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Abstract A problem of allocating resources of a grid to
workflow applications is considered. The problem consists,
generally, in allocating distributed grid resources to tasks of
a workflow in such a way that the resource demands of each
task are satisfied. Grid resources are divided into computa-
tional resources and network resources. Computational tasks
and transmission tasks of a workflow are distinguished. We
present a model of the problem, and an algorithm for find-
ing feasible resource allocations. A numerical example is
included, showing the importance of the resource allocation
phase on a grid. Some conclusions and directions for future
research are given.

Keywords Grid · Workflow · Resource allocation · Project
scheduling

1 Introduction

Grid resource management systems, being a crucial part of
grid environments, have been a subject of intensive stud-
ies over the last decade (see, e.g., Nabrzyski et al. 2003).
On the other hand, machine scheduling and, especially,
project scheduling have been developed since the early
1950s (see Błażewicz et al. 2001, 2007; Leung 2004 for ma-
chine scheduling, and Demeulemeester and Herroelen 2002;
Józefowska and Węglarz 2006; Węglarz et al. 2010 for
project scheduling). However, these two research and ap-
plication areas of resource allocation problems have been
almost completely separated by now. This follows from the
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separation of the corresponding research communities and,
in consequence, from a deep terminological and method-
ological gap between them. In this paper we attempt to fill
this gap by showing under which assumptions the problem
of allocating grid computational and network resources to
workflow applications can be formulated and solved in the
framework of project scheduling.

In order to realize this main objective of the paper, we for-
mulate a model of the problem based on a project scheduling
oriented approach, and we propose an algorithm for finding
feasible resource allocations for a given workflow. The goal
of the paper is also to show how important the phase of re-
source allocation on a grid really is, in the context of fol-
lowing schedules. Although the model we develop is gen-
eral and allows the allocation of any set of resources to any
set of tasks, we consider so-called workflow applications
because of their particular practical importance. Workflow
applications can be viewed as complex sets of precedence-
related various transformations (tasks) performed on some
data. These are mostly scientific, data-intensive applications
which, because of the large amounts of computations and
data involved, require high computing power to be used ef-
ficiently.

The problem of allocating grid distributed resources, ex-
isting in many sites, to tasks of a workflow application is
very complex, especially when the network capacity varies
between the sites. In addition, we often do not possess com-
plete information about the tasks. The process of obtaining
a performance model of a task is not trivial. In particular,
the processing times of all the tasks on different computer
systems (grid resources) are not easy to evaluate. Also other
parameters (e.g. bandwidth, resource availability, etc.) may
change quite rapidly in grid environments. Thus, generally,
many problem parameters are dynamic and/or uncertain. In
this work we will show under which simplifying assump-

mailto:grzegorz.waligora@cs.put.poznan.pl


292 J Sched (2011) 14: 291–306

tions we can formulate the considered problem as a deter-
ministic resource allocation problem. More precisely, under
these assumptions we will formulate a model of the problem
based on the classical project scheduling models. In the very
basic project scheduling problem called RCPSP (resource-
constrained project scheduling problem) activities (tasks)
are to be scheduled in such a way that the precedence as well
as resource constraints are satisfied, and the project duration
(or the makespan), i.e. the completion time of a given set of
activities, is minimized (see Demeulemeester and Herroelen
2002 for a handbook).

It is easy to see the similarity between a workflow and a
project. In both cases we have a set of precedence-related
tasks (activities) which are to be executed on a given set
of resources. Thus, it is justified to describe the consid-
ered problem in terms of project scheduling. In Mika et al.
(2003), we formulated the problem of scheduling work-
flows on a grid as a multi-mode resource-constrained project
scheduling problem with schedule-dependent setup times
(MRCPSP-SDST). Since in grid environments tasks can be
processed on different types of resources, i.e. they can be
executed in several different ways (modes), we considered
project scheduling in its multi-mode version (MRCPSP).
Moreover, we based our approach on an extension of the
MRCPSP with so-called setup times, where the setup time
was the time necessary to prepare the required resource for
processing an activity. Setup times were transmission times
of files between tasks. These times depend on which re-
sources the tasks are scheduled on. As a result, we obtained
a problem, which we named MRCPSP-SDST.

In the approach proposed in Mika et al. (2003) we only
considered computational resources of a grid. We assumed
that the network was not overloaded and bandwidth was not
a scarce resource. As a result, tasks did not have to compete
for network resources, and we treated transmission times
simply as setup times easy to calculate. In this paper we
modify the model towards a more realistic one. To this end,
we consider the network as a resource for which tasks have
to apply. Consequently, we distinguish transmission tasks as
a separate type of task, which can compete for the same
network connection. More precisely, bandwidth is the net-
work resource which can be divided among many transmis-
sion tasks. Thus, in this paper we present a more practical
model of the problem, where there are network resources
along with computational resources on a grid.

As was stressed, e.g., in Kurowski et al. (2008), the ma-
jority of centralized grid environments are based on the
so-called two-level hierarchy scheduling approach. This is
caused by the grid layered architecture. A grid consists of
many nodes, each of which is usually managed by some lo-
cal scheduling system, such as, e.g., Condor,1 LSF Load

1http://www.cs.wisc.edu/condor/.

Shearing Facility),2 PBS (Portable Batch System),3 SGE
(Sun Grid Engine),4 etc. Thus, the grid broker assigns sub-
mitted jobs to remote resources in the first step, and then
local schedulers generate their schedules for resources they
manage. This concept is very natural since a grid broker nei-
ther possesses a full knowledge of the local resource load,
nor has overall control of the resource. On the other hand,
the local scheduler does not know about any other grid jobs
and other resources available to these jobs. Examples of two-
level hierarchy grids with a central grid broker are, among
others, the European EGEE Grid,5 or Clusterix in Poland.6

Let us emphasize the difference between resource allocation
and scheduling. Resource allocation is just assigning tasks
to resources, scheduling is one step further and means allo-
cating resources to tasks over time, i.e. defining the starting
time of each task on the resource it has been assigned.

As a result of the two-level hierarchy scheduling ap-
proach, the first phase, i.e. grid resource allocation, is of
crucial importance. Especially when workflow applications
are concerned which require huge computational effort and
can run for hours, days, or weeks. Therefore we focus in
this paper on resource allocation only. We present an algo-
rithm for finding feasible resource allocations, we analyze
its complexity, and show that it never fails to find a feasi-
ble allocation if it exists. Of course, any time criterion (e.g.
makespan) can be only used to evaluate schedules, not re-
source allocations. These can be judged, e.g., by cost crite-
ria, if users are charged for accessing the resources. In this
paper we show how resource allocation may affect the qual-
ity of the following schedule, especially in such a hetero-
geneous environment as a grid. However, we do not present
computational experiments with the scheduling phase in this
paper, since it can be performed by local schedulers accord-
ing to many different scenarios, analyses of which are not
the objective of this research.

The paper is organized as follows. In Sect. 2 we describe
the problem of allocating grid resources to workflow appli-
cations in more detail. Section 3 presents the model of the
problem, with the description of all its parameters and com-
ments on the assumptions made in the model. Section 4 is
devoted to a numerical example, showing the importance of
resource allocation on a grid. In Sect. 5 we discuss an ap-
proach to the problem stated, and we present an algorithm
for finding feasible grid resource allocations. The last sec-
tion contains conclusions and some directions for future re-
search.

