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Abstract In this paper, we study two models of resource
allocation games: the classical load-balancing game and
its new variant involving resource activation costs. The re-
sources we consider are identical and the social costs of the
games are utilitarian, which are the average of all individual
players’ costs.

Using the social costs we assess the quality of pure Nash
equilibria in terms of the price of anarchy (PoA) and the
price of stability (PoS). For each game problem, we iden-
tify suitable problem parameters and provide a parametric
bound on the PoA and the PoS. In the case of the load-
balancing game, the parametric bounds we provide are sharp
and asymptotically tight.

Keywords Resource allocation game · Congestion cost ·
Load balancing · Cost sharing · Price of anarchy · Price of
stability

1 Introduction

Problems of resource allocation often involve decentralized
decision making. A typical example is, in terms of machine
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scheduling, allocation of machines to jobs (or assignment of
jobs to machines) in which selfish agents, representing indi-
vidual jobs, select machines for processing their own jobs.
In the long run, decisions of the agents, motivated by indi-
vidual interests, usually result in a Nash equilibrium (NE)
at which no individual agent will benefit from any unilateral
deviation for the current resource allocation. In terms of a
given social objective, such an equilibrium is not necessar-
ily, indeed can often be far from, optimal. It is important,
therefore, to analyze the quality of NE solutions in terms of
social optimality.

The resource allocation games we consider in this paper
are as follows. Given a set of n jobs, each of which has a
positive length and is controlled by a selfish agent. Each
agent decides on which of the identical machines available
to assign his job to. We consider two game models: the load-
balancing model and the cost-sharing model.

In the load-balancing game, a fixed number m of ma-
chines are given and the cost of each player is caused by a
congestion, which is defined as the load of the machine, i.e.,
the sum of lengths of the jobs assigned to it. This is the clas-
sical load-balancing game as surveyed in Vöcking (2007)
and has been studied extensively. In our second game model
there are unlimited number of identical machines available,
but usage of each machine comes with an additional set-
up or activation cost, which is shared in proportion to the
job lengths by all agents who assign their jobs to the ma-
chine. This model has recently been introduced and stud-
ied in Feldman and Tamir (2008). As shown, respectively,
in Vöcking (2007) and Feldman and Tamir (2008), any in-
stance of the games in the two models admits a pure Nash
equilibrium, which can be computed efficiently. We are con-
cerned in this paper with the quality of pure Nash equilibria.

In assessing the quality of a resource allocation, most of
the studies in the literature, including Vöcking (2007) and
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Feldman and Tamir (2008) mentioned above, use as social
cost the maximum (or �∞ metric) of all individual play-
ers’ costs. In this study, we consider a utilitarian social ob-
jective, which is defined as the average (or �1 metric) of
all individual players’ costs. Such a social objective is also
used in a number of other similar studies (such as Beren-
brink et al. (2006), Hoefer and Souza (2011), Gairing et al.
(2008b) and Roughgarden and Tardos (2002), in which in-
finitely many jobs are considered) and is a standard assump-
tion in the multi-agent system literature (e.g., Endriss et al.
2003; McBurney et al. 2002; Sandholm 1998). As shown by
Berenbrink et al. (2006), Nash equilibria behave very differ-
ently under �1 metric than �∞ metric.

As in many other games, the social cost of an NE solu-
tion in the resource allocation games is often not minimum,
whose corresponding solutions are called optimal. In this pa-
per, we use the commonly accepted notions of the price of
anarchy (PoA) and the price of stability (PoS) to analyze
the quality of NE solutions. As introduced in Koutsoupias
and Papadimitriou (1999), Papadimitriou (2001), the PoA
(respectively, PoS) is defined as the ratio of the social cost
of the worst (respectively, best) NE solution and the corre-
sponding optimal social cost. For the load-balancing game
with social objective of �∞ metric, Koutsoupias and Pa-
padimitriou (1999) prove initial bounds on the PoA, and
Czumaj and Vöcking (2002) are the first to provide (asymp-
totically) tight bounds on the PoA for a general case where
the resources are not necessarily identical but related, i.e.,
the machines have different speeds (known as uniform-
machine environment). For more detailed coverage of re-
lated research on games of social costs with �∞ metric, the
reader is referred to, e.g., articles of survey nature (Czumaj
2004; Vöcking 2007; Heydenreich et al. 2007) and the ref-
erences therein.

