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Abstract Energy usage has been an important concern in
recent research on online scheduling. In this paper, we study
the tradeoff between flow time and energy (Albers and Fu-
jiwara in ACM Trans. Algorithms 3(4), 2007; Bansal et al.
in Proceedings of ACM-SIAM Symposium on Discrete Al-
gorithms, pp. 805–813, 2007b, Bansal et al. in Proceedings
of International Colloquium on Automata, Languages and
Programming, pp. 409–420, 2008; Lam et al. in Proceed-
ings of European Symposium on Algorithms, pp. 647–659,
2008b) in the multi-processor setting. Our main result is an
enhanced analysis of a simple non-migratory online algo-
rithm called CRR (classified round robin) on m ≥ 2 proces-
sors, showing that its flow time plus energy is within O(1)

times of the optimal non-migratory offline algorithm, when
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the maximum allowable speed is slightly relaxed. The result
still holds even if the comparison is made against the optimal
migratory offline algorithm. This improves previous analy-
sis that CRR is O(logP)-competitive where P is the ratio
of the maximum job size to the minimum job size.

Keywords Online scheduling algorithms · Multi-processor
scheduling · Competitive analysis · Dynamic speed
scaling · Energy minimization

1 Introduction

Energy consumption has become a key issue in the design
of modern processors. This is essential not only for battery-
operated mobile devices with a single processor but also for
server farms or laptops with multi-core processors. A pop-
ular technology to reduce energy usage is dynamic speed
scaling (see, e.g., Brooks et al. 2000; Grunwald et al. 2000;
Pillai and Shin 2001; Weiser et al. 1994) where the proces-
sor can vary its speed dynamically. Running a job at a slower
speed is more energy efficient, yet it takes longer time and
may affect the performance. In the past few years, a lot of ef-
fort has been devoted to revisiting classical scheduling prob-
lems with dynamic speed scaling and energy concern taken
into consideration (e.g., Yao et al. 1995; Bansal et al. 2007a,
2007b; Albers and Fujiwara 2007; Chan et al. 2007; Albers
et al. 2007; Bunde 2009; Pruhs et al. 2008a; Irani et al. 2007;
see Irani and Pruhs (2005) for a survey). The challenge ba-
sically arises from the conflicting objectives of providing
good “quality of service” (QoS) and conserving energy.

One commonly used QoS measurement for scheduling
jobs on a processor is the total flow time (or equivalently,
average response time). Here, jobs with arbitrary size are re-
leased at unpredictable times and the flow time of a job is
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the time elapsed since it arrives until it is completed. When
energy is not a concern, the objective of a scheduler is sim-
ply to minimize the total flow time of all jobs, and it is well
known that the online algorithm SRPT (shortest remaining
processing time first) produces a schedule with the smallest
possible flow time. The study of energy-efficient scheduling
was initiated by Yao et al. (1995). They considered deadline
scheduling in the model where the processor can run at any
speed between 0 and ∞, and incurs an energy of sα per unit
time when running at speed s, where α ≥ 2 (typically 2 or 3
(Brooks et al. 2000; Mudge 2001)). This model, which we
call unbounded speed model, also paves the way for study-
ing scheduling that minimizes both the flow time and energy.
In particular, Pruhs et al. (2008b) studied offline scheduling
for minimizing the total flow time on a single processor with
a given amount of energy. They gave a polynomial time opti-
mal algorithm for the special case when jobs are of unit size.
However, this problem does not admit any constant compet-
itive online algorithm even if jobs are of unit size (Bansal
et al. 2007b).

Flow time and energy. To better understand the tradeoff
between flow time and energy, Albers and Fujiwara (2007)
proposed combining the dual objectives into a single ob-
jective of minimizing the sum of total flow time and en-
ergy. The intuition is that, from an economic viewpoint,
it can be assumed that users are willing to pay a certain
units (say, ρ units) of energy to reduce one unit of flow
time. By changing the units of time and energy, one can
further assume that ρ = 1 and thus would like to opti-
mize total flow time plus energy. Albers and Fujiwara pre-

sented an online algorithm that is 8.3e( 3+√
5

2 )α-competitive
for jobs of unit size. This result was later improved by
Bansal et al. (2007b), who gave a 4-competitive algorithm
for jobs of unit size. They also considered the more impor-
tant case of arbitrary job size and weight, and presented the
first online algorithm (denoted as BPS below) that is O(1)-
competitive for flow time plus energy. More recently, Lam
et al. (2008b) devised a simple speed scaling algorithm AJC,
which, when coupled with SRPT, improves the competitive
ratio to 2/(1 − α−1

αα/(α−1) ) < 2α/ lnα. For example, if α = 3,
the ratios of BPS and SRPT-AJC are about 7.94 and 3.25,
respectively.

