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Abstract We consider the problem of scheduling two jobs
A and B on a set of m uniform parallel machines. Each job
is assumed to be independent from the other: job A and job
B are made up of nA and nB operations, respectively. Each
operation is defined by its processing time and possibly ad-
ditional data such as a due date, a weight, etc., and must be
processed on a single machine. All machines are uniform,
i.e. each machine has its own processing speed. Notice that
we consider the special case of equal-size operations, i.e. all
operations have the same processing time. The scheduling of
operations of job A must be achieved to minimize a general
cost function FA, whereas it is the makespan that must be
minimized when scheduling the operations of job B. These
kind of problems are called multiple agent scheduling prob-
lems. As we are dealing with two conflicting criteria, we
focus on the calculation of strict Pareto optima for FA and
CB

max criteria. In this paper we consider different min-max
and min-sum versions of function FA and provide special
properties as well as polynomial time algorithms.
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1 Introduction

In this paper we consider m uniform parallel machines
whose processing speeds are denoted by v1, . . . , vm. Two
jobs A and B , each consisting of nA and nB operations, re-
spectively, have to be scheduled. We denote by I = A ∪ B

the set of all operations and n = |I| = nA + nB its cardinal-
ity. All operations i in I have an equal processing time p.
However, since machines work with different speeds the ac-
tual processing time of an operation scheduled on machine
j is equal to pj = p

vj
for all j = 1, . . . ,m.

With job A we associate a general cost function FA,
which is assumed to be minimized. More precisely, we
consider in this paper two cases for FA: either FA∑ :=
∑

i∈A fi(Ci) or FA
max := maxi∈A fi(Ci), with Ci the com-

pletion time of operation i and fi a non-decreasing function.
With job B we associate criterion CB

max := maxi∈B(Ci),
which is to be minimized. Therefore we are faced with a
two-agent scheduling problem, i.e. the scheduling of each
job is done according to its own cost function while shar-
ing common resources with the other job. We assume that
jobs are selfish and criteria are conflicting, which leads to
a bicriteria scheduling problem. Note that if criteria are
not conflicting we have a trivial case where minimizing
one objective also minimizes the other and therefore there
is no need to consider the problem from a multi-objective
point of view. From now on we refer to our problem as
Q|pi = p|#(FA,CB

max) according to the notation introduced
by Graham et al. (1979) and extended by T’kindt and Billaut
(2006). In the remainder we make extensive use of this no-
tation to refer to scheduling problems.

As usual, when dealing with multiple conflicting criteria,
we focus on the calculation of strict Pareto optima for FA

and CB
max criteria. A schedule σ is a strict Pareto optimum if

and only if there does not exist another schedule σ ′ such that

mailto:elvikis@mathematik.uni-kl.de
mailto:hamacher@mathematik.uni-kl.de
mailto:vincent.tkindt@univ-tours.fr


472 J Sched (2011) 14:471–481

FA(σ ′) ≤ FA(σ) and CB
max(σ

′) ≤ CB
max(σ ) with at least one

strict inequality. Such optima have the property of being also
weak Pareto optima: a schedule σ is a weak Pareto optimum
if and only if there does not exist another schedule σ ′ such
that FA(σ ′) < FA(σ) and CB

max(σ
′) < CB

max(σ ). Notice that
a weak Pareto optimum may not be a strict one. This distinc-
tion is important regarding the algorithms to be developed
in this paper. With each strict Pareto optimum a strictly non-
dominated criteria vector (FA,CB

max) is associated. Hence-
forth we say that σ ′ is a succeeding strictly non-dominated
solution of σ if and only if the inequalities FA(σ ′) < FA(σ)

and CB
max(σ

′) > CB
max(σ ) hold and there does not exist an-

other solution σ ′′ with FA(σ ′) < FA(σ ′′) < FA(σ) and
CB

max(σ
′) > CB

max(σ
′′) > CB

max(σ ). In other words, σ and σ ′
are neighbors on the Pareto front.

There are two most widely used methods to find a sin-
gle Pareto optimal solution: one is a convex combination
of the criteria functions, also called a weighted sum, and
further in this paper denoted by F�(F

A,FB) = FA + �FB ,
with � > 0; the other one is the ε-constraint method denoted
by ε(FA/FB) where we minimize criteria FA subject to
FB ≤ ε and ε > 0 is some a priori fixed value. In this paper
we will develop efficient algorithms based on an indirect ε-
constraint approach, however, first we give some literature
overview related to the problem we tackle.

Scheduling of independent job sets with common re-
sources is a quite recent research area. First, Agnetis et al.
(2000) introduced a jobshop scheduling problem with two
competing players, each one having their own optimization
goal: this was the starting point dealing with multi-agent
scheduling problems. For the tackled jobshop problem they
focused on the enumeration of Pareto optima for two general
quasiconvex functions of the operation completion times.
Moreover, the authors also presented some real world appli-
cations like runway scheduling which can be used by multi-
ple airline companies to land their aircrafts and where costs
are issued for the delays. Another example is telecommuni-
cations with different service types, e.g. voice and file trans-
fer, that share the same connection line and there are strict
non-delay requirements for voice data packets, thus proba-
bly some will be dropped due to delay, whereas no packets
can be lost during file transfer even if delivered with some
delay.

The problem considered in this paper can be applied to
a manufacturing environment. Consider a production com-
pany at a given time point having a number of orders that
build a set of nA operations which all belong to job A. The
costs of job A are calculated w.r.t. function FA. Then an-
other customer comes in with a new job B requiring that this
new job, consisting of nB operations, must be processed as
soon as possible, i.e. makespan CB

max has to be minimized.
The producer has only a limited number m of resources that
have to be shared between the existing job A and the new job

B operations, thus the manufacturer is in the position when
a decision has to be made with respect to the changed situa-
tion in which both criteria functions have to be minimized.

