
J Sched (2012) 15:83–103
DOI 10.1007/s10951-011-0258-5

A hyperheuristic approach to examination timetabling problems:
benchmarks and a new problem from practice

Peter Demeester · Burak Bilgin ·
Patrick De Causmaecker · Greet Vanden Berghe

Published online: 17 November 2011
© Springer Science+Business Media, LLC 2011

Abstract Many researchers studying examination time-
tabling problems focus on either benchmark problems or
problems from practice encountered in their institutions.
Hyperheuristics are proposed as generic optimisation meth-
ods which explore the search space of heuristics rather than
direct solutions. In the present study, the performance of
tournament-based hyperheuristics for the exam timetabling
problem are investigated. The target instances include both
the Toronto and ITC 2007 benchmarks and the examina-
tion timetabling problem at KAHO Sint-Lieven (Ghent,
Belgium). The Toronto and ITC 2007 benchmarks are
post-enrolment-based examination timetabling problems,
whereas the KAHO Sint-Lieven case is a curriculum-based
examination timetabling problem. We drastically improve
the previous (manually created) solution for the KAHO Sint-
Lieven problem by generating a timetable that satisfies all
the hard and soft constraints. We also make improvements
on the best known results in the examination timetabling lit-
erature for seven out of thirteen instances for the To ronto
benchmarks. The results are competitive with those of the

P. Demeester (�) · B. Bilgin · G. Vanden Berghe
Information Technology, KAHO Sint-Lieven, Gebroeders De
Smetstraat 1, 9000 Gent, Belgium
e-mail: Peter.Demeester@kahosl.be

B. Bilgin
e-mail: Burak.Bilgin@kahosl.be

G. Vanden Berghe
e-mail: Greet.VandenBerghe@kahosl.be

P. De Causmaecker
Computer Science and Information Technology, Katholieke
Universiteit Leuven Campus Kortrijk, Etienne Sabbelaan 53,
8500 Kortrijk, Belgium
e-mail: Patrick.DeCausmaecker@kuleuven-kortrijk.be

finalists of the examination timetabling track of the Interna-
tional Timetabling Competition.

Keywords Exam timetabling · Benchmark instances ·
Hyperheuristics

1 Introduction

University timetabling was one of the first problems to mo-
tivate research on timetabling (Cole 1964). Many academics
have their agenda determined by the results to a consider-
able extent. A course timetable, for example, is strongly con-
strained by the (limited number of) lecture, tutorial, semi-
nar, and lab rooms, their respective properties, the number,
size, and the hierarchical structure of student groups, and the
availability of the lecturers. Increasing flexibility to combine
different modules results in extra constraints on the students’
opportunity to attend all the lectures and exams. Construct-
ing timetables manually thus becomes more complex, and
moreover it is a tedious and repetitive process. The quality of
the final timetable affects lecturers and students alike, but it
can also affect the administrative and technical services on a
campus. If, for instance, all lectures scheduled before lunch
break finish at the same time, the student restaurant will be
flooded by hungry students. Exams that are not spread out
sufficiently for all students, can have a serious impact on the
number of students that pass their exams.

University timetabling comes in two groups (Schaerf
1999b): course and examination timetabling. In university
course timetabling a distinction is made between post-enrol-
ment and curriculum-based course timetabling. These were
also the two course timetabling tracks of the second Inter-
national Timetabling Competition (McCollum et al. 2010).
Post-enrolment differs from curriculum-based course time-
tabling in that the timetable is constructed after the students

mailto:Peter.Demeester@kahosl.be
mailto:Burak.Bilgin@kahosl.be
mailto:Greet.VandenBerghe@kahosl.be
mailto:Patrick.DeCausmaecker@kuleuven-kortrijk.be

84 J Sched (2012) 15:83–103

have chosen their courses. In the curriculum-based case, the
students have to take a set of courses that belong to a certain
curriculum. Many research papers address different prob-
lems or instances ranging from timetabling competitions
(Kostuch 2005; Müller 2008) and (simplified) real world
benchmark problems (Carter and Laporte 1996) to very
complicated problems from practice that involve room and
equipment requirements, flexible student groups, lecturer
groups, flexible lecture durations, non-weekly repeating lab
sessions, etc. (Beligiannis et al. 2008; Dammak et al. 2008;
De Causmaecker et al. 2009; Di Gaspero and Schaerf 2008;
Schaerf 1999a; van den Broek et al. 2009).

Examination timetabling is known to the research com-
munity as the problem of assigning exams to time slots and
rooms in such a way that (1) no students are taking more
than one exam at the same time, (2) the study intervals be-
tween exams are sufficiently long for each student, and (3)
the capacity of rooms is respected. For this problem, com-
petition instances (McCollum et al. 2010) as well as bench-
mark problems are available. The benchmark problems have
been derived from several real world problems, e.g. at the
universities of Toronto, Nottingham, Melbourne, etc. (see
Qu et al. 2009 for a comprehensive overview).

The problem we introduce in this paper is the examina-
tion timetabling problem at the Engineering Department of
KAHO Sint-Lieven. We will refer to it as the KAHO prob-
lem in the remainder of the paper. The problem under in-
vestigation is new. It differs from known examination time-
tabling problems in that it addresses both oral and written
exams. We address this problem with a hyperheuristic ap-
proach and compare the timetable with the manual results
that were generated in parallel. For the first semester of the
academic year 2005–2006, we managed to arrange the ex-
ams on weekdays only, whereas the manual planner had not
been able to avoid scheduling some exams on Saturdays.
The performance of the hyperheuristic algorithm is tested on
both the Toronto benchmark instances and the examination
timetabling track of the second International Timetabling
Competition (ITC 2007).

The contribution of this paper is threefold: (1) the in-
troduction of a complex problem from practice in exam-
ination timetabling, (2) a tournament-based hyperheuristic
approach consisting of (among other things) the recently in-
troduced late acceptance strategy as a move acceptance cri-
terion, and (3) a performance analysis of the solution ap-
proach, including a comparison with the best approaches to
the benchmark problems in the recent literature. The claim
of this paper is that the hyperheuristic approach can suc-
cessfully address a complex problem from practice as well
as benchmark instances from the scientific literature. There
is no one to one match between the three problem descrip-
tions, and the difference between the models is taken care of
by the low-level heuristics.

The related literature is reviewed in Sect. 2, whilst a
detailed problem description and a model are presented in
Sect. 3. We elaborate on the difference between the prob-
lem from practice and two profoundly studied benchmark
problems for examination timetabling. Section 4 introduces
the components of the hyperheuristic approach. In Sect. 5,
we discuss experimental results for the KAHO examination
timetabling problem and the two benchmarks instances. We
conclude the paper and point out some directions for future
research in Sect. 6.

2 Related literature

2.1 Examination timetabling

In general, the literature on examination timetabling can be
divided into two categories: one concentrates on solving ex-
amination timetabling problems from practice, whilst the
other focuses on improving benchmark results. Benchmark
instances give an unbiased comparison of the search algo-
rithms’ performance, on the condition that

– some validation tool that impartially checks the correct-
ness of the obtained results exists,

– and a tool that eliminates the hardware dependency exists.
The latter can be achieved, for instance, by providing a
software tool that determines the hardware specifications
of the researcher’s computer and calculates the available
computation time to obtain a solution for that specific
problem (cfr. for example First International Nurse Ros-
tering Competition 2010; McCollum et al. 2010).

The most studied examination timetabling benchmark is
probably the one that was introduced by Carter et al. (1996).
This benchmark consists of 13 simplified real world exami-
nation time tabling problems of different universities around
the world. In contrast to examination timetabling problems
from practice, these benchmark instances do not consider
rooms and lecturers. It is assumed that rooms have infinite
size. These instances are commonly known as the uncapac-
itated Toronto benchmarks. Until the introduction of the ex-
amination timetabling benchmarks of the Second Interna-
tional Timetabling Competition in 2007, the Toronto data
sets were the standard test set for examination timetabling.
The objective of the problem is twofold: constructing clash-
free examination timetables for every student, and spread-
ing out the exams as much as possible, such that students
have sufficient study time. If only the no-clash constraint is
taken into account, the problem reduces to a graph colouring
problem (Burke et al. 2004b): exams correspond to nodes
and edges correspond to pairs of exams that have at least
one common student. Assigning exams to time slots cor-
responds to assigning colours to the nodes, such that con-
nected nodes have different colours. Minimizing the num-
ber of time slots whilst satisfying the clash free constraint

J Sched (2012) 15:83–103 85

Table 1 Problem size of the 13 data sets of the Toronto benchmark
(version I). The ‘conflict’ density in the fifth column is the ratio of the
number of non-zero elements in the conflict matrix to the total number
of conflict matrix elements. In the last column, the minimum number
of time slots of a feasible solution is presented

students # exams # enrolments conflict
density

time slots

car91 16925 682 56877 0.13 35

car92 18419 543 55522 0.14 32

ear83 1125 190 8109 0.27 24

hec92 2823 81 10632 0.42 18

kfu93 5349 461 25113 0.06 20

lse91 2726 381 10918 0.06 18

pur93 30032 2419 120681 0.03 42

rye92 11483 486 45051 0.07 23

sta83 611 139 5751 0.14 13

tre92 4360 261 14901 0.18 23

uta92 21266 622 58979 0.13 35

ute92 2749 184 11793 0.08 10

yor83 941 181 6034 0.29 21

corresponds to minimizing the number of colours needed to
colour all the nodes (or exams). Carter et al. (1996) intro-
duced five basic sorting criteria for assigning exams to the
time slots, namely: largest degree, saturation degree, largest
weighted degree, largest enrolment, and random ordering.

Different versions of the Toronto instances are available.
The instances used in this paper correspond to version I in
Qu et al. (2009), which is the most commonly applied ver-
sion in the literature. The specific properties of the 13 To-
ronto benchmark instances are summarized in Table 1. The
values in the conflict density column (fifth column of Ta-
ble 1) are the ratios of the total number of non-zero elements
to the total number of elements of the ‘conflict matrix’. The
conflict matrix contains the number of common students for
every exam. The conflict density value gives an indication
of the number of conflicts between the individual exams. In
the last column, the minimum number of time slots needed
to obtain a feasible solution is presented.

The ‘Benchmark Data Sets in Exam timetabling’ web-
site (Qu 2010), provides a collection of several examina-
tion time tabling benchmark data instances and a valida-
tor to evaluate the solutions of the Toronto benchmark data
sets. Initiatives like these are welcomed since they provide
a means to check the correctness of the objective function,
cf. the discussion on measurability and reproducibility in
Schaerf and Di Gaspero (2007).

Although numerous papers have been published on the
uncapacitated Toronto benchmarks—we refer to Qu et al.
(2009) for an overview—we only discuss those papers that
consider the problem in a similar way. Thompson and
Dowsland (1998) investigate the characteristics of a ro-

bust simulated annealing algorithm. It turns out that next
to the cooling schedule, also the way the neighbourhoods
are constructed and sampled is important. The Kempe
chain-based neighbourhoods (which will be discussed in
Sect. 4.1) outperform the other neighbourhoods. Thompson
and Dowsland tackle the examination timetabling problem
in two stages: the problem is first solved to feasibility and in
the second stage, the quality of the obtained solution is im-
proved without making the solution infeasible. Both stages
apply different neighbourhoods. The second stage only em-
ploys neighbourhoods that do not violate any hard con-
straints. We will take these findings into account. Kendall
and Hussin (2005a) apply a tabu search-based hyperheuris-
tic approach in which the low-level heuristics execute small
changes to the current solution. Low-level heuristics like
these are called ‘perturbative’. The heuristic selection crite-
rion applies a tabu list for selecting a non-tabu heuristic in
the next iteration. The tabu list length is equal to the number
of heuristics. Although they do not improve on the best re-
sults in the literature, Kendall and Hussin demonstrate that
it is possible to find good enough solutions with a very gen-
eral approach that can easily be applied to other problems.
A hyperheuristic approach to university timetabling prob-
lems, was also applied in Qu and Burke (2009). For tackling
the Toronto benchmarks, they employed a graph-based hy-
perheuristic framework. Actually, high level heuristics such
as steepest descent, iterated local search, tabu search, and
variable neighbourhood search, are applied for searching
sequences of low-level graph colouring heuristics, such as
largest (weighted) degree, largest enrolment, colour degree,
and saturation degree. The approach reported in Qu and
Burke (2009) builds on the authors’ experiences in Burke
et al. (2007). In the latter paper tabu search is applied as
a high level heuristic. In both articles (Burke et al. 2007;
Qu and Burke 2009) the two search spaces are investigated:
heuristics on the one hand, and solutions on the other hand.
In Burke et al. (2010), a hybrid variable neighbourhood
search approach to the Toronto benchmarks is described.
The variable neighbourhood search is hybridized with a ge-
netic algorithm, which is used for configuring the neigh-
bourhoods. The reported method can improve on one of the
data sets of the Toron to benchmarks. Burke and Bykov
(2008) introduce the late acceptance strategy and apply it
to Carter’s examination timetabling benchmarks. For some
of the instances, new best results are obtained. We will in-
corporate late acceptance among other acceptance criteria in
our hyperheuristic approach.

