
J Sched (2012) 15:77–81
DOI 10.1007/s10951-009-0154-4

A best possible deterministic on-line algorithm for minimizing
makespan on parallel batch machines

Peihai Liu · Xiwen Lu · Yang Fang

Published online: 31 December 2009
© Springer Science+Business Media, LLC 2009

Abstract We study on-line scheduling on parallel batch
machines. Jobs arrive over time. A batch processing ma-
chine can handle up to B jobs simultaneously. The jobs
that are processed together form a batch and all jobs in a
batch start and are completed at the same time. The process-
ing time of a batch is given by the processing time of the
longest job in the batch. The objective is to minimize the
makespan. We deal with the unbounded model, where B is
sufficiently large. We first show that no deterministic on-
line algorithm can have a competitive ratio of less than
1 + (

√
m2 + 4 − m)/2, where m is the number of parallel

batch machines. We then present an on-line algorithm which
is the one best possible for any specific values of m.

Keywords Scheduling · Parallel Batch Machines · On-line

1 Introduction

We consider the problem of on-line scheduling on m par-
allel batch processing machines. A parallel batch process-
ing machine is modeled as a system that can handle up to
B jobs simultaneously as a batch. The processing time of a
batch is the time required for processing the longest job in
the batch, and all the jobs in a batch start and are completed
at the same time. A set of n independent jobs are given. Each
job Jj (1 ≤ j ≤ n) becomes available at its release time rj ,
which is not known in advance, and its processing time pj

only becomes known at its arrival. The problem involves as-
signing all the jobs to batches and machines and determining

P. Liu · X. Lu (�) · Y. Fang
School of Science, East China University of Science and
Technology, Shanghai 200237, People’s Republic of China
e-mail: xwlu@ecust.edu.cn

the starting times of the resulting batches in such a way that
the makespan, i.e., max1≤j≤n Cj , is minimized, where Cj

is the completion time of job Jj . In the scheduling notation
introduced by Graham et al. (1979), this model is expressed
as P |rj ,B = ∞,on-line|Cmax.

Scheduling of batch processing machines has been ex-
tensively studied in the last decade (Brucker et al. 1998;
Chen et al. 2001, 2004; Lee et al. 1992, 2005; Ng et al.
2002, 2003; Uzsoy 1994; Yuan et al. 2004). According to
the limit on the size of each batch, there are two distinct
models. One is the restrictive model in which the bound B

on each batch size is finite, i.e., B < n. Problems of this
model are motivated by the burn-in operations in semicon-
ductor manufacturing, in which a batch of integrated circuits
are placed in an oven and then exposed to a high tempera-
ture. Each circuit has a pre-specified minimum burn-in time
and the burn-in oven has a limited capacity. The other is the
unrestrictive model, in which there is effectively no limit on
the sizes of batches, i.e., B = ∞. Scheduling problems of
this model arise in situations where compositions need to be
hardened in kilns and the kiln is sufficiently large, so that it
does not restrict the batch sizes.

For many on-line scheduling problems, because of a lack
of information, it is normally notpossible to have on-line al-
gorithms that guarantee optimal solutions to be delivered.
Researchers therefore turn to studying approximate on-line
algorithms for this kind of problem. The quality of an on-
line algorithm is typically assessed by its competitive ratio:
the nearer the ratio is to 1, the better the algorithm is. We say
that an algorithm is ρ-competitive if for any input instance,
it always returns a feasible solution with an objective value
not greater than ρ times the optimal (off-line) solution.

Let us survey the previous related results. Lee and Uz-
soy (1999) provided a number of heuristics for the prob-
lem 1|rj , B < n|Cmax. Liu and Yu (2000) proved that the

mailto:xwlu@ecust.edu.cn

78 J Sched (2012) 15:77–81

problem is NP-hard even if there are only two release dates,
and they derived a pseudo-polynomial time algorithm for
the case where the number of release dates is fixed. Zhang
et al. (2001) considered the on-line version of the problem.
They dealt with both the unrestrictive and restrictive mod-
els. For the unrestrictive model, they derived an optimal on-
line algorithm with a competitive ratio of (