Baker and Smith (2003) studied several single machine
problems with two independent job sets where schedul-
ing is done by minimizing a convex combination of two
criteria among Cmax, Lmax and

∑
wiCi . They provided

polynomial time algorithms to calculate the optimal solu-
tion (a Pareto optimum) for problems 1|di |F�(C

A
max,L

B
max)

and 1|di |F�(C
A
max,

∑
wiC

B
i ). They also proved that prob-

lem 1|di |F�(L
A
max,

∑
wiC

B
i ) is N P -hard except when wi =

1,∀i = 1, . . . , n. Later, Yuan et al. (2005) proposed an up-
date for some of Baker and Smith’s results, notably for
the 1|di |F�(L

A
max,L

B
max) and 1|di |F�(

∑
CA

i ,LB
max) prob-

lems for which they proposed a dynamic program requiring
O(nAnB(nA + nB)) time.

Agnetis et al. (2004) tackled several single machine
scheduling problems including the 1 ‖ ε(

∑
wiC

A
i /FB

max)

and 1 ‖ ε(FA
max/F

B
max) problem. They showed that the for-

mer is N P -hard (by reduction from the knapsack problem)
except when wi = 1,∀i = 1, . . . , nA, and that the latter can
be solved in O(n2

A + nB lognB) time. They also focused
on the cardinality of the set of strictly non-dominated cri-
teria vectors for the 1 ‖ #(FA

max,F
B
max) problem and showed

that this set contains at most nAnB + 1 vectors. Agnetis
et al. (2004) also considered two two-machine shop prob-
lems which were shown to be N P -hard. The first prob-
lem with more than two agents was dealt with by Cheng
et al. (2006) who considered the 1|di,

∑
wiU

(�)
i ≤ ε(�)|—

problem, i.e. for each independent job set we impose a
bound constraint on its weighted number of tardy opera-
tions. They showed that this problem is strongly N P -hard.

Later Ng et al. (2006) proved that 1 ‖ ε(
∑

wiCi/Lmax)

and 1 ‖ ε(
∑

wiCi/
∑

Ui) problems are strongly N P -hard
and that the 1 ‖ ε(

∑
Ci/

∑
Ui) problem is N P -hard under

the id-encoding scheme. Only recently Leung et al. (2010)
proved that the latter problem, which was left open by Ag-
netis et al. (2004), is binary N P -hard. In the same paper au-
thors considered different problem settings, e.g., with pre-
emption, release dates on both or one of the job sets, and
established relationships between two-agent scheduling and
scheduling subject to availability constraints.

Balasubramanian et al. (2009) were the first researchers
to deal with parallel machines environment, namely identi-
cal parallel machines. They developed an iterative heuris-
tic as well as a bicriteria genetic algorithm to solve the
P ‖ #(

∑
Ci

A,CB
max) problem and concluded that the pro-

posed heuristics provide a high quality solution faster by
comparison with a time-indexed integer program for small
and large instances. Later Leung et al. (2010) considered
several identical parallel machine problems where jobs can
be preempted and may have release dates. They showed
that the problem Pm|ri ,pmtn|ε(FA

max/F
B
max) can be solved
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in pseudo-polynomial time and problem P2|pmtn|ε(∑CA
i /

FB
max) in polynomial time. Moreover, they proved that prob-

lems with release dates and one of the criteria
∑

CA
i or

∑
UA

i in combination with maximum criteria are binary
N P -hard.

Recently Huynh Tuong and Soukhal (2009) studied a
two-agent scheduling problem on a three-machine flow
shop. They considered a case where the first set of jobs has
to be processed on the first two machines and the second
set of jobs has to be processed on the last two machines,
thus the second machine is shared between the jobs of two
agents. Authors considered that the makespan has to be min-
imized for both agents and applied an ε-constraint approach
to solve this N P -hard problem in pseudo-polynomial time.

A new approach to multi-agent scheduling was intro-
duced by Huynh Tuong et al. (2009). Authors considered
bicriteria single and identical parallel machines scheduling
problems with one objective associated to the whole set of
jobs I and another associated to a subset I1 ⊂ I . They
called this new class of problems “interfering job schedul-
ing” and showed the differences existing between these and
multi-agent scheduling problems.

One other feature of the problems tackled in this paper is
that all operations are of equal size. This case has been the
matter of numerous studies during the last decade, but none
on multi-agent scheduling problems. Regarding single ma-
chine problems, Baptiste studied the 1|ri ,pi = p, |∑wiUi

problem (Baptiste 1999) and the 1|ri ,pi = p, |∑Ti prob-
lem (Baptiste 2000) for which he proposed polynomial time
algorithms. Later on, Chrobak et al. (2006) considered the
1|ri ,pi = p, |∑Ui problem for which they proposed a
modification of Baptiste’s algorithm with improved time
complexity. Other single machine problems were dealt with
by Baptiste and Brucker (2004).

Parallel machine problems have also been tackled, mainly
when machines are identical. Baptiste (2000) focused on the
two Pm|ri ,pi = p|∑wiCi and Pm|ri ,pi = p|∑Ti prob-
lems and showed that these can be solved in polynomial
time. Later on Baptiste (2003), proved that the case in which
each job requires a given number of machines, referred to as
Pm|ri ,pi = p, sizei |∑Ci , is still polynomially solvable.
Brucker and Kravchenko (2008) focused on some problems
including the P |ri ,pi = p|∑wiCi problem that was shown
to be solvable in polynomial time. Other problems, notably
some where preemption is allowed, can be found in the lit-
erature (Baptiste and Brucker 2004; Baptiste et al. 2004;
Brucker and Kravchenko 2008). We will now review several
publications which are more related to the problems tackled
in this paper.

