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Abstract In production planning, sequence dependent setup
times and costs are often incurred for switchovers from one
product to another. When setup times and costs do not re-
spect the triangular inequality, a situation may occur where
the optimal solution includes more than one batch of the
same product in a single period—in other words, at least one
sub tour exists in the production sequence of that period.
By allowing setup crossovers, flexibility is increased and
better solutions can be found. In tight capacity conditions,
or whenever setup times are significant, setup crossovers
are needed to assure feasibility. We present the first linear
mixed-integer programming extension for the capacitated
lot-sizing and scheduling problem incorporating all the nec-
essary features of sequence sub tours and setup crossovers.
This formulation is more efficient than other well known
lot-sizing and scheduling models.

Keywords Lot-sizing and scheduling · Nontriangular
setups · Setup crossover · Integer programming

1 Introduction

In production planning problems, the timing and sizes of
production orders of a given range of products over a cer-
tain number of periods must be determined so that market
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demand is fulfilled and associated costs are minimized. In a
large number of cases, sequence-dependent setup times and
costs are incurred for switchovers from one product to an-
other. In addition, tight machine capacity often necessitates
product inventories from one period to another, further in-
creasing costs.

Usually, setups follow the so-called triangular inequal-
ity, i.e., for any three products, the cost and time required to
directly set up the machine from one product to another is
always less than the sum of those required when setting up
via an intermediate product. However, several reasons may
lead to the existence of non-triangular setup times or costs.
For example, in some industries (chemical, pharmaceutical,
food, dyeing, etc.), unwanted contamination occurs between
certain products. To avoid it, additional cleansing operations
must be performed during machine set ups, often requiring
the use of expensive special products. Alternatively, prod-
ucts that absorb the contaminating substances (or even lower
grade mixed products) can be produced in between, reduc-
ing setup times and costs. In this situation, a minimum lot
size is often required for the intermediate product, so as to
eliminate unacceptable contamination.

When the triangular inequality does not hold, it may be
efficient to produce more than one batch of the same prod-
uct in a given period. Though this concept is quite simple,
it is also quite hard to model when considering sequence-
dependent setup times and costs, often leading to incomplete
or inaccurate MIP formulations, and subsequent infeasible
or sub optimal solutions. In this paper, a novel formulation
that correctly handles this problem is proposed.

Setup times play a double role in production planning
problems, because not only do they indirectly impact on the
optimal solution’s value (by constraining the inventory lev-
els), but they also interfere with the solution’s feasibility. In
tight machine capacity situations, an effective distribution of
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setup times is required. Quite often, setup operations can be
interrupted at the end of a period and resumed at the begin-
ning of the next one with no additional prejudice, either due
to the nature of the operations required or to the fact that
there is no physical separation between periods. When this
happens, a setup cross over or a period-overlapping setup is
said to exist.

To the best of our knowledge, we are the first to ex-
actly model these features as an extension of the well known
capacitated lot-sizing problem (CLSP), considered to be a
big-bucket model as multiple products/setups may be pro-
duced/performed per planning period. We show that such
formulations are more efficient than standard small-bucket
models.

In Sect. 2 we introduce a previously existing model for
lot-sizing with sequence-dependent setup costs and times.
We then expand this model so as to correctly handle non-
triangular setup costs and times, with the necessary feature
of disconnected sub tour elimination and minimum lot size
enforcement. Furthermore, we benchmark our new formula-
tion against the mixed small-bucket-big-bucket general lot-
sizing and scheduling model on reported instances from the
literature. In Sect. 3 we present a new formulation exten-
sion that allows setups to crossover between adjacent peri-
ods. Numerical examples and visual representations are pro-
vided in Sects. 2 and 3 to demonstrate all features. Finally,
we summarize our main findings. We conclude this intro-
duction with a literature review.

1.1 Literature review

There is a vast amount of literature on lot-sizing and
scheduling models with setup times and costs. However, to
the best of our knowledge, none is able to correctly handle
both sequence-dependent and non-triangular setups for big-
bucket models, let alone a combination of this and period-
overlapping setups.

Several contributions from the academic community
have greatly extended and improved the quality of CLSP
models. Gopalakrishnan et al. (1995) are among the first to
address the influence of significant setup times, proposing a
model that handles setup carry overs for identical times and
costs. Later, in Gopalakrishnan (2000), product-dependent
setup times and costs are considered. Haase (1996) is the
first to propose in the literature the big-bucket capacitated
dynamic lot-sizing problem in which setup costs are se-
quence dependent, but neglecting setup times (the so-called
CLSD).

Sox and Gao (1999) propose a new model that only con-
siders product-dependent setup costs, but at the same time
greatly reduces the number of binary variables, increasing
the model’s efficiency. Porkka and Kuula (2000) show that
proper accounting for setup carry overs and setup times de-
crease the number of setups and frees a significant amount

of production capacity. Suerie and Stadtler (2003) suggest
a new model, considering both setup times and costs while
keeping the number of binary variables low. Extensive com-
putational tests prove the model’s superiority with respect to
previously existing models.