√
5 + 1)/2. For

the restrictive model, they provided a 2-competitive on-line
algorithm. In the same paper, they considered the problem
Pm|B = ∞, rj ,on-line|Cmax and developed an (1 + βm)-
competitive on-line algorithm, where m is the number of
machines, and 0 < βm < 1 is a solution of the equation
βm = (1 − βm)m−1. Zhang et al. (2003) addressed the prob-
lems P |B < n, rj ,pj = p,on-line|Cmax and P |B = ∞,
rj ,pj = p,on-line|Cmax. In the two problems, there is an
assumption that the processing times of the jobs to be sched-
uled are identical. They proved that there is no on-line algo-
rithm with a competitive ratio smaller than (

√
5 + 1)/2 for

P |B < n, rj ,pj = p,on-line|Cmax and they also presented
an on-line algorithm with a competitive ratio matching the
lower bound. For Pm|B = ∞, rj ,pj = p,on-line|Cmax,
they provided a best possible on-line algorithm with a com-
petitive ratio of 1+γm, where 0 < γm < 1 is a solution of the
equation (1 + γm)m+1 = γm + 2. Nong et al. (2008) consid-
ered the problem P 2|B = ∞, rj ,on-line|Cmax. They gave
an on-line algorithm which is

√
2-competitive. Tian et al.

(2009) showed that there cannot exist a deterministic on-line
algorithm with a better competitive ratio for the two parallel
machines case.

In this paper, we consider the problem Pm|B = ∞, rj ,

on-line|Cmax. We first provide an on-line algorithm with a
competitive ratio of 1+αm, where αm = (

√
m2 + 4−m)/2.

We then show that no algorithm can have a competitive ratio
of less than 1 + αm, where αm is such that α2

m = 1 − mαm.
Thus our algorithm is the one best possible.

2 An on-line algorithm

Let J (t) be the set of the jobs which are available but not
yet scheduled at time t . Denote by p(t) the largest process-
ing time of the jobs in J (t). Denote by r(t) the smallest re-
lease time of the jobs in J (t). Let α = (

√
m2 + 4−m)/2; we

give an on-line algorithm for Pm|rj ,B = ∞,on-line|Cmax

as follows.

Algorithm H∞
m (α) At time t , if a machine is idle and

there are jobs available but not yet scheduled and t ≥
(1 + α)r(t) + αp(t), then start all the available jobs as a
single batch on the idle machine. Otherwise, do nothing, but
wait.

Now, we analyze the competitive ratio of this algorithm.

Given an instance I , denote by σ the schedule gener-
ated by Algorithm H∞

m (α) and by π the optimal schedule.
For a schedule χ , let Cmax(χ) denote its makespan and let
Sj (χ) denote the starting time of job Jj in the schedule χ .
For any two jobs Ji and Jj in two different batches in σ ,
if Si(σ) > Sj (σ), then all the jobs in the batch to which
job Ji is assigned are released after Sj (σ) by the descrip-
tion of Algorithm H∞

m (α). This implies that (1) Si(σ) >

(1 + α)Sj (σ) + αpi and (2) Cmax(π) > Sj (σ) + pi . For a
batch starting at time s in σ , we say that the batch is regular
if it starts at time (1 + α)r(s) + αp(s). Clearly, if the batch
is not regular, then s > (1 + α)r(s) + αp(s), which means
that the m machines are processing jobs during the interval
[r(s), s].

We will prove that H∞
m (α) has a competitive ratio of

1 + α. In our proof, we work with the smallest counterex-
ample, where size is measured in terms of the number of
jobs. Let I be such a smallest counterexample, and let σ be
the schedule created by H∞

m (α) for I . To prove that such a
counterexample cannot exist, we start by proving four struc-
ture properties that the schedule σ for an alleged smallest
counterexample must satisfy in the following four lemmas.

We assume there are n batches in σ . We denote by Bi the
batch i.

Lemma 1 In the schedule σ for the alleged smallest coun-
terexample I , there is only one job in each batch.

Proof Suppose to the contrary that there is more than one
job in some batch of σ ; then there are at least n + 1 jobs
in the instance I . We can find a counterexample I ′ consist-
ing of n jobs, which contradicts our choice of I . For each
batch Bi of σ , we define a new job Ji for the instance I ′,
ri = minJj ∈Bi

rj ,pi = maxJj ∈Bi
pj . Apply H∞

m (α) to I ′.
Then we obtain a schedule σ ′ for I ′ that is identical to
σ in the sense that the processing times and the starting
times of the batches in the schedule σ ′ are the same as
those in σ . Thus, the makespan of the resulting schedule
is not smaller than Cmax(σ). On the other hand, it is evi-
dent that the makespan of the optimal schedule π ′ for I ′ is
not greater than Cmax(π). Therefore, Cmax(σ

′)/Cmax(π
′) ≥

Cmax(σ)/Cmax(π) > 1 + α. �

From Lemma 1 we know that there is only one job in each
batch of σ . Without loss of generality, we assume that the
job in Bi is Ji . Thus the release time, processing time, start-
ing time and completion time of Bi in σ can be denoted by
ri , pi , Si(σ) and Ci(σ). For convenience, we index the jobs
in σ in the order such that S1(σ) < S2(σ) < · · · < Sn(σ).