Dessouky et al. (1990) studied a set of simple but impor-
tant scheduling problems on uniform parallel machines with
unit processing time. They showed that the Q|pi = 1|F∑

and Q|pi = 1|Fmax problems can be solved in O(n3) and

O(n2) time, respectively. The first one was solved by means
of an assignment problem, while the second one is solved by
a simple constructive algorithm. They also provided special-
izations to particular classic max and sum scheduling crite-
ria.

Another important contribution is due to Tuzikov et al.
(1998) who developed two polynomial time algorithms for
the Q|pi = p|ε(FA

max/F
B
max) and Q|pi = p|ε(FA∑/FB

max)

problems which are then iteratively solved to calculate the
strict Pareto set. Even though these problems may seem sim-
ilar to the ones tackled in this paper, they are thoroughly
different since we consider the scheduling of jobs owned
by two independent agents. Moreover, Tuzikov et al. (1998)
showed that the size of the set of strictly non-dominated cri-
teria vectors is bounded by at most n2 solutions for both
problems, while we refine this bound for our specific prob-
lem and show that there are no more than nA + 1 strictly
non-dominated points in the criteria space.

The paper is organized as follows. We first focus in
Sect. 2 on general results on equal-size operations and min-
imization of criterion CB

max. In Sect. 3 we consider the par-
ticular case of FA∑ and CB

max criteria and provide a polyno-
mial time algorithm for enumerating the set of strictly non-
dominated criteria vectors. In Sect. 4 we do the same for
FA

max and CB
max criteria.

2 General properties of the Q|pi = p|#(FA,CB
max)

problem

In this section we consider a rather general objective
function FA and develop some properties of the Q|pi =
p|#(FA,CB

max) problem. First, observe that we only need
to restrict the search for Pareto optima to the set of active
schedules if FA is regular, i.e. a non-decreasing function
of the completion times (T’kindt and Billaut 2006). Con-
sequently, due to the fact that operations are of equal size,
the completion time of the operation scheduled in kth po-
sition on a given machine j is equal to tj,k = kpj = k

p
vj

.
Let us define the sequence of completion times for ma-
chine j by Tj = {tj,k | k ∈ N}. Assume that all times-
lots in

⋃
j=1,...,m Tj are numbered in increasing order of

their completion times and, in case of ties, slots on a
faster machine get lower indexes, i.e. we build a sequence
T = {t1 ≤ t2 ≤ · · · ≤ tn} ⊆ ⋃

j=1,...,m Tj of the n smallest
timeslots (see Fig. 1). Therefore T is the sequence of all
possible completion times for any active schedule σ such
that minimizing criteria FA and CB

max is equivalent to as-
signing operations to completion times. In other words, the
uniform parallel machines problem can be seen as a par-
ticular instance of a single machine problem for which the
sequence of completion times is fixed and we only need to



474 J Sched (2011) 14:471–481

Fig. 1 Machine timeslots transformation to a sequence T

assign jobs to the timeslots. This makes the problem more
particular than those tackled by Agnetis et al. (2004).

We now turn to the situation in which FA is mini-
mized under the constraint that CB

max ≤ ε, where ε > 0 is
given. This ε-constraint problem, referred to as Q|pi =
p|ε(FA/CB

max), will be solved later on to compute a Pareto
optimum. Notice that theoretically an optimal solution to
this problem is a weak Pareto optimum. However, it is well
known that to each strict Pareto optimum we can assign such
ε value that it is an optimal solution to the associated ε-
constraint problem (Ehrgott 2005). This implies that when
solving such a problem we must take care of discarding all
weak but not strict Pareto optima. Assume that the last op-
eration of job B completes at timeslot t , then it is obvious
that the assignment of the other operations of B to times-
lots tj < t does not matter. We now provide a similar result
to the Property 1 of Baker and Smith (2003) for the single
machine case.

Lemma 1 There exists an optimal schedule σ to the Q|pi =
p|ε(FA/CB

max) problem such that all operations of job B

are sequenced in a single block completing at time CB
max ≤ ε,

i.e. no operation of job A is scheduled between two opera-
tions of job B .

Proof Assume that σ does not satisfy this property, i.e. there
exists a timeslot k such that an operation i of job A com-
pletes at time tk ≤ CB

max and some operation j of job B

completes at time tk−1. By swapping i and j we obtain a
schedule with CB

max unchanged and since FA is a regular
criterion, its value is not increased. The iterative application
of such swaps on an optimal schedule builds another optimal
schedule for which all operations of B form a block. �

Let us denote by nε the number of timeslots which com-
plete not later than ε, i.e.

nε = |{tk ∈ T | tk ≤ ε}| . (1)

Since FA is regular, minimizing FA is, due to Lemma 1,
equivalent to finding an optimal assignment of job A oper-
ations to the t1, . . . , tnε−nB

, tnε+1, . . . , tn timeslots. This can
be done in O(n3

A) or O(n2
A) time with sum and maximum

criteria, respectively, by applying the algorithms proposed
by Dessouky et al. (1990). Consequently, we have a result
on the cardinality of the set of strict Pareto optima.

Lemma 2 There are at most nA + 1 strictly non-dominated
criteria vectors (strict Pareto optima in criteria space).

Proof This follows directly from the fact that there are at
most nA + 1 possible completion times for job B . �

We next focus on the calculation of strict Pareto optima
for the FA and CB

max criteria. More precisely, we provide
algorithms, based on the ε-constraint approach, which enu-
merate one strict Pareto optimum per strictly non-dominated
criteria vector. The enumeration of this set P of solutions
can be achieved by iteratively solving, with different ε val-
ues, the Q|pi = p|ε(FA/CB

max) problem (see Algorithm 1).
This generic algorithm can be implemented in O(n logm +
nAΦ) time, where n logm is the time needed to generate n

timeslot sequence T and we need Φ time to optimally assign
operations of job A to the timeslots in T for each of at most
nA + 1 non-dominated solutions. However, later in this pa-
per we will see that Algorithm 1 can be improved depending
on the definition of criterion FA.

