS-AILLA performs significantly better than the other
tested hyper-heuristics based on the Wilcoxon test with a
95 % confidence interval. Its CHeSC’2011 score is 108 which
is the only score exceeding 100 throughout all the test prob-
lem domains among the tested approaches. There is clear per-
formance difference between selection mechanisms, ADHS
and SR. For all tested move acceptance mechanisms, ADHS
outperforms SR. For the hyper-heuristics with SR, AILLA
also outperforms the rest.
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Table 6 The results of the hyper-heuristics on the permutation flowshop scheduling problem
Inst. ADHS-AILLA ADHS-LATE ADHS-SA

Min Avg Std Min Avg Std Min Avg Std
1 6245 6282.1 19.17 6252 6278.1 17.46 6261 6288.3 21.79
2 6226 6245.9 12.91 6232 6246.5 8.68 6235 6250.9 15.33
3 6314 6333.1 14.09 6317 6327.2 10.63 6313 6335.2 13.88
4 6323 6341.9 18.82 6303 6336.8 20.12 6325 6349.2 16.59
5 6342 6372.3 17.67 6344 6369 17.38 6363 6386.5 19.68
6 10496 10499.2 3.97 10495 10499.7 4.08 10494 10502.9 7.61
7 10922 10922.8 0.42 10922 10922.6 0.52 10922 10922.9 0.32
8 26260 26305.5 32.07 26376 26436.1 37.57 26232 26310.2 40.04
9 26765 26801.6 22.44 26860 26909.1 26.53 26752 26785.3 28.11
10 26574 26657.3 38.11 26672 26735.6 34.50 26611 26644.7 33.05
11 11338 11371.6 24.14 11346 11366.8 15.53 11342 11379.8 17.67
12 26523 26620.2 38.91 26670 26715.4 31.44 26581 26625.9 28.18
Inst. ADHS-GD ADHS-IE SR-AILLA

Min Avg Std Min Avg Std Min Avg Std
1 6335 6370.6 18.89 6272 6294.3 21.21 6283 6325.7 30.94
2 6296 6321.9 16.30 6222 6248.7 15.63 6254 6276.6 15.09
3 6382 6399.1 11.72 6307 6331.7 16.03 6324 6351.7 15.39
4 6366 6380.7 14.01 6323 6349.2 17.57 6323 6353.2 18.84
5 6447 6464.9 8.40 6344 6371.8 19.31 6380 6414.5 24.51
6 10520 10537.6 11.36 10490 10502 7.67 10509 10523.2 13.46
7 10956 10967.6 9.82 10922 10924.7 5.74 10923 10940.1 14.67
8 26403 26438.5 22.86 26251 26307.7 26.81 26361 26438 49.16
9 26883 26934.5 36.72 26758 26798.3 28.16 26805 26875.1 44.42
10 26736 26748.9 9.50 26585 26641.8 30.44 26622 26705 41.65
11 11486 11505.8 13.40 11325 11386.8 33.67 11408 11457.2 35.10
12 26679 26724.3 32.01 26585 26646 41.98 26651 26726.6 39.23
Inst. SR-LATE SR-SA SR-GD

Min Avg Std Min Avg Std Min Avg Std
1 6332 6358.5 24.31 6340 6366.5 20.65 6366 6386.8 9.82
2 6277 6313.6 21.79 6281 6337 28.97 6322 6333.7 8.37
3 6350 6376.6 21.97 6374 6391.2 11.76 6399 6412.8 7.42
4 6323 6361.5 16.67 6326 6362.6 17.70 6388 6396.2 5.05
5 6374 6421.4 23.64 6402 6426.6 19.98 6460 6475.6 10.89
6 10517 10545.6 12.02 10518 10550.8 23.71 10520 10533 10.59
7 10923 10968 28.95 10923 10955 25.80 10965 10983.4 12.55
8 26336 26399.7 32.68 26436 26531.6 51.20 26379 26444 .4 38.30
9 26812 26880.4 33.14 26897 27002.1 65.20 26893 26941.1 34.48
10 26694 26727.7 20.09 26750 26799.9 38.95 26687 26754.3 32.92
11 11454 11493.8 20.10 11391 11504.8 54.89 11453 11503.6 31.43
12 26638 26679.4 34.21 26732 26807.5 57.22 26714 26747.7 18.84
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Table 6 continued