The capacitated instances of the Toronto benchmarks
were introduced in Burke et al. (1996) and further studied
and improved in Abdullah et al. (2007a, 2007b), Di Gaspero
and Schaerf (2001), Caramia et al. (2001), Merlot et al.
(2003). We refer to Qu et al. (2009) for a review.

Ever since the introduction of the instances of the ex-
amination timetabling track of the Second International

86 J Sched (2012) 15:83–103

Table 2 Problem size of the 12 data sets of the examination time-
tabling track of the Second International Timetabling Competition. The
conflict density column indicates the number of conflicts between the
exams. It is the ratio of the number of non-zero elements in the conflict
matrix to the total number of conflict matrix elements

students # exams # rooms conflict
density

time slots

Instance 1 7891 607 7 0.05 54

Instance 2 12743 870 49 0.01 40

Instance 3 16439 934 48 0.03 36

Instance 4 5045 273 1 0.15 21

Instance 5 9253 1018 3 0.009 42

Instance 6 7909 242 8 0.06 16

Instance 7 14676 1096 15 0.02 80

Instance 8 7718 598 8 0.05 80

Instance 9 655 169 3 0.08 25

Instance 10 1577 214 48 0.05 32

Instance 11 16439 934 40 0.03 26

Instance 12 1653 78 50 0.18 12

Timetabling Competition (McCollum et al. 2010), they have
gained increasing popularity. In contrast to Carter’s Toron-
to benchmarks, the new ones include more constraint types,
which makes them more interesting and realistic. For in-
stance, the room capacity constraint is now taken into ac-
count. The hard constraints are:

– a student cannot take more than one exam per time slot;
– an exam cannot be split over several rooms;
– the room’s capacity cannot be exceeded;
– some exams require rooms with special properties;
– the duration of the time slot to which an exam is assigned,

should be greater than or equal to the duration of the
exam;

– some exams should be scheduled before, after, at the same
time as or at different times than other exams.

The following soft constraints should be taken into account:

– two exams taken by the same student should not be sched-
uled on the same day or in two consecutive time slots;

– exams should be spread out as much as possible;
– exams with different durations should not be assigned to

the same room;
– large exams should be scheduled early in the timetable;
– some of the time slots in the examination timetable should

be avoided;
– some of the rooms should be avoided for examination.

The problem size of the 12 data sets is presented in Ta-
ble 2. For more detailed information about the examination
timetabling track of the Second International Timetabling
Competition, we refer to McCollum et al. (2007, 2010).

The five finalists of the examination track of the compe-
tition have applied different approaches, such as:

– a constraint solver, which in the first stage constructs a
complete feasible solution, followed by a hill climbing
and a great deluge approach for improving the solution
(Müller 2008);

– a Greedy Randomized Adaptive Search Procedure, fol-
lowed by simulated annealing, and integer programming
(Gogos et al. 2008);

– a constraint satisfaction solver combined with tabu search
and iterated local search (Atsuta et al. 2008);

– Drools Solver (De Smet 2008), which is a combination of
tabu search and the JBoss Drools rules engine used for the
evaluation, and

– a heuristic method that is inspired by cell biology (Pillay
2008).

After the end of the competition, it was shown that for all
12 instances, feasible solutions could be obtained (McCol-
lum et al. 2009). Also, McCollum et al. (2009) improve on
six out of the 12 benchmark instances. Their approach con-
sists of two parts: a feasible solution is constructed first and
afterwards the solution is further improved with an extended
great deluge algorithm, to which a reheating mechanism is
added for escaping from local optima.

The runner-up of the competition, Gogos et al. (to appear),
have published a follow-up paper in which they improve the
approach applied in the competition. The method consists
of two phases: a feasible solution is constructed, which is
then further improved. The improvement phase consists of
several parts:

– first a steepest descent local search is applied until a local
optimum is reached;

– simulated annealing is applied for escaping from the local
optimum;

– when no further improvement is obtained, the problem
is divided into smaller problems, which are solved with
integer programming;

– finally, if the previous stage cannot improve the current
solution anymore, the solution is shaken.

Twenty percent of the computation time is spent on the con-
struction phase, and the remainder is spent on the improve-
ment phase. For some of the instances, the best results in the
literature are obtained.

Besides the benchmarks, considerable attention has been
paid to examination timetabling problems from practice
(Ayob et al. 2007; Carter and Laporte 1996; Dimopoulou
and Miliotis 2001; Hansen and Vidal 1995; Kendall and
Hussin 2005b; Lim et al. 2000; Thompson and Dowsland
1996).

2.2 Hyperheuristics for examination timetabling

Hyperheuristics are high level search and optimization
methods (Burke et al. 2003). Instead of operating directly on

J Sched (2012) 15:83–103 87

a set of candidate solutions, as is the case in meta-heuristics,
they operate on a set of (meta-)heuristics. These low-level
heuristics can be either perturbative (changing only small
parts of the solution) or constructive (constructing a solu-
tion). The motivation behind hyperheuristics is to provide a
general framework for tackling a wide range of problems. In
an ideal situation, the researcher should only adapt the low-
level heuristics for solving a different problem than the cur-
rent one. Another objective of the hyperheuristics research
is to generate synergy between heuristics involved in the
search, making use of their strengths, avoiding their weak-
nesses, and taking advantage of their combined capabilities.

Several papers applying hyperheuristics to examination
timetabling problems have appeared in the last decade.
Some of them are discussed in Sect. 2.1. Pillay and Banzhaf
(2009) apply a constructive hyperheuristic to the Toron-
to benchmarks. The hyperheuristic chooses a combination
of low-level heuristics for constructing a solution. Instead
of applying the low-level heuristics sequentially, they are
combined hierarchically and simultaneously. The low-level
heuristics correspond to the five basic graph colouring cri-
teria introduced by Carter et al. (1996). Without any im-
provement phase, the algorithm generates good quality re-
sults. For some data instances of the Toronto benchmarks,
the results are better than those obtained by similar graph-
based hyperheuristic approaches. Graph-based hyperheuris-
tics for the Toronto benchmarks are also employed in Burke
et al. (2005, 2007), Qu and Burke (2005, 2009). These four
papers apply five basic graph colouring criteria (Carter et
al. 1996) as low-level heuristics for constructing a solution,
with different high level heuristics, such as tabu search, vari-
able neighbourhood search, iterated local search, and steep-
est descent. Kendall and Hussin (2005b) describe the ex-
amination timetabling problem at the MARA university in
Malaysia. They apply a tabu search-based hyperheuristic
approach, selecting the low-level heuristics. The low-level
heuristics combine the graph colouring heuristics and per-
turbative heuristics, swapping or moving random exams.
Kendall and Hussin (2005a) apply the same approach to the
Toronto benchmarks.

3 Problem description

3.1 The KAHO problem

Unlike the examples discussed in the literature, the KAHO
Sint-Lieven examination timetabling problem combines
both written and oral exams. Written exams of the same
subject should be scheduled in the same time slot for all the
students involved, whereas a lecturer can take 20 students at
most in the same time slot for oral exams. Both an oral and
a written exam should not be assigned to the same room at

the same time. Different written exams can be organized in
the same room simultaneously, provided the room capacity
is not exceeded.

At KAHO Sint-Lieven, the examination capacity of a
room ranges from one third to one half of its normal ca-
pacity for lectures. The actual ratio depends on the physical
properties of the room.

At the beginning of the academic year, students are au-
tomatically enrolled for the exams that correspond to their
curriculum. This causes—especially in the first year—a high
percentage of students not showing up and a poor usage of
the available rooms. Exams are assigned to rooms that are
larger than needed.

An exam takes at most half a day (from 8h30 till 12h30
or from 14h00 till 18h00) and should only be scheduled on
workdays. Students should have at least 3 half days of study
time between two consecutive exams. A typical examination
period takes 4 weeks of 5 days each, resulting in 40 available
time slots.

We solve the data set for the first semester of the aca-
demic year 2005–2006. This was the last semester in which
exams were scheduled on Saturdays. The manual planner
actually needed 24 days (or 48 time slots) for scheduling the
exams. Apart from satisfying the above constraints, the aim
is to eliminate the exams on Saturdays as well.

The problem includes:

– 336 exams,
– 135 student groups,
– 71 rooms of varying size and
– 40 time slots of 4 hours each.

Note that we do not take the assignment of invigilators
into account. In practice, for oral exams, the examiner is in-
vigilator at the same time, whilst for written exams, teaching
assistants are invigilating. We do plan to incorporate the as-
signment of invigilators in future work.

3.2 Constraints and objective

In this section, we identify the different constraints of the
KAHO Sint-Lieven examination timetabling problem and
distinguish between hard and soft constraints. A solution
containing hard constraint violations cannot be executed in
practice. A solution satisfying the hard constraints is called
a feasible solution. Soft constraints do not really need to be
satisfied, but if they are, they will improve the quality of the
solution. The goal is to search for feasible solutions that sat-
isfy the soft constraints to the highest possible extent.

The hard constraints imply:

– Students cannot take two exams at the same time.
– The number of students assigned to a room cannot exceed

its capacity.

88 J Sched (2012) 15:83–103

– All exams should be scheduled within the planning hori-
zon of four weeks.

Although not all the following rules are considered to be
soft constraints at KAHO Sint-Lieven, we rank them as soft
since they do not make the solution ‘physically infeasible’
when violated. All soft constraints get the value 1 as weight.

– All written exams of the same subject should be sched-
uled in the same time slot.

– All oral exams should be scheduled such that the maxi-
mum number of examinees per time slot is at most 20.

– Lecturers who are responsible for oral exams cannot ex-
amine more than one student group at the same time.

– Oral and written exams should not be merged into the
same room.

– Students should have at least three slots of study time be-
tween two consecutive exams. This corresponds to the
spreading out constraint (Corne et al. 1994; Ross et al.
1994).

The objective of the problem is to find a feasible solution
that minimizes the weighted sum of the violations of the soft
constraints.

3.3 Mathematical formulation

In examination timetabling, E exams need to be scheduled
into a limited number of T time slots and R rooms, taking
into account the capacity of the rooms, and the restriction
that students cannot take more than one exam at the same
time, among other constraints. Every student group takes a
number of exams. In the examination timetabling problem
at hand, exams depend on the student group’s curriculum,
which is similar to the situation in the curriculum-based uni-
versity course timetabling case.

The decision variables are

xrte = 0 or 1 (1)

with (r = 1, . . . ,R; t = 1, . . . , T ; e = 1, . . . ,E), and where
xrte = 1 if exam e is assigned to room r in time slot t . An
exam e is characterized by a subset of the set of all student
groups, taking the same course and a lecturer l (with l =
1, . . . ,L, with L the number of lecturers). A student group
is characterized by s (s = 1, . . . , S, with S the number of
student groups).

– Let Srt be the total number of students assigned to room
r at time slot t .

– Let W denote the set of all written exams and O the set of
all oral exams. Since no exam can be both written or oral,
this means that W ∩ O = ∅.

– Let Ne denote the number of student groups taking the
same exam e of the same course by the same lecturer.

– Let CAPr be the capacity of room r .

– Let A denote the conflict matrix. This matrix represents
the exams that cannot be scheduled in the same time slot
(‘conflicting exams’), due to exams that have common
students. This is a symmetric E × E matrix. The matrix
elements on the diagonal are 0, whilst the values of the
non-diagonal matrix elements correspond to the number
of students that the involved exams have in common.