Algorithm 1: Solution of the Q|pi = p|#(FA,CB
max)

problem.

Data: An instance of the Q|pi = p|#(FA,CB
max)

problem.
Result: Strict Pareto set P .
begin1

P ← ∅; /* Initialize Pareto set. */2

ε ← tnB
, nε ← nB ; /* Set initial ε3

and nε values. */
repeat4

nε ← argmaxk=nε,...,n{tk ≤ ε}; /* Index5

of the last feasible timeslot
for the operation in job B. */
Put the whole job B into tnε−nB+1, . . . , tnε6

timeslots;
Sequence operations of A to the7

t1, . . . , tnε−nB
, tnε+1, . . . , tn timeslots;

P ← P ∪ {(σε,F
A,CB

max = ε)}; /* Append8

solution to the Pareto set. */
ε ← tnε+1; /* Increase ε value. */9

until nε < n;10

Remove weak but not strict non-dominated11

solutions from P ;
return P ;12

end13
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Fig. 2 Some cost functions
illustrating Assumption 1

3 Solving the Q|pi = p|#(FA∑,CB
max) problem

In this section we focus on the case FA = FA∑ = ∑
i∈A fi ,

where fi is for all i a non-decreasing function of the
completion times. First, observe that sequencing job A in
Step 7 of Algorithm 1 can be achieved by solving an as-
signment problem in O(n3

A) time, thus leading to an overall
O(n logm+n4

A) time complexity for Algorithm 1. We show
that this complexity can be reduced if the following assump-
tion holds.

Assumption 1 Let fi′ and fi′′ be two non-decreasing func-
tions: For all t2 ≥ t1 ≥ 0, we have either (fi′ − fi′′)(t1) ≤
(fi′ − fi′′)(t2) or (fi′ − fi′′)(t1) ≥ (fi′ − fi′′)(t2), with
(fi′ − fi′′)(t) = fi′(t) − fi′′(t).

It is interesting to notice that some of the classic sum cri-
teria in scheduling satisfy this assumption. For instance, this
is the case for the weighted sum of completion times crite-
rion

∑
wiCi for which wiCi = fi(t) = wit . This assump-

tion also holds for the total tardiness criterion
∑

Ti , with
Ti = fi(t) = max(0, t − di) and for the total weighted tardi-
ness

∑
wiTi if weights wi and due dates di are agreeable,

i.e. di′ ≤ di′′ ⇒ wi′ ≥ wi′′ . Figure 2 illustrates that for crite-
ria

∑
wiCi and

∑
Ti Assumption 1 holds, whilst this is not

the case for weighted number of tardy jobs criterion
∑

wiUi

(two cost functions intersect), where wiUi = fi(t) = wi if
t > di and wiUi = fi(t) = 0 otherwise.

In the remainder of this section we assume that Assump-
tion 1 holds and we use the following notations: σ(k) de-
notes the operation sequenced in position k in sequence σ

and tk ∈ T is its completion time, i.e. the completion time of
the timeslot in which σ(k) is scheduled. We are now ready
to present a result which states that the optimal sequence of
job A operations does not depend on the value of the time-
slots.

Lemma 3 Assume that we have two sets of timeslots T ′ =
{t ′1 ≤ · · · ≤ t ′n} and T ′′ = {t ′′1 ≤ · · · ≤ t ′′n } such that T ′ �= T ′′.
Let σ ′ and σ ′′ be optimal sequences of operations for crite-
rion FA∑ with respect to the timeslots of T ′ and T ′′, respec-

tively. Then σ ′ = σ ′′.

Proof We will prove this lemma using a contradiction. First
we will assume that we are given two different schedules σ ′
and σ ′′ and finally show that σ ′′ can be transformed to be
equal to σ ′ without increasing its objective value.

Suppose σ ′ �= σ ′′ and let k < n be the index such that
σ ′(v) = σ ′′(v), ∀v = 1, . . . , k − 1, and σ ′(k) �= σ ′′(k). We
assume that σ ′ and σ ′′ are maximally equal, i.e. there does
not exist other optimal sequences σ ′ and σ ′′ with a higher k

value.
Consider operation i′ = σ ′(k) which is scheduled in σ ′′

in position r > k, and set i′′ = σ ′′(r − 1). If we denote by �

the index such that σ ′(�) = i′′ we conclude � > k. As σ ′ is
optimal regarding timeslots T ′, swapping i′ and i′′ in σ ′ we
obtain

δ′∑ = FA∑
(
σ ′(i′ ↔ i′′)

) − FA∑(σ ′) ≥ 0,

where σ ′(i′ ↔ i′′) is the sequence σ ′ with operations i′ and
i′′ swapped. The above equation can be rewritten as

δ′∑ = (
fi′(t�) + fi′′(tk)

) − (
fi′(tk) + fi′′(t�)

)

= (fi′ − fi′′)(t�) − (fi′ − fi′′)(tk) ≥ 0.

Recall that t� ≥ tk , thus function (fi′ − fi′′)(t) is non-
decreasing. Now, let us turn to σ ′′ which is optimal regard-
ing timeslots T ′′. By swapping i′ and i′′ we obtain

δ′′∑ = F∑
(
σ ′′(i′ ↔ i′′)

) − F∑(σ ′′)

= (
fi′′(tr ) + fi′(tr−1)

) − (
fi′′(tr−1) + fi′(tr )

)

= (fi′ − fi′′)(tr−1) − (fi′ − fi′′)(tr ).

