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Abstract Although scheduling problems with machine
availability have attracted many researchers’ attention, most
of the past studies are mainly focused on one or several
prefixed machine maintenance activities. In this research,
we assume that the time needed to perform one mainte-
nance activity is an increasing linear function of the total
processing time of the jobs that are processed after the ma-
chine’s last maintenance activity. We consider two schedul-
ing problems with such maintenance requirement in this
paper. The first problem is a parallel machine scheduling
problem where the length of the time interval between any
two consecutive maintenance activities is between two given
positive numbers. The objective is to minimize the mainte-
nance makespan, i.e., the completion time of the last fin-
ished maintenance. The second problem is a single machine
scheduling problem where the length of the time interval
between any two consecutive maintenance activities is fixed
and the objective is to minimize the makespan, i.e., the com-
pletion time of the last finished job. We propose two approx-
imation algorithms for the considered problems and analyze
their performances.
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1 Introduction

Although scheduling problems with machine availability
have attracted many researchers’ attention, most of the
past studies are mainly focused on one or several prefixed
machine maintenance activities (see, e.g., Sanlaville and
Schmidt 1998; Schmidt 2000 and Lee 2004). However, in
the real world, the maintenance time of a machine may vary
depending on the amount of jobs that are processed after
its last maintenance. Intuitively, the machine that has more
jobs processed should have longer maintenance time, since it
may be in a worse condition after a long processing time and
needs more time to be maintained. For example, in trans-
portation companies, the truck which has a long journey usu-
ally takes more time to be maintained than that which has a
short journey.

As linear and piecewise linear functions are relatively
easy to manipulate and are usually adopted to approxi-
mate nonlinear functions, we suppose that the amount of
time needed to perform one maintenance activity on a ma-
chine is an increasing linear function of the total process-
ing time of the jobs that are processed after its last main-
tenance. We consider two scheduling problems with such
maintenance requirements in this paper, one is a parallel
machine scheduling problem and the other is a single ma-
chine scheduling problem. To the best of our knowledge,
such problems have not been studied in the literature.

We use the worst-case bound to measure the performance
quality of an approximation algorithm. Specifically, for an
instance I of a minimization problem, let CA

max(I ) denote
the value produced by an approximation algorithm A, and
C∗

max(I ) the minimum value. Then the worst-case bound
RA of algorithm A is defined as the smallest number ρ

such that for any instance I , CA
max(I ) ≤ ρC∗

max(I ). If a
polynomial time approximation algorithm A can achieve

mailto:lhxqx@bnu.edu.cn
mailto:yinyunqiang@mail.bnu.edu.cn
mailto:xudehua@mail.bnu.edu.cn


444 J Sched (2010) 13: 443–449

worst-case bound ρ, we say that A is a polynomial time
ρ-approximation algorithm.

The rest of the paper is organized as follows. In Sect. 2,
we give formal formulations of the problems under consid-
eration. In Sect. 3, we propose one approximation algorithm
for each of the scheduling problems. In Sect. 4, the perfor-
mances of the algorithms are analyzed. Finally, in Sect. 5 we
give some concluding remarks.

2 Problem formulation

The parallel machine scheduling problem considered in this
paper can be formally described as follows. There are n in-
dependent jobs J1, J2, . . . , Jn to be processed on m parallel
identical machines P1,P2, . . . ,Pm. The processing time of
job Ji is pi . All jobs are nonpreemptive and are available
at time zero. We assume that each machine can process at
most one job at a time and that each job can be processed
on at most one machine at a time. All machines have the
same maintenance requirement: the length of the time inter-
val between any two consecutive maintenance activities is
within a prefixed interval [T ,T ′], where T and T ′ are two
positive real numbers such that T ′ − T ≥ 0 and T ′ ≥ pi for
i = 1,2, . . . , n. The amount of time needed to perform one
maintenance activity on a machine is an increasing linear
function TM(t) = a + bt of the total processing time t of
the jobs that are processed after its last maintenance, where
a and b are nonnegative real numbers. We assume that all
machines have just finished their maintenances at time zero
and must be maintained after their processing. The objective
is to minimize the maintenance makespan MCmax, i.e., the
completion time of the last finished maintenance. Extending
the well-known three field α|β|γ classification scheme sug-
gested by Graham et al. (1979), we describe this problem as
P m,MS[T ,T ′], TM(t) = a + bt ||MCmax.