2http://www.platform.com/.
3http://www.pbsgridworks.com/.
4http://gridengine.sunsource.net/.
5http://www.eu-egee.org/.
6http://clusterix.pcz.pl/.
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2 Problem description

Let us start with a brief description of workflow applica-
tions. In many scientific areas, like high-energy physics,
bioinformatics, astronomy and others, we encounter ap-
plications involving numerous simpler components that
process large data sets, execute scientific simulations, and
share both data and computing resources. Such data-inten-
sive applications consist of multiple components (tasks)
which may communicate and interact with each other over
the course of the application. The tasks are very often
precedence-related, and the precedence constraints usually
follow from data flow between them, i.e. data files generated
by one task are needed to start another task (an output of one
task becomes an input for the next one). Although this is
the most common situation, the precedence constraints may
follow from other reasons as well, e.g., may be arbitrarily
defined by the user. Such complex applications, consisting
of various precedence-related transformations (tasks) per-
formed on some data, between which data files have to be
transmitted very often, are called workflow applications. For
example, in astronomy workflows with thousands of tasks
need to be executed during the identification of galaxy clus-
ters within the Sloan Digital Sky Survey (Szalay et al. 2000).
In Deelman et al. (2005) two types of workflows were distin-
guished: data-intensive, whose file transfer times dominate
task computing times, and compute-intensive, for which it
is just the opposite. For both types, because of the large
amount of computations and data involved, high computing
power is required to execute the workflows efficiently. This
power can be delivered by a grid.

In Foster and Kesselman (1999) a grid was defined as
an infrastructure for coordinated resource sharing and prob-
lem solving in dynamic, multi-instrumental virtual organi-
zations. More recently, the Network of Excellence Core-
GRID7 formulated a definition of a grid as “a fully distrib-
uted, dynamically reconfigurable, scalable and autonomous
infrastructure to provide location independent, pervasive, re-
liable, secure and efficient access to a coordinated set of ser-
vices encapsulating and virtualizing resources (computing
power, storage, instruments, data, etc.) in order to generate
knowledge”.

Since workflow applications are usually very time con-
suming (even if single tasks can be quite short), and in-
put/output data files for tasks can be quite large, the problem
of allocating resources to such applications on a grid has be-
come a great challenge and has great practical importance
these days. An allocation of grid resources to a workflow
whose component tasks are known but not yet scheduled is
an important topic in grid computing, because of its high

7http://www.coregrid.net/.

impact on the efficiency of the workflows, which can gener-
ate huge amounts of data and occupy resources for days or
weeks.

In general, the considered problem consists in allocat-
ing distributed grid resources to heterogeneous tasks. Users
submit their jobs (in this case—workflow applications) to a
grid. As has been mentioned, workflows consist of multi-
ple tasks. Generically, a task can be anything that needs a
resource—a schedulable computation, a bandwidth request,
data access or an access to any remote resource, such as re-
mote instruments, databases, humans-in-the-loop, etc. A re-
source is anything that can be allocated to tasks—a proces-
sor, disc space, bandwidth, machine, device, person, etc. In
this research, we divide grid resources into two types: com-
putational resources and network resources. Computational
resources are all resources needed for computational tasks
to be computed; they are not just processors, but also mem-
ory, disc space, various devices, etc. Network resources are
resources needed for transmission tasks to be executed, i.e.
needed for data files to be transmitted. The basic network
resource is, obviously, bandwidth.

There are at least several approaches to grid resource al-
location. They differ one from another depending on the grid
architecture, objectives of a particular grid, and policies for
managing the grids. With respect to architecture, two types
of grids can be distinguished: peer-to-peer grids, where all
services are equal and communicate using a peer-to-peer
model, and centralized grids, where a grid resource manage-
ment system plays a central role and is surrounded by many
other grid services structured in a layered architecture. In
such grids there is usually one common, central grid bro-
ker which serves all users and their jobs. Such a situation is
considered in this paper.

A good allocation of distributed grid resources to users’
jobs is crucial for an efficient execution. However, in many
existing grid toolkits, matchmaking strategies are used
which do not care about an overall efficiency of the exe-
cution of a set of tasks. They just concentrate on matchmak-
ing individual tasks to resources and do not attempt to find
an efficient overall allocation. Because these strategies do
not take into account tasks of the workflow that arrive later
on, their allocation of resources may result in a poor overall
schedule, especially for data-intensive applications when ex-
cessive data movement is created. In Deelman et al. (2005),
two types of approaches (and algorithms) to grid resource
allocation were distinguished. The first approach greedily
allocates resources to each ready-to-run task, taking into ac-
count only task information. This approach (and algorithms)
is called a task-based approach (task-based algorithms).
Such algorithms make local decisions about which task to
send to which resource. The second approach searches for
an efficient allocation for the whole workflow, and may re-
vise the allocation of a task based on subsequent tasks. In
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this approach, all the tasks of a workflow are mapped a
priori to resources, in order to minimize the makespan of
the whole workflow. However, mapping the entire workflow
does not imply scheduling all the tasks ahead of time. If
some changes in the environment occur, remapping may be
necessary. In other words, in real deployments one would
like to find an overall allocation, but one would only release
portions of the workflow that are ready to run. If the under-
lying execution environment subsequently changes, the al-
location may be redone (Deelman et al. 2005). Our research
corresponds to the latter approach.

Finally, in order to build a formal model of the problem
considered, we have to precisely define the assumptions, as
well as simplifications that are necessary to model such a
complex problem. Too few attributes (i.e. too general an ap-
proach) may imply that the model becomes unrealistic, but
on the other hand, too many of them can result in too com-
plex a model, which could hardly be solvable by any exist-
ing or newly developed method. Therefore, it is crucial to
identify these parameters, which allow us to build both a re-
alistic and solvable model of the problem. The next section
presents all the assumptions made and the model itself.

3 The model

In this section we formulate the model of the problem con-
sidered. The first subsection describes the assumptions con-
cerning the grid environment, the second subsection the as-
sumptions concerning the workflow applications. In the last
subsection we summarize all the parameters of the defined
problem.

We stress that although we focus on resource allocation
in this paper, the model presented is more general and con-
cerns, in fact, the problem of scheduling workflows on a
grid. Therefore, some of its parameters, in particular time
parameters like processing times of tasks, will not be used
in the approach discussed later on in the paper. These pa-
rameters will be needed in further research, when we reach
the phase of scheduling. As is easy to see, the defined prob-
lem is NP-hard in the strong sense, as it reduces to the MR-
CPSP in the case when all tasks are executed in the same
node. The MRCPSP, as well as the RCPSP, are known to be
strongly NP-hard problems (see Demeulemeester and Her-
roelen 2002).