As (fi′ − fi′′)(t) is a non-decreasing function and tr ≥
tr−1 we deduce that δ′′∑ ≤ 0. But as σ ′′ is assumed to be

optimal regarding timeslots T ′′, we necessarily have δ′′∑ =
0 and swapping i′ and i′′ does not increase the objective
function value of F∑ over T ′′. But this clearly contradicts
the fact that σ ′ and σ ′′ have been chosen as maximally equal.
Consequently, we have σ ′ = σ ′′. �

Using Lemma 3 we can improve Algorithm 1 to reduce
its time complexity, since operations of job A can be se-
quenced independently from the position of job B in the
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Fig. 3 The sequence of job A operations is independent from job B

position (gray) in timeslot sequence T

timeslot sequence T (see Fig. 3). Consequently, in the re-
sulting improved Algorithm 1, the Q|pi = p|FA∑ problem
is solved only once to produce an optimal sequence σ ∗
in Step 3. Then in Step 7 the operations of job A are as-
signed to the free timeslots in their order in sequence σ ∗.
The overall complexity for finding all non-dominated crite-
ria vectors is O(n logm + Φ) time, with Φ the time com-
plexity needed to solve the 1|pi = 1|FA∑ problem. Notice
that if we want to save one schedule per criteria vector,
we need to pay an extra cost which yields in this case
O(n logm + Φ + n2

AnB + nAn2
B) time complexity.

We now turn to special cases of the FA∑ cost func-
tion for which Assumption 1 holds, and we first start with
FA∑ = ∑

wiC
A
i , wi ≥ 0,∀i = 1, . . . , nA. It is well known

(Dessouky et al. 1990) that Q|pi = p|∑wiCi can be solved
in polynomial time by a straight adaptation of Smith’s rule:
schedule at any time the job with the greatest weight wi to
the machine which completes it the earliest. Henceforth, se-
quence σ ∗ is in Step 3 of Algorithm 1 obtained by sorting
job A operations in decreasing order of their weight values.
Therefore, the Q|pi = p|#(

∑
wiC

A
i ,CB

max) problem can be
solved in O(n logm + nA lognA) time.

Additionally, both Q|pi = p|FA∑ problems with FA∑ =
∑

T A
i and FA∑ = ∑

wiT
A
i (with agreeable weights and due

dates) can be solved (Dessouky et al. 1990) by a straight
adaptation of Jackson’s rule: schedule at any time the job
with the smallest due date di to the machine which com-
pletes it the earliest. Again, sequence σ ∗ is obtained by sort-
ing operations of job A in increasing order of their due dates.
This also results in an overall O(n logm + nA lognA) time
complexity for the improved Algorithm 1.

There are objective functions in the scheduling theory
which do not satisfy Assumption 1. One of these func-
tions is the total number of tardy jobs

∑
UA

i . However,
Dessouky et al. (1990) present an algorithm for solving
the Q|pi = 1|∑wiUi problem which can be simplified for
solving the Q|pi = p|∑Ui problem. First, sort operations
in descending order of the due dates to obtain list L. Op-
erations are iteratively scheduled as follows: Consider the
last free timeslot tk ∈ T , then the first available operation,
i = L[1], is assigned to this timeslot if tk ≤ di . Otherwise,
consider the previous free timeslot and let tk be unassigned.
Finally, sequentially schedule the remaining, tardy, opera-
tions in the order of L to the unassigned timeslots such that
the operation with the latest due date is assigned to the first

Fig. 4 Adoption of Dessouky et al. (1990) algorithm for Q|pi =
p|∑Ui problem

unassigned timeslot (see Fig. 4). Correctness of the proce-
dure can be easily proved by interchange arguments.

In the remainder of this section we assume that t1 ≤ di

holds for all i ∈ A. If this is not the case, label such op-
erations always tardy by a simple preprocessing step. We
present the results which lead us to an efficient enumeration
algorithm for the Q|pi = p|#(

∑
UA

i ,CB
max) problem.

Lemma 4 There exists a strict Pareto optimum σ for the
Q|pi = p|#(

∑
UA

i ,CB
max) problem with no tardy operation

u ∈ A sequenced before job B .

Proof Let σ ′ be a strict Pareto optimum, with criteria val-
ues

∑
U

′A and C
′B
max, such that it contains a tardy operation

u ∈ A sequenced before job B . Let σ be the schedule ob-
tained by moving u right after job B and by left timeshifting
all operations scheduled between the old and new timeslot
of u. Consequently, the number of tardy A operations and
the makespan of job B do not increase. By applying this re-
peatedly we can build a strict Pareto optimal schedule with
no tardy A operation before job B . �

Notice that Lemma 4 is even stronger for a single ma-
chine, since in this case a strict Pareto optimal schedule with
some tardy operation u ∈ A sequenced before job B and the
same criteria values do not exist. This is true, since there
are no two timeslots with equal completion times, therefore
swapping tardy operation u with job B decreases makespan
criteria without increasing the number of tardy operations
of A.

We now provide two results related to the process of enu-
merating the set of strict Pareto optima: the first one estab-
lishes a stopping condition whilst the second one concerns
the choice of ε values to generate succeeding non-dominated
schedules.

Lemma 5 Let σ be a strict Pareto optimal solution with
objective value (

∑
UA,CB

max). If there exists a timeslot tk <

CB
max with σ(k) a job A operation such that tk+1 > dσ(k),

then there is no succeeding strict Pareto optimal solution σ ′
such that

∑
UA >

∑
U

′A and CB
max < C

′B
max.