In the load-balancing game, the utilitarian social cost has
been considered in several studies in the literature. Beren-
brink et al. (2006) consider pure strategies in the uniform-
machine environment and show that, if all job lengths are at
least 1, then PoA ≤ 4pmax, where pmax is the maximum job
length, and if additionally all machines are identical, then
PoS ≥ √

pmax/5. Therefore, it is variability of job lengths,
as opposed to machine speeds, that may lead to a big PoS
and PoA. We explore this issue in further depth in this pa-
per by providing asymptotically tight (indeed, sharp) bounds
on the PoS and the PoA in terms of average normalized job
length under the identical-machine environment but without
any restriction on job lengths.

Hoefer and Souza (2011) study the utilitarian social ob-
jective for a routing game of n players and m parallel links
where each link has a different speed. They assume play-
ers can freely set individual message lengths. Gairing et al.
(2008b) consider inter alia the utilitarian social objective in
the routing game on identical links with incomplete infor-
mation.

Resource allocation games or more generally weighted
singleton congestion games of social costs similar to ours
have been studied extensively in the literature. Most no-
table is the social cost of total latency, which is defined
as the weighed total of all individual players’ costs, where
the weights are particularly the job lengths in our resource
allocation games. Research on equilibrium quality in such
games can be found, for example, in Awerbuch et al. (2005),
Aland et al. (2006), Gairing and Scoppmann (2007), Gairing
et al. (2008a), Lücking et al. (2008), Roughgarden (2009).

All the studies we have mentioned above are on games in
which the cost functions of players are of the nature of neg-
ative congestion effect, that is, an individual cost incurred
by using a resource is a non-decreasing function of its load.
However, positive congestion effect also happens in situa-
tions where a resource user wishes to share the resource with
as many additional users as possible to minimize his indi-
vidual cost of using the resource, which is a non-increasing
function of its load. Such games are considered in Feigen-
baum et al. (2001), Anshelevich et al. (2008), Epstein et al.
(2007) for studies of fair cost sharing in network routing and
design. The second game model considered in this paper,
which takes both congestion effects into account has been
recently proposed by Feldman and Tamir (2008). With an
egalitarian social objective (�∞ metric), they show that the
PoA is unbounded but the PoS is bounded by a tight bound
of 5/4. In this paper, we use the utilitarian social objec-
tive (�1 metric) to study the performance of NE solutions in
the game. We provide a tight parametric bound on the PoA,
which is unbounded in general (as in the case of egalitarian
social objective considered in Feldman and Tamir (2008)).
Furthermore, we give a parametric lower bound on the PoS,
which is unbounded in general, in contrast with the bound-
edness of the egalitarian social objective.

2 Model descriptions and main results

A set of jobs J = {1,2, . . . , n} is to be assigned to a number
of identical parallel machines. Each job j ∈ J has a length of
pj > 0. For a given job assignment A, we denote the set (re-
spectively, number) of jobs assigned to machine i by J A[i]
(respectively, nA

i ). The load of machine i under assignment
A is then LA

i = ∑
j∈J A[i] pj . If the assignment A is optimal

(w.r.t. the given utilitarian social objective), we use J ∗[i], n∗
i

and L∗
i to denote the above quantities, respectively.

In the load-balancing model, we assume that there are a
fixed number m of identical machines. In this model, the
cost to a job is the load of the machine the job is assigned
to. The social cost of a given overall job assignment A is

C1(A) =
m∑

i=1

nA
i LA

i ,
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which is the sum of all individual job costs. Note that as
far as the PoA and PoS are concerned, this (and the follow-
ing) definition of the social cost is equivalent to the one with
“sum” or “total” replaced by “average” (over all jobs).