∀ rooms r , time slots t , and exams e:

E∑

m=1

Amexrtm ≤ M(1 − xrte) (2)

with M an arbitrary large number.
Equation (2) expresses that no student group can take

more than one exam in the same time slot.

∀e, r, t : Srtxrte ≤ CAPr (3)

Equation (3) expresses that the number of students assigned
to a room cannot exceed the room’s capacity.

∀e, r :
T∑

t=1

xrte = 1 (4)

Equation (4) expresses that all exams are scheduled.
Solutions satisfying (2)–(4) are feasible. In order to find

feasible solutions that satisfy as many soft constraints as
possible, the following objective function (5) is introduced.

Min

(
T∑

t=1

∑

e∈W

P1,te +
∑

e∈O

P2,e +
R∑

r=1

E∑

e=1

T∑

t=1

P3,rte

+
E∑

e=1

R∑

r=1

P4,er

)
, (5)

with P1, P2, P3, and P4 the result of the violations of the soft
constraints. The penalties corresponding to the violations of
the soft constraints are expressed below.

∀e ∈ W,∀t : P1,te =
∣∣∣∣∣

R∑

r=1

xrte − Ne

∣∣∣∣∣ (6)

Equation (6) generates a penalty when the written exams of
the same subject are not assigned to one single time slot.

∀e ∈ O : P2,e =
∣∣∣∣∣

R∑

r=1

T∑

t=1

xrte − Ne

∣∣∣∣∣ (7)

Equation (7) requires that the number of oral exams of
the same course should equal the number of student groups
taking the course.

∀e1 ∈ W,e2 ∈ O,∀r, t :
P3,rte = max

(
(xrte1 + xrte2) − 1,0

)
(8)

J Sched (2012) 15:83–103 89

Table 3 Differences and similarities between the Toronto and ITC
2007 benchmark and the KAHO Sint-Lieven examination timetabling
problem

KAHO ITC 2007 Toronto

exam types oral AND written written written

smallest unit student group student student

exam durations equal different equal

exam order not important important not important

room size important important not important

Equation (8) expresses that an oral and a written exam can-
not be assigned to the same room in the same time slot.

∀e, r : P4,er =
T −1∑

t=1

xrtexrt+1e +
T −2∑

t=1

xrtexrt+2e

+
T −3∑

t=1

xrtexrt+3e (9)

Equation (9) requires that for each student group, at least
3 time slots of study time should be assigned between two
exams.

3.4 Benchmarks versus KAHO problem

In Table 3 we summarize both the differences and similar-
ities between the KAHO problem and the two best known
examination timetabling benchmarks in the literature: the
Toronto benchmark and the ITC 2007 data sets. Note that
the KAHO problem differs from the other problems in the
considered examination types and in the smallest exami-
nee unit. Since the Toronto and ITC 2007 instances only
consider written exams, they do not impose special con-
straints on the maximum number of students that can take
the exam at the same time. Contrary to the two benchmark
problems, the KAHO problem is a curriculum-based exam-
ination timetabling problem. It means that exams at KAHO
are organized per student group taking the same curriculum,
whilst in the Toronto and ITC 2007 benchmark instances,
every student may have an individual examination timetable.
In the KAHO case, all exams take 4 hours, whereas in the
ITC 2007 case, exams may have different durations. Also,
the exam order is important in the ITC 2007 case: large
exams should preferably be scheduled in the beginning of
the period. The KAHO and the ITC 2007 case take into ac-
count the (limited) room size, whilst the Toronto instances
consider infinite room sizes. Actually, except for the lack
of oral examinations, and the notion of curricula, the ITC
2007 model can be considered as more general than the
KAHO model. It foresees exams with different durations,
and it prefers exams that are scheduled early in the planning
period. If it would be extended with exams based on cur-
ricula and with the notion of oral exams, our model would
perfectly fit into the ITC model.

4 Solution methods

In this section we introduce the components of the hy-
perheuristic approach. Section 4.1 introduces the low-level
heuristics. The construction of the initial solutions for the
three examination timetabling problems is discussed in
Sect. 4.2. In Sect. 4.3 we present the four acceptance cri-
teria and the heuristic selection method.

4.1 Low-level heuristics

The hyperheuristics framework is built on top of a local
search framework, for which an appropriate solution repre-
sentation is generated. We mimic the timetabling process of
a human planner as closely as possible. The rows of a two di-
mensional matrix correspond to the rooms and the columns
to the time slots. The number of time slots corresponds to the
examination period. A room-time slot combination can hold
several exams, which can individually be moved to another
room-time slot combination. The number of exams in the
same room-time slot combination is limited by the room’s
capacity.

In order to overcome the under-utilization of rooms for
the KAHO problem (Sect. 3.1), we introduce a show up fac-
tor: this factor represents the percentage of enrolled students
that are likely to attend the exam. Throughout this paper we
assume that 95% of the students show up. This estimate is
thought to be safe for the first year’s students.

We distinguish between the heuristics that were devel-
oped for solving the capacitated KAHO and ITC 2007 ex-
amination problems and good heuristics from the literature
(Sect. 2) on the uncapacitated Toronto examination time-
tabling problem. We address the first set as the capacitated
and the latter as the uncapacitated heuristics:

– All the capacitated heuristics rely on one basic move: re-
locating an exam to another room-time slot combination.
In case the capacity of the destination room is insufficient,
the content of both matrix elements is swapped; other-
wise, the exam is simply moved from the original to the
destination position. The heuristics restrict the directions
in which the content can be moved. The four heuristics
that both capacitated examination timetabling problems
have in common are:
– Cap1: This heuristic restricts the moves to random

room-time slot combinations. The destination room
and time slot need to be different from the original
room and time slot.

– Cap2: This heuristic only allows moves in the same
time slot to rooms that have enough excess capacity to
accommodate the students taking the exam.

– Cap3: A randomly chosen exam is moved to a ran-
domly chosen room, within the original time slot.

90 J Sched (2012) 15:83–103

Fig. 1 An example of the Kempe chain heuristic. A move of exam e1
in time slot ti to another time slot tj requires repair moves to maintain
feasibility. Exams e3 and e4 have to be moved to time slot tj and exams
e6, e7, and e8 have to be moved to time slot ti

– Cap4: A randomly chosen exam is moved to a ran-
domly chosen time slot, whilst maintaining the original
room.
The ITC 2007 examination timetabling problem has

some extra soft constraints. Therefore we constructed an
additional set of low-level heuristics that address these
constraints in particular:
– ITC1: A randomly chosen exam is moved to another

time slot in the same room thereby avoiding time slots
that introduce an extra period penalty.

– ITC2: A randomly chosen exam is moved to another
room in the same time slot, avoiding rooms that intro-
duce an extra room penalty.

– ITC3: A randomly chosen large exam is moved to a
time slot in the beginning of the examination period.
None of the above heuristics takes special precautions

to maintain the feasibility of a solution.
– Concerning the uncapacitated Toronto examination time-

tabling problem, we apply the Kempe chain based heuris-
tics. These low-level heuristics perturb feasible solutions
to the uncapacitated examination timetabling problem,
without making them infeasible. Suppose a partial solu-
tion that corresponds to the left hand side of Fig. 1. If
we want to move exam e1 to time slot tj , the solution
becomes infeasible, since exam e1 has students in com-
mon with exams e6, e7, and e8 that are assigned to time
slot tj . To overcome this, exams e6, e7, and e8 should be
moved to time slot ti . This process is repeated until all the
exams that have students in common are assigned to dif-
ferent time slots. The result is depicted at the right hand
side of Fig. 1. The Kempe Chain heuristic Uncap1 can be
seen as moving an exam to another time slot whilst main-
taining feasibility by repairing any infeasibilities that may
have been introduced. The swap-two-time slots heuristic

Uncap2, introduced in Burke and Bykov (2008), swaps
all exams of two randomly chosen time slots. This heuris-
tic maintains feasibility since swapping exams includes
all exams assigned to a time slot.

4.2 Constructing initial solutions

Both the KAHO, the Toronto and the ITC 2007 examina-
tion timetabling track data sets are tackled in the same way.
The approaches only differ in the applied low-level heuris-
tics and in the way the initial solutions are constructed.

– For the KAHO problem, we do not spend much effort in
constructing a good quality initial solution. All the exams
are randomly assigned to free room-time slot combina-
tions.

– The same random initialization procedure was applied to
the Toronto instances, but too many iterations were re-
quired for obtaining a feasible solution for most of the
problem instances. For this reason, we decided to make
use of the properties of the conflict matrix (Sect. 2) to
construct a feasible solution. The initialization phase is
described in Algorithm 1. Starting from the conflict ma-
trix, we assign exams to time slots, such that no student
takes two exams at the same time. The procedure assigns
exams in order of decreasing number of conflicts, which
corresponds to the largest degree node colouring heuris-
tic (Carter et al. 1996). This is comparable to what many
human planners do. They start assigning the exams that
have a lot of constraints, so that the exams with a lower
number of constraints are planned in the end. Some noise
is added by randomly assigning exams that cause no con-
flicts with exams that were assigned before to one of the
non-conflicting time slots. If no feasible solution can be
found, the conflicting exams together with the randomly
assigned non-conflicting exams are removed from the so-
lution. After that, the removed exams are reassigned fol-
lowing the same procedure. This process is repeated un-
til a feasible solution is found or until the total number
of attempts exceeds a threshold value. In the latter case,
the (infeasible) solution with the lowest number of unas-
signed exams is the new solution, and the unassigned
exams are randomly assigned to time slots. The Capi

(i = 1, . . . ,4) heuristics are then applied to obtain a feasi-
ble solution through perturbations. Although these heuris-
tics do not guarantee that they can make the solution feasi-
ble, the experiments always resulted in a feasible solution
in a short amount of computation time.

– In the ITC 2007 examination timetabling problem, the ex-
ams are ranked in decreasing order according to the num-
ber of students taking the exam. Exams are assigned to a
room such that both the capacity and duration constraints
are satisfied. This process is repeated for the first T ex-
ams. The remaining exams are assigned to room-time slot
combinations as follows:

J Sched (2012) 15:83–103 91

Algorithm 1 Pseudocode for initializing the solution of
Toronto instances

UE = list of unassigned exams
CEi

= list of exams that are in conflict with exam Ei

LE = ordered list of exams, decreasing order of number
of exam conflicts
MAXVALUE = 5000
//At the start of the algorithm none of the exams are as-
signed
UE = LE

i = 0
//Start with the exam that has most conflicts with other
exams
for i < E do

//Take the ith element of UE

exam e = UEi

//Find a non-conflicting time slot
Te = list of non-conflicting timeslots for e

if |Te| > 0 then
assign exam e to a randomly chosen time slot from
Te

remove e from UE

end if
i = i + 1

end for
//If there are still unassigned exams
i = 0
while |UE | > 0 AND i <MAXVALUE do

unassign the assigned exams and try to reassign them
together with as many as possible unassigned exams
following the procedure described in the above for loop
i = i + 1

end while
if |UE | > 0 then

randomly assign the exams in UE

apply the Capi heuristics until a feasible solution is ob-
tained

end if

– First, the algorithm checks whether the exam can be as-
signed to one of the occupied room-time slot combina-
tions. If there is sufficient capacity left and the exam’s
duration is not greater than the duration of the time slot,
the exam is assigned to the first appropriate room-time
slot combination that is encountered;

– If none of the occupied room-time slot combinations
have sufficient capacity to accommodate the exam, the
exam is randomly assigned to an empty room, taking
into account that room can accommodate the number
of students taking the exam. In addition, the duration
of the exam should be less than or equal to the duration
of the corresponding time slot.

The construction of the initial solution does not guar-
antee the feasibility of the solution, since we only take
two of the five hard constraints into account. Algorithm 2
presents the initialization phase.