Proof According to Lemma 4 we assume that no operation
i from job A sequenced before job B in σ is tardy. Let σ ′
be a succeeding strict Pareto optimal schedule of σ such that∑

UA >
∑

U
′A and CB

max < C
′B
max hold. As CB

max < C
′B
max, it

follows that job B is shifted in σ ′ r ≥ 1 timeslots to the right.
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Fig. 5 Illustration of stop condition in Lemma 5

Consequently, job A operations sequenced before job B in σ

may also be postponed by r timeslots to the right as long as
they stay early. However, we know that operation σ(k) ∈ σ

is tardy if right timeshifted. Since all operations sequenced
before σ(k) and all tardy operations in σ have due dates
not greater than dσ(k) none of them can be sequenced non
tardy in a position greater than k in σ ′. Therefore

∑
UA =∑

U
′A and σ ′ is not a strict Pareto optimal solution, which

is a contradiction (see Fig. 5). �

Lemma 6 Let σ be a strict Pareto optimal solution with
objective value (

∑
UA,CB

max), and let k be a timeslot with
the first tardy operation σ(k) ∈ A following job B . The
succeeding strict Pareto optimal solution σ ′ with

∑
UA >∑

U
′A and CB

max < C
′B
max is obtained by solving the Q|pi =

p|ε(∑UA
i /CB

max) problem with ε = tk

Proof Let σ be such that Lemma 5 does not hold. Now
observe that there is no strict Pareto optimal solution with
ε < tk satisfying the conditions of Lemma 5. This is true,
since such schedule only swaps job B with early operations
following it and therefore does not change the number of
tardy operations, but rather increases CB

max.
Let ε = tk (see Fig. 6), then makespan of job B in sched-

ule σ ′ is C
′B
max = tk > CB

max since operation σ(k) follows
job B in σ and Lemma 5 does not hold. In the new sched-
ule σ ′ job B is sequenced by r ≥ 1 timeslots later. Hence,
all early operations of A sequenced between B and σ(k) in
σ can be scheduled immediately before B in σ ′ and oper-
ation σ(k) in the first timeslot of σ ′. Note that there may
be more job A operations scheduled in timeslots j > k such
that tj = ε = tk . If this is the case we sequence them itera-
tively as described above. Thus the number of tardy jobs is
reduced by at least one with C

′B
max > CB

max and this change is
minimal: therefore schedule σ ′ is a succeeding strict Pareto
optimal solution of σ . �

Due to the lemma above we can easily construct an effi-
cient algorithm to enumerate the set of strict Pareto optima.

Fig. 6 Optimal choice of ε value in Lemma 6

Algorithm 2: Solution of the Q|pi =p|#(
∑

UA
i ,CB

max)

problem.

Data: An instance of the Q|pi = p|#(
∑

UA
i ,CB

max)

problem.
Result: Strict Pareto set P .
begin1

P ← ∅; /* Initialize Pareto set. */2

Find σ an initial solution minimizing3

Lex(CB
max,

∑
UA);

P ← P ∪ {(σ,
∑

UA,CB
max)}; /* Append4

initial solution to P. */
nT ← argmaxl=nB,...,n{tl ≤ CB

max};5

while (Lemma 5 is not answered) do6

ε ← CB
max, nε ← nT ;7

k ← argminl=nε+1,...,n
{tl > dσ(l)};8

/* Index of the first tardy
operation following job B. */
nT ← k; /* Index of the last9

feasible timeslot for the
operations of job B. */
E ← {σ(l) | nε < l ≤ nT and tl ≤ dσ(l)};10

/* Sequence of early operations
following B, but before its new
completion time. */
T ← {σ(l) | nε < l ≤ nT and tl > dσ(l)};11

/* Sequence of tardy operations
following B, but before its new
completion time. */
Build non-dominated schedule σε with ε = tk12

by the following steps:
Put operations in T to t1, . . . , t|T | timeslots in13

increasing order of their due dates;
Put operations in E to14

tnT −nB−|E|+1, . . . , tnT −nB
timeslots in

increasing order of their due dates;
Put the whole job B to tnT −nB+1, . . . , tnT

15

timeslots;
Sequence all other operations to the rest16

timeslots in the same order as in σ ;
σ ← σε ,

∑
UA ← ∑

UA − |T |,17

CB
max ← ε;

P ← P ∪ {(σ,
∑

UA,CB
max)}; /* Append18

solution to the Pareto set. */

return P ;19

end20

First, schedule job B and sequence operations of job A,
i.e. build an initial strict Pareto optimal solution σ , such
that (CB

max,
∑

UA
i ) is minimized with respect to the lex-

icographical ordering. This can be done by assigning op-
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erations of job B to the first timeslots and next sequence
operations of job A. Then use results of Lemma 6 and its
constructive proof to build succeeding strict Pareto optimal
solutions until the stopping condition of Lemma 5 holds.
The details which are given in Algorithm 2 can be imple-
mented in O(n logm + nA lognA) time if only strictly non-
dominated criteria vectors are of interest. Otherwise we get
an O(n logm + n2

A) time complexity.
To complete this section, notice that in the case where

FA∑ is equal to the weighted number of late jobs
∑

wiU
A
i ,

we have to go back to Algorithm 1. Henceforth, the strict
Pareto optima of the Q|pi = p|#(

∑A
wiUi,C

B
max) problem

can be calculated in O(n logm + n2
A lognA) time using the

procedure of Dessouky et al. (1990) in Step 7.

4 Solving the Q|pi = p|#(FA
max,CB

max) problem

In this section we focus on the case where FA = FA
max =

maxi∈A fi , where fi is for all i a non-decreasing function
of the completion times. This type of criterion has often
been considered in the literature since it generalizes classic
scheduling criteria such as makespan, maximum tardiness
or maximum lateness. A straightforward implementation of
Algorithm 1 can be derived for the Q|pi = p|#(FA

max,C
B
max)

problem using Lawler’s algorithm (Lawler 1973) when ap-
plying Step 7. Consequently, this step can be solved in
O(n2

A) time and the overall complexity of the enumeration
algorithm becomes O(n logm + n3

A). In the remainder, we
focus on two particular and widely used scheduling criteria,
namely the makespan CA

max = maxi∈A Ci and the maximum
lateness LA

max = maxi∈A(Ci −di) for which we provide ded-
icated algorithms.