Figure 1 presents a schedule on machine Pi for Pm,

MS[T ,T ′], TM(t) = a +bt ||MCmax, where J
(ij)
l denotes the

lth job assigned to the j th working interval Bij of ma-
chine Pi , T (ij) denotes the length of the time of Bij , M(ij)

denotes the j th maintenance activity of machine Pi , and

T
(ij)
M denotes the length of the time of M(ij). T (ij) ∈ [T ,T ′]

and T
(ij)
M = a + b

∑ij
l=1 p

(ij)
l must hold if the above sched-

ule is a feasible schedule.
Using similar terminology, the single machine schedul-

ing problem considered in this paper can be described as 1,
MS[T ,T ], TM(t) = a + bt, b ≤ 1||Cmax, where Cmax is the
completion time of the last finished job and T ≥ pi for
i = 1,2, . . . , n.

Figure 2 presents a schedule for 1,MS[T ,T ], TM(t) =
a + bt, b ≤ 1||Cmax, where J

(j)
l denotes the lth job assigned

to the j th working interval Bj of the machine, M(j) denotes

the j th maintenance period of the machine, and T
(j)
M denotes

the length of the time of M(j). T
(j)
M = a + b

∑ij
l=1 p

(j)
l must

hold if the above schedule is a feasible schedule.
Recently, Ji et al. (2007) considered the NP-hard sche-

duling problem 1,MS[T ,T ], TM(t) ≡ a||Cmax. They proved
that the worst-case bound of the classical LPT (Longest
Processing Time first) algorithm is 2 and showed that
there is no polynomial time approximation algorithm with
a worst-case bound less than 2, unless P = NP. Xu et
al. (2008) considered the NP-hard scheduling problem
Pm,MS[T ,T ′], TM(t) ≡ a||MCmax. They proposed a
(2T ′/T )-approximation algorithm, named BFD-LPT, for
the problem and showed that there is no polynomial time ap-
proximation algorithm with a worst-case bound less than 2,
unless P = NP. Obviously, our problems are more complex
and general, and thus NP-hard. However, to the best of our
knowledge, there is no approximation algorithm provided
and analyzed in the literature.

3 Approximation algorithms

In this section, we introduce the Modified BFD-LPT al-
gorithm and the FFD-LS algorithm for our problems. Be-
fore we give these two algorithms, we first present some
related algorithms and problems. BFD (Best Fit Decreas-
ing) algorithm and FFD (First Fit Decreasing) algorithm
are two efficient approximation algorithms for the one di-
mensional bin-packing problem, while LPT algorithm and

Fig. 1 A schedule on machine Pi for Pm,MS[T ,T ′], TM(t) = a + bt ||MCmax

Fig. 2 A schedule for 1,MS[T ,T ], TM(t) = a + bt, b ≤ 1||Cmax
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LS (List Scheduling) algorithm are two classical heuristics
for machine scheduling problems. The one dimensional bin-
packing problem and the above four algorithms can be for-
mally described as follows.

One dimensional bin-packing problem (see, e.g., Coff-
man et al. 1997) Given n items a1, a2, . . . , an, each with a
size s(ai) ∈ (0,W ], we are asked to pack them into a min-
imum number of W -capacity bins (i.e., partition them into
a minimum number m of subsets B1,B2, . . . ,Bm such that
∑

ai∈Bj
s(ai) ≤ W,1 ≤ j ≤ m).

Algorithm BFD (see, e.g., Coffman et al. 1997) Sort
all the items such that s(a1) ≥ s(a2) ≥ · · · ≥ s(an); for
i = 1,2, . . . , n, item ai is packed in the partially-filled
bin Bj with the highest level level(Bj ), among bins with
level(Bj ) ≤ W − s(ai), where level(Bj ) is the sum of the
size of the items in bin Bj , ties are broken in favor of lower
index. If no such bin exists, we start a new bin with ai as its
first item.