Haase and Kimms (2000) take a different approach,
considering a CLSP-like model that handles sequence-
dependent setup times and costs, but by pre-defining effi-
cient production sequences, sub optimal solutions may be
found. The authors also assume no inventory may exist at
the beginning of the period in which a production lot of that
same product is to be produced.

Clark and Clark (2000) model the CLSD with sequence-
dependent setup times using a new mixed-integer program-
ming formulation. They assume that up to a given number
of setups occur in the time period between any two given
products, independently of their demand patterns.

Almada-Lobo et al. (2007) propose two models that cor-
rectly handle sequence-dependent setup times and costs for
large-bucket problems (several products/setups may be pro-
duced/performed per period), but do not allow setup cross
overs, and may result in sub optimal solutions when non-
triangular setup times and costs exist.

CLSP partitions the planning horizon into a small num-
ber of lengthy time periods, allowing for the set up of sev-
eral products within the same bucket. Small-bucket models
divide the planning horizon into many short periods (such
as days, shifts or hours), in which at most one setup may be
performed. Such models may potentially take into account
more “fine-grained” details.

In Toso and Morabito (2005), periods are divided in
subperiods, enabling the original big-bucket problem to be
treated as a small-bucket one, where at most one setup may
be performed per subperiod. This way, sequence-dependent
setup times (either respecting or not the triangular inequal-
ity) are correctly accounted for. However, the subdivision re-
quires an a priori definition of the maximum allowed num-
ber of setup operations per period, thus heavily increasing
the model size, or even demanding multiple tweaking ex-
periments before obtaining the optimal solution. While min-
imum lot sizes are imposed, they only relate to the first sub-
period after the machine has been set up, leading to potential
sub optimal solutions. Moreover, setup cross overs are not
allowed, having to start and finish in the same period.

Suerie (2006) proposes a model that correctly handles
setup cross overs, but only for small-bucket problems. A set
of variables are introduced in relation to the standard model,
keeping track of how much time each setup operation is per-
formed in each period, the cumulative time a setup operation
has been performed in any given period since the last time it
started, and the availability of the machine at the beginning
of every period (the machine is available for production if
the entire setup operation has finished). Sung and Maravelias
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(2008) propose a similar model for large-bucket problems,
with sequence-independent setup times and costs.

The reader is referred to Zhu and Wilhelm (2006) for an
extensive literature review related to lot-sizing and schedul-
ing problems with sequence-dependent setups.

2 New model for CLSP with non-triangular setup costs
and times

2.1 Standard CLSD model with sequence-dependent setup
costs and times

Consider the following standard model for the CLSD with
sequence-dependent setup costs and times, suggested by
Almada-Lobo et al. (2007). This problem is essentially mod-
eled in much the same way as the prize collecting salesman
(see Balas 1989) or the vehicle routing problem (Laporte
1992b) with additional sub tour elimination constraints.
Here, t denotes time periods ranging from 1 to T , while i

and j index the products, which are labeled from 1 to N .
Furthermore, the set {1,2, . . . ,M} is denoted by [M]. A gen-
eral single-stage model is considered, involving multiple
items to be scheduled on a single machine with the follow-
ing data:

hi cost of carrying one unit of stock of product i from one
period to the next,

pi processing time of one unit of product i,
dit demand for product i at the end of period t ,
Ct capacity of the machine in period t (measured in time
units),

sij time needed to set up the machine from product i to
product j ,

cij cost incurred to set up the machine from product i to
product j ,

Mit upper bound on the production quantity of product i in
period t .

Binary variable Tijt indicates whether or not a setup oc-
curs on the machine configuration state from product i to
j in period t . Continuous variable αit keeps track of the
machine state—if it is set up for product i (value 1) or not
(value 0)—at the beginning of period t . Variable Xit repre-
sents the amount of product i to produce in period t , and Iit

the stock of product i at the end of period t . Finally, auxiliary
continuous variable Vit schedules production lot of product
i in period t . The larger Vit , the later the product i is sched-
uled in period t , assuring that the machine is only set up for
one product on any given time.