Firstly, it is obvious that the Q|pi = p|#(CA
max,C

B
max)

problem admits only two strictly non-dominated cri-
teria vectors: (CA

max = tnA
,CB

max = tn) and (CA
max = tn,

CB
max = tnB

).
Now, we turn to the maximum lateness criterion. Even

though Lemma 3 does in general not apply to FA
max func-

tions, we show that in case of LA
max a similar result holds.

Lemma 7 Whatever the timeslots T = {t1 ≤ · · · ≤ tn} are,
the Q|pi = p|LA

max problem can be solved by sorting oper-
ations of job A in ascending order of their due dates (EDD
rule) and by assigning them in this order to the timeslots.

Proof This result can be shown by simple interchange argu-
ments. �

As a consequence of the above lemma it is possible to
derive a generic algorithm which follows the same lines
as Algorithm 1 for the FA∑ criterion. The main difference

is in Step 3 where schedule σ ∗ is built: for the FA
max cri-

terion we only have to sequence operations of job A fol-
lowing EDD order. This general algorithm has an overall
O(n logm+nA lognA) time complexity to find strictly non-
dominated criteria vectors and O(n logm + nnA) if corre-
sponding schedules are of interest. However, it is still possi-
ble to reduce its practical time complexity by proposing an
enumeration algorithm which eliminates from computation
the weak, but not strict, non-dominated criteria vectors. The
idea is to avoid building the non-dominated solutions from
scratch for each ε value.

Let us assume that operations of job A are divided into
two sets A′ and A′′, where A′ contains all operations that are
sequenced before job B in a strict Pareto optimal schedule
σ and A′′ is defined by A′′ = A \ A′. The idea is to build the
succeeding strict Pareto optimal schedule σ ′ starting from σ .
The next result introduces a stopping criteria for the enumer-
ation process.

Lemma 8 If schedule σ is a strict Pareto optimal solu-
tion for the Q|pi = p|(LA

max,C
B
max) problem with criteria

vector(LA
max,C

B
max) and the LA

max value is given by an op-
eration of set A′, then there is no succeeding strict Pareto
optimal schedule σ ′ with criteria values L

′A
max < LA

max and
C

′B
max > CB

max.

Proof To decrease the LA
max value we have to increase CB

max,
i.e. we right timeshift the block of operations of job B .
Consequently, some operations of set A′′ are moved to set
A′ but, due to Lemma 7, operations in A′ still follow the
EDD order. Thus we have not decreased the LA

max value,
i.e. L

′A
max = LA

max. �

From Lemma 8 we conclude that the enumeration, which
starts by scheduling first the operations of job B , must stop
when the LA

max value is given by an operation sequenced in
set A′. At each iteration, a new ε value is set and the opera-
tions of job B are therefore right timeshifted. However, not
all ε values lead to strictly non-dominated criteria vectors.
Lemma 9 states a condition how much operations of job B

must be right timeshifted in order to get a new succeeding
strictly non-dominated criteria vector.

Lemma 9 Let σ be a strict Pareto optimal schedule with
criteria vector (LA

max,C
B
max), where the LA

max value is given
by an operation i ∈ A′′ (break ties by choosing the latest op-
eration in A′′ which gives the LA

max value). The succeeding
strict Pareto optimal schedule σ ′ with L

′A
max < LA

max is ob-
tained by moving all operations scheduled before operation
i and including i from set A′′ to set A′.

Proof Given a schedule σ ′ such that L
′A
max < LA

max, opera-
tion i must be completed earlier in σ ′ than in σ . This, how-
ever, means that i is swapped with at least one operation u
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Algorithm 3: Solution of the Q|pi = p|#(LA
max,C

B
max)

problem.

Data: An instance of the Q|pi = p|(LA
max,C

B
max)

problem.
Result: Strict Pareto set P .
begin1

Sort operations of job A in ascending order of their2

due dates;
P ← ∅; /* Initialize Pareto set. */3

ε ← tnB
, nε ← nB ; /* Set initial ε4

and nε values. */
repeat5

nε ← argmaxk=nε,...,n{tk ≤ ε}; /* Index6

of the last feasible timeslot
for the operations of job B. */
A′ ← {First nε − nB operations of A};7

/* Early operations of job A.
*/
A′′ ← A \ A′; /* Late operations of8

job A. */
Sequence operations of job A′ to the9

t1, . . . , tnε−nB
timeslots of σε;

Put the whole job B into tnε−nB+1, . . . , tnε10

timeslots;
Sequence operations of job A′′ to the rest11

tnε+1, . . . , tn slots of σε;
This results to the schedule σε with criteria12

LA
max and CB

max = tnε ;
P ← P ∪ {σε}; /* Append σε to the13

Pareto set. */
I ′ ← {i ∈ A′′ | Ci − di = LA

max};14

/* Determine indexes of jobs
issuing LA

max value. */
ε ← maxi∈I ′Ci ; /* Update15

ε-constraint value. */

until I ′ �= ∅ ;16

return P ;17

end18

sequenced before i in σ . First suppose that u is an opera-
tion of job A. As u is scheduled before i in σ , the inequality
du ≤ di implies by Lemma 7 two cases:

(i) either du = di ⇒ L
′A
max = LA

max,
(ii) or du < di ⇒ L

′A
max > LA

max,

which both contradict the assumption L
′A
max < LA

max. Hence
operation u must belong to job B . Furthermore, due to
Lemma 1 operations in B can be considered as a single
block, thus i and all operations j of job A scheduled before
i in σ must be sequenced before job B in σ ′. �

Using the two previous lemmas we derive an improved
enumeration algorithm (Algorithm 3) for finding the set of
strict Pareto optima of the Q|pi = p|#(LA

max,C
B
max) prob-

lem. After the first iteration, we get an initial solution σε

which actually is a solution of the lexicographical Q|pi =
p|Lex(CB

max,L
A
max) problem where CB

max is minimized first.
Then, the succeeding strict Pareto schedule σ ′

ε is obtained by
identifying the last operation i of job A with lateness equal
to LA

max(σε) and by moving all operations j of job A, such
that dj ≤ di , to set A′ in schedule σ ′

ε . This way, a succeed-
ing schedule σ ′

ε with L
′A
max < LA

max and ε = C
′B
max > CB

max is
built. The operations of job A still follow the EDD order.
This process is iterated until the stopping condition stated in
Lemma 8 is met.

