
J Sched (2012) 15:615–627
DOI 10.1007/s10951-011-0236-y

Reliability of task graph schedules with transient and fail-stop
failures: complexity and algorithms

Anne Benoit · Louis-Claude Canon ·
Emmanuel Jeannot · Yves Robert

Published online: 20 May 2011
© Springer Science+Business Media, LLC 2011

Abstract This paper deals with the reliability of task graph
schedules with transient and fail-stop failures. While com-
puting the reliability of a given schedule is easy in the ab-
sence of task replication, the problem becomes much more
difficult when task replication is used. We fill a complexity
gap of the scheduling literature: our main result is that this
reliability problem is #P ′-Complete (hence at least as hard
as NP-Complete problems), both for transient and for fail-
stop processor failures. We also study the evaluation of a re-
stricted class of schedules, where a task cannot be scheduled
before all replicas of all its predecessors have completed
their execution. Although the complexity in this case with
fail-stop failures remains open, we provide an algorithm to
estimate the reliability while limiting evaluation costs, and
we validate this approach through simulations.

A. Benoit · Y. Robert
LIP, ENS Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
e-mail: Anne.Benoit@ens-lyon.fr

A. Benoit · Y. Robert
Institut Universitaire de France, Paris, France
e-mail: Yves.Robert@ens-lyon.fr

L.-C. Canon (�)
Nancy University, 34 Cours Léopold, CS 25233, 54052 Nancy
Cedex, France
e-mail: Louis-Claude.Canon@inria.fr

L.-C. Canon
INRIA, Le Chesnay Cedex, France

E. Jeannot
LaBRI, 351 Cours de la Libération–Bât. A29b, 33405 Talence
Cedex, France
e-mail: Emmanuel.Jeannot@inria.fr

E. Jeannot
INRIA Bordeaux, Bordeaux Cedex, France

Keywords Complexity results · Algorithms · Task graph
schedules · Reliability · Fail-stop and transient failures

1 Introduction

Since the landmark papers of Bannister and Trivedi (1983),
Shatz et al. (1992) and Kartik and Murthy (1997), numer-
ous papers have dealt with reliability issues in task graph
scheduling. A natural approach to cope with processor fail-
ures is to use redundancy for critical parts of the applica-
tion (Barlow and Proschan 1967), which in the scheduling
framework amounts to replicate the execution of some (or
all) tasks. Replication will increase the probability that the
execution is successful: only one successful copy of each
task is needed when one or several failures take place dur-
ing the execution. However, one must be able to evaluate the
reliability of a given schedule with replication, in order to
compare different possible mappings.

We note that at the application level, checkpoint/restart
strategies are commonly used as another approach to recover
from failures (Cappello et al. 2009). Such mechanisms may
turn out to be very costly, depending on the size of the ap-
plication image, and the number of resources enrolled for
execution. In any case, checkpointing is complementary to
replication and these techniques do no exclude each other. In
both cases, it is necessary to provide an optimized mapping
of the application that minimizes the probability of failure.

In this paper, we focus on the problem of computing the
reliability of a schedule, i.e., the probability that its execu-
tion is successful. More precisely, we are given a schedule
that executes an application task graph on a parallel system,
and that executes some tasks more than once to achieve re-
dundancy. Moreover, each scheduled task has a known prob-
ability of failure. An example of such a schedule is given on
Fig. 1.

mailto:Anne.Benoit@ens-lyon.fr
mailto:Yves.Robert@ens-lyon.fr
mailto:Louis-Claude.Canon@inria.fr
mailto:Emmanuel.Jeannot@inria.fr

616 J Sched (2012) 15:615–627

Fig. 1 General schedule of a chain of two tasks (t1 and t2) that are
duplicated twice each. Pij is the failure probability of task ti on pro-
cessor pj

This problem has been partially addressed in the litera-
ture. It is known that if replication is not allowed, then the
problem has a polynomial-time algorithm (Dongarra et al.
2007; Jeannot et al. 2008). A recent paper recognizes that
it is difficult to compute the reliability of a schedule with
replication, and proposes exponential time algorithms (Gi-
rault and Kalla 2009). To the best of our knowledge, the
complexity of the problem with replication has never been
established. We fill this complexity gap and show that the
problem is indeed #P ′-Complete, hence at least as hard as
NP-Complete problems. The complexity class #P ′ is a nat-
ural extension of #P , the class of counting problems corre-
sponding to NP decision problems (Bodlaender and Wolle
2004), in which we can apply a polynomial function on the
#P integer output (we need a rational number for the relia-
bility).

There are two major failure types, transient and fail-stop.
In a nutshell, transient failures invalidate only the execution
of the current task, and the processor subject to that failure
will be able to recover and execute the subsequent tasks as-
signed to it (if any). On the contrary, fail-stop failures are
unrecoverable: once the fault occurs, the corresponding pro-
cessor is down until the end of the whole execution.

We further explore a particular class of schedules, which
we call strict schedules. Strict schedules obey a simple rule,
called replication for reliability in Girault et al. (2009): if
there is a dependence edge from task t to task t ′ in the task
graph, then all replicas of t must complete their executions
before any replica of t ′ can start its execution. As only one
replica of t needs to complete its execution before one of
the replicas of t ′ starts its execution in a feasible schedule,
it guarantees more precedence constraints than necessary.
Schedules for which this rule is not enforced are called gen-
eral. Figure 1 is an example of such a general schedule.

With two failure types and two schedule classes, we are
led to four variations of the problem. Figure 2 summarizes
known results on the complexity of reliability evaluation for
these variations, with the following legend: light grey for
polynomial time, white for open, and dark grey for #P ′-
Complete. An arrow means that the source problem is poly-
nomial-time reducible to the destination problem. The ma-
jor contribution of the paper is the #P ′-Completeness of the
problem for general schedules, for both failure types.

Fig. 2 Summary of complexity results of this paper. White: open
problem. Light grey: solvable in polynomial time. Dark grey:
#P ’-Complete. Arrow: polynomial-time reduction

Another contribution of the paper is to provide a new
approach to estimate the reliability of strict schedules. In
the case of transient failures, it is known in the literature
that evaluating the reliability is a polynomial-time problem:
scheduling task graphs without replication has been studied
in Dongarra et al. (2007) and Jeannot et al. (2008), while
the case with replication is studied in Girault et al. (2009).
However, we are not aware of polynomial-time techniques
to compute the reliability of strict schedules in the presence
of fail-stop failures. The proposed approach applies to any
strict schedule and is empirically validated on random in-
stances.

The paper is organized as follows. We briefly overview
related work on #P -Complete problems in Sect. 2. Then we
present the models in Sect. 3, together with a little example
intended to help understand the difficulty of computing the
reliability of a schedule. The core contribution, namely the
#P ′-Completeness of reliability evaluation, is presented in
Sect. 4. Section 5 is devoted to results for strict schedules.
Finally, we conclude in Sect. 6.