Algorithm FFD (see, e.g., Coffman et al. 1997) Sort all
the items such that s(a1) ≥ s(a2) ≥ · · · ≥ s(an); for i =
1,2, . . . , n, item ai is packed in the first (lowest indexed) bin
into which it will fit, i.e., if there is any partially-filled bin
Bj with level(Bj ) ≤ W − s(ai), we place ai in the lowest-
indexed bin having this property. Otherwise, we start a new
bin with ai as its first item.

Algorithm LPT (see, e.g., Ji et al. 2007) Sort all the jobs
such that p1 ≥ p2 ≥ · · · ≥ pn; then process the jobs consec-
utively as early as possible.

Algorithm LS (see, e.g., Graham 1966) Put all the jobs on
a list in arbitrary order; then process the jobs consecutively
as early as possible.

Since the one dimensional bin-packing problem is one of
the oldest and most thoroughly studied problems in the field
of combinatorial optimization, many researches are focused
on applications of bin-packing algorithms and related re-
sults to scheduling problems (see, e.g., Coffman et al. 1978;
Ji et al. 2007). It is interesting to see that if m = 1, T = T ′,
a > 0, and b = 0, our problem Pm,MS[T ,T ′],TM(t) =
a + bt ||MCmax is essentially the same as the one dimen-
sional bin-packing problem and that if T = T ′, a > 0, and
b = 0, the scheduling problem Pm,MS[T ,T ′],TM(t) = a +
bt ||MCmax can be viewed as the following one dimensional
bin-packing problem with m packing lines.

One dimensional bin-packing problem with m packing
lines There are n items to be packed on m packing lines,
where there are infinite many T -capacity bins available. Let

the number of used bins in packing line i be Li . The objec-
tive is to pack all the items into bins such that max{Li | 1 ≤
i ≤ m} is minimum.

The underlying ideas of our algorithms are straightfor-
ward. Taking the Modified BFD-LPT algorithm as an ex-
ample, we think of each interval between two consecutive
maintenance activities as a bin and the jobs as items. We
first obtain a number of used bins by the BFD algorithm.
Then we attach a special item, i.e., a maintenance activity,
to each used bin. Let each used bin plus the corresponding
attached item be viewed as a single job, assign these jobs to
the machines by the LPT algorithm.

Given an instance I of Pm,MS[T ,T ′], TM(t) = a +
bt ||MCmax: J1, J2, . . . , Jn, the processing time of job Ji

is pi . We construct the corresponding instance II of the one
dimensional bin-packing problem as follows: There are n

items a1, a2, . . . , an, the size of item ai is pi , and the ca-
pacity of each bin is T ′. Formally, the Modified BFD-LPT
algorithm for Pm,MS[T ,T ′], TM(t) = a + bt ||MCmax can
be described as follows.

Algorithm Modified BFD-LPT
Step 1. If

∑n
i=1 pi ≥ mT ′/2, go to Step 2; else, schedule

the jobs to the machines by the LPT algorithm, perform one
maintenance activity according to the maintenance require-
ment on each machine as early as possible. Stop.

Step 2. Construct the corresponding instance II of the
one dimensional bin-packing problem from the scheduling
instance I as stated above. Using the BFD algorithm, we
obtain k used bins B1,B2, . . . ,Bk . Let bin Bi be denoted as
(a

(i)
1 , a

(i)
2 , . . . , a

(i)
ki

), where ki is the number of items in Bi

and a
(i)
j is the j th item assigned to Bi .

Step 3. For i = 1,2, . . . , k, if level(Bi) ≥ T , then let
Ji = (J

(i)
1 , J

(i)
2 , . . . , J

(i)
ki

,M(i)); otherwise, let Ji = (J
(i)
1 ,

J
(i)
2 , . . . , J

(i)
ki

,Øi ,M
(i)), where J

(i)
j is the job corresponding

to item a
(i)
j , Øi is a dummy job with the processing time of

T −∑ki

j=1 p
(i)
j (when processing a dummy job, the machine

waits the corresponding time), and M(i) denotes a mainte-
nance activity with the length of a + level(Bi)b.