Algorithm 2 Pseudocode for the initialization of the solu-
tion of ITC 2007 exam instances

LE = ordered list of exams, in decreasing order of num-
ber of students
UE = list of unassigned exams
AE = list of assigned exams
UE = LE

//First phase: only for the first T exams
i = 0
for i < T do

assign exam UEi
to timeslot-room combination such

that capacity and duration constraints are satisfied
remove exam UEi

from UE

add exam UEi
to AE

i = i + 1
end for
//Second phase: for the remaining exams
i = 0
while |UE | > 0 do

check whether exam UEi
can be assigned to a room-

timeslot combination that is already taken by the ex-
ams in AE , taking into account capacity and duration
constraints
if check is successful then

assign exam UEi
to occupied room-timeslot combi-

nation
remove exam UEi

from UE

add exam UEi
to AE

else
assign exam UEi

to random free room-timeslot com-
bination, taking into account capacity and duration
constraints
remove exam UEi

from UE

add exam UEi
to AE

end if
end while

4.3 Hyperheuristics framework: move acceptance criteria,
heuristic selection method and tournament factor

A typical hyperheuristics framework includes a heuristic se-
lection mechanism and move acceptance criteria. The first
is a mechanism for selecting a heuristic, to be applied to
a single candidate solution. The latter determines whether
the resulting candidate solution is accepted or declined. Sev-
eral well-known meta-heuristic methods have been deployed

92 J Sched (2012) 15:83–103

within hyperheuristics to serve as selection methods or as
move acceptance criteria.

The hyperheuristic framework applied in this paper is in-
fluenced by the work of Özcan et al. (2008) and Bilgin et
al. (2007). We have extended this hyperheuristic framework
with a tournament factor. At each iteration, the selected
heuristic generates a predefined number, namely the tour-
nament factor, of random moves. The move leading to the
candidate solution with the lowest fitness value is selected.
Evaluation of a solution by the fitness function results in a
value that reflects the solution quality: the lower the value,
the better the solution. If the best move is accepted by the
acceptance criterion, it modifies the current solution by exe-
cuting the selected move.

This design enables application to a wide range of
problems. This tournament-based hyperheuristic framework
has been applied successfully applied to patient admission
scheduling (Bilgin et al. 2010). This problem consider pa-
tients that need to be assigned to hospital beds taking into
account medical and personal constraints. The goal is to as-
sign patients to the room type of their choice, whilst at the
same time satisfying their medical needs (Demeester et al.
2010).

We apply the ‘simple random’ heuristic selection method,
which randomly chooses a heuristic from a fixed list at each
iteration. This is actually the simplest heuristic selection
method possible.

We consider the following four move acceptance criteria
for the experiments:

Algorithm 3 Pseudocode of the simulated annealing accep-
tance criterion

T = total execution time
R = remaining execution time
Ci = fitness value of candidate solution at ith iteration
Ci

best = fitness value of the best solution at ith iteration
Pi = random number between [0,1[at ith iteration
δ = Ci+1 − Ci

if δ ≤ 0 then
Accept

else
if Pi < exp

−δT
(T −R) then

Accept
else

Reject
end if

end if

– ‘improving or equal’, abbreviated as IE, which only ac-
cepts moves that do not worsen the solution;

– simulated annealing, abbreviated as SA, is represented in
Algorithm 3. In contrast to Burke et al. (2004a), in which

the authors report spending considerable time tuning the
problem specific parameters in their simulated annealing
algorithm, the acceptance criterion considered here does
not contain any parameters that need to be tuned.

– great deluge, abbreviated as GD, is presented in Algo-
rithm 4

Algorithm 4 Pseudocode of the great deluge acceptance cri-
terion

T = Total Execution Time
R = Remaining Execution Time
Ci = Fitness value at ith iteration
C0 = Initial fitness value
D = R/T
if Ci+1 ≤ Ci then

Accept
else

if Ci+1 < C0 ∗ D then
Accept

else
Reject

end if
end if

Algorithm 5 Pseudocode of the steepest descent late accep-
tance strategy acceptance criterion

initialize list C∗
L: fill complete list of fixed length L with

the initial solution’s fitness value
C∗

v = fitness value in the list C∗
L at the ith iteration

with v = i(mod)L

Ci = fitness value of candidate solution at ith iteration
δ = Ci+1 − Ci

if δ ≤ 0 then
replace C∗

v by Ci+1

Accept
else

if Ci+1 ≤ C∗
v then

replace C∗
v by Ci+1

Accept
else

replace C∗
v by Ci

Reject
end if

end if

– an adapted version of the late acceptance strategy (Burke
and Bykov 2008), abbreviated as LA. Similar to tabu
search, the late acceptance strategy makes use of a list
of a given length L. The acceptance list does not contain
properties of tabu moves but the values of the previous

J Sched (2012) 15:83–103 93

L candidate solutions. Rather than comparing a candidate
solution with the current solution, it is compared with the
oldest value in the list. When the candidate solution’s fit-
ness value is less than the oldest value in the list, the can-
didate solution is accepted, and its fitness value replaces
the oldest value in the list. The late acceptance variant
that we introduce in this paper first compares the candi-
date solution’s fitness value with the current solution’s fit-
ness value, which is actually a (limited) steepest descent.
It is no steepest descent in the strict sense, since only a
small part of the neighbourhood is explored. In case the
candidate solution is worse than the current solution, the
original late acceptance strategy is applied. Algorithm 5
summarizes the steepest descent late acceptance strategy
algorithm.

The hyperheuristic presented in this article, resembles the
approach discussed in Bai et al. (2007), Bai and Kendall
(2005). Bai et al. (2007) apply a simulated annealing hy-
perheuristic to problems from nurse rostering, university
course timetabling and bin packing. Their heuristic selec-
tion mechanism starts with random selection, and gradu-
ally learns which low-level heuristics perform better than
the other ones. As the search proceeds, the better perform-
ing low-level heuristics gradually increase their chances of
being selected. Experiments show that this method leads to
better solutions than some bespoke meta-heuristics. The ap-
proach presented in the current paper differs from Bai et al.
(2007) in the move acceptance criteria, and in the use of the
tournament factor.

5 Experiments

5.1 Settings

Every hyperheuristic variant is executed ten times on each
problem instance. Throughout this section, all the quan-
titative comparisons are assessed using the Student t-test
method with a 95% confidence level.

The applications were implemented in Java. All experi-
ments were performed on Intel Core2Duo (3 GHz) PCs run-
ning Windows XP Professional SP3, with a Java 1.6 JRE
configured to run in server mode with a heap size of 128 MB.

The stopping criteria differ between problems:

– one hour for the KAHO problem;
– for the Toronto benchmarks the stopping criteria range

from 1 hour to 12 hours.
– for the ITC 2007 data sets, the stopping criterion depends

on the performance of the computer on which the algo-
rithms are executed. In order to guarantee a fair com-
parison between the different approaches, the competi-
tion organizers released a benchmark program that, de-
pendent on the contestant’s computer performance, shows

the available computation time to find a solution. In our
case the stopping criterion was fixed at 300 seconds.

We also compare the effect of the original late acceptance
strategy (Burke and Bykov 2008) and the late acceptance
strategy combined with the steepest descent algorithm. From
the experiments it is clear that the combination of the late ac-
ceptance strategy and steepest descent leads to better results
for the KAHO examination problem. The experiments show
that the length of the acceptance list plays a crucial part in
the success of the algorithm. On the other hand, the perfor-
mance difference between the two late acceptance strategies
for the Toronto and ITC 2007 data sets is not that clear. For
some of the instances, the original late acceptance strategy
outperforms the adapted version and vice versa.

5.2 The KAHO problem

Once a random initial solution is generated, the hyperheuris-
tic adapts the solution with perturbative heuristics (Sect. 4.1)
until a feasible solution is obtained. By attributing a high
weight (100 in this case) to the violations of the hard con-
straints in the fitness function, the search is biased towards
finding a feasible solution whilst trying to improve the qual-
ity. The weights corresponding to the soft constraints have
all been set equal to 1. Since none of the low-level heuristics
remove exams from the timetable, the third hard constraint
of the KAHO problem (Sect. 3.2) is always satisfied.

Table 4 presents the experimental results for the KAHO
case. For the hyperheuristic with the simulated acceptance
criterion with tournament factor 4 (SA-4), we experimented
with different types of low-level heuristics. In the first exper-
iment, we only have applied the Capi (i = 1, . . . ,4) heuris-
tics, whilst in the second experiment, the four Capi and two
Uncapi heuristics were applied. From Table 4 it is clear
that only applying the Capi heuristics leads to better re-
sults. Based on these findings, we decided to only employ
the Capi heuristics for the further experiments. The steepest
descent variant of the late acceptance strategy outperforms
the original late acceptance strategy for each of the tourna-
ment factors in a statistically significant way. The difference
between the two best performing approaches, i.e. the simu-
lated annealing acceptance criterion with tournament factor
4 and the combination of the late acceptance strategy and
steepest descent with tournament factor 8 (LA-SD-8) is not
statistically significant.

Several tests were performed to obtain the ideal list
length for the late acceptance criterion. In Fig. 2, the average
fitness over 10 runs versus the list length is plotted for the
two late acceptance strategies. The best list length for both
strategies is 10000. Compared to the other move acceptance
criteria (i.e. simulated annealing, ‘improving or equal’, and
great deluge), the dependence of both late acceptance crite-
ria’s performance on one parameter is a disadvantage. The

94 J Sched (2012) 15:83–103

Table 4 Experimental results of the five algorithms applied to the
KAHO problem. Each algorithm was run for 10 times, with a com-
putation time of 1 hour. Numbers in italic correspond to the best value
obtained with the acceptance criterion

SA with Capi heuristics

Tournament factor 4 8 16 32 64

AVG 1 1.1 1.1 2.9 6.1

MIN 0 0 0 0 3

STDEV 1.15 1.6 1.1 1.79 2.85

SA with Capi and Uncapi heuristics

Tournament factor 4 8 16 32 64

AVG 21.9 15.5 4.4 4.1 3.9

MIN 14 11 1 1 0

STDEV 4.72 3.5 2.84 2.33 2.38

IE with Capi heuristics

Tournament factor 4 8 16 32 64

AVG 3.7 4 5.1 4 5.4

MIN 0 0 1 1 2

STDEV 1.89 2 2.64 2.83 2.27

LA-SD with Capi heuristics with list length 10000

Tournament factor 4 8 16 32 64

AVG 1.6 0.3 1.7 3.8 4.1

MIN 0 0 0 1 0

STDEV 1.37 0.45 1.44 2.11 2.46

LA with Capi heuristics with list length 10000

Tournament factor 4 8 16 32 64

AVG 6.4 5.5 4.7 8.4 10.2

MIN 3 1 2 3 4

STDEV 3.31 3.63 2 2.88 3.82

GD with Capi heuristics

Tournament factor 4 8 16 32 64

AVG 1.2 3.6 2.7 3.1 4.2

MIN 0 1 1 0 1

STDEV 1.32 1.58 1.16 3 2.35

length of the acceptance list influences the algorithm’s per-
formance on the KAHO problem. From the experiments it
is also clear that the late acceptance strategy combined with
steepest descent is less dependent on the list length than the
original late acceptance approach.

The experiments show that all algorithms, except the late
acceptance strategy, generate examination timetables satis-

Fig. 2 Average result after ten runs for different values of the list
length (tournament factor 16)

fying all the hard and soft constraints. The timetable is orga-
nized in 40 time slots, instead of the 48 time slots that were
needed by the manual planner.

5.3 Toronto benchmark problems

The constructed feasible initial solution (Sect. 4.2) is lo-
cally perturbated applying only the two heuristics Uncap1
and Uncap2. This corresponds to the findings of Thompson
and Dowsland (1998) who also solve the examination time-
tabling problem in two distinct phases (Sect. 2). The Capi

heuristics are not used here since they do not maintain feasi-
bility. Preliminary experiments have shown that once a fea-
sible solution becomes infeasible it is really hard to turn it
into a feasible one again by only using the Capi heuristics.
The Toronto benchmark data sets only consider spreading
out individual students’ exams to the highest possible extent
and avoiding student clashes. The Uncapi heuristics appear
to be perfectly suited for realizing this:

– after execution of one of the heuristics the no-clash hard
constraint is still satisfied;

– the heuristics manage to spread out the exams at the same
time.

Although these two heuristics maintain feasibility (Sect. 4.1),
they are not able to turn an infeasible solution into a feasible
one. Therefore, we have opted for constructing a feasible so-
lution in a preceding phase and then to improve the solution
further in the improvement phase.