2 Related work on #P -Complete problems

In some related work (Valiant 1979), Valiant proves that
computing the number of acceptable solutions for the two
terminal problem is #P -Complete. The work of Provan and
Ball (1983) extends the above result for the case of DAGs,
and shows that evaluating the probability of success in the
two terminal case is #P ′-Complete. However, their result
does not imply anything about the complexity of the sched-
ule reliability problem. Furthermore, it is interesting to re-
mark that evaluating the reliability of a system is often per-
formed through Reliability Block Diagrams (RBD) (Bream
1995). It is assumed in many papers such as in Girault et al.
(2009) that RBD evaluation has an exponential time. How-
ever, to the best of our knowledge, there is no formal com-
plexity result to support this claim. Although it is possible
to show that RBD evaluation is also #P ′-Complete from
Provan and Ball (1983), we can easily derive it from our
results. However, in some cases, RBDs may have a special
structure that allows for an evaluation in polynomial time.

J Sched (2012) 15:615–627 617

3 Framework

Our main objective is to study the reliability of differ-
ent types of schedules. First, we formalize the execution
model by detailing the application and platform parameters
in Sect. 3.1. Then, we characterize in Sect. 3.2 the failure
model that specifies how processors may fail during the ex-
ecution of any task. Next, we describe in Sect. 3.3 the repli-
cation mechanism consisting in scheduling some tasks sev-
eral times. We are then able to provide the detailed formulas
used to express the reliability of any schedule depending on
its characteristics (Sect. 3.4). After a short discussion of the
complexity represented by communications in this context
(Sect. 3.5), we conclude in Sect. 3.6 with an example show-
ing the combinatorial nature of reliability computations. All
notations are summarized in Table 1.

3.1 Application and platform

The application and platform model is quite simple and bor-
rowed from the scheduling literature (Brucker 2004). The
application is represented by a directed acyclic graph (or
DAG) G = (T ,E), where T is the set of tasks to be exe-
cuted, and E is the set of dependence edges between the
tasks. We let n = |T | be the number of tasks, and we num-
ber the tasks ti ∈ T , 1 ≤ i ≤ n, according to some topolog-
ical order (which means that if (ti , tj) ∈ E then i < j). For
convenience, we assume that there is a unique source task
t1 and a unique sink task tn. The target platform consists of
a set P of m heterogeneous processors pj , 1 ≤ j ≤ m. The

execution of task ti on processor pj requires w
j
i time-units.

Note that it is often assumed that w
j
i = ci × τj , where ci

is the cost of task ti and τj is the cycle time of processor
pj (we then speak of uniform machines). We do not enforce

this restriction here, and deal with arbitrary execution times.
But without loss of generality, we assume that all execution
times w

j
i are integers, so that time-steps are natural numbers

(we can always scale rational values).

3.2 Failure models

Processors are subject to failures during the execution of the
tasks that are assigned to them. There are two main cate-
gories of failures which may occur during the execution of
a task t on a processor p.

Transient failures: a transient failure will cause the execu-
tion of t to fail, but processor p will be available to
execute other tasks (the next tasks assigned to it by the
scheduler, if any). In other words, p will be able to con-
tribute to the rest of the execution after the transient
failure.

Fail-stop failures: a fail-stop failure is an unrecoverable
failure that causes the processor to be down until the
end of the execution of the whole application: all sub-
sequent tasks assigned to it will not be executed.

Each failure category applies to well-identified scenar-
ios. Transient failures correspond to arithmetic/software er-
rors or recoverable hardware faults (power loss) (Shatz
and Wang 1989; Zhu et al. 2004). Fail-stop failures cor-
respond to hardware resource crashes, or to the recov-
ery of a loaned machine by her/his user during a cycle-
stealing episode (Awerbuch et al. 1996; Bhatt et al. 1997;
Rosenberg 2002).

All our results apply for general distributions, where the
failure probabilities are arbitrary rational numbers.

The probability of any fail-stop failure occurring during
processor idle times can be transferred to the failure proba-

Table 1 List of notations
Notation Definition

T = {ti : i ∈ [1..n]} Set of tasks

n Number of tasks

G = (T ,E) Directed acyclic graph with tasks and precedence constraints

Pred(ti) Set of direct predecessors of task ti

P = {pj : j ∈ [1..m]} Set of processors

m Number of processors

π : T → 2P×N×[0,1] Schedule defining the processors, start-up times and failure probabilities

of each task

t
j
i Replica of task ti assigned to processor pj

S
j
i Start-up time of t

j
i (undefined if not scheduled)

w
j
i Execution time of t

j
i

C
j
i Completion time of t

j
i (0 if not scheduled)

Cmax(π) = maxj C
j
n Makespan of schedule π

rel(π) Reliability of schedule π

618 J Sched (2012) 15:615–627

bility of the next scheduled task without modifying the reli-
ability of the schedules. The same idea can be applied if we
consider specific transient failures that are undetected when
the processor is idle until the next task starts its execution
(whose execution would then be unsuccessful). Therefore,
without loss of generality, we consider an equivalent model
where no failure is assumed to happen during processor idle
times.

Finally, processor failures, either transient or fail-stop,
are always supposed to be independent, regardless of the
distribution laws that they follow.

3.3 Schedules with task replication

The objective is to execute the application onto the platform
defined above. The schedule assigns tasks to processors.
Without replication, each task is assigned to a single proces-
sor, with the schedule defining the start-up and completion
times of each task onto its assigned processor. However, to
remedy the effect of failures, the scheduler may replicate the
execution of the tasks onto different processors: if one task
fails on a given processor, it is hoped that it will execute suc-
cessfully on another processor, thereby enabling the rest of
the application to proceed despite the failure.

A schedule is thus defined as a one-to-many function
which maps each task onto a subset of processors, each of
them executing one replica of the task. For each replica,
we record a triple of values: the processor number, the
start-up time and the failure probability. Formally, π : T →
2P×N×[0,1] maps every task on a set of such triples. Let t

j
i be

the replica of task ti on processor pj (if it exists). Its start-

up time is S
j
i , and its completion time is C

j
i = S

j
i + w

j
i .

By convention, if ti is not assigned to pj , we let C
j
i = 0

(and leave S
j
i undefined). Also, without loss of generality,

it is not authorized to schedule twice the same task onto a
given processor. This restriction has no impact on our results
(scheduling a task twice on the same processor is at least as
hard) but simplifies the notations (e.g., for the completion
times C

j
i).

The schedule must enforce dependence constraints. With-
out replication, there is no choice: if there is a dependence
from task ti to task ti′ , i.e., if (ti , ti′) ∈ E, then the sched-
ule must enforce that ti′ cannot start before ti completes:

C
j
i ≤ S

j ′
i′ , where ti is assigned to pj , and ti′ is assigned

to pj ′ . When several copies of the same task are executed,
there are two possible rules.

Strict schedule: a task cannot start before all copies of each
predecessor have completed.

General schedule: a task can start as soon as one replica of
each predecessor has completed.

Obviously, strict schedules are a particular case of gen-
eral schedules. Although they are less general, they are sim-
pler to analyze, at least for transient failures (see Sect. 5).