In the worst case the complexity of Algorithm 3 is the
same as that of Algorithm 1, i.e. O(n logm + nA lognA)

time. We perform, however, only as many iterations as
strictly non-dominated solutions exist. This means that the
practical time complexity will in general be reduced.

We close this section by strengthening the result of
Lemma 2.

Lemma 10 For the Q|pi = p|#(LA
max,C

B
max) problem there

are at most (nA + 1) strictly non-dominated criteria vectors
and the bound is tight.

Proof We show that the bound is tight by means of the fol-
lowing example.
Consider a single machine problem, i.e. m = 1, for which all
operations of jobs A and B have p = 1. The due dates for
operations in A are:

di = i + (i − 1)nB

nA

, 1 ≤ i ≤ nA.

The timeslots are defined by tk = k for all 1 ≤ k ≤ n, which
implies that if job B is scheduled first we get schedule σ1

with the following maximum lateness for job A:

LA
max(σ1) = max

{

nB + 1 − 1, nB + 2 − 2 − nB

nA

, . . . ,

n − nA − (nA − 1)nB

nA

}

= nB

and makespan CB
max(σ1) = nB . When right timeshifting job

B by one timeslot we obtain the second strict Pareto optimal
solution σ2 with criteria values given by

LA
max(σ2) = max

{

1 − 1, nB + 2 − 2 − nB

nA

, . . . ,

n − nA − (nA − 1)nB

nA

}

= nB − nB

nA
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Table 1 Complexity results on two-agent uniform parallel machines scheduling

Problem Complexity Comment/Reference

Q|pi = p|#(FA∑,CB
max) O(n4) FA∑—regular, Algorithm 1

Q|pi = p|#(FA
max,C

B
max) O(n3) FA

max—regular, Algorithm 1

Q|pi = p|#(FA∑,CB
max) O(n logm + �)

Assumption 1, O(�)—time to
solve 1|pi = 1|FA∑

Q|pi = p|#(
∑

wiC
A
i ,CB

max) O(n logm + nA lognA) Lemma 3

Q|pi = p|#(
∑

T A
i ,CB

max) O(n logm + nA lognA) Lemma 3

Q|pi = p|#(
∑

wiT
A
i ,CB

max) O(n logm + nA lognA) Lemma 3, agreeable weights and due dates

Q|pi = p|#(
∑

UA
i ,CB

max) O(n logm + nA lognA) Lemmas 4–6, Algorithm 2

Q|pi = p|#(
∑

wiU
A
i ,CB

max) O(n logm + n2
A lognA) Algorithm 1

Q|pi = p|#(CA
max,C

B
max) O(n logm) Lemma 1, Only two Pareto schedules

Q|pi = p|#(LA
max,C

B
max) O(n logm + nA lognA) Lemmas 7–9, Algorithm 3

and CB
max(σ2) = nB + 1. By doing this iteratively we build

the (nA + 1) strict Pareto optimal solutions with the last one
σnA+1 having

LA
max(σnA+1) = max

{

1 − 1,2 − 2 − nB

nA

, . . . ,

nA − nA − (nA − 1)nB

nA

}

= 0

and CB
max(σnA+1) = n criteria values. �

5 Conclusions

In this paper we have tackled the problem of scheduling jobs
owned by two agents on uniform parallel machines. One im-
portant feature of our problem is the make-up of jobs by the
sets of equal-size operations. We consider the case where
one job is evaluated by means of the makespan criterion
whilst the other one is evaluated by means of a general cost
function. To the best of our knowledge there is no litera-
ture on uniform parallel machines and equal job processing
times which consider two-agent scheduling problems and
in particular this general problem has never been dealt with
in the literature. Moreover, only Agnetis et al. (2000) con-
sidered efficient ways to fully enumerate the strict Pareto
optima while most other works rather concentrated on sup-
plying algorithms to find a single non-dominated solution,
mostly based on ε-constraint approach, or showed the N P -
completeness of the problems. On the contrary, we have pro-
vided polynomial time algorithms for the enumeration of the
strict Pareto optima set in the cases where the general cost
function is a max-cost function or a sum-cost function. We
have also analyzed some specializations to classic schedul-
ing criteria including the maximum lateness, the weighted
sum of completion times, the number of tardy jobs and to-
tal tardiness. The observed problem properties let us derive

efficient polynomial time algorithms to enumerate the strict
Pareto optima sets with an improved running time over the
naive algorithm implementation using a straight forward ε-
constraint approach. Table 1 summarizes the problems con-
sidered in this paper and the running times of the proposed
algorithms.

There is still a large field of research which needs to be
covered regarding multi-agent parallel machine scheduling.
This paper is a useful generalization which can be used for
other more complicated environments, like jobs with non-
equal processing times, unrelated parallel machines prob-
lems, flexible flow shop problems and others. It would be
interesting to look at the different cases where both agent
jobs have release dates or only one of them. Besides, it could
be worthy of interest to study problems with non regular
criteria, like the earliness of jobs, which to the best of our
knowledge has never been done in the literature.
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