Inst. SR-IE
Min Avg Std

1 6356 6385.2 23.69
2 6289 6331.3 23.84
3 6357 6390 18.87
4 6363 6377.2 12.98
5 6393 6424.3 18.51
6 10512 10545.3 26.96
7 10923 10972.1 40.72
8 26460 26532.8 67.01
9 26857 27015 88.09
10 26759 26805.9 35.16
11 11458 11504.4 28.50
12 26703 26792.9 57.02

Table 7 The results of the hyper-heuristics on the personnel scheduling problem

Inst. ADHS-AILLA ADHS-LATE ADHS-SA
Min Avg Std Min Avg Std Min Avg Std
1 3294 3311.6 15.66 3315 3342.6 15.98 3296 33239 23.23
2 1994 2300.4 170.74 2220 2434.1 136.56 2020 2300.9 171.73
3 305 327 21.76 355 386.5 15.64 290 328.5 20.01
4 14 20.6 3.20 15 22 3.71 15 20 3.68
5 20 25.2 4.98 20 25.3 4.42 16 233 4.16
6 16 23 3.30 17 243 5.08 13 233 5.81
7 1109 1212.2 108.80 1121 1207.9 125.77 1102 1177.1 104.91
8 2163 22472 67.82 2302 2708.9 456.80 2161 2206.7 58.53
9 3224 3291.8 74.12 3373 4210.5 761.72 3147 3258.7 75.74
10 9295 9615.6 228.06 10191 26773.5 15568.81 9394 9534.5 128.97
11 1515 1732.6 186.11 1638 1823.7 81.09 1605 1843.6 106.54
12 300 319 20.11 310 334.6 22.86 295 310 11.06
Inst. ADHS-GD ADHS-IE SR-AILLA
Min Avg Std Min Avg Std Min Avg Std

1 3339 3368.6 21.24 3291 3320.5 18.43 3339 3349.5 12.91
2 2328 2469.9 121.30 2040 2259.3 115.55 2105 2631.7 592.65
3 370 424.5 32.01 305 332 17.67 410 1726.1 1035.17
4 26 30.5 5.21 17 21.2 3.43 22 29.1 3.84
5 25 354 6.00 18 24.6 4.30 31 334 2.55
6 29 359 5.24 19 26.2 5.25 25 31.6 4.81
7 1322 1414.8 155.88 1105 1250.4 133.74 1109 1243 109.91
8 2493 3353.7 621.16 2177 2228.4 68.98 2262 23144 61.39
9 3430 4626 958.91 3135 3278.9 88.91 3145 33263 128.82
10 10298 32015.5 15145.38 9515 9585.1 72.26 9529 9641.5 94.39
11 1753 1911.3 95.93 1508 1857.4 332.47 1605 1977.7 387.68
12 345 368.8 18.87 305 324 15.95 365 713 559.05
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Table 7 continued
Inst. SR-LATE SR-SA SR-GD

Min Avg Std Min Avg Std Min Avg Std
1 3333 3352.7 10.33 3313 3346.7 22.02 3328 3366.4 20.26
2 2383 2466.6 59.77 2105 2459.7 349.77 2382 2615.3 152.66
3 365 388.5 19.73 455 1969 1306.25 386 435.1 31.71
4 18 26.4 3.60 19 29.3 5.33 28 34.4 4.43
5 21 26.7 3.86 21 30.5 5.28 28 38.3 4.42
6 23 29.7 2.87 28 31.2 2.39 33 39.8 4.64
7 1114 1290.5 165.08 1111 1166.1 67.01 1156 1396.8 146.64
8 2264 27232 438.59 2188 2291.6 84.49 2297 2843.8 424.04
9 3311 4210.8 520.24 3229 3330.4 86.26 3644 4302.6 611.83
10 13938 28415.2 13696.88 9426 9651 190.70 14718 29798.1 10935.77
11 1755 1935.9 133.64 1460 2009.8 365.78 1809 1986.8 134.91
12 340 361.5 15.28 365 701.5 595.24 350 381.6 21.11
Inst. SR-IE