In Tables 5 and 6, the results (validated with the function
in Qu 2010) for the different move acceptance criteria are
presented for each of the 13 instances of the Toronto bench-
mark problems. Each algorithm finishes after one hour of
computation and is executed 10 times. For every algorithm,
which is identified by the move acceptance criterion and a

J Sched (2012) 15:83–103 95

Ta
bl

e
5

A
ve

ra
ge

an
d

m
in

im
um

fit
ne

ss
an

d
st

an
da

rd
de

vi
at

io
n

fo
r

ea
ch

of
th

e
To

ro
nt

o
in

st
an

ce
s

af
te

r
10

ru
ns

.T
he

ac
ce

pt
an

ce
lis

tl
en

gt
h

fo
r

bo
th

ac
ce

pt
an

ce
st

ra
te

gi
es

is
50

0
fo

r
al

le
xp

er
im

en
ts

.
T

he
st

op
pi

ng
cr

ite
ri

on
is

on
e

ho
ur

To
ur

na
m

en
t

4

A
cc

ep
ta

nc
e

SA
L

A
L

A
-S

D
G

D
IE

A
V

G
M

IN
ST

D
E

V
A

V
G

M
IN

ST
D

E
V

A
V

G
M

IN
ST

D
E

V
A

V
G

M
IN

ST
D

E
V

A
V

G
M

IN
ST

D
E

V

ca
r9

1
5.

13
5.

07
0.

05
5.

69
5.

62
0.

05
5.

12
5.

04
0.

05
5.

22
5.

1
0.

08
5.

56
5.

47
0.

07

ca
r9

2
4.

06
3.

99
0.

05
4.

39
4.

35
0.

03
4.

17
4.

04
0.

06
4.

16
4.

09
0.

05
4.

6
4.

45
0.

11

ea
r8

3
33

.1
32

.7
6

0.
2

33
.6

1
32

.9
9

0.
41

35
.0

5
34

.3
9

0.
64

33
.5

5
33

.0
6

0.
32

38
.2

5
35

.4
4

1.
31

he
c9

2
10

.2
10

.0
9

0.
13

10
.4

9
10

.2
7

0.
16

10
. 7

9
10

.4
5

0.
2

10
.2

8
10

.0
6

0.
14

11
.9

1
11

.4
6

0.
34

kf
u9

3
13

.5
1

13
.2

7
0.

17
13

.4
7

13
.2

9
0.

14
13

.4
7

13
.2

8
0.

08
13

.5
4

13
.3

8
0.

13
14

.6
7

14
.1

0.
34

ls
e9

1
10

.4
9

10
.2

1
0.

19
10

.7
5

10
.4

3
0.

25
10

.8
5

10
.5

8
0.

17
10

.5
9

10
.4

5
0.

16
12

.1
1

11
.7

9
0.

25

pu
r9

3
7.

22
7.

05
0.

1
8.

33
8.

21
0.

06
8.

19
8.

15
0.

03
6.

96
6.

79
0.

09
6.

9
6.

8
0.

06

ry
e9

2
8.

61
8.

5
0.

09
9.

27
9.

16
0.

09
8.

56
8.

43
0.

07
8.

73
8.

5
0.

1
9.

28
8.

89
0.

19

st
a8

3
15

7.
05

15
7.

03
0.

01
15

7.
1

15
7.

03
0.

06
15

7.
12

15
7.

05
0.

05
15

7.
19

15
7.

03
0.

15
15

7.
3

15
7.

05
0.

25

tr
e9

2
7.

95
7.

82
0.

09
8.

24
8.

16
0.

07
8.

45
8.

33
0.

07
8.

22
8.

04
0.

11
9.

14
9.

02
0.

11

ut
a9

2
3.

46
3.

4
0.

04
3 .

72
3.

64
0.

04
3.

49
3.

42
0.

05
3.

48
3.

38
0.

05
3.

78
3.

7
0.

05

ut
e9

2
24

.8
9

24
.8

2
0.

07
25

.0
4

24
.8

2
0.

31
25

.1
5

24
.8

8
0.

23
25

.0
7

24
.9

2
0.

13
26

.3
7

25
.8

2
0.

5

yo
r8

3
35

.2
1

34
.7

0.
27

36
.2

3
35

.4
0.

62
36

.9
6

36
.0

2
0.

51
36

.3
3

35
.8

6
0.

31
39

.5
8

37
.6

9
1.

2

Ta
bl

e
6

A
ve

ra
ge

an
d

m
in

im
um

fit
ne

ss
an

d
st

an
da

rd
de

vi
at

io
n

fo
r

ea
ch

of
th

e
To

ro
nt

o
in

st
an

ce
s.

T
he

ac
ce

pt
an

ce
lis

tl
en

gt
h

is
fo

r
bo

th
ac

ce
pt

an
ce

st
ra

te
gi

es
50

0
fo

r
al

le
xp

er
im

en
ts

.T
he

st
op

pi
ng

cr
ite

ri
on

is
1

ho
ur

To
ur

na
m

en
t

8

A
cc

ep
ta

nc
e

SA
L

A
L

A
-S

D
G

D
IE

A
V

G
M

IN
ST

D
E

V
A

V
G

M
IN

ST
D

E
V

A
V

G
M

IN
ST

D
E

V
A

V
G

M
IN

ST
D

E
V

A
V

G
M

IN
ST

D
E

V

ca
r9

1
5.

19
5.

13
0.

05
5.

59
5.

52
0.

04
5.

27
5.

19
0.

05
5.

28
5.

03
0.

1
5.

6
5.

45
0.

09

ca
r9

2
4.

2
4.

09
0.

08
4.

44
4.

33
0.

07
4.

16
4.

06
0.

07
4.

32
4.

23
0.

05
4.

71
4.

55
0.

12

ea
r8

3
33

.1
2

32
.7

5
0.

45
34

.6
8

33
.2

6
1.

2
34

.8
7

33
.4

1.
04

33
.5

2
33

.0
2

0.
41

37
.4

9
35

.3
1.

16

he
c9

2
10

.2
10

.0
3

0.
16

10
.5

3
10

.2
3

0.
16

10
. 7

2
10

.5
5

0.
11

10
.3

8
10

.1
4

0.
21

11
.6

3
11

.1
7

0.
32

kf
u9

3
13

.8
4

13
.4

2
0.

36
13

.7
13

.3
3

0.
17

13
.6

8
13

.4
3

0.
19

13
.6

13
.3

1
0.

22
14

.4
1

13
.8

6
0.

38

ls
e9

1
10

.8
7

10
.6

3
0.

25
10

.8
9

10
.3

2
0.

31
10

.9
10

.5
7

0.
19

10
.6

5
10

.4
4

0.
18

12
.2

11
.6

1
0.

3

pu
r9

3
7.

2
7

0.
09

8.
12

8.
07

0.
04

8.
02

7.
96

0.
04

7.
04

6.
94

0.
06

6.
93

6.
8

0.
08

ry
e9

2
8.

62
8.

47
0.

09
9.

11
8.

9
0.

13
8.

61
8.

5
0.

08
8.

72
8.

46
0.

13
9.

33
9.

06
0.

2

st
a8

3
15

7.
04

15
7.

03
0

15
7.

1
15

7.
05

0.
06

15
7.

16
15

7.
05

0.
11

15
7.

14
15

7.
03

0.
1

15
7.

26
15

7.
03

0.
2

tr
e9

2
8.

04
7.

93
0.

08
8.

24
8.

13
0.

1
8.

47
8.

25
0.

14
8.

26
8.

08
0.

14
9.

09
8.

81
0.

24

ut
a9

2
3.

51
3.

46
0.

04
3.

7
3.

64
0.

05
3.

5
3.

45
0.

05
3.

5
3.

46
0.

03
3.

84
3.

73
0.

07

ut
e9

2
25

.0
7

24
.8

7
0.

24
25

.0
4

24
.8

3
0.

16
25

.2
3

25
.0

4
0.

18
25

.1
8

25
.0

2
0.

15
26

.7
2

25
.9

5
0.

53

yo
r8

3
35

.4
8

35
.0

4
0.

52
35

.6
2

35
.3

1
0.

36
36

.7
35

.9
7

0.
52

36
.2

8
35

.3
8

0.
53

39
.4

4
38

.3
8

0.
71

96 J Sched (2012) 15:83–103

Table 7 Statistically significant best performing algorithms and cor-
responding p-values for Table 5 and 6

Statistically significant best
performing algorithm

Corresponding p-values

car91 LA-SD-4, SA-4 1, 0.46

car92 SA-4 1

ear83 SA-4, SA-8 1, 0.88

hec92 SA-4, SA-8, GD-4 1, 0.92, 0.18

kfu93 LA-SD-4, LA-4, SA-4, GD-4, GD-8 1, 0.95, 0.54, 0.16, 0.12

lse91 SA-4, GD-4, GD-8 1, 0.24, 0.08

pur93 IE-4, IE-8, GD-4 1, 0.36, 0.11

rye92 LA-SD-4, SA-4, LA-SD-8, SA-8 1, 0.15, 0.14, 0.16

sta83 SA-8 1

tre92 SA-4 1

uta92 SA-4, GD-4, LA-SD-4 1, 0.32, 0.23

ute92 SA-4, LA-4 1, 0.16

yor83 SA-4, SA-8 1, 0.17

tournament factor, we present the average, the minimum fit-
ness, and the standard deviation. The best fitness for every
instance is indicated in italic.

It is important to mention that the parameter setting of
the hyperheuristic approach is the same for all the data in-
stances. For instance, the same SA-4 algorithm is applied to
every data instance.

The algorithms that performed best in a statistically sig-
nificant manner are indicated in Table 7. In the last column
of Table 7, the corresponding p-value is marked. A p-value
of 1 means that the first algorithm in the second column
performs best according to the average fitness value. The
other p-values are calculated against the best performing al-
gorithm. In general, the best performing move acceptance
criterion—tournament factor combination is SA-4. Only for
data instances pur93 and sta83, other move acceptance
criteria perform better.

In Table 8, we present the results of experiments with
longer execution times (ranging from 1 up to 12 hours) of
the SA-4 hyperheuristic. In all cases longer running times
lead to better results.

In Table 9, we compare the hyperheuristics results with
the Toronto benchmark results in the literature. We limit the
selected results from the literature to those that have been
confirmed accurate by Qu et al. (2009). For seven out of the
13 data instances, we obtain better or equal results.

From Table 9, we can conclude that for the smaller in-
stances, longer running times lead to better or equal quality
results compared to the results from the literature. However,
for the rye92 and pur93 data instances, these results are
considerable worse than the best results from literature.

Compared to Kendall and Hussin (2005a), who deploy a
more elaborate heuristics selection method and use running
times up to four hours, we obtain better results in general,

Table 8 Average and minimum fitness and standard deviation for the
SA-4 algorithm

Stopping
criterion

Average Minimum Standard
deviation

car91 4 h 4.75 4.68 0.05

12 h 4.64 4.52 0.05

car92 4 h 3.94 3.84 0.05

12 h 3.86 3.78 0.06

ear83 2 h 33.02 32.82 0.16

12 h 32.69 32.49 0.13

hec92 1 h 10.2 10.09 0.13

12 h 10.06 10.03 0.03

kfu93 2 h 13.45 13.06 0.31

12 h 13.24 12.90 0.2

lse91 2 h 10.38 10.06 0.19

12 h 10.21 10.04 0.13

pur93 4 h 6.57 6.45 0.07

12 h 5.75 5.67 0.05

rye92 4 h 8.31 8.18 0.1

12 h 8.2 8.05 0.12

sta83 1 h 157.05 157.03 0.01

tre92 2 h 7.91 7.73 0.06

12 h 7.79 7.69 0.07

uta92 2 h 3.37 3.32 0.03

12 h 3.17 3.13 0.03

ute92 2 h 24.99 24.83 0.24

12 h 24.88 24.77 0.17

yor83 2 h 35.06 34.79 0.25

12 h 34.83 34.64 0.14

even after one hour of computation. Possibly, this is partly
attributed to the use of other heuristics and different move
acceptance criteria.