3.1 Grid

We make the following assumptions about the grid environ-
ment:

1. A grid is a set of nodes connected by fast network links.

2. There are two types of nodes in the network: resource
nodes and non-resource nodes. Resource nodes con-
tain resources for which users’ computational tasks
compete. These are, in fact, resources of any type for
which the tasks can apply (e.g. processors, memory,
disc space, devices, etc.), but at this stage we consider
the basic computational resources only, i.e. processors.
Non-resource nodes are considered only with respect
to the network topology. There may exist various re-
sources in such nodes but they are either not available
for some reasons, or not constrained (are not scarce re-
sources). In other words, non-resource nodes contain
only such resources for which computational tasks do
not have to compete.

3. Bandwidth between each two connected nodes is given,
and it is identical in both directions.

4. Between two given nodes there can be more than one
network link, and these links may have different para-
meters. We assume that these are alternative links which
cannot be merged in order to increase the bandwidth.

5. Bandwidth of each link is discretely divisible, i.e. a min-
imal portion (quant) of bandwidth is assumed.

6. Bandwidth within a given node is unlimited.
7. Network devices and interfaces operating in the nodes

do not cause any bandwidth limitations, i.e. they are
able to deal with every data transfer, incoming or out-
going. In other words, the network bandwidth depends
only on the bandwidths of the links, and not on the char-
acteristics of the network interfaces.

8. Breakdowns of the physical links are so rare that can be
neglected.

9. Communication channels are highly reliable, i.e. net-
work links guarantee that, during transmission, packets
are not being lost or duplicated.

10. Delays do not affect the transmission times between
nodes, i.e. transmission lateness is so small in compar-
ison to the transmission time itself that it can be ne-
glected.

11. Transmission between nodes does not require compu-
tational resources, i.e. each processor used for the exe-
cution of a computational task is free immediately after
the completion of this task and can be used for the exe-
cution of the next computational task.

12. Processors are divided into types, depending on their
power. The power (processing speed) of each proces-
sor is given by a function of some standard unit. The
form of this function is identical for all processors of a
given type. At this stage, we assume a linear form of the
processing speed function, as “a speed factor multiplied
by the standard unit”. A processor with a speed factor
equal to 1 we call a standard processor.
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3.2 Workflows

Below we present the assumptions about the workflows:

1. At this stage only workflow jobs are considered in the
model, because of their high practical importance. This
is not a limitation of the model, and it is easy to extend
it for jobs of other types in the future. For simplicity,
we also assume now that there is one workflow job to
be scheduled.

2. A workflow consists of many tasks. There are two types
of tasks: computational tasks and transmission tasks.

3. The structure of a workflow is represented by a directed
acyclic graph (DAG), where each vertex corresponds to
a computational task, and each arc represents a prece-
dence relation between two computational tasks.

4. We assume that each arc corresponds to a transmission
task, i.e. represents a data transmission between two
successive computational tasks. In other words, we as-
sume that precedence constraints represented by arcs of
the DAG follow only from data transmissions between
computational tasks.

5. Computational tasks are non-preemptable, i.e. once
started they have to be completed with no interruptions
and no changes in resource allocation. We also assume
that each computational task may be executed in exactly
one node.

6. Each computational task is characterized by two values:
its size, i.e. the execution time on a standard processor
(processors), and the number of processors required for
its execution. The actual processing time of a task is
calculated by dividing its size by the speed factor of the
processor (processors) on which this task is scheduled.

7. We assume that computational tasks are not scalable,
i.e. the number of processors required for the execution
of such a task is given a priori by the user and cannot
be changed. Moreover, we also assume that each com-
putational task is executed by the specified number of
processors of the same type (it is not possible to assign
a task to processors of different types).

8. Transmission tasks are also non-preemptable, i.e. they
also have to be executed with once allocated resources
and with no interruptions. In this case it means that the
data transmission has to be entirely performed using
the same path in the grid connection graph, i.e. once a
connection is established between two nodes, the whole
transmission must be performed over this connection (a
sequence of links).

9. Transmission tasks are characterized by two values:
the size of the data file (files) to be transmitted, and
the required bandwidth between the two nodes be-
tween which the transmission is to be performed. The
user, submitting a workflow to the system, specifies
the minimal bandwidth which is required to transmit

data between each two precedence-related computa-
tional tasks. At this stage, we assume that a transmis-
sion task gets for its execution a connection with band-
width equal to the minimal value given by the user. As
a result, the transmission time (i.e. the execution time
of a transmission task) can take one of two values: the
data file size divided by the bandwidth, when successive
computational tasks are executed in different resource
nodes, or zero, when they are executed in the very same
resource node.

10. Transmission tasks are not scalable, either. In this case
it means that the entire transmission is performed us-
ing the assigned bandwidth, which may not be changed
during the execution of the transmission task.

Let us comment on points 9 and 10 of Sect. 3.2 in more
detail, as they describe important assumptions on network
transmission. As is known from network theory, different
applications and services have different characteristics and
requirements with regard to the underlying network. There
are applications like Telephony or Voice Over IP which are
very sensitive to delay. On the other hand, there are applica-
tions (e.g. compressed video streaming) which are quite sen-
sitive to packet loss. Based on the specification of Quality of
Service categories for ATM networks, we may consider the
three major QoS classes of service in today’s networks:

• Constant Bit Rate (CBR)
• Variable Bit Rate (VBR)
• Available Bit Rate (ABR)

The CBR class of service is characterized by a constant
transmission speed of cells. CBR is used when the applica-
tion needs a static amount of bandwidth continuously avail-
able for the duration of the active connection. It is designed
for real-time applications, in particular applications involv-
ing the streaming of voice and video, for which overall net-
work delay is often critical.

The VBR service class, similarly to CBR, supports real-
time applications, such as Voice over IP or video confer-
encing. Such applications require tightly constrained delays
and delay variations. In contrast to CBR, VBR makes a bet-
ter use of bandwidth for the applications transmitting bursty
traffic (when the transmission speed varies during the trans-
mission time).

The ABR class of service is designed for the transmission
of files or other non-real-time data for which a minimum
amount of bandwidth is specified. When congestion occurs
in the network, there is a little available bandwidth for the
application. However, when the network is not congested,
the whole bandwidth is available for use. ABR uses mech-
anisms allowing us to make use of any bandwidth available
along the end-to-end transmission path at any point of time.

In our model we, in fact, assume the ABR class of ser-
vice, as the user specifies a minimum bandwidth needed for
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his transmission task. However, as has been stated in point
9 of Sect. 3.2, in this formulation of the model we take this
minimal value as the one that the task actually gets for its ex-
ecution, which makes it closer to the CBR class. Moreover,
we do not consider the VBR class at all, as is said in point 10.
On the other hand, as long as we restrict ourselves to re-
source allocation, the assumption on the considered class of
service does not have a significant influence. It will be im-
portant in the phase of scheduling.

In the next extensions of the model, plans are made to
take into account all the three classes of service, which re-
sults in the possibility of scalable transmission tasks. More-
over, other extensions may concern scalable computational
tasks (see point 7), or tasks simultaneously executed in many
nodes like, e.g., MPI tasks (see point 5).