Min Avg Std
1 3314 3355.3 22.73
2 2265 2513.5 180.08
3 510 1453.5 894.67
4 20 27.1 6.77
5 25 30.4 5.08
6 25 31.1 4.70
7 1107 1247.2 104.70
8 2180 2291.8 75.20
9 3159 3247.9 55.94
10 9508 9668.8 121.74
11 1565 1734.8 161.37
12 380 824.5 625.86
4.1.2 Max SAT despite their similar performance with ADHS. Therefore, it

SR-SA is the best performing approach for the max SAT
problem. Despite this performance difference, ADHS-SA
and ADHS-LATE perform significantly similar. ADHS per-
forms better than SR with all the acceptance mechanisms
except SA. Performance decrease caused by ADHS against
SR with SA occurs only for this problem domain.

4.1.3 Permutation flowshop scheduling

The experimental results on the permutation flowshop
scheduling instances indicate that ADHS—AILLA achieves
better quality results in comparison with the other competing
algorithms. However, there is no significant performance dif-
ference between ADHS—AILLA and ADHS-LATE, ADHS—
IE, ADHS-SA. For the SR-version of these hyper-heuristics,
SR-AILLA is significantly better than SR-IE and SR-SA

can be concluded that the effect of the selection mechanism
on the performance is relatively high for the corresponding
problem instances.

4.1.4 Personnel scheduling

ADHS-SA is the winning algorithm for the personnel
scheduling domain. Its performance is significantly simi-
lar to ADHS-AILLA. The performance difference between
ADHS and SR is again extremely high. In particular, SR-IE
gets a score of 8 but the score of ADHS-IE is 80.5 which
is the improvement provided just by changing the selection
mechanism.

4.1.5 Travelling salesman

The travelling salesman problem is another domain where
ADHS-AILLA performs best. However, no significant
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Table 8 The results of the hyper-heuristics on the traveling salesman problem

Inst. ADHS-AILLA ADHS-LATE ADHS-SA

Min Avg Std Min Avg Std Min Avg Std
1 48194.92 48340.97 319.54 48194.92 48272.71 92.24 48194.92 48263.53 95.19
2 108460.12 109924.07 1116.71 108815.00 110031.08 891.31 109394.92 110446.14 876.74
3 6832.09 6859.90 20.38 6844.23 6859.95 17.20 6837.72 6858.60 11.76
4 42155.38 42290.58 129.84 42117.42 42256.66 85.39 42158.63 42263.69 84.78
5 8911.98 8930.70 13.01 8921.66 8952.18 18.03 8921.10 8956.67 25.58
6 57747.49 58295.63 284.86 57772.26 58215.06 408.27 57718.46 58369.29 387.16
7 53454.48 54180.01 745.13 53692.78 54691.59 679.92 52571.13 54815.30 1335.36
8 66929.58 67587.25 380.69 67325.44 68115.59 916.13 66914.49 67236.46 242.14
9 20664651.02  20767860.09 69362.38  21044415.03  21195482.40 114493.15 20718695.42  20795493.49  98797.92
10 666525.47 668486.45 1281.89 673002.75 674226.75 949.74 667095.97 667836.72 629.64
Inst.  ADHS-GD ADHS-IE SR-AILLA

Min Avg Std Min Avg Std Min Avg Std
1 48194.92 48265.09 76.95 48194.92 48300.76 182.25 48303.92 49541.13 780.02
2 108887.53 111613.16 2094.32 108677.94 110246.18 1124.33 110331.68 112424.08 1357.37
3 6875.72 6931.98 43.00 6811.67 6854.27 19.56 694491 6974.78 26.43
4 4247491 42734.27 222.98 42159.28 42319.19 103.03 42645.94 43234.94 382.24
5 9001.77 9064.31 44.95 8937.93 8958.83 17.15 9040.76 9092.15 50.16
6 58121.02 58968.29 549.97 58038.01 58359.04 260.22 59575.64 60076.20 443.18
7 53909.28 55717.75 1538.77 53610.45 54404.46 587.05 54675.31 55809.41 918.88
8 68322.99 69208.65 685.92 66716.29 67365.65 394.03 68763.98 69725.06 731.31
9 21115567.59  21258092.41 95417.79  20742658.99  20814378.40  70404.25 21139778.14  21440165.07 197350.82
10 675089.83 676856.22 1533.22 666445.85 667829.70 751.10 675287.99 677529.85 1449.93
Inst. SR-LATE SR-SA SR-GD