It is important to point out that the above definitions ap-
ply to a failure-free execution. The start-up and completion
times of all tasks are deterministic and known in advance
from the schedule definition, before the execution starts.
Failures may happen randomly during the execution. See the
possible execution with a general schedule on the example
in Fig. 1: t2

2 , the replica of t2 on p2, can start as soon as
t1
1 , the replica of t1 on p1, has completed (there is no need

to wait for the completion of the other replica t3
1 of t1 on

p3). However, if t1
1 fails during execution, then t2

2 becomes
useless.

Now, for each dependence edge (ti , ti′) ∈ E and for each
processor pair (pj ,pj ′) ∈ P 2, there are two cases: if the

completion time C
j
i of the replica t

j
i of ti is not larger than

the start-up time S
j ′
i′ of the replica t

j ′
i′ of ti′ , we say that the

replica pair (t
j
i , t

j ′
i′) is valid; otherwise, we say that it is not

valid.
For a strict schedule, all replica pairs must be valid for ev-

ery precedence edge in the task graph. For a general sched-
ule, this constraint is not enforced. However, for each path
in the task graph, there must be a list of replicas that cor-
respond to the tasks of the path and such that each replica
forms valid replica pairs with its neighbors in the list: if it is
not the case, the schedule will never be able to complete its
execution, even without any failure. Intuitively, we expect
strict schedules to be more reliable than general schedules:

– for a strict schedule, a task will be able to start execution if
and only if at least one replica of each of its predecessors
has been successfully executed,

– while for a general schedule, the range of admissible pre-
decessor copies is restricted to those whose completion
time is not later than the task start-up time.

However, the total execution time, or makespan, is likely to
be smaller for general schedules than for strict schedules,
because there are fewer replica pairs that are accounted for,
hence fewer predecessor copies to wait for. Recall that the
makespan Cmax(π) of a schedule π is formally defined as
the completion time of the last replica of the sink task tn.

The proposed scheduling mechanism is static: no adjust-
ment is done during the execution, relatively to the replicas
that succeed and the failures that occur. As such, failures
do not require to be detected (the execution of the schedule
is pursued until the end). Although dynamic approaches are
more practical in presence of high uncertainty, pro-actively
evaluating the reliability of the scheduling decisions is still
required. Therefore, static and dynamic approaches are com-
plementary and raise a similar evaluation problem.

3.4 Reliability

Similarly to Barlow and Proschan (1967), we consider the
execution of the schedule until its first failure. As stated pre-
viously, the failure of one replica may not cause the schedule

J Sched (2012) 15:615–627 619

to fail. The reliability rel(π) of a schedule π is defined as the
probability that the schedule is successful, i.e., succeeds to
complete its execution. A strict schedule is easily checked
to be successful if and only if at least one replica of each
task completes its execution. Determining whether a gen-
eral schedule is successful is more complicated: we traverse
the DAG to check whether the execution of each replica is

successful or not. More precisely, a replica t
j ′
i′ of a task ti′ is

successful if and only if:

1. pj ′ does not fail during the execution of t
j ′
i′ , and

2. for each predecessor ti ∈ Pred(ti′) (if any), there exists at

least one valid replica pair (t
j
i , t

j ′
i′) such that t

j
i is suc-

cessful.

Finally, a general schedule is successful if at least one
replica of the sink task tn is successful (because it induces
that each task has been successfully computed at least once).

In order to formally define the reliability, we use sev-
eral events that denote each a set of outcomes of the sam-
ple space. Usual notations of set theory are used to represent
disjunction and conjunction (union and intersection, respec-
tively). The following definitions are based on two types of
events, which enable a formal and complete proof of our
completeness result.

Let π be a schedule. Then

– Rij denotes the event that processor pj does not fail dur-

ing the execution of t
j
i , and Pr[Rij] denotes the probabil-

ity of this event. With transient failures, this simply means
that pj does not fail between the start-up and completion

times of t
j
i , while with fail-stop failures this means that

pj does not fail from the beginning of the schedule until

the end of execution of t
j
i . Note that this event is nec-

essary but not sufficient for replica t
j
i to be successful:

a valid replica of each predecessor of ti must have been
successfully executed too. Let Pr[Rij] = 0 if task ti is not
assigned to processor pj .

– Uij denotes the event that replica t
j
i of task ti is success-

ful, and Pr[Uij] denotes the probability of this event. Let
Pr[Uij] = 0 if task ti is not assigned to processor pj . Oth-
erwise, event Uij is defined by

Uij =
⎧
⎨

⎩

Rij if Pred(i) = ∅(⋂
i′∈Pred(i)

⋃

j ′,Cj ′
i′ ≤S

j
i

Ui′j ′
)

∩ Rij

otherwise

(1)

Note that the initialisation only applies to i = 1, as t1 is a
unique source task. Note also that the set of predecessor
copies has been restrained to valid replica pairs, i.e., to

any predecessor copy t
j ′
i′ such that C

j ′
i′ ≤ S

j
i .

– The reliability rel(π) of a general schedule π is the proba-
bility that at least one replica of the sink task is successful:

rel(π) = Pr

[⋃

j

Unj

]

. (2)

– The reliability rel(π) of a strict schedule π is the prob-
ability that at least one replica of each task is successful
and is defined as

rel(π) = Pr

[⋂

i

⋃

j

Rij

]

. (3)

Note that the Uij are not needed to compute the reliability
for strict schedules because all replica pairs are valid.

Finally, we assume for simplicity that the schedule is
non-preemptive, but the proof of Theorem 1 shows that the
#P ′-Completeness result holds true for preemptive sched-
ules.

3.5 Communications

We point out that edge failures and communication costs
could easily be taken into account when evaluating the relia-

bility of a schedule: replace each dependence edge t
j
i → t

j ′
i′

by two edges t
j
i → commjj ′

ii′ → t
j ′
i′ , where commjj ′

ii′ is a new
task whose execution time is the communication cost be-
tween the two replicas, and whose failure probability (either
transient or fail-stop) can be freely chosen. In the case of

fail-stop failures, each task commjj ′
ii′ must be scheduled on a

processor of its own. The edge failure probability is likely to
depend upon the communication cost and/or the link failure
rate. If j = j ′, we model failures during memory transfer;
otherwise, we model failures across interconnection links.
Altogether, we can deal with communications by adding |E|
tasks and processors (where E is the set of edges).