3.3 Problem parameters

Below we summarize all the parameters of the model:

(A) Grid

Γ (N,Ψ )—undirected graph representing the network topol-
ogy of a grid;
N—set of all (resource and non-resource) nodes in the net-
work, N = X ∪ Π ;
X—set of resource nodes;
Π—set of non-resource nodes;
Ψ —set of edges (links) between nodes, i.e. set of cou-
ples (μ, ν)ψ : μ,ν ∈ N , ψ = 1,2, . . . (ψ denotes alternative
links between a given pair of nodes);
Xχ —resource node χ , χ = 1,2, . . . , |X|;
Πη—non-resource node η, η = 1,2, . . . , |Π |;
	κ—speed factor for processors of type κ , κ = 1,2, . . . ;
Pκχ —the number of processors of type κ , κ = 1,2, . . .

(i.e. processors with the same speed factor 	κ ) in resource
node Xχ ;
Ψ

μν
ψ —bandwidth of the link (μ, ν)ψ ∈ Ψ , ψ = 1,2, . . . ;

(B) Workflow

W(V,E)—directed acyclic graph (DAG) representing the
structure of a workflow;
V —set of vertices of graph W representing computational
tasks;
E—set of arcs (νi, νj ) of graph W representing prece-
dence constraints between computational tasks νi, νj ∈ V ,
i.e. transmission tasks;

Computational tasks

νi—computational task i, i = 1,2, . . . ;
pi—size of computational task νi (expressed in assumed
computational units, e.g. MIPS or similar), i = 1,2, . . . , |V |;
ri—number of processors required for the execution of com-
putational task νi , i = 1,2, . . . , |V |;

ωi—minimal speed factor of the processor (processors)
required for the execution of computational task νi , i =
1,2, . . . , |V |;
fi(pi,	κ)—function defining the actual execution time
of computational task νi , (i = 1,2, . . . , |V |) on processor
(processors) with speed factor 	κ (	κ ≥ ωi ); at this stage
we assume that fi = f = pi/	κ (i = 1,2, . . . , |V |, κ =
1,2, . . .);

Transmission tasks

(νi, νj )—task of transmission of output data of computa-
tional task νi , which is at the same time input data for com-
putational task νi (νi, νj ) ∈ E;
F ij —size of data file (files) transmitted as a result of the ex-
ecution of transmission task (νi, νj );
Bij —minimal required bandwidth of the connection be-
tween resource nodes in which computational tasks νi and
νj will be executed;
g(F ij ,Bij )—execution time of transmission task (νi, νj ),
i.e. the time of data transmission from the resource node
in which computational task νi will be executed to the re-
source node in which computational task νj will be per-
formed. As mentioned before, at this stage we assume that
g(F ij ,Bij ) = F ij /Bij if tasks νi and νj are executed in dif-
ferent nodes, or 0 if in the same node.

4 Example

Let us first stress that the model presented in Sect. 3 is a de-
terministic one. It can be an approximation of a real grid
resource allocation problem under the assumptions made
and described in the previous section. The model also al-
lows us to build a schedule of a workflow application on a
grid, where a schedule is understood not just as a resource
allocation, but as an allocation of resources to tasks over
time. In other words, the model assumes that resources al-
located to tasks according to the constructed allocation will
be available for these tasks in time windows sufficient to ex-
ecute the tasks. Of course, in general, resource re-allocation
is still possible during the execution of the schedule created.

In this section we will show the importance of resource
allocation in the context of the quality of the schedule built
on its basis. As a scheduling criterion, we will assume
the makespan, i.e. the total time of execution of a given
workflow. However, let us stress here that various perfor-
mance measures may be considered as the scheduling crite-
rion (e.g. cost, reliability, resource levelling, etc.). Further-
more, a multi-objective approach is well justified which can
combine two or even more measures. For multi-criteria ap-
proaches to problems of scheduling on a grid, see Kurowski
et al. (2001, 2003, 2006, 2008).

We will consider two allocation scenarios. The first sce-
nario assumes that it is not reasonable to send tasks to other
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Fig. 1 Generic simulation
workflow structure

sites, and the best way to execute a workflow is to do it on lo-
cal resources (on a local node). Obviously, it is assumed that
the set of local resources is capable of executing the given
workflow, with respect to computational resources only. We
assume (point 6 of Sect. 3.1) that the bandwidth within a
given node is unlimited; thus, it is not a scarce resource in
this case.

The second scenario, however, shows that assigning tasks
of a workflow to distributed grid resources can be prof-
itable, even if there are several transmissions to perform. We
will show how a non-local resource allocation can improve
the schedule, i.e. give a better makespan. Of course, from
among many distributed resource allocations, there will be
such of worse and better quality. For the purpose of this ex-
ample, we only show that assigning tasks to resources over
many sites can lead to an improvement of a local allocation.

Let us consider the following workflow.
One of the most common uses of workflows is large-scale

scientific simulation. A typical simulation schema may con-
sist of the following steps: generation of data for simula-
tion according to given input parameters (preprocessing),
simulation, translation of output data into required format,
postprocessing, analysis and comparison of the obtained re-
sults. The general structure of such a workflow is presented
in Fig. 1.

A specific kind of a workflow that fits to this general
schema is a simulation of the Compact Muon Solenoid
(CMS). CMS is a multi-purpose particle physics detec-
tor constructed at the European Center for Nuclear Re-
search (CERN) in Geneva, Switzerland (Wulz 1998). As
stated in Deelman et al. (2003), the CMS detector is ex-
pected to record data, produced by high-energy proton–
proton collisions occurring within CERN’s Large Hadron
Collider (LHC), at a rate of 100 MB/s. After the data have
been recorded, they will be passed through various filter
stages, which transform and reduce the data into formats
that are more easily analyzed by physicists. In order to bet-
ter understand the response of the detector to different in-
put signals, large-scale Monte Carlo simulations are per-
formed which typically involve several different computa-
tional stages. These simulations are long-running, parallel,
multi-stage processes that are ideally suited for grid compu-
tation. Typically, a single workflow creates approximately
1 GB of data and requires 10 to 20 CPU/hours depending on

the type of simulation. A typical production run may include
thousands of workflows.

In Deelman et al. (2003) the use of workflows for this
problem was described. Workflows were generated and ex-
ecuted using the Chimera (Foster et al. 2002) and Pegasus
(Deelman et al. 2004) tools. Among others, one particu-
lar paper (Deelman et al. 2003) presents a simple simula-
tion use-case known as an “n-tuple-only production”, which
consists of a five stage computational pipeline that fits to
the structure presented in Fig. 1. It consists of the following
tasks:

1. In the generation stage, it simulates the underlying
physics of each CMS event.

2. In the simulation stage, the CMS detector’s response to
the events created in the generation stage is modeled.

3. In the translation stage (called formatting stage), it
copies the simulated detector data into an object-
oriented format.

4. In the postprocessing stage (called reconstruction stage),
the obtained data are transformed, producing a “picture”
of what a physicist would “see”, as if the simulated data
were actual data recorded by the experimental appara-
tus.

5. In the final analysis stage, user-specific information is
selected and a convenient, easy-use file that can be an-
alyzed by a researching physicist is created. The results
obtained for different input parameters are also aggre-
gated and compared.