Min Avg Std Min Avg Std Min Avg Std
1 49257.55 49857.53 499.53 49928.94 51227.53 751.27 48564.88 48956.81 237.87
2 110165.53 113993.35 1758.02 112753.01 115835.29 2347.66 110130.63 112009.43 1336.85
3 6959.17 7013.30 29.90 7017.76 7084.88 44.26 6953.66 6974.80 16.87
4 43221.69 43455.04 145.71 43556.02 43963.02 237.62 43007.56 43171.41 124.28
5 9127.84 9155.17 25.85 9223.23 9287.21 50.31 9072.50 9098.46 26.68
6 59755.48 60221.97 239.84 60020.14 60830.82 653.59 59559.65 59713.87 169.33
7 54350.43 55975.61 1146.34 54728.19 56111.13 986.03 55127.82 56394.91 1091.53
8 69186.32 70016.69 626.73 70159.76 70793.80 514.35 68858.43 69789.70 627.82
9 21105275.35  21252337.18  107060.34  21325127.76  21453051.13  84186.01  21191884.08  21417614.23 158583.77
10 675271.16 676961.30 1045.69 677866.45 679295.26 1291.11 675039.28 676994.72 1260.44
Inst.  SR-IE

Min Avg Std
1 49335.98 51209.43 775.76
2 110689.12 114848.24 2840.05
3 7017.76 7087.41 48.71
4 43564.38 43937.91 272.42
5 9151.04 9232.95 45.73
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Table 8 continued
Inst. SR-IE
Min Avg Std

6 60216.65 60792.07 369.95
7 54408.85 55888.61 1016.23
8 68843.26 70121.85 855.94
9 21238309.99 21469284.75 159054.93
10 675773.01 678128.75 1517.39
Table 9 The results of the hyper-heuristics on the vehicle routing problem
Inst. ADHS-AILLA ADHS-LATE ADHS-SA

Min Avg Std Min Avg Std Min Avg Std
1 5065.97 5130.80 35.42 5091.90 5142.00 36.16 5082.05 5130.25 36.90
2 20653.84 21255.81 515.20 20652.47 21058.12 511.64 20654.90 21261.44 517.08
3 13301.96 13562.09 431.32 13301.54 13354.57 26.08 13311.63 13562.85 435.16
4 5317.40 5352.38 30.48 5307.30 5371.14 36.57 5326.31 5367.41 28.61
5 14270.54 14596.84 485.51 13354.67 14214.88 304.14 13296.24 14391.75 567.42
6 142500.38 145420.82 1362.31 150694.17 161808.71 15156.40 145320.93 147395.05 1876.41
7 59040.30 61270.50 1813.02 61632.17 64676.70 2280.38 59268.99 61837.04 1963.05
8 159472.84 160617.37 501.14 159697.12 162177.45 1944.21 159767.41 161169.18 780.70
9 148746.63 152011.50 1836.34 147881.97 155277.03 7625.65 150609.69 152743.51 1577.64
10 146385.27 147212.71 840.82 144494.22 144998.00 384.90 146095.58 147157.47 769.96
Inst. ADHS-GD ADHS-IE SR-AILLA

Min Avg Std Min Avg Std Min Avg Std
1 4511.27 5135.46 222.88 5096.24 5173.24 67.13 5123.24 5173.78 26.05
2 20679.93 21335.72 486.30 20654.06 21263.62 521.96 20656.16 21454.80 418.95
3 12504.42 13739.45 678.33 13331.98 13779.13 532.92 13330.84 14095.40 520.54
4 5397.69 5562.54 294.99 5328.44 5558.63 391.26 5342.35 5382.40 46.92
5 14305.11 14865.83 733.75 14274.97 14919.90 520.97 14260.22 14489.48 435.96
6 215100.96 241955.39 15084.82 145530.83 147629.64 1991.99 156259.67 159172.87 2686.16
7 70300.67 83592.47 11530.71 59269.98 62569.36 2623.83 66073.03 68260.60 1643.27
8 178413.45 200534.46 20384.98 160247.30 161219.64 783.82 162682.76 165091.97 1513.45
9 176062.16 202494.28 16272.58 151911.91 154670.64 1715.27 161802.83 163823.64 1615.82
10 160990.41 167725.95 4019.81 145170.22 147426.92 1193.93 148558.29 150138.59 832.58
Inst. SR-LATE SR-SA SR-GD