3.6 Example

In this section, we deal with a toy example showing the diffi-
culty of computing the reliability in the presence of fail-stop
failures, even with independent tasks. Note that all sched-
ules are both strict and general in the case of independent
tasks, since there are no dependence constraints. Figure 3
illustrates a schedule with two tasks and four processors,
which all execute both tasks (but in different orders). Each
task is thus replicated four times. For each processor pj ,
P1j denotes the probability that pj fails during the execu-
tion of its first replica; P2j denotes the probability that pj

fails during the execution of its second replica; and P3j de-
notes the probability that pj does not fail before the com-
pletion of both replicas. The direct approach to evaluate
the schedule reliability consists in forming all the products

620 J Sched (2012) 15:615–627

Fig. 3 Schedule with two
independent tasks on four
processors

Pa1Pb2Pc3Pd4 with a, b, c, d ∈ {1,2,3}. Each product is the
probability that a specific execution scenario occurs, and all
these scenarios are distinct. Therefore, we can add the terms
corresponding to successful scenarios for computing the re-
liability of the schedule. For instance, P11P22P23P14 is the
probability that p1 and p2 fail while computing their repli-
cas of t1, and p3 and p4 fail while computing their replicas
of t2. This scenario is actually successful as t2 is computed
by p2 and t1 by p3. The table in Fig. 3 shows the formulas
obtained with this approach. Each formula defines the relia-
bility when only the subset of processors defined in the first
column is used. We remark that the number of terms grows
exponentially with the number of processors, and that it does
not seem possible to factor the terms into a compact formula.

4 Complexity of general schedules

In this section, we show that computing the reliability of
a general schedule is a #P ′-Complete problem. This holds
both for transient and failure-stop failures, and for arbitrary
rational failure probabilities (we cannot deal with real num-
bers when assessing problem complexity). We start with a
definition of the #P ′ complexity class and formally state the
problem before providing a fully detailed proof, which we
decompose into several steps.

4.1 Problem statement

Informally, Valiant (1979) introduced the notions of #P and
#P -Completeness to express the hardness of problems that
“count the number of solutions”. Because counting a num-
ber of solutions to a problem is at least as hard as deter-
mining if there is at least a solution, #P problems are at
least as difficult as their corresponding NP problems. There
is a technical complication with schedule reliability prob-
lems, just as with network reliability problems (Provan and
Ball 1983; Bodlaender and Wolle 2004): we are dealing with
probability values, which are rational numbers in [0,1], in-
stead of dealing with integers as in Valiant (1979). Thus,
we follow Bodlaender and Wolle (2004) and establish the
#P ′-Completeness of the problem. The #P ′ class is a natu-
ral extension of the class #P to deal with rational numbers:
it allows us to apply a polynomial function on the #P integer

output, producing in our case a rational number. The formal
definitions are the following:

Definition 1 (Complexity classes) Let Σ be a finite alphabet
and Σ∗ be the set of all strings over Σ .

– The class #P consists of the functions f : Σ∗ ⇒ N such
that there exists a nondeterministic polynomial-time Tur-
ing machine M such that for all inputs x ∈ Σ∗, f (x) is
the number of accepting paths of M .

– The class #P ′ consists of the functions h : Σ∗ ⇒ Σ∗ such
that there exists a function f ∈ #P , f : Σ∗ ⇒ N, and a
polynomial-time computable function g : N × Σ∗ ⇒ Σ∗,
which satisfy to ∀x ∈ Σ∗, h(x) = g(f (x), x).

Definition 2 (SCHEDULE-RELIABILITY) Given a general
schedule π , SCHEDULE-RELIABILITY is the problem of
computing the reliability rel(π) as defined by (1) and (2),
for arbitrary rational failure probabilities Pr[Rij].

We are ready to state the main result:

Theorem 1 SCHEDULE-RELIABILITY is #P ′-Complete.

The motivation for introducing the class #P ′ should be
clearer now: the problem is to compute the rational value
rel(π) for a general schedule π , rather than the number of
successful executions of π for all possible failure scenarios.

The proof of Theorem 1 shows that the result holds for
both transient and fail-stop failures. The proof goes just
as an NP-Completeness proof: we first prove in Lemma 1
that the problem belongs to the #P ′ class (SCHEDULE-
RELIABILITY ∈ #P ′), and then we prove its hardness in
Lemma 2 by reduction from another #P ′-Complete prob-
lem, namely the CONNECTED problem, which we define be-
low:

Definition 3 (CONNECTED) Given a DAG G = (A,B)

with a source and sink nodes, and whose edges are sub-
ject to failures with rational independent probabilities, CON-
NECTED is the problem of computing the probability that the
source and the sink nodes are joined by a path of non-failing
edges.

CONNECTED is #P ′-Complete (Provan and Ball 1983,
Problem 10 and Sect. 3). In fact, it is a slight variant of the

J Sched (2012) 15:615–627 621

two terminal network reliability problem in Provan and Ball
(1983): instead of joining two arbitrary nodes of the graph,
we join the source and the sink. The reduction from the orig-
inal problem is straightforward.

4.2 Class membership

Lemma 1 SCHEDULE-RELIABILITY is in #P ′.

Proof In order to prove that the SCHEDULE-RELIABILITY

belongs to #P ′, we need to characterize the underlying NP
decision problem and the transformation for generating the
output probability, which is a rational number.

The success probabilities of each processor pj while
computing each task ti are all assumed to be encoded as

nij

dij
.

A vector xi = (xij)1≤j≤m specifies the success of each pro-
cessor pj when computing task ti . If 1 ≤ xij ≤ nij , then pj

does not fail while computing ti . If nij < xij ≤ dij , then pj

fails while computing ti . Otherwise, ti is not assigned to pj

and xij = 0 (dij = 1 and nij is left undefined in this case).
The NP decision problem is the following: given a sched-

ule, does there exist a vector xi such that the schedule ter-
minates successfully? This problem belongs to NP because
the vector x = (xi)1≤i≤n of size O(nm) constitutes the cer-
tificate. We check whether a vector x encodes a successful
schedule execution by building a schedule containing only
tasks without failures. If such a schedule is valid, namely,
if all precedence constraints are respected and if all tasks
are correctly computed (see Sect. 3 for more details on this
schedule verification procedure), then x encodes a success-
ful schedule execution.

The corresponding #P problem consists in computing
how many distinct vectors x give successful schedules. In
other words, there are

∏n
i=1

∏m
j=1 dij distinct vectors and

each of them defines a possible scenario for the schedule ex-
ecution. Because all scenarios are equiprobable, we obtain
the reliability of a schedule by dividing the number of suc-
cessful scenarios by the total number of scenarios.

This proves the membership of SCHEDULE-RELIABILI-
TY to the #P ′ complexity class. �

4.3 Completeness

Lemma 2 SCHEDULE-RELIABILITY is #P ′-Hard.

Proof The proof is rather involved. We start with an ar-
bitrary instance Inst1 of CONNECTED and we build an
instance Inst2 of SCHEDULE-RELIABILITY such that the
probability that the source and the sink nodes are joined by
a path of non-failing edges in Inst1 is equal to the unrelia-
bility of the general schedule in Inst2. For better readability,
we divide the reduction into several steps.

Step 1: Transformation of Inst1 We first transform the
DAG G = (A,B) with a source and sink nodes of Inst1,
and provide some formal notations. We move from an edge-
failing problem to a vertex-failing problem. These vertices
will correspond to scheduled tasks in Inst2. Each edge (i, j)

in B from vertex i to vertex j is replaced by a new vertex k,
and by two edges, (i, k) from i to k, and (k, j) from k to j ,
as illustrated on Fig. 4: the instance of CONNECTED has
four nodes, and the transformed instance has eight nodes.
The failure probability of (i, j) is transferred to the new ver-
tex k. All original vertices never fail, hence, the probability
that the source and the sink are joined is identical to that in
the original DAG G.