In work described in Deelman et al. (2003) these work-
flows were executed on a computing cluster consisting of 25
dual-processor Pentium (1 GHz) machines. Over the course
of 7 days, 678 jobs of 250 events each were executed. From
among these jobs, 167 500 events were successfully pro-
duced using approximately 350 CPU/days of computing
power and generating approximately 200 GB of simulated
data.

For the purpose of the numerical example, we assume
the following structure of the workflow instance, presented
in Fig. 2.

The grid environment considered in this example consists
of 3 resource nodes (20 CPUs) and 3 non-resource nodes. Its
structure is presented in Fig. 3.
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Fig. 2 CMS workflow instance

The processors available in the resource nodes are

Node Xχ Processor speed 	κ Number of processors Pκχ

X1 1 8

X2 2 4

3 4

X3 3 2

4 2

The bandwidths of the links between nodes are

Link (μ, ν) Bandwidth Ψ μ,ν

(1,4) 1 Gb/s

(2,5) 1 Gb/s

(3,6) 1 Gb/s

(4,5) 1 Gb/s

(4,6) 1 Gb/s

(5,6) 100 Mb/s

Now, as has been mentioned earlier, the first scenario
allocates all computational tasks to one resource node and
executes them locally with no transmission between nodes.
Since task ν13 requires 8 processors, the only node capa-
ble of executing the entire workflow is X1 (it is not allowed
to assign a task to processors of different types—point 7 of
Sect. 3.2). Figure 4 presents the schedule obtained by as-
signing all tasks of the workflow to node X1, and scheduling
according to a simple rule that each task is started as soon
as all its predecessors are finished and processors required
by this task are available. In the figure, the vertical axis rep-
resents the number of processors, the horizontal axis repre-
sents time. The actual processing times of tasks have been
calculated as pi/	κ . We assume for simplicity that ωi = 1,
i = 1,2, . . . ,13, i.e. each task can be executed on each type
of the processors. The processing times of all transmission
tasks are equal to 0, as we assume an unlimited bandwidth
within each node.
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Fig. 3 Grid environment

In the second scenario, generation tasks v1 ÷ v3 are ex-
ecuted in node X1, and then transmission tasks (ν1, ν4) ÷
(ν3, ν6) send generated files from node X1 to X2 over
connection X1 → Π4 → Π3 → X2. In node X2 simula-
tion, formatting, and reconstruction tasks (ν4 ÷ ν12) are
executed. Since the analysis task ν13 requires 8 proces-
sors of the same type, it cannot be executed in node X2

but only in node X1. Therefore, next transmission tasks
(ν10, ν13) ÷ (ν12, ν13) are needed to send files required
for task ν13 back to node X1. The processing times of
transmission tasks between different nodes have been cal-
culated as F ij /Bij . The obtained schedule is shown in
Fig. 5.

The presented example shows that the distributed sched-
ule achieves a better makespan than the local one. The
time benefit from executing computational tasks on faster
processors is larger than the time waste following from

transmitting files between nodes. This confirms the im-
portance of efficient resource allocation in a grid environ-
ment.

5 Resource allocation

We have shown in Sect. 4 that optimization of grid re-
source allocation might be a very important problem from
the practical point of view. Especially this is so when work-
flow applications are concerned, which are data-intensive
applications requiring huge computational power to be
used efficiently. In such applications, the time benefit
following from scheduling them effectively on grid re-
sources may be quite significant. In this section we dis-
cuss the problem of finding a feasible allocation of grid
computational and network resources to tasks of a work-
flow.
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Fig. 4 Local schedule in node X1

Fig. 5 Distributed schedule

5.1 Definitions and notation

Let us first define the feasibility conditions of a resource al-
location in the presented problem. We stress that at this stage
we understand resource allocation as assigning computa-
tional tasks to resource nodes, and assigning transmission
tasks to connections of required bandwidths. We do not as-
sign computational tasks to particular processors in resource
nodes, i.e. we do not perform the scheduling phase at this
stage. Let us start with definitions and notation.

Definition 1 Resource node Xχ ∈ X is capable for a com-
putational task νi ∈ V if Pκχ ≥ ri and 	κ ≥ ωi .

Definition 1 calls a resource node capable for a task if the
node has enough computational power to execute this task.
Let us recall that ri is the number of processors required for
the execution of computational task νi , and ωi is the minimal
speed factor of the processors executing task νi . The condi-
tion in Definition 1 means that the number Pκχ of proces-
sors with speed factor 	κ ≥ ωi available in resource node
Xχ must be greater than or equal to ri . If a task is assigned
to a node possessing the required number of processors of
the required type, the task is going to be executed, and at
most it will have to wait until the processors are free.

Definition 2 A Bij-link is a link (μ, ν)ψ ∈ Ψ such that its
bandwidth Ψ

μν
ψ is at least equal to Bij , i.e. Ψ

μν
ψ ≥ Bij .

A link which is not a Bij-link, i.e. Ψ
μν
ψ < Bij , is called a

non-Bij-link.

Let us recall that Bij is the minimal required bandwidth
of the connection between resource nodes in which compu-
tational tasks νi and νj will be executed. Definition 2 calls
a link a Bij-link if it has at least the required bandwidth for
transmission task (νi, νj ) ∈ E.

Assume now that the computational task νi is assigned
to resource node Xχ ∈ X, and computational task νj is as-
signed to resource node Xθ ∈ X. Let P ij (χ, θ) denote a path
in graph Γ (N,Ψ ) from node Xχ to node Xθ .

Definition 3 A Bij-path is a path P ij (χ, θ) which consists
of Bij-links only.

Definition 3 calls a path a Bij-path if it is capable of per-
forming a given transmission task (νi, νj ).

Now, we define a feasible resource allocation RAW for
workflow W .

Definition 4 Resource allocation RAW for workflow W is
feasible if:
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(i) each computational task νi ∈ V is assigned to a capable
resource node Xχ ∈ X, i.e.:

∀
νi∈V

νi ⊗ Xχ ⇐⇒ ∃
κ
(Pκχ ≥ ri ∧ 	κ ≥ ωi) (1)

(ii) each transmission task (νi, νj ) ∈ E can be performed
over a Bij-path, i.e.:

∀
(νi ,νj )∈E

(νi ⊗ Xχ ∧ νj ⊗ Xθ)

�⇒ ∃
P ij (χ,θ)

∀
(μ,ν)ψ∈P ij (χ,θ)

Ψ
μν
ψ ≥ Bij (2)

where νi ⊗ Xχ denotes that computational task νi is as-
signed to resource node Xχ .

These two conditions are, of course, interrelated. Let us
first discuss them separately.

To satisfy condition (i) is trivial. For each computational
task, a list of capable nodes can be constructed by comparing
the computational requirements of this task with the com-
putational capabilities of each resource node. Let Y i ⊆ X

denote the set of resource nodes capable of executing com-
putational task νi . Each task νi then has to be assigned to
exactly one node from set Y i . If for any task νi , Y i = ∅,
then there is no feasible resource allocation for the consid-
ered workflow.