Min Avg Std Min Avg Std Min Avg Std
1 5171.65 5210.47 21.28 5127.49 5202.80 44.15 5252.10 5351.11 67.29
2 20655.05 20863.81 422.00 20694.92 21573.50 309.10 20668.74 21975.00 682.05
3 13319.56 13564.92 438.38 13346.68 14178.73 429.32 14414.75 14764.23 512.01
4 5358.07 5415.56 33.22 5361.07 5512.25 333.17 5460.27 6002.23 448.96
5 13351.68 14312.51 465.00 14272.65 14706.85 538.57 15329.63 15783.38 523.59
6 192819.81 195770.10 1840.80 153277.28 161223.61 3418.89 317092.35 330347.00 9385.38
7 89495.74 92826.22 1587.41 63707.66 68124.84 2947.26 120249.12 125272.46 2728.87
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Table 9 continued

Inst. SR-LATE SR-SA SR-GD
Min Avg Std Min Avg Std Min Avg Std
170984.64 172793.31 913.07 164288.33 165712.33 1262.67 228655.29 236974.89 5993.82
9 188657.42 191291.93 2108.08 160565.73 166457.13 3017.37 286915.80 306871.39 11020.64
10 153557.25 154946.58 1043.47 148897.05 151023.94 1230.66 215957.29 229365.16 5785.46
Inst. SR-IE
Min Avg Std
1 5185.88 5249.82 60.46
2 20661.09 21269.81 516.92
3 13391.09 14323.02 328.51
4 5406.36 5727.30 441.82
5 14274.39 14729.14 515.57
6 154430.93 159568.08 3731.54
7 65136.72 68772.11 2526.90
8 161927.48 164211.23 1622.87
9 162386.92 164244.56 1266.54
10 148520.30 150636.49 1132.61

performance difference can be noticed compared with
ADHS-SA, ADHS-IE and ADHS-LATE. As mentioned for
the personnel scheduling problem, there are large margins
between the scores of the hyper-heuristics with ADHS and
SR for this problem domain too. For instance, the score of
SA increases from O to 73 and the score of IE changes from
2 to 69 using ADHS instead of SR. In addition, SA and IE
move acceptance mechanisms perform better than LATE and
GD with ADHS while they perform significantly worse than
LATE and GD with SR.

4.1.6 Vehicle routing

For the vehicle routing problem, ADHS—AILLA comes first
with the score of 82. ADHS-SA and ADHS-LATE follow
it with no significant performance difference. With ADHS,
the scores of tested hyper-heuristics are two or three times
higher than their scores compared to theirs scores obtained
utilising SR.

4.2 Heuristic selection

Figure 3 demonstrates the effect of the proposed selection
mechanism, ADHS, on the tested heuristic sets. For the bin
packing problem, there is a large gap between ADHS and SR
based on the number of heuristic calls during the run, ADHS
chooses effective and fast heuristics more frequently. How-
ever, in some part of the search space, it prefers slower heuris-
tics due to the changing search requirements. The selection
process is still faster for max SAT but the difference is rela-
tively smaller. For the flowshop scheduling problem, ADHS
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starts with fast heuristics, but then prefers slower options
for performance improvement. The number of heuristic calls
by ADHS compared to SR are also smaller for the person-
nel scheduling and travelling salesman problems The reason
behind this slowing down on the number of heuristic calls
partially caused by the relay hybridisation. For the vehicle
routing problem, the number of heuristic calls by ADHS is
again larger.

Figure 4 illustrates the number of calls for each heuristic
regarding each problem domain. It can be concluded that at
certain time points, the behaviour of the heuristic selection
changes. The heuristics available for solving the bin packing
problem instances show similar performance or behaviour
through the whole search. This can be deduced from the con-
stantly increasing number of heuristic calls. Only one heuris-
tic started to be called more frequently during the second
half of the search time. A similar pattern of behaviour can be
seen on the max SAT, travelling salesman and vehicle routing
problems’ heuristics. For the permutation flowshop schedul-
ing problem, the number of calls for a group of heuristics
follows different trends during different time intervals. For
the personnel scheduling problem, some immediate changes
on the number of calls for each heuristic during the whole
running period can be seen. This is mainly related to the
speed of the heuristics that allows only a limited number of
iterations for the given execution time. In addition, it should
be noted that the variations of the heuristic selection and
exclusion processes depend on the environmental responses
from the corresponding search spaces during learning. For
instance, the graph for max SAT shows that there is no strict
changes of the heuristic preferences in general. The reason
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Fig. 4 The number of calls for each heuristic over the given problem domains by ADHS-AILLA (The data belongs to a run on an instance for
each problem domain)