In the cost-sharing model, let B denote the cost of acti-
vating each machine. Given an overall job assignment A, if
job j of length pj is assigned to machine i of load LA

i , then
the cost of the job is

LA
i + pj

LA
i

B,

where the first term is its resource usage cost and the second
represents its share of the cost of activating machine i, which
is in proportion to its length with respect to the total load of
the machine. In this model, we define the social cost by

C2(A) =
mA
∑

i=1

nA
i LA

i + mAB,

where mA is the number of activated machines in the given
job assignment A. As can be seen easily, the cost C2(A) is
the total of individual job costs.

In each π of the two game problems defined above
(π = 1,2), we will use Ce

π and C∗
π to denote the social

cost of an NE and an optimal solution, respectively. Let P =
∑

j∈J pj and denote the minimum, average and maximum
job lengths, respectively, by pmin = minj∈J pj , pavg = P/n

and pmax = maxj∈J pj . Let

{
ρ1 = pavg/pmin,

ρ2 = B/pmin.
(1)

We shall use ρ1 and ρ2 as parameters in bounding the PoA
and PoS in the respective two game models we study. In
load-balancing game, parameter ρ1 represents the average
job length normalized by pmin. Note that, as we pointed ear-
lier, in providing the upper bound of 4pmax on the PoA,
Berenbrink et al. (2006) assume that all job lengths are at
least 1. This assumption has implicitly hidden the possibil-
ity of the unboundedness of the PoA when pmin → 0, which
is indeed the case as we shall show. We take this issue into
account by normalizing all job lengths with pmin in assess-
ing the PoA and PoS. On the other hand, the sharpness of
our parametric bounds in terms of ρ1 demonstrates that it is
the average (instead of maximum) job length that is more
accurate and hence suitable in bounding the PoA and PoS.
In the cost-sharing game, as we shall see, parameter ρ2 ad-
equately represents a maximum number of jobs that can be
assigned to a machine in any NE solution. In the next two
sections, we will establish the following two sets of main
results for the load-balancing and cost-sharing models with
utilitarian social objectives C1 and C2, respectively:

ρ1 − 1 ≤ PoS ≤ PoA ≤ ρ1 + 1

(Theorem 3.1: load-balancing model)

1

4
(
√

ρ2 + 2) ≤ PoS ≤ PoA ≤ 1

2
(ρ2 + 1)

(Theorem 4.1 & Corollary 4.2: cost-sharing model)

For the load-balancing model, the two bounds together
show that they are very sharp and both asymptotically tight,
in other words, the PoS and PoA are nearly the same. For
the cost-sharing model, the bounds show that the PoS and
PoA can be unbounded if the parameter ρ2 is not restricted.
The upper bound is derived from a tight bound but of two
parameters presented in Theorem 4.1. Further discussions
on the tightness of the lower and upper bounds are provided
in the final section.

3 Load-balancing model

We start with a direct observation of a simple property of NE
assignments. For notational simplicity we omit from now on
the indication of any assignment A from the notation unless
there is a confusion.

Observation 3.1 Given any NE assignment, machine loads
satisfy the following inequalities:

Li ≤ Lk + pj , ∀j ∈ J [i],1 ≤ i, k ≤ m.

Observation 3.1 simply means that, in any NE assign-
ment, no job can reduce its cost by unilaterally changing
its machine. Using Observation 3.1 we next prove an upper
bound on Ce

1.

Lemma 3.2 Given any NE assignment, its total cost Ce
1 sat-

isfies the following:

Ce
1 =

m∑

i=1

niLi ≤
(

n

m
+ 1

)

P.

Proof For any fixed i (1 ≤ i ≤ m), we choose k and j in
Observation 3.1 such that

Lk = min
1≤k′≤m

Lk′ ≤ P

m
; and pj = min

j ′∈J [i]
pj ′ ≤ Li

ni

.