Satisfying condition (ii) is more complex. Firstly, graph
Γ ij ⊆ Γ is constructed out of graph Γ by removing from
graph Γ all non-Bij-links (i.e. links with bandwidths less
than Bij ). Then, all connected components in Γ ij are iden-
tified, as the whole Γ ij may not be a connected graph
anymore. A connected component is, from the definition
of graph theory, a maximal connected subgraph. Finding
connected components in an undirected graph can be eas-
ily done by the Depth-First Search (DFS) method—a very-
well known method from graph theory. Let Γ

ij
k ⊆ Γ ij ,

k = 1,2, . . . , denote the k-th connected component in Γ ij .
Such a component we will call briefly a subgrid. As each
Γ

ij
k contains Bij-links only, a transmission task (νi, νj ) can

be assigned to any of those subgrids. If we denote by N
ij
k

the set of nodes in subgrid Γ
ij
k , then X

ij
k = N

ij
k ∩ X is the

set of resource nodes in Γ
ij
k . In order to assure the possibil-

ity of execution of the transmission task (νi, νj ), computa-
tional tasks νi and νj have both to be assigned to their capa-

ble nodes from the same set X
ij
k (possibly even to the same

node). Notice that in an extreme case all links from graph
Γ may be removed, if they all are non-Bij-links, and each
subgrid Γ

ij
k consists of one node only (i.e. k = 1, . . . , |N |).

However, it is still possible to execute a transmission task
(νi, νj ) by assigning tasks νi and νj to the same node, if it
is capable of executing them both. Recall that we assume an
unlimited bandwidth within a given node; as a result, each
transmission task can be executed in that way.

Definition 5 A tri-task 〈νi, νj 〉 is a triple {νi, (νi , νj ), νj },
i.e. two computational tasks and a transmission task between
them.

Based on the above considerations, it is now possible to
show how to ensure a feasible resource allocation for a tri-
task 〈νi, νj 〉.

Definition 6 A feasible resource allocation RAij for tri-task
〈νi, νj 〉 is a pair (Xχ ,Xθ ) such that νi ∈ Y i and νj ∈ Y j , and
there exists at least one Bij-path P ij (χ, θ) between nodes
Xχ and Xθ .

For subgrid Γ
ij
k , a feasible resource allocation RAij for

tri-task 〈νi, νj 〉 can be obtained by:

(a) assigning νi to any node from the set Zi
k = Y i ∩X

ij
k , and

(b) assigning νj to any node from the set Z
j
k = Y j ∩ X

ij
k .

Of course, if at least one of the sets Zi
k , Z

j
k is empty (i.e.

Zi
k = ∅ or Z

j
k = ∅), the given tri-task cannot be performed

in the k-th subgrid. In an extreme situation, if there is no sub-
grid capable of executing the particular tri-task, it means that
there is no feasible resource allocation for the given work-
flow and, as a result, it cannot be executed on the grid it
has been submitted to. If there is at least one tri-task in the
workflow for which no feasible resource allocation exists,
the whole workflow cannot be executed. In all other cases,
we are able to define all possible resource allocations for a
given tri-task. This will be shown in Sect. 5.2.

Let us now summarize the notation introduced in this sec-
tion:

P ij (χ, θ)—a path in graph Γ (N,Ψ ) from node Xχ to node
Xθ ;
Y i ⊆ X—the set of capable nodes for task νi ;
Γ ij ⊆ Γ —a subgraph of Γ obtained by removing from Γ

all non-Bij-links;
Γ

ij
k ⊆ Γ ij —the k-th connected component (subgrid) in

Γ ij ;
N

ij
k —the set of all nodes in subgrid Γ

ij
k ;

X
ij
k = N

ij
k ∩ X—the set of resource nodes in subgrid Γ

ij
k ;

Zi
k = Y i ∩ X

ij
k —the set of capable nodes for task νi in sub-

grid Γ
ij
k ;

〈νi, νj 〉—a tri-task denoting computational tasks νi and νj ,
and transmission task (νi, νj );
RAij = (Xχ ,Xθ )—a feasible resource allocation for tri-task
〈νi, νj 〉;
RAW —feasible resource allocation for workflow W .

5.2 Algorithm RA-TT

In this section we will show how to find all feasible resource
allocations for a given tri-task with respect to Definition 6.
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This simply can be done by defining sets Zi
k,Z

j
k for each

subgrid Γ
ij
k , k = 1,2, . . . , and a feasible resource alloca-

tion RAij for 〈νi, νj 〉 is any combination (Xχ ,Xθ) such that

Xχ ∈ Zi
k and Xθ ∈ Z

j
k . In other words, the sets Zi

k,Z
j
k de-

fine the resource nodes of subgrid Γ
ji
k to which computa-

tional tasks νi, νj (respectively) of tri-task 〈νi, νj 〉 may be
assigned. These sets will be different for different subgrids.

Now, enumerating all such combinations (Xχ ,Xθ )

within a given subgrid gives possible resource allocations
in this particular subgrid. Collecting all those combinations
over the whole workflow (all subgrids) gives the set of fea-
sible resource allocations for tri-task 〈νi, νj 〉.

Let Aij be the set of all feasible resource allocations RAij

for tri-task 〈νi, νj 〉 of a workflow W . The following algo-
rithm finds the set Aij :

Algorithm RA-TT

1. Aij = ∅.
2. Find sets Y i and Y j . If Y i = ∅ or Y j = ∅, then no feasi-

ble RAij exists and STOP.
3. Construct graph Γ ij .
4. Use the DFS method to find all connected components

(subgrids) Γ
ij
k , k = 1,2, . . . , of graph Γ ij .

5. For each k = 1,2, . . . , define sets Zi
k = Y i ∩ X

ij
k and

Z
j
k = Y j ∩ X

ij
k , where X

ij
k = N

ij
k ∩ X. If Zi

k = ∅ or

Z
j
k = ∅, then tri-task 〈νi, νj 〉 cannot be executed in sub-

grid Γ
ij
k .

6. For each k = 1,2, . . . , substitute Aij by Aij = Aij ∪
(Zi

k × Z
j
k ). If Aij = ∅, then no feasible RAij exists.

Algorithm RA-TT shows two cases when the considered
tri-task, and in consequence the entire workflow, cannot be
executed on the considered grid:

• if there is at least one computational task for which no ca-
pable resource node exists (point 2 of Algorithm RA-TT),
or

• if each computational task has at least one capable node,
but there is at least one transmission task which can-
not be executed because no connection with the required
bandwidth between given nodes exists (point 6 of Algo-
rithm RA-TT).

The first situation is trivial. The second situation may be il-
lustrated by a simple example, when task νi can only be ex-
ecuted in node Xχ , task νj can only be executed in Xθ , and
there is no Bij-path between Xχ and Xθ .

Let us now analyze the complexity of Algorithm RA-TT.
The complexity of step 2 is O(|X|), since all computa-

tional nodes must be checked, whereas the complexity of
step 3 is O(|Ψ |), since all links of the grid have to be exam-
ined. The DFS in step 4 has a complexity of O(|N | + |Ψ |).
The intersections in step 5 give it the complexity of O(|X|2).
Finally, the Cartesian products for each subgrid make step 6
have a complexity of O(|X|3). As a result, the complexity
of the RA-TT algorithm is O(max{|X|3; (|N | + |Ψ |)}).