Lastly, v denotes optimal values of underlying optimiza-
tion problems. This formulation, F1, will be used as a start-
ing point for the extensions presented later in this paper:

v(F1) = min
∑

i

∑

j

∑

t

cij · Tijt +
∑

i

∑

t

hi · Iit (1)

Iit = Ii(t−1) + Xit − dit , i ∈ [N ], t ∈ [T ], (2)
∑

i

pi · Xit +
∑

i

∑

j

sij · Tijt ≤ Ct , t ∈ [T ], (3)

Xit ≤ Mit ·
(∑

j

Tjit + αit

)
, i ∈ [N ], t ∈ [T ], (4)

∑

i

αit = 1, t ∈ [T ], (5)

αit +
∑

j

Tjit = αi(t+1) +
∑

j

Tij t , i ∈ [N ], t ∈ [T ], (6)

Vit + N · Tijt − (N − 1) − N · αit ≤ Vjt ,

i ∈ [N ], j ∈ [N ] \ {i}, t ∈ [T ] (7)

(Xit , Iit , αit , Vit ) ≥ 0, Tij t ∈ {0,1}. (8)

The objective function (1) minimizes the sum of sequence-
dependent setup costs and the holding cost. Constraints (2)
represent the inventory balances and (3) ensure that produc-
tion and setup operations do not exceed available capacity.
Constraints (4) guarantee that a product is produced only if
the machine has been set up for it. Constraints (5)–(7) de-
termine the sequence of products on the machine in each
period and keep track of the machine configuration state
at the beginning of each period, by recording the product
that a machine is ready to process at the end of the previ-
ous one (setup carry over information is thereby tracked).
Now we have a more detailed look into constraints (7). Such
constraints are based on the Miller–Tucker–Zemlin sub tour
elimination constraints proposed for the Traveling Salesman
Problem (Laporte 1992a).

In practice, a situation may occur where more than one
lot of the same product is produced in a single period. In
other words, at least one sub tour—a production sequence
that starts and ends in the same setup state—may exist in
that period.

Two special sub tour cases are referred to throughout the
article: alpha sub tours (sub tours that start and end in the
same setup state as the first setup state of each period’s pro-
duction sequence) and disconnected sub tours (sub tours that
are not part of the period’s main sequence). Disconnected
sub tours are further classified according to their complexity:
simple disconnected sub tours (sub tours that form a perfect
loop) and complex disconnected sub tours (sub tours that in
turn are formed by multiple sub tours).

Consider a digraph G where nodes represent production
lots of product i, solid arcs (i, j) represent setups from prod-
uct i to product j , and dashed arcs represent the setup states
inherited from or passed to neighboring periods, thus pro-
ducing a visual representation of the production sequence
of a given period. Figure 1 shows some sub tour examples,
including the aforementioned special cases.
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Fig. 1 Sub tour examples

It is evident that disconnected sub-tours cannot be part
of a feasible solution, as it is impossible to define a finite
chronological sequence that represents them correctly. The
following reasoning shows that constraints (7) eliminate all
but alpha sub tours.

Let C ⊆ [N ]2 represent a non-empty subset of product
pairs (i, j), with cardinality |C|. If Tijt = 1, ∀(i, j) ∈ C in
a given period t , then we say C represents a sub tour (or
a group of sub tours). By summing constraints (7) up for
all (i, j) ∈ C, we get

∑
C Vit + N · ∑

C Tijt − ∑
C(N −

1) − N · ∑
C αit ≤ ∑

C Vjt . Considering a non-alpha sub
tour, we get

∑
C αit = 0. Because

∑
C Vit = ∑

C Vjt , N ·∑
C Tijt = N · |C| and

∑
C(N − 1) = N · |C| − |C|. Thus,

we get N · |C| − N · |C| + |C| − 0 ≤ 0, which is clearly
impossible for |C| > 0. This guarantees no sub tour occurs.

Now we show that (7) allow alpha sub tours. Let C1 de-
note a sub tour, such that the machine is set up for one prod-
uct belonging to that sub tour, i.e. ∃i, j : αit = 1 ∧ (i, j) ∈
C1. It is easy to see that such a cycle C1 is not cut off by
constraints (5)–(7).

2.2 Allowing sub tours in the main sequence

The following changes must be made to F1 to correctly ac-
count for non-triangular setup costs and times:

Firstly, since non-triangular setup costs and times may re-
sult in a given setup being performed more than once, vari-
ables Tijt must be allowed to take any non-negative integer
values.

Secondly, constraints (7) must be replaced, as they only
allow alpha sub tours. Let M represent a very large number,
S ⊆ [N ] be a non-empty, non-unitary subset of the entire
products set, and Yit be a binary variable taking the value of
1 when the machine is configured for product i at least once
in period t , and 0 otherwise:

Yit =
{

1 if
∑

j Tjit + αit ≥ 1,

0 otherwise.

The following constraints are valid for any feasible solution
(with or without sub tours), and cut off disconnected sub-
tours:
∑

j 	∈S

∑

i∈S

Tjit +
∑

i∈S

αit + M ·
∑

i∈S

(1 − Yit ) ≥ 1,

t ∈ [T ], S ⊆ [N ], |S| ≥ 2. (9)

These constraints are non-active whenever the machine
is not configured to produce at least one product i in S in
period t . If this is not the case (Yit = 1 for every i ∈ S), then
(9) reduces to

∑
j 	∈S

∑
i∈S Tjit +∑

i∈S αit ≥ 1. Clearly, this
expression assures that the number of inward links (setups
from another production lot, or the period’s beginning) to a
given set of production lots is always greater than or equal
to one, as exemplified in Fig. 2). If S represents a produc-
tive sub tour, it forces S’s cycle to be connected to the pro-
duction sequence of the previous period (through α’s) or to
the main sequence of that period (through T ’s), therefore it
cuts disconnected sub tours off. In other words, this require-
ment eliminates a disconnected multigraph on the node set
S. Note that all regular sub tours (even non-alpha ones, such
as S1 on Fig. 2) are allowed by (9).