There are n = |A| + |B| vertices in the new DAG, which
we number according to a topological ordering (hence, 1 is
the source node and n is the sink node). Moreover, any gen-
erated graph with this procedure has a special structure, e.g.,
any vertex has either one successor, or its successors have
only one predecessor. Let Ni be the event that the vertex i

is valid (does not fail). As already mentioned, the success
probability of each |A| vertex already present in the original
DAG is equal to 1. Let Vi be the event that there is a path
between the source node and node i. Evaluating the reliabil-
ity in the CONNECTED problem requires to compute Pr[Vn],
where V1 = N1 and Vi is defined recursively for i > 1 as

Vi =
⋃

i′∈Pred(i)

(Vi′ ∩ Ni′). (4)

Step 2: Construction of Inst2 A task is created in Inst2 for
each vertex of the transformed version of Inst1. The execu-
tion time of each task replica on each processor is equal to 1.
Each task is scheduled on a processor with success proba-
bility equal to the probability that the corresponding vertex
in the CONNECTED instance fails. The success probability
of the CONNECTED instance will be shown to be equal to
the failure probability of the schedule created by the reduc-
tion algorithm (Algorithm 1). In fact, the schedule succeeds
(no successful path in CONNECTED) if some subset of tasks
succeed on their specific processors (some subset of vertices
fail in CONNECTED). If the schedule is globally successful,
then no path is successful in the CONNECTED instance.

The reduction algorithm starts by grouping vertices into
several levels through a breadth-first search. All the vertices
at depth i are put in the ith level. Then, a task is created for
each vertex of CONNECTED and is scheduled three times,
except for the sink and source vertices which have only two
replicas.

The propagate processor, pprop, and the satisfy proces-
sor, psat, play a special role and execute all tasks except the
source and sink. These processors never fail. Each task is
also scheduled on a specific processor whose index is the
same as the task index (i.e., task ti is mapped on proces-
sor pi). Intuitively, the role of processor pprop is to “propa-
gate” the success of one task to its successors. This notion

622 J Sched (2012) 15:615–627

Fig. 4 An instance of CONNECTED and its transformation

Algorithm 1 Reduction of a CONNECTED instance into a
SCHEDULE-RELIABILITY instance

of “propagation” is best understood in the CONNECTED in-
stance: one vertex might be successful, yet unreachable, in
which case the failure of its ancestors must be “propagated”
to it. Keeping track of failures (successes in the schedule)
is mandatory for the reduction to be effective. Initially, the
precedence constraints for the replicas on pprop cannot be
satisfied by the replicas scheduled on the processors pprop

or psat. But anytime a task t succeeds on its specific proces-
sor, the precedence constraints between t and its successors
scheduled on pprop are satisfied. If all the precedence con-
straints of these successors are satisfied, then they are suc-
cessfully executed on pprop. The success of a task is there-
fore “propagated” to its successors, which may succeed even
if their replicas scheduled on their specific processors fail.
Here, the key idea lies in the fact that each task scheduled
on its specific processor finishes before that any of its suc-
cessors scheduled on pprop starts. Moreover, with proces-
sor psat, the precedence constraints of each task scheduled

on its specific processor are satisfied. Indeed, we want tasks
scheduled on their specific processors to succeed indepen-
dently of their precedence constraints. Therefore, all the an-
cestors of a task ti must succeed before time Si

i . Processor
psat plays this role by successfully computing each task in
a topological order. Note that two distinct fully reliable pro-
cessors are used because the model forbids to schedule the
same task twice on the same processor.

In the example of Fig. 5, the breadth-first search gener-
ates five levels: {va}, {v1, v2}, {vb, vc}, {v3, v4} and {vd}. All
the successors of the predecessors of one level are in the
same level. For level L3, the three steps of the main loop of
the reduction algorithm consist in: scheduling the tasks of
the level, v3 and v4, on pprop; scheduling the predecessors
of these tasks, vb and vc, on psat; and scheduling the tasks
in L3 to their specific processors, p3 and p4. If v1 is success-
ful on p1, then v3 is successful on pprop, which shows the
“propagation” of task successes (corresponding to edge fail-
ures in the CONNECTED instance). Otherwise, v3 can still
be successfully on p3. In both cases, the schedule is suc-
cessful if vd succeeds on pprop, i.e., if both v3 and v4 are
successful. In the CONNECTED instance, it is equivalent to
state that there is no path from the source to vd if there is no
path, neither to v3 nor to v4.

Step 3: Equivalence of Inst1 and Inst2 We now show that
the success probability of Inst1 is equal to the failure prob-
ability of Inst2. The roadmap is the following. We first pro-
pose in Lemma 3 a simplification of the recursive equa-
tion (1) defining the reliability of a general schedule, which
shows that the success of a task on pprop depends on the suc-
cesses of all its predecessors, either because they succeed on
their specific processor or because their replica on pprop is
successful. This means that the success of a task (the failure
of a path) is “propagated” to its successors.

Then, we introduce the correspondence between the fail-
ure events of the CONNECTED and SCHEDULE-RELIABILI-
TY instances: we show that any task scheduled on its specific
processor has all its precedence constraints satisfied due to
the replicas scheduled on psat (see Lemma 4).

J Sched (2012) 15:615–627 623

Fig. 5 Schedule built by the
reduction algorithm for the
instance of Fig. 4. Canceled
replicas can be discarded as they
do not impact the schedule
reliability. It is the case for
vertices va , vb , vc and vd that
are scheduled on their specific
processors and all have a zero
probability of success

Table 2 List of notations for
Lemmas 3 and 4 Symbol Definition

Rij Event that processor pj does not fail before the end time of replica t
j
i

Uij Event that replica t
j
i is successfully processed

Ni Event that the node i is valid (for CONNECTED)

Vi Event that a path exists between the source and node i (for CONNECTED)

Pr[X] Probability of event X

Building upon these two lemmas, we can then prove the
equivalence of solutions by showing that

Vn =
⋃

j

Unj = Unprop.

Notations concerning the events that will be manipulated
are summarized in Table 2.

Step 3.1: Simplifying probabilities

Lemma 3 Consider the schedule of Inst2. Then, the success
of any task ti ∈ T on processor pprop is given by Uiprop =
⋂

i′∈Pred(i)(Ui′prop ∪ Ui′i′).

Proof Using (1), we obtain

Uiprop =
(⋂

i′∈Pred(i)

⋃

j ′,Cj ′
i′ ≤S

prop
i

Ui′j ′
)

∩ Ripprop.