The two inequalities above are evident. Therefore, we obtain

Li ≤ P

m
+ Li

ni

, i = 1, . . . ,m,

which leads directly to our conclusion. �

The upper bound on Ce
1 in Lemma 3.2 depends on the

total length of the jobs, the number of jobs and the number
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of machines. The following lemma is a direct conclusion
from the convexity of function f (x) = x2.

Lemma 3.3 For any real values x1, . . . , xm, we have

m∑

i=1

x2
i ≥ 1

m

(
m∑

i=1

xi

)2

.

With Lemmas 3.2 and 3.3, we can establish our first up-
per bound on the PoA.

Theorem 3.1 Let ρ1 be defined as in (1). Then

ρ1 − 1 ≤ PoS ≤ PoA ≤ ρ1 + 1.

Proof Fix any NE and optimal assignments. From Lemma 3.2
and the fact that P = ∑

i L
∗
i ≤ C∗

1 , we have

Ce
1

C∗
1

≤ 1 + n

m

P
∑m

i=1 n∗
i L

∗
i

.

With the following inequality

L∗
i ≥ n∗

i pmin,

and Lemma 3.3 and noticing that
∑m

i=1 n∗
i = n, we get

Ce
1

C∗
1

≤ 1 + n

m

P

pmin
∑m

i=1(n
∗
i )

2
≤ ρ1 + 1.

The following example provides the lower bound for the
PoS. �

Example 3.4 Consider an instance of m machines, m − 1
large jobs of unit length and n small jobs of length 1/n.
Assume that n > m and let n be a multiple of m(m − 1).
Consider the assignment in which all large jobs are assigned
to a single machine and all small jobs are evenly assigned to
the remaining machines. The social cost of this assignment
is an upper bound on the optimum:

C∗
1 ≤ (m − 1)2 + n

m − 1
.

Now consider the NE assignment A in which one large job
is assigned to each of (m − 1) machines and all small jobs
are assigned to the last machine. The social cost of the as-
signment is

Ce
1(A) = (n + m − 1).

Then we get

Ce
1(A)

C∗
1

≥ (n + m − 1)(m − 1)

(m − 1)3 + n
,

which approaches m − 1 as n → +∞. There are no NE as-
signments other than A. Note that

ρ1 = m/(n + m − 1)

1/n
,

which approaches m as n → ∞. Therefore, the PoS is
bounded from below by ρ1 − 1.

Remark A special case of Proposition 4.2 in Gairing et al.
(2008b) would lead to a slightly improved upper bound in
Lemma 3.2 with n replaced by n − 1, which would in turn
contribute to a reduction of the upper bound in Theorem 3.1
to ρ1 +(n−1)/n. However, this does not help as the number
n of jobs can be arbitrarily large. We have decided to use
Lemma 3.2 as its proof is much simpler.

4 Cost-sharing model

Recall that in the cost-sharing model, there are unlimited
number of machines available, but usage of each machine
incurs an additional activation cost of B . As we shall see, it
is convenient to divide the jobs into two categories, large and
small: Jl = {j ∈ J : pj > B} and Js = {j ∈ J : pj ≤ B}, and
the problem becomes trivial if all jobs are large: Js = ∅. For
notational convenience and without loss of generality, we
will assume B = 1 in the remainder of this section, as we can
achieve this by dividing all job lengths with the activation
cost B .

It is easy to observe the following property of NE assign-
ments for large jobs.

Lemma 4.1 Any large job will be assigned to a dedicated
machine in any NE assignment.

Proof Consider a large job with a length p > 1. Suppose
that there exists an NE in which the large job shares a ma-
chine with some other jobs that have a total length of q . Then
the individual cost of the large job is

p + q + p

p + q

which is greater than p+1, its individual cost on a dedicated
machine. This is because

p + q + p

p + q
− p − 1 = q − q

p + q
> 0

since 1/(p + q) < 1. Then in an NE assignment a large job
has to be on a dedicated machine. �

Similarly, the following lemma characterizes optimal as-
signments.
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Lemma 4.2 In any optimal assignment, if L∗
i > 1, then

n∗
i = 1.