The set (9) results in T · 2N constraints, making full im-
plementation impracticable. As such, individual constraints
(9) will be dynamically added, as opposed to including them
directly in the initial model. This can be done in a number
of ways. In this article, we propose adding such constraints
during the branch-and-cut process, whenever a disconnected
sub tour is identified, thus removing it and preventing it
thereafter. Two algorithms are used to achieve this end.

Algorithm 1, FindST , identifies a set of disconnected pro-
duction lots S (which either form a disconnected sub tour or
a group of disconnected sub tours).

The sub tour identification algorithm is called at every
feasible node during the branch-and-cut process. If any dis-
connected sub tour is found, a global cut will be added,
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Fig. 2 Examples of S: regular
sub tour (S1), part of the main
sequence (no sub tour exists,
S2), simple disconnected sub
tour (S3) and complex
disconnected sub tour (S4)

for t ← 1 to T do
for i ← 1 to N do

if αit = 1 then
Connectedit ← 1;
Validate(i, t);
break out of i loop;

end
end
for i ← 1 to N do

if Connectedit = 0 and Yit = 1 then a
non-validated production lot exists

Disconnectedit ← 1;
end

end
end
AddConstraints(Disconnected);

Algorithm 1: The sub tour identification (FindST) al-
gorithm

eliminating and preventing it from happening again. In or-
der to find production lots not linked to the main sequence,
FindST algorithm calls recursive Validate algorithm sev-
eral times (see Algorithm 2).

The recursive product validation algorithm works like
this: Given a product i that is known to be part of the
main sequence, setups from i to every other product j are
checked. For each j , if at least one setup occurs from i to j

(Tijt ≥ 1), and j is so far not known to be part of the main
sequence, then j is validated as being part of the main se-
quence, and the product validation algorithm is called again,
with j as argument. The product validation algorithm is ini-
tialized in every period with the first product in sequence as
argument (given by argi (αit = 1))

At the end of the process, production lots that are not
validated as being part of the period’s main sequence, St =

Input: Connected product i to explore
Input: Period t

for j ← 1 to N do
if Connectedj t = 0 then

if Tijt ≥ 1 then
Connectedj t ← 1;
Validate(j, t);

end
end

end

Algorithm 2: The recursive product validation
(Validate) algorithm

{argsi (Disconnectedit = 1)}, are known to be disconnected,
and the corresponding constraint is added.

Note that this approach intends to identify and remove
any disconnected sub tour encountered. However, it is also
possible to use additional a priori polynomial sized con-
straints that prevent simple disconnected sub tours (thus re-
ducing the number of dynamically added constraints) as fol-
lows:

Let a new binary variable Qijt be 1 if at least one setup
operation Tijt is performed, and 0 otherwise:

Qijt =
{

1 if Tijt ≥ 1,

0 otherwise.

The following modification of constraint (7) allows con-
nected sub tours, while removing simple disconnected ones:

Vit + M · (Qijt − 1) + M ·
(

Qijt − αit −
∑

l

Tlit

)

≤ Vjt − 1, i ∈ [N ], j ∈ [N ], t ∈ [T ] (10)

Constraints (10) works as follows:
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Consider a general cycle C ∈ [N ]2 of size |C|, with
Tijt ≥ 1,∀(i, j) ∈ C, which may be composed of single or
multiple sub tours, and let S be the node set of C. Summing
all the constraints (10) up for every arc (setup) belonging to
cycle C, we obtain the following requirement:

|C| ≤ M ·
∑

(i,j)∈C

(
αit +

∑

l

Tlit − 1

)
. (11)

If cycle C corresponds to a simple disconnected sub tour,
it is evident that

∑
l Tlit = 1 and αit = 0, ∀i ∈ S, which vi-

olates constraints (11). In any other case, αit + ∑
l Tlit ≥ 2

for the sub tour joint (the product that starts and ends a reg-
ular (product i2 in Fig. 1a) or alpha (product i1 in Fig. 1b)
sub tour, or bridges multiple sub tours into a complex dis-
connected sub tour (product i3 in Fig. 1d)), thus fulfilling
the imposed requirements.