By construction, tasks never fail on pprop or psat proces-
sors. Thus, Ripprop occurs almost surely (with probability 1)
and this term can be discarded. We further simplify by ex-
panding the internal union. Each predecessor ti′ of a task ti
is scheduled three times: on processor pprop, except for the
source; on processor psat, except for the sink; and on its spe-
cific processor. We now characterize which replicas t

j

i′ of the
predecessor ti′ are completed before ti starts on pprop, i.e.,

C
j

i′ ≤ S
prop
i .

Any task t ∈ T (except the source) in the kth level is
scheduled on pprop and on its specific processor at the kth
iteration. Thus, when any successor of t in the k′th level,
with k′ > k, is scheduled on pprop at the k′th iteration, t has

already been finished on pprop and on its specific processor.
Formally, if ti′ is a predecessor of ti , then C

prop
i′ ≤ S

prop
i and

Ci′
i′ ≤ S

prop
i .

We now show by contradiction that any task finishes its
execution on psat after that any of its successors starts on
pprop (i.e., Csat

i′ > S
prop
i). This allows the expansion of the

internal union without considering the success of predeces-
sors scheduled on psat.

In Algorithm 1, consider a task t ∈ T whose depth is k. If
t is not the source, then t is scheduled on pprop (on Line 5) at
the kth iteration because the breadth-first search puts t in the
kth level. Moreover, t is scheduled on psat (on Line 14) af-
ter the kth iteration because all the successors of t are in the
following levels. Now, suppose that t finishes on psat before
that one of its successors t ′ in the k′th level, with k′ > k, start
on pprop. Then, t is scheduled on psat before that t ′ is sched-
uled on pprop because task costs and time increments are all
unitary. At the k′th iteration, t ′ is scheduled on pprop before
any task is scheduled on psat. Therefore, t must have another
successor whose depth is lower than k′, otherwise t would
not be scheduled on psat before the k′th iteration. It implies
that k′ > k + 1, i.e., there is one level that contains this other
successor between the kth and the k′th levels. Thus, t ′ has a
predecessor in the k′ − 1th level because the depth of t ′ is
k′. This predecessor cannot be t because t is in the kth level
and k < k′ − 1. We see that t has two successors, among
which t ′, which has also two predecessors. There are two
cases: either t corresponds to a vertex in the original DAG
of the CONNECTED instance, or it corresponds to an edge
transformed into a vertex. In the first case, it means that t ′
corresponds to an edge. However, the vertices resulting from
the edges have only one predecessor, which contradicts the
fact that t ′ has at least two ones. In the second case, t comes

624 J Sched (2012) 15:615–627

from an edge. But then it should have a single successor, in-
stead of two ones. Therefore, there is no task that finishes on
psat before that one of its successor starts on pprop. �

Step 3.2: Correspondence between failure events

Lemma 4 Consider the schedule of Inst2. For any task
ti ∈ T , assume that its specific processor succeeds during
its execution (Rii) whenever its corresponding vertex in the
CONNECTED instance fails (Ni), and reciprocally. Then,
each task ti succeeds on its specific processor if and only if
its corresponding vertex in the CONNECTED instance fails,
i.e., Uii = Ni .

Proof We first prove that all the ancestors of task ti are
scheduled on processor psat in a topological order. More pre-
cisely, we show by induction on the levels that each task of
the first k levels starts on its specific processor after that all
its ancestors have been scheduled in a topological order on
psat. The basis for the induction is easily verified for k = 0.
Indeed, the source task does not have any ancestor, there-
fore it is true. Now, assume the induction hypothesis to be
true for a given k. Let t be a task in the (k + 1)th level. At
the (k + 1)th iteration, t is scheduled on its specific proces-
sor (on Line 20) after its predecessors are scheduled on psat

(on Line 14). These predecessors belong to the first k levels.
Thus, their ancestors are scheduled in a topological order
on psat during the first k iterations (by induction hypoth-
esis). As task costs and time increments are unitary, tasks
scheduled at the (k + 1)th iteration start after that all ear-
lier scheduled tasks have finished. Therefore, the ancestors
of the predecessors of t are scheduled in a topological order
on psat and the predecessors of t that are not yet scheduled
on psat are scheduled on it in an arbitrary order at the kth it-
eration. As these predecessors of t belongs to the same level,
they have the same depth and do not require to be scheduled
in any specific order for their precedence constraints to be
satisfied. Hence, t starts on its specific processor after all its
ancestors have finished on psat.

As a consequence, all the ancestors of task ti are sched-
uled on psat and finish before that ti starts on its specific
processor, pi . Additionally, the ancestors of ti succeed with
probability 1 because tasks scheduled on psat never fail (see
Line 14). Thus, when ti starts its execution on pi , all its
precedence constraints are almost surely satisfied. More-
over, there is no other task scheduled on pi . Therefore, the
success of ti depends only on its execution, i.e., Uii = Rii =
Ni . �

Step 3.3: Equivalence of both instances We now show that
the success probability of Inst1 is equal to the failure proba-
bility of Inst2. More precisely, we prove that Vn = ⋃

j Unj =
Unprop (recall that task tn fails almost surely on its specific
processor, and that it is not scheduled on processor psat).

The relation between the definitions of Vi (4) and Uij ((1)
in Sect. 3) is obtained using Morgan’s law X ∪ Y = X ∩ Y

and Lemmas 3 and 4.
Without loss of generality, assume that tasks are sorted in

a topological order. We proceed by induction and show that
for each task ti , the success of vertex i is equivalent to the
failure of ti on processor pprop, i.e., ∀i,Vi = Uiprop.

For i = 1, the source node is not scheduled on proces-
sor pprop because it does not have any predecessor. Hence,
Uiprop never occurs. On the other hand, the source vertex
is present in the original CONNECTED instance and always
succeeds, implying that Vi always occurs. Therefore, the ba-
sis of the induction is verified, i.e., V1 = U1prop.

For a task ti , we suppose that Vk = Ukprop is true for 1 ≤
k < i. Let us show that Vi = Uiprop is also true.

Vi =
⋃

i′∈Pred(i)

Vi′ ∩ Ni′ by (4)

=
⋃

i′∈Pred(i)

Ui′prop ∩ Ni′ by induction hypothesis

=
⋃

i′∈Pred(i)

Ui′prop ∩ Ui′i′ by Lemma 4

=
⋂

i′∈Pred(i)

Ui′prop ∪ Ui′i′ by Morgan’s Law

= Uiprop by Lemma 3

In the second line, we have used that i′ < i because tasks
are traversed in a topological order. In the third line, the as-
sumption of Lemma 4 holds by construction: all events Ni

are independent, all events Rij are indeed independent, and
the probabilities are identical, i.e., Pr[Rii] = 1 − Pr[Ni] for
all i.