Proof Suppose that L∗
i > 1 and n∗

i ≥ 2. Let j ∈ J ∗[i]. Then
moving job j from machine i to a dedicated machine will
result in a new assignment with a reduced objective value
C′

2:

C′
2 − C∗

2 = (
1 + (

n∗
i − 1

)(
L∗

i − pj

) + 1 + pj

)

− (
1 + n∗

i L
∗
i

)

= 1 − L∗
i − (n∗

i − 2)pj < 0,

which contradicts the optimality of the original schedule. �

Lemma 4.2 implies that an optimal assignment assigns
all large jobs to dedicated machines. On NE assignments of
small jobs only, we have

Lemma 4.3 For machines of small jobs, Li ≤ 1 holds in
any NE assignment.

Proof Suppose that Li > 1 holds for machine i. Consider
job j on machine i. The cost of job j is

Li + pj

Li

.

If job j activates a new machine, its cost will be 1 + pj .
Then the cost change is

Δ = 1 + pj − Li − pj

Li

= (1 − Li) + pj

Li − 1

Li

= 1 − Li

Li

(Li − pj ) < 0. �

Lemma 4.3 implies that in an NE assignment, no ma-
chines other than dedicated ones can have a load greater than
1. Given Lemmas 4.1 and 4.3, let A = ∑

j∈Jl
pj + |Jl | and

denote ns = |Js | and Ps = ∑
j∈Js

pj , we have the following
result:

Lemma 4.4 Any NE assignment has a social cost Ce
2 that is

bounded from above as follows:

Ce
2 ≤ ns + Ps + A = n + P.

The bound is tight if Li = 1 for all i.

Proof Suppose that there are m activated machines in the
NE assignment. According to Lemma 4.1, we assume that
all small jobs are assigned to the first ms machines. Then
Li ≤ 1 for i = 1, . . . ,ms . We have

Ce
2 =

ms∑

i=1

(niLi + 1) + A

=
ms∑

i=1

(
(ni − 1)Li + 1

) + Ps + A

≤ ns + Ps + A.

The statement on tightness is easy to verify. �

On the other hand, let us provide a lower bound on C∗
2 .

Note that Lemmas 4.1 and 4.2 together imply that, if Js = ∅,
then any NE assignment is optimal and vice versa. There-
fore, without loss of generality, we assume Js �= ∅ and de-
fine

τ = B

max{pj : j ∈ Js} = 1

max{pj : j ∈ Js} . (2)

Lemma 4.5 Any optimal assignment has a social cost C∗
2

such that

C∗
2 ≥ 2Ps

√
τ + A.

Proof Since n∗
i ≥ τL∗

i , we have

C∗
2 =

m∗
s∑

i=1

n∗
i L

∗
i + m∗

s + A ≥
m∗

s∑

i=1

τL∗
i

2 + m∗
s + A.

Since
∑m∗

s

i=1 L∗
i = Ps , from Lemma 3.3 we have

∑m∗
s

i=1 L∗
i

2 ≥
P 2

s /m∗
s . Then,

C∗
2 ≥ τ

P 2
s

m∗
s

+ m∗
s + A.

The fact that the right-hand side of the above inequality is at
its minimum when m∗

s = Ps

√
τ implies

C∗
2 ≥ 2Ps

√
τ + A. �

With the above lemma, we are now able to establish our
second main result.

Theorem 4.1 Let ρ2 be defined as in (1) and τ be defined
as in (2). Then the PoS and PoA are bounded as follows:

1

4
(
√

ρ2 + 2) ≤ PoS ≤ PoA ≤ ρ2 + 1

2
√

τ
.