2.3 Enforcing minimum lot sizes

In cases where non-triangular inequalities exist due to the
possibility to produce intermediate lower grade or cleansing
products, minimum lot sizes must be imposed, so as to guar-
antee an effective machine cleansing. Data representing the
minimum lot sizes of each product should be added to the
model:

mi minimum size of each production lot of product i.

Additionally, a new binary variable Rt that equals to one
if at least one setup is performed during period t is required:

Rt =
{

1 if
∑

i

∑
j Tij t ≥ 1,

0 otherwise.

The following constraints are added:

Xit = X−1
it + X0

it , i ∈ [N ], t ∈ [T ], (12)

X−1
it ≤ M · αit , i ∈ [N ], t ∈ [T ], (13)

X0
it ≥ mi ·

(∑

j

Tjit − αi(t+1)

)
, i ∈ [N ], t ∈ [T ], (14)

X0
it +

s∑

k=t+1

X−1
ik

≥ mi ·
∑

j

Tjit − M ·
(

s−1∑

k=t+1

Rk + 1 − Rs

)
,

i ∈ [N ], t ∈ [T ], s ∈ [T ]\[t]. (15)

Expressions (12) split production Xit into the amount X0
it

of product i produced in period t after setups are performed

in that period, and the amount X−1
it produced at the begin-

ning of the period, after a setup carry over. If the setup state
of product i is not carried over into period t (αit = 0), then
clearly X−1

it = 0, as imposed by (13). Constraints (14) as-
sure production lots that start and end within period t fulfill
the minimum lot size requirement. Constraints (15) enforce
a minimum production size proportional to the number of
setups to product i in period t , allowing that same produc-
tion size to be split into subsequent periods. Note that this
will only be enforced if there is at least one setup occurring
in period s (i.e., the cross over production lot ends), and
there are no setups between t + 1 and s − 1 (i.e., a unique
cross over production lot is being considered). This can be
simplified if production lots never span for more than one
entire period (i.e., s = t + 1 instead of s ∈ [T ]\[t]).

Finally, variable domains must be specified:

(
Xit ,X

0
it ,X

−1
it , Iit , αit , Vit

) ≥ 0,

Tij t ∈ N0, (Yit ,Rt ) ∈ {0,1}. (16)

The new formulation, F2, consists of objective function
(1) subject to constraints (2)–(6), (9) and (12)–(16). We
prove in the following lemma that F1 is a special case of
F2, and, as such, the optimal solution of F2 is at least as
good as F1’s:

Lemma 1 v(F1) ≥ v(F2)

Proof F2 can be seen as a generalization of F1, since the
latter can be derived from the former by adding additional
constraints. If minimum lot sizes are not enforced, by set-
ting mi = 0, ∀i ∈ [N ], then constraints (12)–(15) become
redundant and can be dropped. In addition, let the set

∑

(i,j)∈C

αit ≥ |C| · (1 − N)

N
+

∑

(i,j)∈C

Tijt (17)

be added to F2, obtained by all the constraints (7) listed for
every arc (i, j) of a general cycle C. As

∑
(i,j)∈C Tijt ≥ |C|,

|C|
N

> 0 and αit can only take on integer values, then (17) re-
duces to

∑
(i,j)∈C αit ≥ 1. If S contains the node set of cycle

C, then (9) is equivalent to
∑

i∈S αit ≥ 1−∑
j 	∈S

∑
i∈S Tjit .

Clearly, (17) makes this constraint redundant as
∑

i∈S αit =
1 if

∑
(i,j)∈C αit ≥ 1. In the presence of sub tours, (17) dom-

inates (9), making the feasible solutions of F2 with (17) co-
incident with those of F1. Therefore, the set of feasible solu-
tions of F1 is a subset of the set of feasible solutions of F2.
Consequently, for the same data set, v(F1) ≥ v(F2), com-
pleting the proof. �

The following example demonstrates the previous state-
ment by showing the optimal solutions of the same instance
to F1 and F2
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Example 1 A production plan of five different products, i =
{1,2,3,4,5}, over the next three periods must be devised.
A certain component of product 5 contaminates product 1,
and an expensive disinfectant product is required to clean
the machine, thus increasing c51. Product 3 has a compo-
nent that absorbs the contaminating component from prod-
uct 5, hence the triangular inequality will not hold for the
setup costs of sequence 5–3–1. Table 1 shows the relevant
data for this problem. Additionally, consider cij = 10sij ,
∀(i, j)\(5,1), c51 = 250, and Ct = 100, ∀t .

Tables 2 and 3 show the most relevant non-zero solution
values given by F1 and F2, respectively. Those same so-
lutions are graphically represented by Figs. 3 and 4. Here,
white blocks represent production that is to be consumed in
that period, light grey blocks represent production that is to
be stocked, middle grey represents idle time and dark grey
represents setups.