We have shown that the reduction algorithm is correct.
Assessing its space polynomial complexity is done by count-
ing the number of processors used, the number of replicas
scheduled and the space required to store the probabilities.
The algorithm schedules each of the n = |A| + |B| tasks
at most three times on n + 2 processors. Probabilities are
computed and stored through a basic arithmetic operation
(y ← 1 − x). For the time complexity, the number of calls
to Lines 5 and 20 are linear in n. Finally, using an adequate
data structure, the condition on Line 13 can be checked in
constant time, and Line 14 is called a number of times linear
in n. This concludes the proof. �

As already mentioned, the proof of Theorem 1 does
not depend upon whether failures are transient or fail-stop.
Hence, Theorem 1 is valid for any general schedule. Also,
failure probabilities can be arbitrary rational numbers. As
the proof only requires processors to be identical and tasks
to have unitary costs, the complexity of the problem is re-
lated to the DAG structure only. Altogether, the previous
complexity result is relevant to quite a wide class of DAG

J Sched (2012) 15:615–627 625

scheduling problems with replication. For instance the re-
sult is also valid for preemptive schedules: interrupting the
execution of a task may modify the probability of failure of
that task, but the proof handles arbitrary failure probabilities.

Finally, the reduction proof shows that evaluating the re-
liability of any CONNECTED instance exactly amounts to
evaluating the unreliability of the schedule generated by the
reduction. We deduce from (Provan and Ball 1983, Prob-
lem 10 and Sect. 3) the following corollary:

Corollary 1 Approximating the reliability of a general
schedule up to an arbitrary quantity ε or to an arbitrary
ratio α is #P ′-Complete.

5 Complexity of strict schedules

For transient failures, a closed-form formula for comput-
ing the reliability is provided in (Girault et al. 2009). This
formula can be evaluated in polynomial time, and it can be
further simplified in case of Poisson processes.

We focus now on fail-stop failures. While the case with-
out replication still has polynomial-time complexity, the
case with replication is open (to the best of our knowledge).
We conjecture that evaluating the reliability of strict sched-
ules has the same complexity as that of general schedules,
but we have been unable to prove it. However, we propose
an exponential evaluation scheme whose complexity can be
lowered as much as necessary, if only an estimation of the
reliability is required. Simulation results allow us to assess
the effectiveness of this method.

5.1 Evaluation scheme

The equation defining the reliability of a strict schedule (see
Sect. 3, (3)) cannot directly be expanded for evaluating the
reliability of a strict schedule with fail-stop failures, because
events Rij are no longer independent. This is why we pro-
pose an alternative formulation of rel(π) using the event Gi

defined as follows.
Let Gi be the event that all tasks with an index lower

than i have at least one correct replica. Then, G0 always
occurs and Gi is defined recursively for i ≥ 1 as Gi =
⋂

j Rij ∩ Gi−1. Event Gi occurs if and only if at least one
processor pj ∈ P does not fail during the execution of its

replica t
j
i , and if each of the first i − 1 tasks has been suc-

cessfully processed. As tasks are numbered according to
some topological order, all the precedence constraints of ti
are satisfied if Gi−1 occurs.

This latter formulation allows us to obtain a recursive ex-
pression for evaluating rel(π). Because the complexity of
the evaluation scheme is exponential in the number m of

processors, we propose to control this complexity by limit-
ing the scope of the recursive evaluations. The price to pay
is that we have only an estimation of the reliability instead
of the exact value.

We now state that the reliability of the schedule is given
by rel(π) = Pr[Gn]. In order to obtain useful derivations,
we introduce an event E , which is an arbitrary intersection
of events Rij . Let E ′ = ⋂

j Rij ∩ E . Then, the calculation
of Pr[Gi | E] depends on Pr[Gi−1 | E], Pr[Gi−1 | E ′] and on
some elementary probabilities, i.e., Pr[Rij | E]:

Pr[Gi | E] = Pr
[⋂

j

Rij ∩ Gi−1 | E
]

= Pr
[⋂

j

Rij | Gi−1 ∩ E
]
× Pr[Gi−1 | E]

=
(

1 − Pr
[⋂

j

Rij | Gi−1 ∩ E
])

× Pr[Gi−1 | E]

=
(

1 − Pr[⋂j Rij ∩ Gi−1 | E]
Pr[Gi−1 | E]

)

× Pr[Gi−1 | E]

=
(

1 − Pr[Gi−1 | ⋂j Rij ∩ E]
Pr[Gi−1 | E] Pr

[⋂

j

Rij | E
])

× Pr[Gi−1 | E]

=
(

1 − Pr[Gi−1 | E ′]
Pr[Gi−1 | E] Pr

[⋂

j

Rij | E
])

× Pr[Gi−1 | E]

=
(

1 − Pr[Gi−1 | E ′]
Pr[Gi−1 | E]

∏

j

Pr[Rij | E]
)

× Pr[Gi−1 | E]

The last line is obtained by observing that all the events
of the intersection

⋂
j Rij concern distinct processors and

are independent.
Note that Pr[G0 | E] = 1 for all E because G0 always

occurs. Therefore, Pr[Gn] can be computed recursively.
Before analyzing the complexity of this evaluation sche-

me, we introduce a mechanism for simplifying intersections
of events Rij . Indeed, any event E = Rij ∩ Ri′j ∩ . . . which
is the intersection of at least two events R·j concerning the
same processor pj can be reduced to a more concise defini-
tion. Only one event per processor is needed: with fail-stop
failures, as soon as a processor has failed, it remains down
until the end of the schedule. Hence, the event R·j which
concerns the first task scheduled on pj is the only one to
be considered for each processor pj ∈ P . Consequently, we
never compute any probability Pr[Gi | E] where E is an in-
tersection of more than m events.

The complexity of recursive evaluation is O(nm+1). In-
deed, there are n events Gi and for each of them, there are
(n + 1)m distinct intersections E (at most m elements, and

626 J Sched (2012) 15:615–627

Fig. 6 Simulation results (20 tasks on five processors)

each may concern any of the n tasks). We propose to control
the exponent of the complexity cost by making some esti-
mations. We limit the size of any intersection E to k events.
This is done by removing some of the events Rij from E
when the size of the intersection grows too large. Formally,
we estimate that any new intersection E ′ is equal to the in-
tersection of at most k events among

⋂
j Rij ∩ E . Several

choices are possible. We either select the remaining k events
arbitrarily, or we apply some heuristic procedure. As an ex-
ample, we may be interested in selecting the subset of size k

that gives the lowest probability for Pr[Gi | E ′]. This heuris-
tic is supported by the bound Pr[Gi | E ∩ Rij] ≤ Pr[Gi | E]
and would locally minimize the error done in the estimation.
It provides a lower bound of the reliability for k = 0 and
an exact value for k = m (an upper bound can be obtained
by considering fail-stop failures as transient ones). For other
values of k, however, we have no guarantee. The resulting
complexity drops down to O(nk+1) with k ∈ [0..m].

This reformulation of the reliability, and the derivations
that follow, still end up with an exponential time estima-
tion scheme. Another approach, still exponential, consists
in considering all the possible choices (see the proof of
Lemma 1 for further details on this approach). To the best of
our knowledge, we are not aware of any procedure for evalu-
ating the reliability of strict schedules with fail-stop failures
in polynomial time (even when restricting the workload to
independent tasks or to chain of tasks). We conjecture that
this problem is #P ′-Complete just as is the case for general
schedules.