behind this behavior is related to the characteristic of the
search space providing easy solution improvement opportu-
nities. This means that it is easy to immediately find good

quality solutions due to the characteristics of their search
spaces shaped by their solution spaces and their correspond-
ing low-level heuristics. After this quick search process, it
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gets harder to find improving solutions as the learning process
regarding the heuristic selection operations slows down.

4.3 Relay hybridisation

Figure 5 demonstrates the effective heuristic pairs yield-
ing new best solutions during the run on the tested prob-
lem domains. It shows the first heuristics as squares and
the second heuristics as circles. Applying these two types
of heuristics consecutively at an iteration is the hybridisa-
tion considered. The number of new best solutions found
changes for different problem domains as well as different
time intervals during a run. For the bin packing problem
relay hybridisation is very effective for finding intensifying
heuristic pairs for most of the execution time. The only hill
climbers (LL Hs, L L Hg) perform as the most effective sec-
ond heuristics. Two mutational heuristics (LL Hy, LL H3),
one ruin-recreate heuristic (L L Hy) and the crossover opera-
tor (L L H7) help to diversify the solution for (L L Hg) as the
first heuristics.

For the max SAT problem, the effect of hybridisation
is very limited. The hill climbers (L L H7, LL Hg) are used
as the second heuristics and all the mutational heuristics
(LLHy, LLHy, LLH,, LLH3, LLH4, LLHs) available in
the corresponding heuristic set were utilised as the first
heuristics.

The hill climbers (LLH7, LLHg, LLHy, LL Hg) for the
permutation flowshop scheduling problems were effectively
used as second heuristics. Among them (L L H7) and (L L Hg)
were the most preferred options. The ruin-recreate heuris-
tics (LL Hs, LL Hg) are used as the first heuristics generally
together with two mutational heuristics (L L Hy, LL Hy).

For the personnel scheduling, due to the running time
limit, the number of iterations were not as high as the
other problem domains. Anyway, the relay hybridisation
delivered some effective heuristic pairs composed of one
mutational heuristic (LLH;;) two ruin-recreate heuristics
(LLHg, LL H7) as the first heuristics and two hill climbers
(LLH3, LL Hy) as the second heuristics.

For the travelling salesman problem the effect of hybridis-
ation is valid within certain time intervals. Two hill climbers
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Fig. 5 Heuristic combinations resulting from relay hybridisation on
different problem domains (squares represent the first heuristics and
circles refer to the second heuristics in which the heuristics were
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consecutively applied). Each graph was drawn based on data belonging
to a run on an instance for each problem domain
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Fig. 6 (Q1I-avg changes of the bin packing heuristics during a run for
solving a bin packing problem instance (Quality index (Q1) values
showing the performance of the heuristics are depicted as solid lines.

(LL H7, LL Hg) are the most frequently used second heuris-
tics. Another hill climber (L L Hg) and two crossover oper-
ators (LLHy, LLHy) rarely yielded new best solutions
when applied as second heuristics. The mutational heuristics
(LLHy, LLH|, LLH3, LLH4) and the only ruin-recreate
heuristic (L L Hs) effectively performed as first heuristics.

The last problem domain, vehicle routing, took advan-
tage of the hybridisation mostly during the first quar-
ter of the search. Two hill climbers (LLHy, LLHg) were
effective second heuristics. It is also possible to con-
clude that the other hill climber (LLHy) and a mutation
operator (LLH1) are seldomly used as second heuristics.
Different heuristics performed as first heuristics, two muta-
tional heuristics (L L Hy, L L Hy), the ruin-recreate heuristics
(LLH>, LLH3), one crossover operator (LL Hs), and one
hill climber (L L Ho).