Step 4. Let Ji be viewed as a single job with the process-
ing time of max{level(Bi), T } + a + level(Bi)b. Assign
J1, J2, . . . , Jk to the m parallel machines by the LPT al-
gorithm.

The computational time complexities of the BFD algo-
rithm and the LPT algorithm are O(n2) and O(n logn), re-
spectively. Step 3 needs O(n) time. So the Modified BFD-
LPT algorithm has a computational time complexity O(n2).

Algorithm FFD-LS
Step 1. Let T ′ = T . Construct the corresponding instance

II of the one dimensional bin-packing problem from the
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scheduling instance I as stated above. Using the FFD algo-
rithm, we obtain k used bins B1,B2, . . . ,Bk . Let bin Bi be
denoted as (a

(i)
1 , a

(i)
2 , . . . , a

(i)
ki

), where ki is the number of

items in Bi and a
(i)
j is the j th item assigned to Bi .

Step 2. For i = 1,2, . . . , k, let Ji = (J
(i)
1 , J

(i)
2 , . . . , J

(i)
ki

,

Øi ,M
(i)), where J

(i)
j is the job corresponding to item a

(i)
j ,

Øi is a dummy job with the processing time of T −
∑ki

j=1 p
(i)
j , and M(i) denotes a maintenance activity with

the length of a + level(Bi)b.
Step 3. Let Ji be viewed as a single job with the process-

ing time of T + a + level(Bi)b. Assign J1, J2, . . . , Jk−1 to
the machine by the LS algorithm. Assign Jk to the machine.

The computational time complexity of FFD-LS algo-
rithm is O(n2) since the complexities of the FFD algorithm
and the LS algorithm are O(n2) and O(n), respectively.

4 Performance analysis

4.1 Performance analysis of the Modified BFD-LPT
algorithm for the parallel machine scheduling problem

Before analyzing the Modified BFD-LPT algorithm, we first
present some lemmas.

Lemma 1 (Graham 1966) If the LPT algorithm is used to
solve the scheduling problem Pm||Cmax, then RLPT = 4/3 −
1/(3m).

Lemma 2 (Simchi-Levi 1994) If algorithm A ∈ {FFD,

BFD} is used to solve the one dimensional bin-packing prob-
lem, then RA = 3/2.

Now we give an estimate of the worst-case bound of the
Modified BFD-LPT algorithm.

Theorem 3 The worst-case bound of the Modified BFD-
LPT algorithm for the scheduling problem Pm,MS[T ,T ′],
TM(t) = a + bt ||MCmax is at most max{2(T ′ + a)/

(T + a),4}.

Proof Let MCM-BFD-LPT
max and MC∗

max denote the mainte-
nance makespan derived by the Modified BFD-LPT algo-
rithm and the optimal maintenance makespan, respectively.
Assume that we obtain k used bins according to Step 2 of
the Modified BFD-LPT algorithm, while the optimal (mini-
mum) number of bins is k∗.

If
∑n

i=1 pi < mT ′/2, it is easy to see that the makespan
derived by the LPT algorithm is at most T ′. Note that by
Lemma 1, the LPT algorithm has a worst-case performance
bound of 4

3 − 1
3m

for Pm||Cmax, i.e., CLPT
max /C∗

max ≤ 4
3 − 1

3m
,

where CLPT
max and C∗

max denote the LPT makespan and opti-
mal makespan for Pm||Cmax, respectively. So we have

MCM-BFD-LPT
max

MC∗
max

≤ T ′ + a + bCLPT
max

T + a + bC∗
max

≤ max

{
T ′ + a

T + a
,
CLPT

max

C∗
max

}

≤ max

{
T ′ + a

T + a
,

4

3
− 1

3m

}

.