Furthermore, the upper bound is tight.

Since τ ≥ 1, we immediately have the following:

Corollary 4.2 The upper bound on the PoA in Theorem 4.1
can be simplified to contain only one parameter:

PoA ≤ ρ2 + 1

2
.
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Proof of Theorem 4.1 Given the upper bound on Ce
2 and the

lower bound on C∗
2 in Lemmas 4.4 and 4.5, respectively,

noticing that ns ≤ ρ2Ps , we obtain

Ce
2

C∗
2

≤ ns + Ps + A

2Ps

√
τ + A

≤ ρ2 + 1

2
√

τ
.

Since the above inequality holds for any instance, the upper
bound in the theorem is established. The tightness of the
upper bound and validity of the lower bound are shown in
the following two examples, respectively. �

Example 4.6 Consider an instance of a2k jobs, each having
a length of 1/a2k , where a, k > 1 are fixed integers. An NE
assignment is that all jobs are on a single machine, which
has the following social cost:

Ce
2 = a2k + 1.

It is easy to see that an optimal solution distributes all
these identical jobs evenly on all activated machines, i.e.,
|n∗

u − n∗
v| ≤ 1 for any two activated machines u,v. Suppose

that m machines are activated in a solution and there are
equal numbers of jobs on all these machines. Then the social
cost of such a solution is

C2 = m + a2k

m

1

a2k
a2k = m + a2k

m
,

which is minimized if m∗ = ak . Hence, there exists an op-
timal (also NE) solution with ak machines activated and of
the following social cost:

C∗
2 = 2ak.

Therefore, we conclude that

Ce
2

C∗
2

= a2k + 1

2ak
= ρ2 + 1

2
√

τ
,

which equals the upper bound in Theorem 4.1.

Example 4.7 Consider an instance of n + 1 jobs (n ≥ 2)
with machine activation cost B = 1. The job lengths are
pj = 1/n2 for j = 1, . . . , n and pn+1 = 1 − 1/n − ε with
0 < ε < 1/n2. Let S be the assignment in which all jobs
are assigned to the same machine, say machine 1. Then
L1 = 1 − ε, giving a social cost

C2 = C2(S) = n1L1 + 1 = (n + 1)(1 − ε) + 1

= n + 2 − (n + 1)ε.

Proposition 1 S is the unique NE assignment.

Proof Assignment S is an NE assignment since L1 = 1− ε,
no job can reduce its cost by activating a new machine. We

show that S is the unique NE assignment. We shall often use
the fact that real function

fr(x) = x + r2

x
, x > 0 (r > 0 fixed)

is convex and strictly decreasing over (0, r] and strictly in-
creasing over [r,+∞).

Claim 1 In any NE assignment with at least two machines
activated, job n + 1 cannot have a dedicated machine.

Suppose that job n + 1 is on a dedicated machine, say,
machine 1. Then the cost of job n + 1 is pn+1 + 1. On the
other hand, there is another machine i of load Li (i �= 1)
such that

1

n2
≤ Li ≤ 1

n
. (3)

Then job n + 1 would benefit by deviating from machine 1
to machine i since

Li + pn+1 + pn+1

Li + pn+1
< pn+1 + 1, (4)

which can be easily verified by noticing that pn+1 < 1−1/n

and the fact that the left-hand side of inequality (4) is convex
in Li and hence maximized at the endpoints (in fact, the
right endpoint) of interval (3).

Claim 2 In any NE assignment with at least two machines
activated, no job will share the same machine with job n+1.

Suppose to the contrary that such NE assignment exists
and a (nonempty) subset of jobs from 1, . . . , n are on ma-
chine 1, which also contains job n + 1. Then, the individual
cost of any job on machine 1 other than job n + 1 is

Γ1(L1) ≡ L1 + 1/n2

L1
, where

L1 ≥ 1 − 1

n
− ε + 1

n2
> 1 − 1

n
≡ λ1.

This cost is strictly increasing in L1 and thus is more than
Γ1(λ1).