The resulting heuristic pairs exhibit a behavior some-
what similar to memetic algorithms and iterated local search.
However, for some problem domains, the effect of these
pairs for finding new best solutions is limited. Employ-
ing a dynamic decision mechanism in order to determine
whether applying single heuristics or heuristics in pairs may
be effective to fasten the search process and provide further
improvements.

Average (avg) values of all the Q7 values through the search are indi-
cated as dotted lines. The heuristics with a lower Q7 than “avg” are
excluded)

4.4 Varying performance of the heuristics

Figure 6 illustrates the varying Q1 values of each heuristic
during the search process on a bin packing instance. The fluc-
tuating Q1 suggests that the performance of each heuristic
is different for different regions of the search space regard-
ing the utilised performance metric. Among these heuristics
a ruin-recreate heuristic (L L H>) with a mutational heuris-
tic (L L H3) are mostly available in the heuristic set. On the
other hand, two mutational heuristics (LL Hy, LL Hs) are
mostly excluded despite their very effective performance
during certain phases. During the last quarter of the exe-
cution time, these heuristics are always excluded. One hill
climber (L L Hy) is excluded from the heuristic set from time
to time but during the last quarter of the time it was not
excluded anymore. A ruin-recreate heuristic (L L Hy) is fre-
quently excluded, but still provided better performance for
some regions of the search space. The last two heuristics,
one is hill climber (L L Hg) and one is a crossover (L L Hy),
are mostly a part of the heuristic set. However, the Q1 fluc-
tuations of LL Hg are smaller compared to the Qs of the
other heuristics except Q1. These results show that the per-
formance variation of different heuristics should be regularly
monitored and analysed.
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4.5 Set size

As mentioned in the computational results, ADHS elevates
the performance of the tested move acceptance strategies
significantly. One of the major reasons behind this effec-
tive performance improvement is the method determining
elite heuristic subsets for different search regions. For the bin
packing problem, the number of heuristics used is generally
four or five out of eight heuristics. For the max SAT problem,
five or six heuristics stay out of the heuristics sets with size
11. The number of heuristics used for solving the permu-
tation flowshop scheduling instances is mostly eight out of
15 heuristics. The heuristic set for the personnel scheduling
problem domain could not be processed for elimination due
to the low speed of the heuristics and the maximum execution
time. For the travelling salesman problem, ADHS keeps the
heuristic set as involving mostly seven heuristics out of 13.
This value is six for the vehicle routing problem with ten
heuristics.

5 Conclusion

In this study, the design and implementation of a new selec-
tion hyper-heuristic on a hyper-heuristic software frame-
work, i.e., HyFlex, was discussed. The developed approach
consists of an adaptive dynamic heuristic set (ADHS) strat-
egy determining the best heuristic subsets along a number
of iterations. For enhancing the effectiveness of ADHS, a
learning automaton-based heuristic selection strategy and a
pairwise heuristic hybridisation mechanism were employed.
In addition, a new threshold-based move acceptance strat-
egy, adaptive iteration limited list-based threshold accept-
ing (AILLA), was accommodated. A set of experiments was
carried out with nine additional hyper-heuristics over six
problem domains with their specific heuristic sets. The exper-
imental results indicated that the designed hyper-heuristic is
an effective strategy for solving the given problem instances
using their corresponding heuristic sets. Although the hyper-
heuristic performs well on average, there is still room form
improvement. For the max SAT problem, SR-SA gen-
erates superior results compared to the proposed hyper-
heuristic. Also, ADHS-SA performs slightly better than
ADHS-AILLA for the personnel scheduling problem. Fur-
thermore, the successor of the proposed hyper-heuristic won
the first international cross-domain heuristic search challenge
(CHeSC 2011).

In future research, the proposed hyper-heuristic will be
improved to cope with its possible adaptation issues for dif-
ferent heuristic sets. For this purpose, a feedback mechanism
will be setup between the selection process and the move
acceptance part. In addition, a two-phase heuristic selec-
tion mechanism consisting of selecting a heuristic subset
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and choosing a heuristic from the selected heuristic set in
connection with a feedback mechanism will be utilised. Fur-
thermore, the adaptive characteristic of the move acceptance
strategy will be boosted. Finally, anumber of decision mecha-
nisms to manage these sub-mechanisms in collaboration will
be developed.
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