In Table 10 both late acceptance strategies are compared
with Student t-tests. For the larger data instances (car91,
car92, pur93, rye92 and uta92), the adapted version
of the late acceptance strategy method performs better than
the original late acceptance strategy in a statistically signif-
icant way. On the other hand, the original late acceptance
strategy performs significantly better for the following data
instances: ear83 hec92, tre92, ute92 and yor83.
For the three remaining data instances kfu93, lse91 and
sta83, there is no statistical significance in the difference
between the performance of the two late acceptance strate-
gies.

5.4 The ITC 2007 Examination Timetabling Problem

Starting from the initial (not necessarily feasible) solution,
the hyperheuristic for the ITC 2007 problem first tries to

J Sched (2012) 15:83–103 97

Ta
bl

e
9

Se
le

ct
io

n
of

th
e

be
st

re
su

lts
fr

om
th

e
lit

er
at

ur
e

co
m

pa
re

d
w

ith
th

e
be

st
ob

ta
in

ed
va

lu
es

fr
om

th
e

SA
-4

hy
pe

rh
eu

ri
st

ic
s

ap
pr

oa
ch

(1
2

ho
ur

s
of

co
m

pu
ta

tio
n

tim
e)

In
st

an
ce

SA
-4

(C
ar

te
r

et
al

.
19

96
)

(B
ur

ke
an

d
N

ew
al

l
20

03
)

(M
er

lo
te

ta
l.

20
03

)
(B

ur
ke

an
d

N
ew

al
l

20
04

)
(B

ur
ke

et
al

.
20

04
a)

(K
en

da
ll

an
d

H
us

si
n

20
05

b)
(Y

an
g

an
d

Pe
tr

ov
ic

20
05

)
(E

le
y

20
07

)
(B

ur
ke

an
d

B
yk

ov
20

08
)

(B
ur

ke
et

al
.

20
10

)

ca
r9

1
4.

52
7.

10
4.

65
5.

10
5.

00
4.

80
5.

37
4.

50
5.

20
4.

58
4.

9

ca
r9

2
3.

78
6.

20
4.

10
4.

30
4.

30
4.

20
4.

67
3.

93
4.

30
3.

81
4.

1

ea
r8

3
32

.4
9

36
.4

0
37

.0
5

35
.1

0
36

.2
0

35
.4

0
40

.1
8

33
.7

1
36

.8
0

32
.6

5
33

.2

he
c9

2
10

.0
3

10
.8

0
11

.5
4

10
.6

0
11

.6
0

10
.8

0
11

.8
6

10
.8

3
11

.1
0

10
.0

6
10

.3

kf
u9

3
12

.9
0

14
.0

0
13

.9
0

13
.5

0
15

.0
0

13
.7

0
15

.8
4

13
.8

2
14

.5
0

12
.8

1
13

.2

ls
e9

1
10

.0
4

10
.5

0
10

.8
2

10
.5

0
11

.0
0

10
.4

0
–

10
.3

5
11

.3
0

9.
86

10
.4

pu
r9

3
5.

67
3.

90
–

–
–

4.
80

–
–

–
4.

32
–

ry
e9

2
8.

05
7.

30
–

8.
40

–
8.

90
–

8.
53

9.
80

7.
93

–

st
a8

3
15

7.
03

16
1.

50
16

8.
73

15
7.

30
16

1.
90

15
9.

10
15

7.
38

15
8.

35
15

7.
30

15
7.

03
15

6.
9

tr
e9

2
7.

69
9.

60
8.

35
8.

40
8.

40
8.

30
8.

39
7.

92
8.

60
7.

72
8.

3

ut
a9

2
3.

13
3.

50
3.

20
3.

50
3.

40
3.

40
–

3.
14

3.
50

3.
16

3.
3

ut
e9

2
24

.7
7

25
.8

0
25

.8
3

25
.1

0
27

.4
0

25
.7

0
27

.6
0

25
.3

9
26

.4
0

27
.7

9
24

.9

yo
r8

3
34

.6
4

41
.7

0
37

.2
8

37
.4

0
40

.8
0

36
.7

0
–

36
.3

5
39

.4
0

34
.7

8
36

.3

Table 10 An X indicates which method performs better in a statisti-
cally significant manner. The comparisons are conducted on the results
of Table 5 and 6

4 8

LA-SD LA LA-SD LA

car91 X X

car92 X X

ear83 X

hec92 X X

kfu93

lse91

pur93 X X

rye92 X X

sta83

tre92 X X

uta92 X X

ute92 X

yor83 X

find a feasible solution, and secondly a feasible solution that
satisfies the soft constraints as much as possible. The first
part of the search for a feasible solution is further divided
into three stages:

– In a first stage, starting from the constructed initial solu-
tion, the algorithm tries to obtain a solution that satisfies
the hard constraints concerning the room occupancy, the
period utilization and room related issues (some of the ex-
ams can only be assigned to rooms that do not hold any
other exams). The period utilization and room occupancy
constraints are already satisfied due to the construction of
the initial solution.

– In a second stage, which starts from a solution that satis-
fies the three hard constraints discussed above, the evalua-
tion of the period related constraint is added to the fitness
function. This stage stops when a solution is found that
satisfies all four constraints.

– In the final stage, the last hard constraint (two conflicting
exams cannot be assigned to the same time slot) is added
to the fitness function. The search finishes when a feasible
solution is found.

Once a feasible solution is found, the second part of the
search begins: the soft constraints are added to the fitness
function and the search starts from the feasible solution ob-
tained in the first part. In order to avoid violations of the
hard constraints, the weights corresponding to the hard con-
straints in the fitness function are increased to 1000, whilst
the weights of the soft constraints get the value 1.

Similarly to the Toronto approach, the ITC 2007 data
sets are solved in two phases. In both the feasibility and
the improvement phase, we have experimented with hyper-
heuristics with different move acceptance criteria (see Ta-
ble 11). Solving the problem in phases is based on the good

98 J Sched (2012) 15:83–103

Table 11 Average, minimum, standard deviation and the number of feasible solutions for the 12 data sets obtained by eleven hyperheuristics

SR-4-HH1 SR-4-HH2 SR-4-HH3

AVG MIN STD #F AVG MIN STD #F AVG MIN STD #F

1 6471.6 6262 171.57 10 6314.8 5965 166.03 10 6451.1 6321 112.64 10

2 550 510 39.21 8 596.3 510 65.69 10 569.67 505 44.43 10

3 26358.67 19104 6285.19 3 – – – 0 – – – 0

4 – – – 0 – – – 0 – – – 0

5 5446.14 5006 322.02 7 5165.63 4820 157.92 8 5360.6 5021 194.89 10

6 29388.33 27490 2628.45 6 28641.43 27880 475.62 7 28279.29 27445 512.38 7

7 6276.8 6033 170.82 10 6185.89 5905 179.15 9 6315 6079 291.4 10

8 9379.9 9199 155.51 10 9362.8 9089 173.78 10 9507.7 9220 231.61 10

9 1292.8 1211 65.15 10 1315.2 1213 57.01 10 1335.7 1217 72.45 10

10 15945.33 15587 305.64 6 15565.3 15204 244.04 10 15638 15425 157.9 9

11 – – – 0 – – – 0 – – – 0

12 5876.29 5527 257.81 7 5974.22 5679 267.64 9 5839.29 5580 147.29 7

SR-4-HH4 SR-4-HH5 SR-4-HH6

AVG MIN STD #F AVG MIN STD #F AVG MIN STD #F

1 6330.2 6060 162.69 10 6490.1 6338 125.31 10 6466.6 6146 162.76 10

2 612.5 515 99.65 10 630.11 498 128.64 9 638.88 549 81.94 8

3 23580 23580 0 1 – – – 0

4 – – – 0 – – – 0 – – – 0

5 5323 4855 350.5 8 5397 4986 250.75 6 5485.56 5054 283.47 9

6 28578.13 27605 698.92 8 29146 28590 413.12 5 28922.86 28435 809.18 7

7 6250 6065 168.38 10 6296.8 6039 200.91 10 6350.9 6133 173.56 10

8 9260.9 9038 184.16 10 9408.5 9195 169.31 10 9439.1 9146 182.59 10

9 1255.9 1184 63.63 10 1291.7 1236 34.33 10 1312.5 1203 45.1 10

10 16113.33 15561 464.63 9 15843.4 15594 187.58 5 17072.38 15201 3792.23 8

11 – – – 0 – – – 0 – – – 0

12 5829.14 5483 176.21 7 5865.38 5525 236.87 8 5738.56 5409 219.77 9

SR-4-HH7 SR-4-HH8 SR-4-HH9

AVG MIN STD #F AVG MIN STD #F AVG MIN STD #F

1 6286.1 6170 102.69 10 6591.3 6243 338.88 10 6667.6 6437 178.55 10

2 580.1 520 45.37 10 590.8 508 57.44 10 773.3 603 77.57 10

3 22966.5 20806 1866.77 4 24206.33 21449 2183.45 6 21437.33 20485 1207.16 3

4 – – – 0 – – – 0 – – – 0

5 6168.2 5391 470.57 5 6839 6480 370.24 4 7790 7639 133.63 3

6 28468.89 27890 525.91 9 28567.5 27665 660.17 6 28000 27530 556.84 3

7 6458 5980 377.79 8 6665.6 6223 475.44 10 7028.7 6658 222.86 10

8 9422.22 9073 193.39 9 9396.3 9011 280.3 10 10220.11 9902 178.35 9

9 1384.4 1272 52.74 9 1320.2 1224 55.95 10 1244 1196 32.84 10

10 15486.9 15023 325.5 10 15811.7 15360 304.88 10 15614.78 15079 421.74 9

11 – – – 0 – – – 0 – – – 0

12 5896.63 5449 266.28 8 5944.14 5630 184.59 7 5733 5444 254.88 5

J Sched (2012) 15:83–103 99

Table 11 (Continued)

SR-4-HH10 SR-4-HH11

AVG MIN STD #F AVG MIN STD #F

1 6809.6 6428 199.65 10 6404.2 6260 126.18 10

2 873.22 689 278.45 9 576.1 526 57.04 10

3 – – – 0 20810.4 18455 1596.6 10

4 – – – 0 – – – 0

5 6439 6439 – 1 8354.86 5378 5369.49 7

6 28893.75 27955 1028.27 4 28801.5 27655 926.55 10

7 7004.3 6776 175.23 10 6390.9 5995 229.43 10

8 10211.8 9790 229.39 10 9257.4 8949 149.52 10

9 1281.1 1170 62 10 1301.6 1202 65.28 10

10 – – – 0 15648.9 15145 329.27 10

11 – – – 0 – – – 0

12 5534 5469 66.89 4 5875.13 5411 372.27 8

Table 12 Description of the 11
move acceptance criteria. The
hyperheuristics differ in the
move acceptance criteria used in
the constructive and the
improvement phase and in the
available computation time in
these two phases

Abbrevations Description

SR-4-HH1 feasible stage: IE; improvement stage: IE

SR-4-HH2 feasible stage: SA (until 50% computation time); improvement + feasible stage: IE

SR-4-HH3 feasible stage: SA; improvement stage: IE

SR-4-HH4 feasible stage: LA (until 50% computation time); improvement + feasible stage: SA

SR-4-HH5 feasible stage: LA; improvement stage: SA

SR-4-HH6 feasible stage: LA-SA (until 50% computation time); improvement + feasible stage: SA

SR-4-HH7 feasible stage: LA-SD (until 50% computation time); improvement + feasible stage: LA-SD

SR-4-HH8 feasible stage: LA-SD; improvement stage: LA-SD

SR-4-HH9 feasible stage: LA (until 50% computation time); improvement + feasible stage: GD

SR-4-HH10 feasible stage: LA; improvement stage: GD

SR-4-HH11 feasible stage: IE; improvement stage: SA

Table 13 The Student t-test
p-values for the different
hyperheuristics. The algorithms
are compared to the best
performing algorithm (indicated
with value 1). Algorithms that
are not significantly worse are
indicated in bold