Lemma 2 In the schedule σ for the alleged smallest coun-
terexample I , if Bi is not a regular batch, then on each ma-
chine there is a regular batch which starts before ri and is
completed no earlier than Si(σ).

J Sched (2012) 15:77–81 79

Proof If Bi is not a regular batch, by the algorithm, the m

machines are processing jobs during the interval [ri , Si(σ)];
in other words, on each machine there is a batch which starts
before ri and completes no earlier than Si(σ).

We use induction on i to show that the lemma holds.
Basic case: i ≤ m + 1. It is obvious that Bj is a regular

batch for each 1 ≤ j ≤ m. Thus the conclusion holds.
Induction case: i > m + 1. Assume the claim for smaller

integers than i, i.e., for each j (j < i); if Bj is not a regular
batch, then on each machine there is a regular batch which
starts before rj and is completed no earlier than Sj (σ).

Since Bi is not a regular batch, by Algorithm H∞
m (α),

there is a batch which starts before ri and is completed no
earlier than Si(σ) on each machine. For contradiction, sup-
pose one of the m batches is not a regular batch, say Bk .
Then by the induction hypothesis, on each machine there
is a regular batch which starts before rk and is completed
no earlier than Sk(σ). Denote the m regular batches by
Bk1 ,Bk2 , . . . ,Bkm and assume that Sk1(σ) < Sk2(σ) < · · · <

Skm(σ). Then we have that Skj
(σ) < Sk(σ) ≤ Skj

(σ) + pkj

for each 1 ≤ j ≤ m. A job in batch kj is released after
Skj−1(σ), as otherwise it would be processed in batch kj−1.
Therefore, Skj

(σ) ≥ (1+α)rkj
+αpkj

> (1+α)Skj−1(σ)+
αpkj

. Thus for each 2 ≤ j ≤ m,

(1 + α)Skj
(σ) = Skj

(σ) + αSkj
(σ)

> (1 + α)Skj−1(σ) + αpkj
+ αSkj

(σ)

≥ (1 + α)Skj−1(σ) + αSk(σ). (1)

So,

Sk(σ) > (1 + α)Skm(σ) + αpk

> (1 + α)Skm−1(σ) + αSk(σ) + αpk

> (1 + α)Sk1(σ) + (m − 1)αSk(σ) + αpk. (2)

Since Bi is not a regular batch, Si ≤ Sk + pk . By the al-
gorithm, Si > (1 + α)Sk . Therefore pk > αSk . Thus,

Sk(σ) > (1 + α)Sk1(σ) + (m − 1)αSk(σ) + αpk

> (1 + α)Sk1(σ) + (m − 1)αSk(σ) + α2Sk(σ).

Therefore,

Sk(σ) >
1 + α

1 − α2 − (m − 1)α
Sk1 ≥ 1 + α

α
Sk1 . (3)

Since Sk(σ) ≤ Sk1 + pk1 , Sk1(σ) < αpk1 , which contra-
dicts that the algorithm starts the batch Bk1 after αpk1 .

Therefore the m batches which start before ri and are
completed no earlier than Si(σ) are regular batches. �

Let Bl denote the first batch in σ that assumes the value
Cmax(σ).

Lemma 3 In the schedule σ for the alleged smallest coun-
terexample I , Bl is not a regular batch.

Proof If Bl is a regular batch, then Cmax(σ) = (1 + α)(rl +
pl) ≤ (1+α)Cmax(π), which contradicts our choice of I . �

Lemma 4 In the schedule σ for the alleged smallest coun-
terexample I , Cmax(σ) = Cm+1(σ), and there are only m +
1 batches.