Table 1 Data for the five product, three period problem

dit sij hi

t = 1 t = 2 t = 3 j = 1 j = 2 j = 3 j = 4 j = 5

i = 1 90 0 110 – 20 100 100 100 10

i = 2 0 10 0 100 – 5 100 100 10

i = 3 0 10 0 10 100 – 10 100 10

i = 4 0 10 0 100 100 100 – 10 10

i = 5 0 10 0 10 100 5 100 – 10

Table 2 F1’s optimal solution

t = 1 t = 2 t = 3

α11 = 1 α12 = 1 α13 = 1

X11 = 95 X12 = 5, T122 = 1 X13 = 100

X22 = 10, T232 = 1

X32 = 10, T342 = 1

X42 = 10, T452 = 1

X52 = 10, T512 = 1

I11 = 5 I12 = 10

Table 3 F2’s optimal solution

t = 1 t = 2 t = 3

α11 = 1 α12 = 1 α13 = 1

X11 = 100 T122 = 1 X13 = 100

X22 = 10, T232 = 1

X32 = 10, T342 = 1, T312 = 1

X42 = 10, T452 = 1

X52 = 10, T532 = 1

I11 = 10 I12 = 10

Note that in F1’s optimal solution, 5 units of product 1
must be added to stock in periods 1 and 2 to fulfill demand
in period 3, with a holding cost of 150 monetary units. Setup
costs account for 700 monetary units, resulting in an objec-
tive function value of 850 monetary units.

In F2’s optimal solution, an extra setup exists. However,
due to the non-triangular inequality of sequence 5–3–1, to-
tal setup costs are reduced by 100 monetary units, to a total
cost of 600. The increase in setup times forces production of
product 1 in period 2 (see Fig. 3) to be moved to period 1,
increasing holding costs by 50 monetary units, to a total of
200. This results in an objective function value of 800 mon-
etary units, which is 50 less than F1’s. Note that our solution
does not include the size of each individual production lot,
but instead the total amount of each product to be produced
in each period. The example depicted in Fig. 4 represents
one of the many possible ways to split X32 = 10 units of
product 3 between the two corresponding production lots in
period 2. These variations have no impact in the objective
function value.

2.4 General lot-sizing and scheduling problem

The class of small-bucket lot-sizing and scheduling prob-
lems tries to capture both lot-sizing and scheduling deci-
sions, Drexl and Kimms (1997). Wolsey (2002) provides a
comprehensive study and classifications scheme for differ-
ent small-bucket and big-bucket models. His analysis shows
that the LP-relaxation of small-bucket models usually deliv-
ers very weak lower bounds. Only with customized refor-
mulations and valid inequalities added to the problem is an
improvement of the lower bound possible. In contrast most
big-bucket models provide much better lower bounds.

Fleischmann and Meyr (1997) develop a model based
on a mixed small–bucket–big–bucket general lot-sizing and
scheduling model (GLSP), where each period of the plan-
ning horizon is divided into a fixed number |St | of micro-
periods of variable length, representing the maximum num-
ber of lots that can be scheduled in (macro-)period t . Here
the production sequence within each period is explicitly ob-
tained by assigning an item to each micro-period. Let the
new variable Zijs indicate whether or not a changeover oc-
curs on the machine configuration state from product i to j

in micro-period s. The GLSP is formulated thus:

v(FGLSP) = min
∑

i

∑

j

∑

s

cij · Zijs

+
∑

i

∑

t

hi · Iit , (18)

Iit = Ii(t−1) +
∑

s∈St

Xis − dit , i ∈ [N ], t ∈ [T ], (19)
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Fig. 3 Graphical representation of F1’s optimal solution

Fig. 4 Graphical representation of F2’s optimal solution

∑

i

∑

s∈St

pi · Xis +
∑

i

∑

j

sij · Zijs ≤ Ct , t ∈ [T ], (20)

Xis ≤ Ct

pi

· Yis, i ∈ [N ], s ∈ [S], (21)

Xis ≥ mi · (Yis − Yi(s−1)), i ∈ [N ], s ∈ [S], (22)
∑

i

Yis = 1, s ∈ [S], (23)

Zijs ≥ Yi(s−1) + Yjs − 1, i, j ∈ [N ], s ∈ [S], (24)

(Xis, Iit ,Zijs) ≥ 0, Yis ∈ {0,1}. (25)

(18) expresses the inventory holding costs and setup costs.
Demand is met without backlogging by (19). Capacity con-
straints are given in (20). Note that the length of micro-
period s is not constant but rather is determined by the
capacity consumption of the only) product that is setup
and produced within it. Constraint (21) links production
and setup variables. Minimum lot sizes are ensured by re-
quirements (22). Furthermore, at most one product can be
produced per micro-period (23). Constraint (24) forces a
changeover to be performed if two different products are set
up in two consecutive micro-periods.

In case the triangular inequality does not hold, GLSP
enables an item to be produced several times in the same
macro-period. Despite allowing for a very accurate mod-
eling of the situation, this model is computationally very
hard to solve, whereas the big-bucket model introduced in
Sect. 2.2 is much easier to tackle, as shown below.