5.2 Simulation results

Simulations were conducted in order to assess this evalua-
tion method. For each simulation, a random DAG is gener-
ated with 20 tasks, 30 edges (plus some edges to ensure that
both the source and the sink are unique). Each cost is uni-
tary and the platform consists of five homogeneous proces-
sors with Poissonian failure rates uniformly drawn from the
interval [0,0.05]. Each task is scheduled twice on randomly
chosen processors. In total, 300 schedules are obtained and
their exact reliabilities lie in the range [0.2,1]. Note that due
to the high cost of the approach, increasing the number of
processors or the number of tasks makes it intractable to test
each possible value for the parameter k. The chosen values
enable each simulation to last less than one hour.

Figure 6 depicts the running times of the method (black
points) for each chosen value k. As expected, times grow
exponentially with k. For each value of k, the absolute dif-
ference between the true reliability and the estimated one
is represented with boxplots. In a boxplot, the bold line is
the median, the box shows the quartiles, the bars show the
whiskers (1.5 times the interquartile range from the box) and
additional points are outliers. We see that increasing k leads
to more precise results except for k = 2. For k = 3, the me-
dian is 0.86%.

The method proposed in this section provides an estima-
tion of the reliability of a strict schedule when failures are
fail-stop. The precision of this estimation increases with the
value of k. For high values of k, the method produces accu-
rate results.

6 Conclusion

Figure 2 summarizes known results on the complexity of re-
liability evaluation. The #P ′-Completeness of evaluating the
reliability of general schedules holds true both for transient
and for fail-stop failures, and constitutes the major contribu-
tion of the paper. Moreover, this result holds for more gen-
eral cases such as for preemptive schedules and schedules
with communications. While the strict/fail-stop combination
remains open, we have provided a method to estimate the re-
liability while limiting evaluation costs, from which bounds
can be derived (with k = 0).

Future work will be devoted to close the complexity gap.
We conjecture that the strict/fail-stop combination is #P ′-
Complete too, but we have been unable to prove it. An im-
portant research direction is to provide guaranteed approx-
imations for the general case, with either failure type: can
we derive a procedure to approximate the reliability within
a prescribed bound, while limiting the evaluation time to
some polynomial function of the application/platform pa-
rameters? Finally, we plan to study methods for effectively

J Sched (2012) 15:615–627 627

constructing reliable schedules based on a relevant evalua-
tion mechanism. Whereas the first step would be to develop
static scheduling algorithms, dynamic strategies could also
provide interesting insights.

Acknowledgements This work was supported in part by the ANR
StochaGrid and RESCUE projects, and by the INRIA ALEAE project.
We would like to thank the associate editor and the reviewers for their
comments and suggestions, which greatly improved the final version
of this paper.

References

Awerbuch, B., Azar, Y., Fiat, A., & Leighton, F. T. (1996). Making
commitments in the face of uncertainty: How to pick a winner
almost every time. In 28th ACM SToC (pp. 519–530).

Bannister, J., & Trivedi, K. S. (1983). Task allocation in fault-tolerant
distributed systems. Acta Informatica, 20, 261–281.

Barlow, R. E., & Proschan, F. (1967). Mathematical theory of reliabil-
ity. New York: Wiley.

Bhatt, S., Chung, F., Leighton, F., & Rosenberg, A. (1997). On optimal
strategies for cycle-stealing in networks of workstations. IEEE
Transactions on Computers, 46(5), 545–557.

Bodlaender, H. L., & Wolle, T. (2004). A note on the complexity of
network reliability problems. IEEE Transactions on Information
Theory, 47, 1971–1988.

Bream, B. (1995) Reliability block diagrams and reliability modeling
(Tech. rep.), Office of safety and mission assurance, NASA Lewis
Research Center.

Brucker, P. (2004). Scheduling algorithms. Berlin: Springer.
Cappello, F., Geist, A., Gropp, B., Kale, L., Kramer, B., & Snir, M.

(2009). Toward exascale resilience. The International Journal of
High Performance Computing Applications, 23(4), 374–388.

Dongarra, J., Jeannot, E., Saule, E., & Shi, Z. (2007). Bi-objective
scheduling algorithms for optimizing makespan and reliability on
heterogeneous systems. In: 19th ACM symp. on parallelism in
algo. and archi. (SPAA’07), San Diego, CA, USA.

Girault, A., & Kalla, H. (2009). A novel bicriteria scheduling heuristic
providing a guaranteed global system failure rate. IEEE Transac-
tions on Dependable and Secure Computing, 6(4), 241–254.

Girault, A., Saule, E., & Trystram, D. (2009). Reliability versus per-
formance for critical applications. Journal of Parallel and Dis-
tributed Computing, 69(3), 326–336.

Jeannot, E., Saule, E., & Trystram, D. (2008). Bi-objective approxima-
tion scheme for makespan and reliability optimization on uniform
parallel machines. In: The 14th int. Euro-par conf. on parallel and
distributed computing, Spain.

Kartik, S., & Murthy, C. S. R. (1997). Task allocation algorithms for
maximizing reliability of distributed computing systems. IEEE
Transactions on Computers, 46(6), 719–724.

Provan, J. S., & Ball, M. O. (1983). The complexity of counting cuts
and of computing the probability that a graph is connected. SIAM
Journal on Computing, 12(4), 777–788.

Rosenberg, A. L. (2002). Optimal schedules for cycle-stealing in a net-
work of workstations with a bag-of-tasks workload. IEEE Trans-
actions on Parallel and Distributed Systems, 13(2), 179–191.

Shatz, S., & Wang, J. (1989). Models and algorithms for reliability-
oriented task-allocation in redundant distributed-computer sys-
tems. IEEE Transactions on Reliability, 38(1), 16–26.

Shatz, S., Wang, J., & Goto, M. (1992). Task allocation for maximizing
reliability of distributed computer systems. IEEE Transactions on
Computers, 41(9), 1156–1168.

Valiant, L. G. (1979). The complexity of enumeration and reliability
problems. SIAM Journal on Computing, 8(3), 410–421.

Zhu, D., Melhem, R., & Mossé, D. (2004). The effects of energy man-
agement on reliability in real-time embedded systems. In: Inter-
national conference on computer aided design, ICCAD’04, San
Jose (CA), USA, pp. 35–40.

	Reliability of task graph schedules with transient and fail-stop failures: complexity and algorithms
	Abstract
	Introduction
	Related work on #P-Complete problems
	Framework
	Application and platform
	Failure models
	Schedules with task replication
	Reliability
	Communications
	Example

	Complexity of general schedules
	Problem statement
	Class membership
	Completeness
	Step 1: Transformation of Inst1
	Step 2: Construction of Inst2
	Step 3: Equivalence of Inst1 and Inst2
	Step 3.1: Simplifying probabilities
	Step 3.2: Correspondence between failure events
	Step 3.3: Equivalence of both instances

	Complexity of strict schedules
	Evaluation scheme
	Simulation results

	Conclusion
	Acknowledgements
	References