After the execution of Algorithm RA-TT for each tri-
task 〈νi, νj 〉 of a workflow, we obtain set Aij of all feasi-
ble resource allocations RAij for 〈νi, νj 〉, i.e. a set of pairs
(Xχ ,Xθ ). Now, in order to find a feasible resource alloca-
tion for the whole workflow, feasible resource allocations for
all of its tri-tasks have to be found. This will be discussed in
Sect. 5.4. However, first, in Sect. 5.3, the case of dependent
tri-tasks will be analyzed.

5.3 Dependent tri-tasks

As has been mentioned in Sect. 5.2, it is possible to define
set Aij for each tri-task 〈νi, νj 〉 of a workflow. However, at
this stage the most difficult phase begins. Notice, namely,
that in a workflow there exist many chains of dependent tri-
tasks.

Definition 7 Two tri-tasks 〈νi, νj 〉 and 〈νk, νm〉 are called
dependent, if one of the following three cases occurs
(Fig. 6):

Fig. 6 Three cases of
dependent tri-tasks
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Fig. 7 Illustration for
Example 1

(1) i = k, or
(2) j = k, or
(3) j = m.

For example, if we have two tri-tasks 〈νi, νj 〉 and 〈νj , νk〉
(case 2), then we cannot make resource allocations for these
two tri-tasks independently, since task νj binds them—it is
the finishing element of the first tri-task and, simultaneously,
the starting element of the second one. As a result, after
choosing a pair (Xχ ,Xθ) ∈ Aij as a resource allocation for
tri-task 〈νi, νj 〉, such a resource allocation (Xθ ,Xρ) has to
be chosen from the set Ajk whose first element is Xθ . Sim-
ilar dependencies occur for cases 1 and 3. The condition of
a common node in resource allocations for two dependent
tri-tasks has to be satisfied for each two dependent tri-tasks
over the whole workflow.

Thus, having defined feasible resource allocations for all
tri-tasks a workflow is not a sufficient condition for the ex-
istence of a feasible resource allocation for the entire work-
flow. Let us show it on a simple example, regarding case 1
of Definition 7.

Example 1 Assume a part of a workflow W with 3 com-
putational tasks ν6, ν7, ν8 and 2 transmission tasks (ν6, ν7),

(ν6, ν8), as shown in Fig. 7A. The required bandwidths for
transmission tasks (ν6, ν7), (ν6, ν8) are B6,7 and B6,8, re-
spectively. Next assume a part of the grid structure with
resource nodes X2,X3,X3,X9 and corresponding band-
widths Ψ μν between nodes presented in Fig. 7B. Fig-
ure 7C presents sets Y 6, Y 7, Y 8 of capable nodes for tasks

ν6, ν7, ν8, respectively. In such a case, after the execution
of Algorithm RA-TT for tri-task 〈ν6, ν7〉, we will obtain the
only feasible resource allocation RA6,7 = (X2,X3) whereas
for tri-task 〈ν6, ν8〉 the only feasible resource allocation is
RA6,8 = (X5,X9). Thus, the resulting sets of all feasible
allocations for these tri-tasks are A6,7 = {(X2,X3)} and
A6,8 = {(X5,X9)}, as shown in Fig. 7D. Since task ν6 can-
not be executed in nodes X2 and X5 at the same time, there
is no feasible resource allocation for workflow W .

Let us now pass to the problem of finding a feasible re-
source allocation for a given workflow.

5.4 Algorithm RA-W

In this section we present an algorithm for finding feasible
resource allocations for the entire workflow.

Let us first represent a feasible resource allocation RAW

for workflow W with respect to Definition 4 as a function w :
V → X, where (w(i) = χ) ⇔ (νi ⊗Xχ). Then, according to
Definition 7, for each pair (〈νi, νj 〉, 〈νk, νm〉) of dependent
tri-tasks the following conditions must hold:

i = k �⇒ ∃
Xχ

[
(Xχ ,Xθ ) ∈ Aij ∧ (Xχ ,Xρ) ∈ Aim

]
(3)

j = k �⇒ ∃
Xθ

[
(Xχ ,Xθ ) ∈ Aij ∧ (Xθ ,Xρ) ∈ Ajm

]
(4)

j = m �⇒ ∃
Xρ

[
(Xχ ,Xρ) ∈ Aij ∧ (Xθ ,Xρ) ∈ Akj

]
(5)
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In other words, function w assigns each computational task
to a resource node in such a way that there is no conflict
between dependent tri-tasks.

We will now show how to find a feasible resource alloca-
tion RAW (i.e. satisfying conditions (3)–(5) for each pair of
tri-tasks) for a given workflow W . Let us define the sets A

ij
L

and A
ij
R for each tri-task 〈νi, νj 〉 by:

A
ij
L =

{
Xl : ∃

(Xl,Xr )
(Xl,Xr) ∈ Aij

}

A
ij
R =

{
Xr : ∃

(Xl,Xr )
(Xl,Xr) ∈ Aij

} (6)

i.e. Aij
L is the set of resource nodes occurring as left elements

of pairs RAij in Aij , and A
ij
R as right elements. Then, for

each computational task νj , j = 1,2, . . . , |V |, we define set
Aj as:

Aj =
∏

i

A
ij
R ∩

∏

j

A
jk
L (7)

which is a set of nodes where task νj can only be executed
with respect to both computational and transmission require-
ments of all tri-tasks in which νj occurs.

And finally, a new set Aij , denoted A
ij
W , is constructed

thus:

A
ij
W = Aij ∩ (

Ai × Aj
)

(8)

Thus, for each tri-task 〈νi, νj 〉 the set A
ij
W contains all re-

source allocations RAij
W = (Xχ ,Xθ ) which enable to main-

tain conditions (3)–(5) over the entire workflow W . Conse-
quently, if none of the sets A

ij
W is empty, there must exist

a feasible resource allocation RAW for workflow W . Other-
wise (i.e. at least one A

ij
W = ∅), there is no feasible RAW .

Now, since each set A
ij
W may contain more than one el-

ement, the problem of choosing one RAij
W ∈ A

ij
W for each

tri-task 〈νi, νj 〉 appears. This is necessary for finding a par-
ticular feasible resource allocation RAW for workflow W .
Each function w satisfying the following conditions:

∀
νj ∈V

∃
θ∈{1,...,|X|}

w(j) = θ (9)

(Xχ ,Xθ) ∈ A
ij
W �⇒ w(i) = χ (10)

(Xθ ,Xρ) ∈ A
jk
W �⇒ w(k) = ρ (11)

defines a feasible resource allocation RAW with respect to
Definition 4.

In other words, each node j , j = 1,2, . . . , |V | of the
workflow representing a computational task must be as-
signed a number θ indicating a resource node of the grid.
Then its incoming arcs (transmission tasks) must be cov-
ered by pairs (resource allocations) with the right element

equal to θ , whereas its outgoing arcs must be covered with
the left element equal to θ . The number θ does not need to
be unique, i.e. more than one node of the workflow may be
assigned to the same resource node.