If
∑n

i=1 pi ≥ mT ′/2, we consider the following three
cases.

Case 1: 0 < k ≤ m. Note that MCLPT
max ≤ T ′ +a +bT ′ and

MC∗
max ≥ T + a + b

∑n
i=1 pi/m ≥ T + a + bT ′/2, so we

have

MCM-BFD-LPT
max

MC∗
max

≤ T ′ + a + bT ′

T + a + bT ′/2
≤ max

{
T ′ + a

T + a
,2

}

.

Case 2: m < k ≤ 2m. It is easy to see that there are
at most two maintenance activities on each machine. So
we have MCLPT

max ≤ 2(T ′ + a + bT ′). Note that
∑n

i=1 pi >

kT ′/2 and k > m ≥ 2, so we have MC∗
max ≥ T + a +

b((kT ′/2)/m) > T + a + bT ′/2. Thus,

MCM-BFD-LPT
max

MC∗
max

≤ 2(T ′ + a + bT ′)
T + a + bT ′/2

≤ max

{
2(T ′ + a)

T + a
,4

}

.

Case 3: If k > 2m. It is easy to see that the maintenance
makespan obtained by the Modified BFD-LPT is no more
than � k

m
	(T ′ + a + bT ′) while the optimal maintenance

makespan is at least � k∗
m

	(T + a) + b
∑n

i=1 pi/m. So we
have

MCM-BFD-LPT
max

MC∗
max

≤ � k
m

	(T ′ + a + bT ′)
� k∗

m
	(T + a) + b

∑n
i=1 pi/m

= � k
m

	(T ′ + a) + � k
m

	bT ′

� k∗
m

	(T + a) + b
∑n

i=1 pi/m
.

Note that k/k∗ ≤ 3/2 (see Lemma 2), mT ′ < kT ′/2 <∑n
i=1 pi , and T ′ ≥ T , so we have

� k
m

	(T ′ + a)

� k∗
m

	(T + a)
≤ �� 3

2	 k∗
m

	
� k∗

m
	 · T ′ + a

T + a
≤ 2(T ′ + a)

T + a

and

� k
m

	bT ′

b
∑n

i=1 pi/m
= � k

m
	T ′

∑n
i=1 pi/m

≤
k
m

T ′ + T ′
∑n

i=1 pi/m

≤ 2
∑n

i=1 pi/m + T ′
∑n

i=1 pi/m

= 2 + T ′
∑n

i=1 pi/m
< 3.
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Hence,

MCBFD-LPT
max

MC∗
max

≤ max{2(T ′ + a)/(T + a),3}.

This completes the proof. �

Remark 1 Note that there is no polynomial time ρ-appro-
ximation algorithm for Pm,MS[T ,T ], TM(t) ≡ a||MCmax

for any ρ < 2, unless P = NP (Xu et al. 2008), so it is easy
to see that there is also no polynomial time ρ-approximation
algorithm for our problem Pm,MS[T ,T ′], TM(t) = a +
bt ||MCmax for any ρ < 2, unless P = NP.

4.2 Performance analysis of the FFD-LS algorithm
for the single machine scheduling problem

We view each of the working interval between any two con-
secutive maintenance periods of a schedule as a bin. Be-
fore analyzing the FFD-LS algorithm, we first present some
properties and lemmas.

Property 4 The optimal schedule of 1, MS[T ,T ], TM(t) =
a+bt, b ≤ 1||Cmax must have the minimum number of bins.

Proof Assume that the optimal schedule has k∗ bins and
there is a feasible schedule S with k bins. If possible, let
k < k∗. Now, let the total processing times of the jobs in
the last bin of the optimal schedule and the schedule S be x

and y, respectively. It is easy to see that the makespan of the
optimal schedule is

C∗
max = (

k∗ − 1
)
(T + a) + x +

(
n∑

i=1

pi − x

)

b,

and the makespan of the schedule S is

CS
max = (k − 1)(T + a) + y +

(
n∑

i=1

pi − y

)

b.