Instances HH1 HH2 HH3 HH4 HH5 HH6 HH7 HH8 HH9 HH10 HH11

1 0.01 0.63 0 0.48 0 0.01 1 0.01 0 0 0.03

2 1 0.1 0.35 0.12 0.11 0.02 0.16 0.11 0 0.01 0.29
3 0.18 – – – – – 0.09 0.08 0.32 – 1
5 0.05 1 0.04 0.27 0.06 0.01 0 0 0 – 0.12
6 0.41 0.1 0.46 0.23 0.02 0.11 0.22 0.24 1 0.24 0.19
7 0.27 1 0.27 0.43 0.22 0.06 0.07 0.01 0 0 0.05
8 0.09 0.16 0.01 0.96 0.05 0.03 0.05 0.18 0 0 1
9 0.05 0 0 0.61 0.01 0 0 0 1 0.11 0.02

10 0.01 0.55 0.22 0 0.04 0.2 1 0.03 0.47 – 0.28
12 0.03 0.01 0 0.01 0.02 0.1 0.03 0 0.18 1 0.11

results obtained by combining different methods in the ITC
2007 literature (Gogos et al. to appear; Müller 2008). Based
on the good results obtained with tournament factor 4 in
Sects. 5.2 and 5.3, we focus on the same tournament fac-
tor value. An overview of the eleven hyperheuristics is pre-
sented in Table 12. Some of the hyperheuristics only differ
in the amount of computation time that is spent in finding

a feasible solution. Hyperheuristics SR-4-HH2, SR-4-HH4,
SR-4-HH6, SR-4-HH7, SR-4-HH9 can spend at most 150
seconds (this is 50% of the available computation time) in
the first (feasibility) stage. If no feasible solution is found in
this period, the algorithm automatically switches to the im-
provement phase, whilst at the same time still trying to make
the solution feasible. The other hyperheuristics only switch

100 J Sched (2012) 15:83–103

to the improvement phase when a feasible solution is found.
From the obtained results and the t-tests (Table 13), there
is no hyperheuristic that significantly performs better than
the others over all instances. In order to find the best per-
forming hyperheuristic to all instances, we have ranked the
algorithms according to their average and best performance
(Table 14). The algorithm that finds the best solution for in-
stance, gets the lowest value, whilst the worst performing
algorithm gets a high value. We have also applied the same
ranking mechanism to the average values obtained after 10
runs for each instance. The final overall ranking is based on
the average of the rankings for all instances. The algorithm
with the overall lowest rank can be considered the best per-
forming algorithm. If we only consider the average fitness
values for each instance and for each algorithm, we find that

Table 14 Ranking of the hyperheuristic algorithms according to their
average and best performance. The lower the rank, the better the algo-
rithm’s performance

Minimum Average

Algorithm order Rank Algorithm order Rank

SR-4-HH11 4.0 SR-4-HH4 4.0

SR-4-HH4 4.5 SR-4-HH2 4.9

SR-4-HH2 5.2 SR-4-HH11 5.2

SR-4-HH7 5.3 SR-4-HH3 5.4

SR-4-HH1 5.4 SR-4-HH7 5.4

SR-4-HH6 6.1 SR-4-HH1 5.8

SR-4-HH3 6.5 SR-4-HH9 6.1

SR-4-HH8 6.5 SR-4-HH5 6.6

SR-4-HH9 6.7 SR-4-HH8 7.1

SR-4-HH5 7.2 SR-4-HH6 7.3

SR-4-HH10 8.6 SR-4-HH10 8.2

the best performing algorithm is SR-4-HH4. On the other
hand, if we consider the minimum fitness values, we find
that algorithm SR-4-HH11 is the best performing algorithm.
The hyperheuristic variants have simulated annealing as the
last move acceptance criterion in common. It is safe to say
that simulated annealing is a good quality method for these
experiments. Hyperheuristic SR-4-HH11 finds most feasible
solutions: 95 out of 120 runs (Table 11), whilst SR-4-HH2
finds the best solutions. For two data sets (instance 4 and
instance 11), we do not find any feasible solution. Although
we do not improve on the best solutions of the ITC 2007
literature, our solutions are competitive with the finalists’
results (Table 15).

Our results are in line with the experiments of Bilgin
et al. (2007). These authors have conducted numerous ex-
periments with different combinations of move acceptance
criteria and several heuristic selection methods on differ-
ent benchmark instances. Their conclusion was that no sin-
gle combination of acceptance criteria and selection meth-
ods dominates any other combination on all benchmarks. In
their experiments, ‘improving or equal’ resulted in the best
average performance, whilst ‘choice function’ was on aver-
age slightly better than the other heuristic selection mech-
anisms. The choice function heuristic selection method has
some built in memory on how well previous applied heuris-
tics performed. The better they have performed, the higher
their selection probability at the next iterations. It is very
hard to explain why one move acceptance criterion performs
better than another one on a particular data instance. In fu-
ture research, we will take the performance of the different
heuristics into account, in a heuristic selection mechanism
that has a built in learning mechanism.

We would like to conclude this section with a general ad-
vice. The competition organizers released a validation tool

Table 15 Comparison of the solutions obtained with the best performing algorithm on average (SR-4-HH4) with the best solutions from the
literature. The best solutions are indicated in bold and italics. Note that (Gogos et al. to appear) do not report on the 4 last instances

Instance (Müller
2008)

(Gogos et al.
2008)

(Atsuta et al.
2008)

(De Smet
2008)

(Pillay
2008)

(McCollum et al.
2009)

(Gogos et al.
to appear)

SR-4-HH4

1 4370 5905 8006 6670 12035 4633 4775 6060

2 400 1008 3470 623 3074 405 385 515

3 10049 13862 18622 – 15917 9064 8996 23580

4 18141 18674 22559 – 23582 15663 16204 –

5 2988 4139 4714 3847 6860 3042 2929 4855

6 26950 27640 29155 27815 32250 25880 25740 27605

7 4213 6683 10473 5420 17666 4037 4087 6065

8 7861 10521 14317 – 16184 7461 7777 9038

9 1047 1159 1737 1288 2055 1071 – 1184

10 16682 – 15085 14778 17724 14374 – 15561

11 34129 43888 – – 40535 29180 – –

12 5535 – 5264 – 6310 5693 – 5483

J Sched (2012) 15:83–103 101

for verifying the obtained solution in order to guarantee cor-
rectness. Initiatives like this are highly appreciated: fore-
seeing a validation tool overcomes problems with changing
data sets and wrong objective functions as reported in Qu et
al. (2009). Also, the CPU performance tool that was released
for the International Timetabling Competition allows a fair
comparison among different algorithms, since the resulting
computation time will be inversely proportional to the per-
formance of the hardware specifications of the researcher’s
computer. Some of the papers discussing the Toronto bench-
marks give computation times, whereas others do not. Even
if computation times are presented, it is still a hard task to
compare the approaches, since they were executed on differ-
ent platforms.

6 Conclusions and future work

We have proposed a hyperheuristic approach to examination
timetabling problems that successfully tackles a curriculum-
based problem from practice as well as two post-enrolment
benchmark instances from the literature.

For the examination timetabling problem from practice,
the hyperheuristic generates better solutions, in terms of the
number of time slots, than those obtained by the manual
planner. Moreover, due to the problem size and its com-
plexity, it takes the manual planner a few weeks to gener-
ate a timetable. In addition, the hyperheuristic succeeds to
strongly improve on the manual schedule in about one hour
on an average desktop computer.

We improved on seven out of thirteen data instances from
the Toronto benchmarks. Although the improvement of the
benchmark instances was not our primary concern, it shows
that focusing on problems from practice can result in com-
petitive algorithms. Concerning the ITC 2007 data sets, our
results are competitive, although we could not improve on
the best results in the literature.

Since the problems are not completely equivalent, differ-
ent low-level heuristics had to be applied. Note that these
low-level heuristics are rather specific: spreading out exams
with the Uncapi heuristics, or moving exams into an appro-
priate room with the Capi heuristics. The Uncapi heuristics
could not beat the Capi heuristics for the KAHO problem,
neither were the Capi heuristics able to solve the Toronto
benchmarks data instances.

We used an extremely simple heuristic selection method,
i.e. one that randomly selects a heuristic from a fixed list
of heuristics. It obtains in general better results than some
of the approaches that employ more ‘intelligent’ heuristic
selection methods. This raises the question whether further
improvement can be obtained by merely looking at more so-
phisticated heuristic selection methods or by concentrating
on smarter low-level heuristics. There may be a trade-off in

that smarter heuristics are required to reveal the power of a
more intelligent heuristic selection mechanism.

Also, we have applied the late acceptance strategy, and a
variant, as a move acceptance criterion in the hyper heuris-
tics framework. For the KAHO problem the late acceptance
variant combined with steepest descent performs as good as
the simulated annealing move acceptance criterion.

Acknowledgements The authors wish to thank the anonymous re-
viewers for their useful recommendations and comments.

References

Abdullah, S., Ahmadi, S., Burke, E. K., & Dror, M. (2007a). Investi-
gating Abuja-Orlins large neighbourhood search for examination
timetabling. OR-Spektrum, 29(2), 351–372.

Abdullah, S., Ahmadi, S., Burke, E. K., Dror, M., & McCollum, B.
(2007b). A tabu based large neighbourhood search methodology
for the capacitated examination timetabling problem. Operations
Research, 58, 1494–1502.

Atsuta, M., Nonobe, K., & Ibaraki, T. (2008). Itc2007 track 1: An ap-
proach using a general csp solver (Technical report).

Ayob, M., Malik, A. M. A., Abdullah, S., Hamdan, A. R., Kendall,
G., & Qu, R. (2007). Solving a practical examination timetabling
problem: A case study. In O. Gervasi & M. Gavrilova (Eds.),
LNCS: Vol. 4707. Computational science and its applications
ICCSA 2007 (pp. 611–624). Berlin: Springer.

Bai, R., & Kendall, G. (2005). An investigation of automated
planograms using a simulated annealing based hyper-heuristics.
In Operations research/computer science interfaces: Vol. 32.
Metaheuristics: Progress as real problem solvers (pp. 87–108).
Berlin: Springer.

Bai, R., Blazewicz, J., Burke, E. K., Kendall, G., & McCollum, B.
(2007). A simulated annealing hyper-heuristic methodology for
flexible decision support (Technical Report NOTTCS-TR-2007-
8). School of Computer Science, University of Nottingham.

Beligiannis, G. N., Moschopoulos, C. N., Kaperonis, G. P., &
Likothanassis, S. D. (2008). Applying evolutionary computation
to the school timetabling problem: The Greek case. Computers &
Operations Research, 35(4), 1265–1280.

Bilgin, B., Özcan, E., & Korkmaz, E. E. (2007). An experimental
study on hyper-heuristics and exam timetabling. In E. K. Burke
& H. Rudová (Eds.), LNCS: Vol. 3867. Revised selected papers
of the 6th international conference on practice and theory of au-
tomated timetabling (PATAT 2006), August/September 2007 (pp.
394–412). Berlin: Springer.

Bilgin, B., Demeester, P., Mısır, M., Vancroonenburg, W., & Van-
den Berghe, G. (2010). One hyperheuristic approach to two time-
tabling problems in health care (Technical report). KaHo Sint-
Lieven.

Burke, E. K., & Bykov, Y. (2008). A late acceptance strategy in hill-
climbing for exam timetabling problems. In E. K. Burke & M.
Gendreau (Eds.), Proceedings of the 7th international conference
on the practice and theory of automated timetabling, Montréal,
Canada, August 2008.

Burke, E. K., & Newall, J. (2003). Enhancing timetable solutions with
local search methods. In E. K. Burke & P. De Causmaecker (Eds.),
LNCS: Vol. 2740. Proceedings of the 4th international conference
on practice and theory of automated timetabling (PATAT 2002)
(pp. 195–206). Berlin: Springer.

Burke, E. K., & Newall, J. (2004). Solving examination timetabling
problems through adaptation of heuristic orderings. Annals of Op-
erations Research, 129, 107–134.

102 J Sched (2012) 15:83–103

Burke, E. K., Newall, J. P., & Weare, R. F. (1996). A memetic algorithm
for university exam timetabling. In E. K. Burke & P. Ross (Eds.),
LNCS: Vol. 1153. Selected papers of first international conference
on practice and theory of automated timetabling, Edinburgh, UK,
August/September (pp. 241–250). Berlin: Springer.