2.5 Comparison of CLSD-like model with GLSP

Here our aim is to compare the efficiency of the CLSD-
like model and GLSP when solved by a search engine. Both
formulations have been tested on well known instances re-
ported in Fleischmann (1994) with eight products and eight
periods. Problems TV11, TV13 and TV14 differ only in the
capacity of the macro-periods and have a capacity utilization
(defined as

∑
i dit /Ct ) per period of 97%, 76% and 64%, re-

spectively. Fleischmann (1994) relies on various setup cost

matrices (cij ). We present results for S1, S2, S3 and S4. The
values of S1 and S3 are generated at random from the inter-
vals [0,600] and [0,300], respectively. The entries of S2 are
taken at random from the values 0,100,200, . . . ,600. The
S4 matrix represents a typical situation in practice with only
two kind of setups, a major setup cost (cost 500 between
product families) and a minor setup cost (cost 100 within the
same family). We note that matrix S4 satisfies the triangle in-
equality, while all the other matrices do not. These instances
are available online in Instances (2009). Each macro-period
has been subdivided into 8 and 10 GLSP micro-periods.

All the computational results reported have been obtained
by running the commercial solver CPLEX 12.1 from ILOG,
on a Pentium T7700 CPU running at 2.4 GHz with 4 GB of
random access memory. The maximum time for the search
overall was set at one hour. Algorithms 1 and 2 to solve F2

were coded in C++ using Concert 2.7.
In presenting the results in Table 4, we list the problem

type, the optimal values provided by formulations F1 and
F2, as well as the respective solution times (in seconds), and
the percentage improvement gap() of v(F2) over v(F1). The
last columns of the table report the upper (UB) and lower
(LB) bounds to FGLSP, considering eight and ten micro-
periods, for one hour-time limit.

In all instances except those with setup cost matrix S4,
the formulation that allows for sub tours in the main se-
quence (F2) has computed a solution that is less costly
(with a statistically significant p-value of 0.02) than the
corresponding F1 solution, which only incorporates alpha
sub tours. The solutions have the same cost in the case of
setup cost matrix S4. The difference increases with increas-
ing capacity utilization (e.g. compare instance TV11/S1 to
TV13/S1 and TV14/S1). The respective solution times are
not significantly different (p-value = 0.19). Since S4 obeys
the triangular inequality, there is no advantage in having
non-alpha sub tours in the production sequence.

Compared to the solutions given by small-bucket models,
it is clear that F2 is always more efficient than FGLSP. Model
FGLSP is not able to solve to optimality within one hour any
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Table 4 Computational results

Prob. set. cost v(F1) time(s) v(F2) time(s) gap() GLSP N = 8 GLSP N = 10

matrix UB LB time(s) UB LB time(s)

TV11 S1 2640 31 2412 17 9.5% 3122 47 3600 2849 2.7 3600

TV11 S2 1285 33 1239 43 3.7% 1285 107 3600 1239 31.4 3600

TV11 S3 1413 45 1308 21 8.0% 1816 11 3600 1566 1.6 3600

TV11 S4 6417 2 6417 1 0.0% 8060 72 3600 7636 0.2 3600

TV13 S1 2291 10 2180 4 5.1% 2461 19 3600 2574 0.1 3600

TV13 S2 1150 51 1140 188 0.9% 1170 11 3600 1183 0.0 3600

TV13 S3 1317 10 1259 20 4.6% 1546 9 3600 1409 0.1 3600

TV13 S4 4960 4 4960 3 0.0% 6090 19 3600 5783 0.0 3600

TV14 S1 2188 3 2180 7 0.4% 2475 33 3600 2485 0.1 3600

TV14 S2 1150 53 1140 256 0.9% 1360 6 3600 1150 0.3 3600

TV14 S3 1307 10 1259 21 3.8% 1337 12 3600 1364 0.1 3600

TV14 S4 4920 5 4920 8 0.0% 5430 13 3600 5470 0.4 3600

instance type, except for instance TV11/S2 with 10 micro-
periods, but CPLEX does not prove optimality due to very
weak lower bound. Considering this time limit, it cannot be
stated that the quality of the UB increases with the number
of micro-periods, whereas the LB clearly decreases.

3 New model for CLSD with sequence-dependent and
period-overlapping setup costs and times

Both F1 and F2 only take into account solutions that en-
tail setups performed entirely within a time period. We now
consider lot-sizing and scheduling problems where setups
are allowed to overlap period’s boundaries. Such feature is
of upmost importance to tackle tight capacity scenarios.

Our model uses two new types of variables (one of them
binary) in addition to the variables from model F2. Contin-
uous variables St contain the amount of time still needed to
finish the last setup operation at the end of period t (cross
over time). Binary variables Bijt indicate whether or not the
cross over setup from period t to period t +1 is from product
i to j .