Thus,

C∗
max − CS

max = (
k∗ − k

)
(T + a) + (x − y)(1 − b). (1)

If x ≥ y, then C∗
max − CS

max ≥ (k∗ − k)(T + a) > 0,
since k∗ > k and b ≤ 1; if x < y, then C∗

max − CS
max ≥

(k∗ − k)(T + a) + (x − y) ≥ (T + a) + (x − y) > 0,
since k∗ > k and y − x < T . This implies that CS

max <

C∗
max, a contradiction. Therefore, the optimal schedule of 1,

MS[T ,T ], TM(t) = a + bt, b ≤ 1||Cmax must have the min-
imum number of bins. �

Lemma 5 (see Baase and Gelder 2000, p. 574) If we pack
the items by the FFD algorithm for the one dimensional

bin-packing problem and k > k∗, where k is the number
of bins obtained by the FFD algorithm and k∗ is the op-
timal number of bins, then the size of each item in bins
Bk∗+1,Bk∗+2, . . . ,Bk is at most W/3.

Although not formulated as a theorem or lemma using
the bin-packing terminology in their paper, Ji et al. (2007),
in fact, showed the following result.

Lemma 6 (Ji et al. 2007) If we pack the items by the FFD
algorithm for the one dimensional bin-packing problem and
k > k∗, where k is the number of bins obtained by the FFD
algorithm and k∗ is the optimal number of bins, then we
have

(a) if k∗ = 3, then k = 4;
(b) if k∗ = 2, then k = 3 and the total size of the items in the

third bin is greater than 2W/3.

Now we give the worst-case bound of the FFD-LS algo-
rithm.

Theorem 7 For the problem 1,MS[T ,T ], TM(t) = a + bt ,
b ≤ 1||Cmax, the worst-case bound of the FFD-LS algorithm
is 2.

Proof Assume that the optimal schedule has k∗ bins while
the FFD-LS schedule has k bins. Without loss of generality,
we assume that the “jobs” J1, J2, . . . , Jk−1 are processed
according to the increasing numerical order of their indexes
in the FFD-LS schedule, since the processing order of these
jobs does not affect the makespan. Let the total processing
times of the jobs in the last bin of the optimal schedule and
the FFD-LS schedule be x and y, respectively. It is easy to
see that the makespan of the optimal schedule is

C∗
max = (

k∗ − 1
)
(T + a) + x +

(
n∑

i=1

pi − x

)

b

= (
k∗ − 1

)
(T + a) + (1 − b)x + b

n∑

i=1

pi, (2)

and the makespan of the FFD-LS schedule is

CFFD-LS
max = (k − 1)(T + a) + y +

(
n∑

i=1

pi − y

)

b

= (k − 1)(T + a) + (1 − b)y + b

n∑

i=1

pi. (3)

By (2), we have

k∗ = 1 + C∗
max − (1 − b)x − b

∑n
i=1 pi

T + a
.
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Note that k ≤ 3k∗/2 (see Lemma 2), then

k ≤ 3

2

(

1 + C∗
max − (1 − b)x − b

∑n
i=1 pi

T + a

)

. (4)

Substituting (4) into (3), we have

CFFD-LS
max ≤

[
3

2

(

1 + C∗
max − (1 − b)x − b

∑n
i=1 pi

T + a

)

− 1

]

× (T + a) + (1 − b)y + b

n∑

i=1

pi

= 3

2
C∗

max + 1

2
(T + a) − 3

2
(1 − b)x

+ (1 − b)y − b

2

n∑

i=1

pi

≤ 3

2
C∗

max + 1

2
(T + a) + (1 − b)y

≤ 3

2
C∗

max + 1

2
(T + a) + y. (5)

Note that y ≤ T , so we have

CFFD-LS
max ≤ 3

2
C∗

max + 1

2
(3T + a). (6)

If k∗ = 1, it is clear that CFFD-LS
max = C∗

max, and we are
done. Thus, we assume in the following that k∗ > 1. Now,
if k = k∗, then by (2) and (3), we have CFFD-LS

max = C∗
max +

(y − x)(1 − b). Note that (y − x)(1 − b) ≤ |y − x| < T <

C∗
max, so we have CFFD-LS

max < 2C∗
max. If k > k∗, we consider

the following three cases.
Case 1: k∗ ≥ 4. Thus, by (2), we have C∗

max ≥ 3(T +a) ≥
3T +a. Combining this with (6), we have CFFD-LS

max ≤ 2C∗
max.