Burke, E. K., Hart, E., Kendall, G., Ross, J., & Schulenburg, S. (2003).
Hyperheuristics: an emerging direction in modern search tech-
nology. In Handbook of metaheuristics (pp. 457–474). Berlin:
Springer.

Burke, E. K., Bykov, Y., Newall, J., & Petrovic, S. (2004a). A time-
predefined local search approach to exam timetabling problems.
IIE Transactions, 36(6), 509–528.

Burke, E. K., de Werra, D., & Kingston, J. (2004b). Applications to
timetabling. In Handbook of graph theory (pp. 445–474). New
York: Chapman Hall/CRC Press.

Burke, E. K., Dror, M., Petrovic, S., & Qu, R. (2005). Hybrid graph
heuristics within a hyper-heuristic approach to exam timetabling
problems. In B. L. Golden, S. Raghavan, & E. A. Wasil (Eds.),
Conference volume of the 9th informs computing society confer-
ence (pp. 79–91). Berlin: Springer.

Burke, E. K., McCollum, B., Meisels, A., Petrovic, S., & Qu, R. (2007).
A graph-based hyper-heuristic for educational timetabling prob-
lems. European Journal of Operational Research, 176, 177–192.

Burke, E. K., Eckersley, A. J., McCollum, B., Petrovic, S., & Qu, R.
(2010). Hybrid variable neighbourhood approaches to university
exam timetabling. European Journal of Operational Research,
206(1), 46–53.

Caramia, M., Dell’Olmo, P., & Italiano, G. F. (2001). New algorithms
for examination timetabling. In LNCS: Vol. 1982. Proceedings
of the 4th international workshop on algorithm engineering (pp.
230–242). Berlin: Springer.

Carter, M. W., & Laporte, G. (1996). Recent developments in practical
examination timetabling. In E. K. Burke & P. Ross (Eds.), LNCS:
Vol. 1153. Practice and theory of automated timetabling I: se-
lected papers from the 1st international conference (pp. 3–21).
Berlin: Springer.

Carter, M. W., Laporte, G., & Lee, S. Y. (1996). Examination time-
tabling: algorithmic strategies and applications. The Journal of
the Operational Research Society, 47(3), 373–383.

Cole, A. J. (1964). The preparation of examination timetables using a
small store computer. Computer Journal, 7, 117–121.

Corne, D., Ross, P., & Fang, H. (1994). Evolutionary computing. In
T. C. Fogarty (Ed.), LNCS: Vol. 865. Fast practical evolutionary
timetabling (pp. 250–263). Berlin: Springer.

Dammak, A., Elloumi, A., Kamoun, H., & Ferland, J. A. (2008).
Course timetabling at a Tunisian university: A case study. Jour-
nal of Systems Science and Systems Engineering, 17(3).

De Causmaecker, P., Demeester, P., & Vanden Berghe, G. (2009). A
decomposed metaheuristic approach for a real-world university
timetabling problem. European Journal of Operational Research,
195(1), 307–318.

De Smet, G. (2008). ITC2007—examination track: Practice and theory
of automated timetabling (Technical report).

Demeester, P., Souffriau, W., De Causmaecker, P., & Vanden Berghe,
G. (2010). A hybrid tabu search algorithm for automatically as-
signing patients to beds. Artificial Intelligence in Medicine, 48(1),
61–70.

Di Gaspero, L., & Schaerf, A. (2001). Tabu search techniques for ex-
amination timetabling. In E. K. Burke & W. Erben (Eds.), LNCS:
Vol. 2079. Practice and theory of automated timetabling III: se-
lected papers from the third international conference (pp. 104–
117). Berlin: Springer.

Di Gaspero, L., & Schaerf, A. (2008). Hybrid local search techniques
for the generalized balanced academic curriculum problem. In M.
J. Blesa Aguilera, C. Blum, C. Cotta, A. J. Fernndez, J. E. Gal-
lardo, A. Roli, & M. Sampels (Eds.), LNCS: Vol. 5296. Proceed-
ings of hybrid metaheuristics 5th international workshop (HM

2008), Malaga, Spain, October 8–9, 2008 (pp. 146–157). Berlin:
Springer.

Dimopoulou, M., & Miliotis, P. (2001). Implementation of a university
course and examination timetabling system. European Journal of
Operational Research, 130, 202–213.

Eley, M. (2007). Ant algorithms for the exam timetabling problem.
In E. K. Burke & H. Rudová (Eds.), LNCS: Vol. 3867. Practice
and theory of automated timetabling (Patat 2006) (pp. 364–382).
Berlin: Springer.

First International Nurse Rostering Competition (2010). https://www.
kuleuven-kortrijk.be/nrpcompetition.

Gogos, C., Alefragis, P., & Housos, E. (2008). A multi-staged algo-
rithmic process for the solution of the examination timetabling
problem. In E. K. Burke & M. Gendreau (Eds.), Practice and the-
ory of automated timetabling (PATAT), Montréal, Canada, 19–22
August 2008.

Gogos, C., Alefragis, P., & Housos, E. (to appear). An improved
multi-staged algorithmic process for the solution of the examina-
tion timetabling problem. Annals of Operations Research. doi:10.
1007/s10479-010-0712-3.

Hansen, M. P., & Vidal, R. V. V. (1995). Planning of high school exam-
inations in Denmark. European Journal of Operational Research,
87, 519–534.

Kendall, G., & Hussin, N. M. (2005a). An investigation of a tabu-
search-based hyper-heuristic for examination timetabling. In G.
Kendall, E. K. Burke, S. Petrovic, & M. Gendreau (Eds.), Mul-
tidisciplinary scheduling: theory and applications. Selected pa-
pers of the first international conference (MISTA) (pp. 309–328).
Berlin: Springer.

Kendall, G., & Hussin, N. M. (2005b). A tabu search hyper-heuristic
approach to the examination timetabling problem at the MARA
university of technology. In E. K. Burke & M. Trick (Eds.), LNCS:
Vol. 3616. Practice and theory of automated timetabling (Patat
2004) (pp. 270–293). Berlin: Springer.

Kostuch, P. (2005). The university course timetabling problem with a
three-phase approach. In E. K. Burke & M. Trick (Eds.), LNCS:
Vol. 3616. Practice and theory of automated timetabling (Patat
2004) (pp. 109–125). Berlin: Springer.

Lim, A., Chin, A. J., Kit, H. W., & Oon, W. C. (2000). A campuswide
university examination timetabling application. In Proceedings of
the 17th national conference on artificial intelligence and 12th
conference on innovative applications of artificial intelligence
(pp. 1020–1025).

McCollum, B., McMullan, P., Burke, E. K., Parkes, A. J., &
Qu, R. (2007). The second international timetabling com-
petition: Examination timetabling track (Technical Report
QUB/IEEE/Tech/ITC2007/Exam/v4.0/17). Queen’s University,
Belfast, September.

McCollum, B., McMullan, P. J., Parkes, A. J., Burke, E. K., & Abdul-
lah, S. (2009). An extended great deluge approach to the exami-
nation timetabling problem. In The 4th multidisciplinary interna-
tional conference on scheduling: Theory and applications (Mista
09), Dublin, Ireland, August 2009 (pp. 424–434).

McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R.,
Parkes, A., Di Gaspero, L., Qu, R., & Burke, E. K. (2010). Setting
the research agenda in automated timetabling: The second inter-
national timetabling competition. INFORMS Journal on Comput-
ing, 22(1), 120–130.

Merlot, L. T. G., Boland, N., Hughes, B. D., & Stuckey, P. J. (2003). A
hybrid algorithm for the examination timetabling problem. In E.
K. Burke & P. De Causmaecker (Eds.), LNCS: Vol. 2740. Practice
and theory of automated timetabling IV (pp. 207–231). Berlin:
Springer.

Müller, T. (2008). ITC2007 solver description: A hybrid approach. In
E. K. Burke & M. Gendreau (Eds.), Proceedings of the 7th in-
ternational conference on the practice and theory of automated
timetabling, Montréal, Canada, August 2008.

https://www.kuleuven-kortrijk.be/nrpcompetition
https://www.kuleuven-kortrijk.be/nrpcompetition
http://dx.doi.org/10.1007/s10479-010-0712-3
http://dx.doi.org/10.1007/s10479-010-0712-3

J Sched (2012) 15:83–103 103

Özcan, E., Bilgin, B., & Korkmaz, E. E. (2008). A comprehensive anal-
ysis of hyper-heuristics. Intelligent Data Analysis, 12(1), 3–23.

Pillay, N. (2008). A developmental approach to the examination time-
tabling problem (Technical report).

Pillay, N., & Banzhaf, W. (2009). A study of heuristic combinations for
hyper-heuristic systems for the uncapacitated examination time-
tabling problem. European Journal of Operational Research, 197,
482–491.

Qu, R. (2010). Benchmark data sets in exam timetabling. http://www.
cs.nott.ac.uk/~rxq/data.htm.

Qu, R., & Burke, E. K. (2005). Hybrid variable neighbourhood hyper-
heuristics for exam timetabling problems. In MIC 2005: The sixth
metaheuristics international conference, Vienna, Austria.

Qu, R., & Burke, E. K. (2009). Hybridisations within a graph based
hyper-heuristic framework for university timetabling problems.
The Journal of the Operational Research Society, 60, 1273–1285.

Qu, R., Burke, E. K., McCollum, B., Merlot, L. T. G., & Lee, S. Y.
(2009). A survey of search methodologies and automated system
development for examination timetabling. Journal of Scheduling,
12(1), 55–89.

Ross, P., Corne, D., & Fang, H. (1994). Improving evolutionary time-
tabling with delta evaluation and directed mutation. In Y. Davi-
dor, H. Schwefel, & R. Männer (Eds.), LNCS: Vol. 866. Paral-
lel problem solving from nature—PPSN III international confer-
ence on evolutionary computation. The third conference on paral-
lel problem solving from nature, Jerusalem, Israel, October 9–14
(pp. 556–565). Berlin: Springer.

Schaerf, A. (1999a). Local search techniques for large high-school
timetabling problems. IEEE Transactions on Systems, Man and
Cybernetics. Part A. Systems and Humans, 29(4), 368–377.

Schaerf, A. (1999b). A survey of automated timetabling. Artificial In-
telligence Review, 13(2), 87–127.

Schaerf, A., & Di Gaspero, L. (2007). Measurability and reproducibil-
ity in university timetabling research: Discussion and proposals.
In E. K. Burke & H. Rudová (Eds.), LNCS: Vol. 3867. Revised
selected papers of the sixth international conference on practice
and theory of automated timetabling (Patat 2006), Brno, Czech
Republic, August/September 2007 (pp. 40–49). Berlin: Springer.

Thompson, J. M., & Dowsland, K. A. (1996). Variants of simulated an-
nealing for the examination timetabling problem. Annals of Oper-
ations Research, 63, 105–128.

Thompson, J. M., & Dowsland, K. A. (1998). A robust simulated an-
nealing based examination timetabling system. Computers & Op-
erations Research, 25, 637–648.

van den Broek, J., Hurkens, C., & Woeginger, G. (2009). Timetabling
problems at the TU Eindhoven. European Journal of Operational
Research, 196(3), 877–885.

Yang, Y., & Petrovic, S. (2005). A novel similarity measure for heuris-
tic selection in examination timetabling. In E. K. Burke & M.
Trick (Eds.), LNCS: Vol. 3616. Practice and theory of automated
timetabling V: selected papers from the fifth international confer-
ence, August 2005 (pp. 377–396). Berlin: Springer.

http://www.cs.nott.ac.uk/~rxq/data.htm
http://www.cs.nott.ac.uk/~rxq/data.htm

	A hyperheuristic approach to examination timetabling problems: benchmarks and a new problem from practice
	Abstract
	Introduction
	Related literature
	Examination timetabling
	Hyperheuristics for examination timetabling

	Problem description
	The KAHO problem
	Constraints and objective
	Mathematical formulation
	Benchmarks versus KAHO problem

	Solution methods
	Low-level heuristics
	Constructing initial solutions
	Hyperheuristics framework: move acceptance criteria, heuristic selection method and tournament factor

	Experiments
	Settings
	The KAHO problem
	Toronto benchmark problems
	The ITC 2007 Examination Timetabling Problem

	Conclusions and future work
	Acknowledgements
	References