Proof Since Bl is not a regular batch, by Lemma 2, on each
machine there is a regular batch which starts before rl and is
completed no earlier than Sl(σ). By Algorithm H∞

m (α), the
existence of the jobs that are completed before rl in σ does
not influence the start times of the m regular batches and
Bl and the order in which the jobs are executed. Therefore,
we can remove all jobs from I that are completed before
the release time of Bl without changing the value Cmax(σ)

and without increasing the value Cmax(π). Similarly, we can
remove all jobs from I that are released after the start of Bl

in σ . Thus there are only m+1 batches in σ and Cmax(σ) =
Cm+1(σ). �

Theorem 1 Algorithm H∞
m (α) has a competitive ratio of

1 + α, where α = (
√

m2 + 4 − m)/2.

Proof Suppose to the contrary that there exists an instance
for which the algorithm finds a schedule σ with Cmax(σ) >

(1 + α)Cmax(π). Obviously, there exists a counterexample
I with a minimum number of jobs. On the basis of Lem-
mas 1 and 4, we know that there are m + 1 batches in σ

and there is only one job in each batch of σ . For conve-
nience, we index the m + 1 batches in σ in the order such
that S1(σ) < S2(σ) < · · · < Sm+1(σ). Then on the basis of
Lemmas 3 and 4, we know that Bm+1 is not a regular batch
and Cmax(σ) = Cm+1(σ).

Since Bm+1 is not a regular batch, by Lemma 2, there
is a regular batch that starts before rm+1 and is com-
pleted after Sm+1 on each machine. It is obvious the m

batches are B1,B2, . . . ,Bm. Then we will prove that Sm >

(α + m − 1)pm+1.
In fact, we know that Bm+1 is not a regular batch and for

each 1 ≤ j ≤ m,

Sj (σ) + pj ≥ Sm+1(σ). (4)

By the algorithm, S1(σ) ≥ αp1. Thus S1(σ) + p1 ≤
α+1
α

S1(σ). Therefore,

S1(σ) ≥ α

1 + α
(S1(σ) + p1) ≥ α

1 + α
Sm+1(σ).

By the algorithm and the inequality (4), we have

Sj (σ) > (1 + α)Sj−1(σ) + αpj

≥ (1 + α)Sj−1(σ) + α(Sm+1(σ) − Sj (σ)).

80 J Sched (2012) 15:77–81

Thus,

Sj (σ) > Sj−1(σ) + α

1 + α
Sm+1(σ).

Therefore,

Sm(σ) >
mα

1 + α
Sm+1(σ). (5)

Since Sm+1(σ) > (1 + α)Sm(σ) + αpm+1,

Sm(σ) >
mα

1 + α
Sm+1(σ)

> mαSm(σ) + mα2

1 + α
pm+1. (6)

By definition of α, we have α2 = (1 − mα) and thus

Sm(σ) >
m

1 + α
pm+1 = (α + m − 1)pm+1. (7)

Now we consider the assignment of the m + 1 jobs in the
optimal schedule π and show that the alleged counterexam-
ple is not a counterexample at all.

Case 1: There are at least two of the m + 1 jobs are
scheduled in the same batch in π . Say the two jobs are
Ji, Jj (Si(σ) < Sj (σ)). Then Cmax(π) ≥ rj + max(pi,pj).
Since Bm+1 is not a regular batch, Cmax(σ) ≤ Si + pi +
pm+1. Thus, Cmax(σ) − Cmax(π) ≤ pm+1. Note that
Cmax(π) ≥ rm+1 + pm+1 > Sm(σ) + pm+1 >

(α + m − 1)pm+1 + pm+1 = (α + m)pm+1. Therefore,

Cmax(σ) − Cmax(π)

Cmax(π)
≤ 1

α + m
= α,

i.e., Cmax(σ)/Cmax(π) ≤ 1 + α, which contradicts our
choice of I .

Case 2: The m + 1 jobs form m + 1 batches in π .
Subcase 2.1: Any two of the m jobs Ji(1 ≤ i ≤ m) are

processed on two different machines in π . Then Cmax(π) ≥
min1≤j≤m(rj + pj) + pm+1 and Cmax(σ) = min1≤j≤m

(Sj + pj) + pm+1 ≤ (1 + α)min1≤j≤m(rj + pj) + pm+1.
Thus, Cmax(σ)/Cmax(π) ≤ 1 + α, which contradicts our
choice of I .

Subcase 2.2: There are at least two of the m jobs Ji(1 ≤
i ≤ m) which are processed on the same machine in π . De-
note the two jobs by Ji and Jj (Si(σ) < Sj (σ)). Then we
have Cmax(π) ≥ ri + pi + pj .