Case 2: k∗ = 3. By Lemma 6, we have k = 4. Therefore,
CFFD-LS

max = 3(T + a) + (1 − b)y + b
∑n

i=1 pi ≤ 3(T + a) +
y + b

∑n
i=1 pi ≤ 4(T + a) + b

∑n
i=1 pi . On the other hand,

C∗
max = 2(T + a) + (1 − b)x + b

∑n
i=1 pi ≥ 2(T + a) +

b
∑n

i=1 pi . So we have CFFD-LS
max ≤ 2C∗

max.
Case 3: k∗ = 2. By Lemma 5 and Lemma 6, we have

k = 4, y ≤ T/3, and x > 2T/3. Therefore, C∗
max =

(T + a) + (1 − b)x + b
∑n

i=1 pi ≥ (T + a) + 2T (1 −
b)/3 + b

∑n
i=1 pi and CFFD-LS

max = 2(T + a) + (1 − b)y +
b
∑n

i=1 pi ≤ 2(T +a)+T (1−b)/3+b
∑n

i=1 pi . It follows

that CFFD-LS
max ≤ 2C∗

max.
Hence, we have completed the proof that the worst-case

bound of the FFD-LS algorithm is not greater than 2. To
show that this bound cannot be smaller than 2, consider the
following instance. Let T = 10, p1 = p2 = 4, p3 = p4 =
p5 = p6 = 3, b = 1, and a be an arbitrary integer. It is easy
to see that CFFD-LS

max = 40 + 2a, while C∗
max = 30 + a. It

follows that CFFD-LS
max /C∗

max = (40 + 2a)/(30 + a) → 2, as

a → ∞.
This completes the proof. �

Remark 2 Note that Ji et al. (2007) showed that there is no
polynomial time approximation algorithm for the schedul-
ing problem 1,MS[T ,T ], TM(t) ≡ a||Cmax with a worst-
case bound less than 2, unless P = NP. So we may con-
clude that there is also no polynomial time approximation
algorithm for the scheduling problem 1,MS[T ,T ], TM(t) =
a + bt, b ≤ 1||Cmax with a worst-case bound less than 2, un-
less P = NP, and that the FFD-LS algorithm is the best pos-
sible polynomial time algorithm for 1,MS[T ,T ], TM(t) =
a + bt, b ≤ 1||Cmax if P �= NP.

Remark 3 Property 4 is crucial for Theorem 7, since we can
derive an estimate of the optimal makespan based on this
property, and then determine the worst-case bound of the
FFD-LS algorithm for the scheduling problem 1,MS[T ,T ],
TM(t) = a + bt, b ≤ 1||Cmax. However, according to (1), it
seems that it is not necessary for an optimal schedule of 1,
MS[T ,T ], TM(t) = a + bt, b > 2 + a/T ||Cmax to have the
minimum number of bins. Whether this is true may be an
interesting problem for further study.

5 Conclusions

We consider two scheduling problems 1,MS[T ,T ], TM(t) =
a + bt, b ≤ 1||Cmax and Pm,MS[T ,T ′], TM(t) =
a + bt ||MCmax in this paper. Both of the two problems
are NP-hard, and there is no polynomial time algorithm for
these problems with a worst-case bound less than 2, un-
less P = NP. We propose an approximation algorithm with
worst-case bound at most max{2(T ′ +a)/(T +a),4} for the
parallel machine scheduling problem and a polynomial time
2-approximation algorithm for the single machine schedul-
ing problem. Further research may focus on analyzing the
worst-case bound of the Modified BFD-LPT for the parallel
machine scheduling problem. It is also worth considering
problems with other objectives or more practical mainte-
nance requirements.
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