Due to setup cross overs, setup times St that are delayed
to the following periods (as well as setup times St−1 that are
inherited from previous ones) must be taken into account.
Thus, capacity constraints (3) must be extended in the fol-
lowing way:
∑

i

pi · Xit +
∑

i

∑

j

sij · Tijt − St + St−1 ≤ Ct ,

t ∈ [T ]. (26)

To ensure setup cross overs St only occur if a given setup
Tijt is performed and that they do not exceed the corre-

sponding setup time sij we add:

St ≤
∑

i

∑

j

sij · Bijt , t ∈ [T ], (27)

Bijt ≤ Qijt , i ∈ [N ], j ∈ [N ], t ∈ [T ]. (28)

To ensure only the last setup performed may cross over, we
add

∑

j

Bjit ≤ αi(t+1), i ∈ [N ], t ∈ [T ] (29)

Note that since
∑

i αit = 1, we have
∑

i

∑
j Bijt ≤ 1,

which prevents multiple setups from crossing over.
Constraints (4) must be extended so that production of

product i in period t may only occur if at least one full setup
operation for that product ends in that period.

Xit ≤ Mit ·
(∑

j

(Tjit − Bjit ) + αit

)
, i ∈ [N ], t ∈ [T ].

(30)

Note that this constraint may become very loose, but capac-
ity constraints and inventory costs will always prevent Xit

from getting too big.
Minimum lot sizes must be enforced when a setup

crosses over:

s∑

k=t+1

X−1
ik ≥ mi ·

∑

j

Bjit − M ·
(

s−1∑

k=t+1

Rk + 1 − Rs

)
,

i ∈ [N ], t ∈ [T ], s ∈ [T ], s > t. (31)
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Fig. 5 Graphical representation of F3’s optimal solution

Table 5 F3’s optimal solution

t = 1 t = 2 t = 3

α11 = 1 α22 = 1 α13 = 1

X11 = 90, T121 = 1 X12 = 10 X13 = 100

B121 = 1, S1 = 10 X22 = 10, T232 = 1

X32 = 10, T342 = 1, T312 = 1

X42 = 10, T452 = 1

X52 = 10, T532 = 1

I12 = 10

Finally, we assure St is non-negative, and Qijt and Bijt

are binary:

St ≥ 0, (Qijt ,Bijt ) ∈ {0,1}. (32)

The new formulation, F3, consists of objective function
(1) subject to constraints (2), (5), (6), (9), and (12)–(32).

Let S2 and S3 be the sets of feasible solutions to F2 and
F3, respectively. We prove in the following lemma that F2

is a special case of F3.

Lemma 2 S2 ⊆ S3.

Proof Let us assume another model and its feasible solution
set, F3∗ and S3∗, respectively, similar to F3 with the follow-
ing additional requirement:
∑

i

∑

j

∑

t

Bij t = 0. (33)

This constraint ensures no setup cross over occurs. Con-
straints (27) make variables St all equal to 0. It becomes ob-
vious that F3∗ is equivalent to F2, and therefore S2 = S3∗.
Since F3∗ is a restricted version of F3, we can conclude
that F3 admits all of F3∗’s feasible solutions, i.e., S3∗ ⊆ S3,
which is equivalent to S2 ⊆ S3. �

The following example demonstrates that F3 can achieve
a better optimal solution than F2:

Example 2 Consider the same data set of Example 1. Table 5
and Fig. 5 show the optimal solutions to F3.

By allowing the first setup to cross over, it is possible
that the extra 10 (inventory) units of product 1 that are be-
ing produced in period 1 in F2’s optimal solution are pushed

into period 2, reducing holding costs by 100 monetary units,
while keeping the same setup costs. This results in an objec-
tive function value of 700 monetary units, which is 100 less
than F2’s.

4 Concluding remarks

In this paper, we have presented a novel formulation for the
capacitated lot-sizing and scheduling problem which cor-
rectly handles non-triangular setup costs and times while
enforcing the necessary feature of minimum lot size, and
allows setup cross overs between adjacent periods. These
extensions open ways for solutions not being considered so
far, which may lead to improvements in overall production
planning efficiency, and reduce the total cost of production
plans.

Additionally, we have developed a method for dynami-
cally identifying and removing disconnected sub tours. Such
a method is required for large problems, since the direct
implementation of our model would require the use of an
exponential number of constraints. The simplicity of this
method makes it easy to implement in most programming
languages usually combined with optimization engines. We
prove that our big-bucket approach performs computation-
ally much better than other small-bucket treatments. Nev-
ertheless, an important future research question is to find a
polynomial sized set of constraints that cut disconnected sub
tours off, while enabling all types of connected cycles.

Extensions to this model considering multiple machines,
shortages, backlogging costs and maximum lot sizes are
straightforward, making it a good starting point for models
reflecting a wide range of real life situations.
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