If pj ≥ pm+1, then Cmax(σ) − Cmax(π) ≤ Si(σ) − ri =
α(ri + pi), since Cmax(π) ≥ ri + pi + pj and Cmax(σ) ≤
Si(σ) + pi + pm+1. It is obvious that Cmax(π) ≥ ri + pi .
Thus Cmax(σ)/Cmax(π) ≤ 1 + α, which contradicts our
choice of I .

If pj ≤ pm+1, then Cmax(σ) ≤ Sj (σ) + pj + pm+1 ≤
rm+1 + 2pm+1. Thus Cmax(σ) − Cmax(π) ≤ pm+1, since
Cmax(π) ≥ rm+1 + pm+1. Similar to case 1, we know I is
not a counterexample at all. �

3 The lower bound

Theorem 2 Any on-line algorithm for Pm|B = ∞, rj ,

on-line|Cmax cannot have a competitive ratio of less than
1 + (

√
m2 + 4 − m)/2.

Proof Suppose an on-line algorithm A wants to guarantee a
competitive ratio of 1+α. Since an on-line algorithm with a
competitive ratio of 1 + (

√
m2 + 4 − m)/2 is already given,

we know that α ≤ (
√

m2 + 4−m)/2. Let Sj denote the start
time of Jj in the schedule produced by the on-line algo-
rithm A. Consider the following instance provided by the
adversary.

At time zero a job J1 is released with processing time
p1 = 1. Since the algorithm wants to guarantee a compet-
itive ratio of 1 + α, the algorithm A cannot start J1 later
than α, i.e., S1 ≤ α. Then the adversary proceeds as follows.
For 1 ≤ i ≤ m − 1, after the algorithm A starts job Ji as a
batch at time Si , the adversary proceeds by releasing a new
job Ji+1 at time ri+1 = Si + ε with processing time pi+1 =
1 − Si . We can show that an adversary will force the algo-
rithm A to start Ji+1 no later than Si +α, i.e., Si+1 ≤ Si +α.
In fact, if Si+1 > Si +α, then the makespan produced by the
algorithm A will be greater than Si + α + pi+1 = 1 + α;
while in an optimal schedule, Ji+1 can start at ri+1 = Si + ε

and be completed at ri+1 +pi+1 = 1+ε. Then, when ε → 0,
the algorithm A cannot guarantee a competitive ratio of
1 + α.

After the algorithm A starts Jm at Sm ≤ Sm−1 + α,
the m machines are all occupied by the m jobs until
min1≤i≤m{Si +pi}. In this situation, the adversary proceeds
by releasing a new job Jm+1 at time rm+1 = Sm + ε with
processing time pm+1 = max1≤i≤m{Si + pi − Sm}.

Consider the former m jobs. Let S0 = 0; then we can
get that pi = 1 − Si−1 for each 1 ≤ i ≤ m and pm+1 =
max1≤i≤m{Si +pi −Sm} = 1+max1≤i≤m{Si −Si−1}−Sm,
where S0 = 0.

Since Si+1 ≤ Si + α for each 1 ≤ i ≤ m, Sj ≤ Si +
(j − i)α for any i, j (0 ≤ i < j ≤ m).

After Jm+1 is released, it is obvious that the m machines
are all occupied by the m jobs until min1≤i≤m{Si + pi}.
Therefore,

Cmax ≥ min
1≤i≤m

{Si + pi} + pm+1

≥ 2 + min
1≤i≤m

{Si − Si−1} + max
1≤i≤m

{Si − Si−1} − Sm.

Without loss of generality, suppose min1≤i≤m{Si −
Si−1} = Sj − Sj−1.

If j < m, noting that Sm−1 ≤ Sj + (m − 1 − j)α and
Sj−1 ≤ (j − 1)α, then

min
1≤i≤m

{Si − Si−1} + max
1≤i≤m

{Si − Si−1}

J Sched (2012) 15:77–81 81

≥ Sj − Sj−1 + Sm − Sm−1

≥ Sm − (j − 1)α − (m − 1 − j)α

≥ Sm − (m − 2)α.

If j = m, noting that Sm−1 ≤ S1 + (m − 2)α, then

min
1≤i≤m

{Si − Si−1} + max
1≤i≤m

{Si − Si−1}
≥ Sm − Sm−1 + S1 − S0

≥ Sm − (m − 2)α.

Therefore,

Cmax ≥ 2 − (m − 2)α.