Consider moving a job on machine 1 other than job n+ 1
to another activated machine i. Then the individual cost of
the moving job will become

Γ2(Li) ≡ Li + 1

n2
+ 1/n2

Li + 1/n2
, where

λ2 ≡ 1

n2
≤ Li ≤ 1

n
− 1

n2
,
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which is strictly decreasing in Li and thus achieves its max-
imum at Li = λ2. Since

Γ1(λ1) = 1 − n − 2

n(n − 1)
and

Γ2(λ2) = 1

2
+ 2

n2

it is easily checked that Γ1(λ1) ≥ Γ2(λ2), which implies that
the moving job will benefit from such a unilateral deviation,
contradicting that the original assignment is an NE.

Claims 1 and 2 together imply that no NE assignment will
activate more than one machine, which proves our proposi-
tion. �

Let S ∗ be the assignment in which machine 1 is dedicated
to job n + 1 and machine 2 accommodates all other jobs
1, . . . , n. The social cost of S ∗ is

C2(S ∗) =
∑

i=1,2

niLi + 2 = 4 − 1

n
− ε.

Proposition 2 S ∗ is an optimal assignment.

Proof An assignment with at least three machines activated
will have a social cost more than 3 + 1 − 1/n − ε. �

Consequently, with Propositions 1 and 2, the lower bound
on the PoS in Theorem 4.1 is implied by the fact that, as
ε → 0, we have

C2(S)

C2(S ∗)
= n + 2 − (n + 1)ε

4 − 1
n

− ε
→ n + 2

4 − 1
n

>
n + 2

4
= 1

4

(√
ρ2 + 2

)
.

Therefore, for ε sufficiently small, the bound is valid.

5 Concluding remarks and further research

A natural measure for the quality of NE solutions is the util-
itarian social objectives. In this paper, we have considered
such social objectives for two models, the classical load-
balancing game and the cost-sharing game that is the same
as the load-balancing one, except that there are an unlimited
number of resources available but each comes with a set-
up cost, which is proportionally shared by all users of the
resource. The latter model is an extension of the former in
the sense that both types of individual congestion costs are
taken into account: positive and negative congestion effects,
as we discussed at the end of the introduction section.

For the load-balancing game, we have identified a prob-
lem parameter and with this parameter we have provided

sharp bounds for the PoS and PoA, which are asymptoti-
cally tight. Our work fills a gap in the literature on the well-
studied load-balancing game.

For the cost-sharing game, we have used another prob-
lem parameter to provide a lower bound on the PoS and an
upper bound on the PoA, which show that both the PoS and
PoA are unbounded in general. Unfortunately, our results
have left a gap: the two parametric bounds are not neces-
sarily asymptotically tight. It is interesting to note that such
a gap is very much similar (asymptotically) to the gap left
in Berenbrink et al. (2006) for the load-balancing game as
given in the introduction section, though our gap is much
smaller.

An interesting question arises from the cost-sharing
model. We have used a natural way of distributing an activa-
tion cost among the resource users with each user having a
proportional share. An easy alternative is equal cost distri-
bution among all the resource users, which we call conges-
tion sharing. However, it is easy to see that the lower bound
on the PoA demonstrated in Example 4.6 is still valid for any
seemingly fair cost-sharing mechanism that charges the acti-
vation cost only to the users of that resource. In other words,
no such fair mechanism can improve the game efficiency
in terms of the PoA. However, improvement of equilibrium
behavior could be achieved if we allow more freedom in
distributing activation costs or even allow introduction of
tolling mechanism. More specifically, as we have observed
that inefficient equilibria are resulted in by infinitesimal jobs
gathering on the same machine. A tolling mechanism to dis-
courage such a behavior would reduce the PoA.

Another direction for further research is to investigate
whether the two games we have considered are smooth as
defined in Roughgarden (2009), so that our results on the
PoA can be extended to alternative classes of equilibria.
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