Let us give the following illustration. We can treat pairs
RAij

W = (Xχ ,Xθ) from sets A
ij
W as domino bones with χ

spots on the left end, and θ spots on the right end (the ori-
entation is important). The problem consists in covering all
arcs of workflow W with those domino bones in such a way
that arc (νi, νj ) is covered with a bone from set A

ij
W (left

end to start of the arc, right end to finish of the arc) and,
of course, for each node every attached bone must have the
same number of spots on the node-adjacent end.

Summarizing, the following algorithm finds a feasible re-
source allocation RAW for workflow W :

Algorithm RA-W

1. Execute Algorithm RA-TT for each tri-task 〈νi, νj 〉 to
find the sets Aij . If at least one Aij = ∅, then no feasible
RAW exists and STOP.

2. Find sets A
ij
L and A

ij
R from (6) for each tri-task 〈νi, νj 〉.

3. Find set Af from (7) for each task νj , j = 1,2, . . . , |V |.
If at least one Aj = ∅, then no feasible RAW exists and
STOP.

4. Find set A
ij
W from (8) for each tri-task 〈νi, νj 〉.

5. Find a function w satisfying conditions (9)–(11).

After the execution of Algorithm RA-W, a feasible re-
source allocation RAW for the considered workflow W with
respect to Definition 4 is found, defined by the function w

found in step 5 of the algorithm. Obviously, there can exist
many functions w satisfying conditions (9)–(11) and, as a
result, many feasible resource allocations. Algorithm RA-W
finds just one of them. However, the important thing is that
finding any function w is very easy. It is simply enough to
choose any pair of precedence-related computational tasks
(i.e. an arc of workflow W ) (νj , νm) as the starting one,

and to cover it by any RAjm
W ∈ A

jm
W . That first step defines

computational nodes for tasks νj and νm. Then, all depen-
dent arcs (νi, νj ), i.e. coming into the node where νj is ex-
ecuted, and all dependent arcs (νj , νk), i.e. going out of the
node where νj is executed, are covered by proper elements

RAij
W ∈ A

ij
W and RAjk

W ∈ A
jk
W , respectively. The same has to

be done for the node where νm is executed. The process con-
tinues until all arcs of workflow W are covered. Of course,
it may be simplest to set νj = ν1 in the first step, take any
RA1m

W ∈ A1m
W in order to assign node to tasks ν1 and νm, then

to all other successors of task ν1, and to go on as described
above. But it is not obligatory to start with task ν1. Below
we will show that starting with any arc (νj , νm) is enough
to find a function w in step 5 of Algorithm RA-W, pro-
vided that steps 1–4 have been performed correctly. In other



J Sched (2011) 14: 291–306 305

words, defining sets A
ij
W according to RA-W guarantees that

the covering will continue until all computational tasks have
assigned nodes, and there is no danger of getting stuck.

Proposition 1 Algorithm RA-W always finds a feasible re-
source allocation RAW for workflow W if it does exist.
Moreover, a feasible allocation can always be found regard-
less of which pair of precedence-related computational tasks
is allocated first.

Proof Assume that we have just covered an arc (νj , νm),
i.e. some nodes Xθ,Xγ have been assigned to precedence-
related computational tasks νj and νm, respectively. Accord-
ing to step 4 of RA-W, there must exist a non-empty set
A

jm
W containing a pair (Xθ ,Xγ ). Taking into account (8) two

conditions must hold simultaneously: (i) (Xθ ,Xγ ) ∈ Ajm

and (ii) (Xθ ,Xγ ) ∈ Aj × Am. From (ii) it follows directly
that Xθ ∈ Aj . Thus, in step 3 of RA-W, the set Aj must
have been defined such that Xθ ∈ Aj , which, according to
(7) and (6) means that ∀〈νi ,νj 〉∃(Xχ ,Xθ )(Xχ ,Xθ ) ∈ Aij and
∀〈νj ,νk〉∃(Xθ ,Xρ)(Xθ ,Xρ) ∈ Ajk .

Since equations (6) have been used in step 2 of RA-W,
Aij = ∅ and Ajk = ∅ must hold, otherwise step 2 would
never have been reached according to the stop criterion in
step 1. In consequence, task νj may be assigned to node Xθ

since it is always possible to assign any of its predecessors
to some node Xχ , as well as any of its successors to some
node Xρ . The same argument can be applied to task νm of

the arc (νj , νm). Thus, the covering based on sets A
ij
W de-

fined by Algorithm RA-W can always continue until a fea-
sible resource allocation (function w) is obtained. �

Let us now briefly analyze the complexity of Algo-
rithm RA-W.

The complexity of the first step is O(|V |2 · max{|X|3;
(|N |+ |Ψ |)}). O(|V |2 · |X|2) is the complexity of steps 2, 3,
and 5, whereas O(|V |2 · |X|4) is the complexity of step 4. As
a result, the complexity of the RA-W algorithm is O(|V |2 ·
max{|X|4; (|N | + |Ψ |)}).

Thus, finding a feasible resource allocation for a given
workflow can be done in polynomial time. Of course, Al-
gorithm RA-W can be used as a full enumeration scheme,
i.e. an exact algorithm finding all possible feasible resource
allocations. To this end, all possible functions w have to be
found in step 5. This, however, results in exponential com-
plexity of the algorithm, equal to O((|X|2)|V |2), as all pos-
sible allocations have to be examined.

6 Conclusions and future research

In this paper we have attempted to fill the gap between the
fields of grid resource management and project scheduling.

The problem of allocating grid resources to workflow appli-
cations has been considered. Grid resources have been di-
vided into two types: computational resources and network
resources. Accordingly, computational tasks of a workflow
as well as transmission tasks have been distinguished. The
problem consists in allocating grid computational resources
to computational tasks, as well as grid network resources to
transmission tasks in such a way that resource demands of
all tasks are satisfied. Processors of different types constitute
computational resources considered in this paper, whereas
the bandwidth is the network resource for which transmis-
sion tasks have to apply. We have shown under which as-
sumptions the defined grid resource allocation problem can
be formulated, and we solved in the framework of project
scheduling.

The main contribution of this paper lies in two features.
Firstly, a mathematical model of the problem considered,
including network as a resource, has been presented. The
model is very general, and may serve as a basis to the prob-
lem of scheduling workflows on a grid. Secondly, an ap-
proach to the problem of finding feasible resource alloca-
tions for a given workflow has been discussed. The approach
is formalized as the presented RA-W algorithm. The algo-
rithm finds a computation- and transmission-feasible alloca-
tion of resource nodes of a grid to computational tasks of
a workflow in polynomial time. It may also be used, under
exponential complexity, to find all possible feasible resource
allocations.

In future research we plan to pass to the scheduling phase.
In that context, Algorithm RA-W may be used as an enu-
meration scheme, and different algorithms may be tested
as scheduling policies on grid local resources. Moreover,
heuristic algorithms for resource allocation can be proposed
and tested along with various strategies for local schedul-
ing. Finally, further extensions of the model presented can
be considered, as has been mentioned in Sect. 3.2.
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spectives in modern project scheduling (pp. 345–373). New York:
Springer.

Kurowski, K., Nabrzyski, J., Oleksiak, A., & Węglarz, J. (2008). Multi-
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