While in an optimal schedule, each job Ji(1 ≤ i ≤ m−1)

can form a batch which starts at ri and Jm,Jm+1 can form a
batch which starts at rm+1. Then the optimal makespan is

C∗
max = rm+1 + max{pm,pm+1}

= Sm + ε + 1 + max
1≤i≤m

{Si − Si−1} − Sm

= 1 + max
1≤i≤m

{Si − Si−1} + ε

≤ 1 + α + ε.

Since the algorithm wants to guarantee a competitive ra-
tio of 1 + α,

Cmax

C∗
max

≤ 1 + α.

Let ε → 0; we see that

2 − (m − 2)α

1 + α
≤ 1 + α,

α2 + mα − 1 ≥ 0.

Therefore, α ≥ (
√

m2 + 4 − m)/2, i.e., any on-line al-
gorithm cannot have a competitive ratio of less than 1 +
(
√

m2 + 4 − m)/2. �

Acknowledgements The authors would like to thank the anonymous
referees whose comments very much helped to improve this paper. This
research was supported by the grant 09ZR1407200 of Science Founda-
tion of Shanghai and NSFC (10771067).

References

Brucker, P., Gladky, A., Hoogeveen, H., Kovalyvov, M. Y., Potts, C.
N., Tautehahn, T., & Velde, S. L. (1998). Scheduling a batching
machine. Journal of Scheduling, 1, 31–54.

Chen, B., Deng, X., & Zang, W. (2001). On-line scheduling a batch
processing system to minimize total weighted job completion
time. In Lecture notes in computer science (Vol. 2223, pp. 380–
389). Berlin: Springer.

Cheng, T. C. E., Ng, C. T., Yuan, J. J., & Liu, Z. H. (2004). Single ma-
chine parallel batch scheduling subject to precedence constraints.
Naval Research Logistics, 51, 949–958.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy Kan, A. H. G.
(1979). Optimization and approximation in deterministic se-
quencing and scheduling: a survey. Annals Discrete Mathematics,
5, 287–326.

Lee, C. Y., & Uzsoy, R. (1999). Minimizing makespan on a single batch
processing machine with dynamic job arrivals. International Jour-
nal of Production Research, 37, 219–236.

Lee, C. Y., Uzsoy, R., & Martin Vega, L. A. (1992). Efficient algorithms
for scheduling semiconductor burn-in operations. Operations Re-
search, 40, 764–775.

Li, S., Li, G., Wang, X., & Liu, Q. (2005). Minimizing makespan on a
single batching machine with release times and non-identical job
sizes. Operations Research Letters, 33, 157–164.

Liu, Z., & Yu, W. (2000). Scheduling one batch processor subject to
job release dates. Discrete Applied Mathematics, 105, 129–136.

Ng, C. T., Cheng, T. C. E., & Yuan, J. J. (2002). A note on the single
machine serial batching scheduling problem to minimize maxi-
mum lateness with precedence constraints. Operations Research
Letters, 30, 66–68.

Ng, C. T., Cheng, T. C. E., & Yuan, J. J. (2003). The single machine
batching problem with family setup times to minimize maximum
lateness is strongly NP-hard. Journal of Scheduling, 6, 483–490.

Nong, Q. Q., Cheng, T. C. E., & Ng, C. T. (2008). An improved on-
line algorithm for scheduling on two unrestrictive parallel batch
processing machines. Operations Research Letters, 36, 584–588.

Tian, J., Fu, R., & Yuan, J. (2009). A best online algorithm for schedul-
ing on two parallel batch machines. Theoretical Computer Sci-
ence, 410, 2291–2294.

Uzsoy, R. (1994). A single batch processing machine with non-
identical job sizes. International Journal of Production Research,
32, 1615–1635.

Yuan, J. J., Liu, Z. H., Ng, C. T., & Cheng, T. C. E. (2004). The un-
bounded single machine parallel batch scheduling problem with
family jobs and release dates to minimize makespan. Theoretical
Computer Science, 320, 199–212.

Zhang, G., Cai, X., & Wong, C. K. (2001). On-line algorithms for min-
imizing makespan on batch processing machines. Naval Research
Logistics, 48, 241–258.

Zhang, G., Cai, X., & Wong, C. K. (2003). Optimal on-line algorithms
for scheduling on parallel batch processing machines. IIE Trans-
actions, 35, 175–181.

	A best possible deterministic on-line algorithm for minimizing makespan on parallel batch machines
	Abstract
	Introduction
	An on-line algorithm
	The lower bound
	Acknowledgements
	References