The unbounded speed model has provided a convenient
model for studying power management, yet it is not realis-
tic to assume unbounded speed. Recently, Chan et al. (2007)
introduced the bounded speed model, where the speed can
be scaled between 0 and some maximum T . Bansal et al.
(2008) adapted the previous results on minimizing flow
time plus energy (Bansal et al. 2007b) to this model. For
jobs of arbitrary size and weight, the BPS algorithm is still
O(1)-competitive when using a processor with maximum
speed (1 + ε)T for any ε > 0 (precisely, the competitive
ratio is max{(1 + 1/ε), (1 + ε)α}(2 + o(1))α/ lnα). It is

worth-mentioning that BPS also relies on extra speed in the
unbounded speed model, but the extra speed is absorbed
by the model implicitly. SRPT-AJC works in the bounded
speed model as well, leading to a smaller competitive ra-
tio of β = 2(α + 1)/(α − α−1

(α+1)1/(α−1) ) < 2α/ lnα. More in-
terestingly, SRPT-AJC does not demand a processor with
higher maximum speed. For example, if α = 3, the ratios of
BPS and SRPT-AJC can be 11.91 (using maximum speed
1.466T ) and 4, respectively.

Multi-processor scheduling. All the results above are
about single-processor scheduling. In the older days, when
energy was not a concern, flow time scheduling on multiple
processors running at fixed speed was an interesting prob-
lem by itself (e.g., Avrahami and Azar 2007; Awerbuch et al.
2002; Leonardi and Raz 2007; Pruhs et al. 2004; Chekuri
et al. 2001, 2004). The study of multi-processor scheduling
is not only of theoretical interest. In fact, modern computers
are using a multi-core processor, which is essentially a pool
of identical processors.

In the multi-processor setting, jobs remain sequential in
nature and cannot be executed by more than one proces-
sor in parallel. We distinguish schedules that would mi-
grate jobs among processors from those that would not.
Different online algorithms like SRPT and IMD (Avrahami
and Azar 2007) that are �(logP)-competitive have been
respectively proposed under the migratory and the non-
migratory model, where P is the ratio of the maximum
job size to the minimum job size (Leonardi and Raz 2007;
Awerbuch et al. 2002; Avrahami and Azar 2007). Further-
more, Chekuri et al. (2004) have shown that IMD is O(1 +
1/ε)-competitive when using processors (1+ε) times faster.
If migration is allowed, SRPT can achieve a competitive ra-
tio one or even smaller, when using sufficiently fast proces-
sors (McCullough and Torng 2008; Phillips et al. 2002). It
is worth-mentioning that non-migratory algorithms are pre-
ferred in practice because migrating jobs requires overheads
and is avoided in many applications.

Bunde (2009) is the first to study multi-processor sched-
uling that takes both flow time and energy into consider-
ation, his work is about offline approximation for jobs of
unit size. Recently, Lam et al. (2008a) gave the first on-
line algorithm for minimizing flow time plus energy for jobs
of arbitrary size; their algorithm is non-migratory and is
O(logP)-competitive when using processors with slightly
higher maximum speed. They also showed an Ω(logP)

lower bound if extra speed is not allowed. The literature also
contains multi-processor results on optimizing other classi-
cal objectives together with energy.1

1Pruhs et al. (2008a) and Bunde (2009) both studied offline algorithms
for the makespan objective. Albers et al. (2007) studied online algo-
rithms for scheduling jobs with restricted deadlines.
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Table 1 The competitive ratios
of non-migratory online
algorithms for minimizing flow
time and flow time plus energy

Flow time Flow time plus energy

�(logP ) (Avrahami and Azar 2007; O(logP ) using

Awerbuch et al. 2002) (1 + ε)-speed processors (Lam et al. 2008a)

O(1) using O(1) using

(1 + ε)-speed processors (Chekuri et al. 2004) (1 + ε)-speed processors [this paper]

To save energy in the multi-processor setting, one would
like to balance the load of the processors so as to avoid run-
ning any processor at high speed, and it is natural to con-
sider some kind of round-robin strategy. Lam et al. (2008a)
in particular considered the online algorithm CRR (classi-
fied round robin), which divides jobs into different classes
according to their sizes and dispatches jobs of the same class
to the processors in a round-robin fashion. They showed
that CRR can lead to an O(logP)-competitive algorithm
for flow time plus energy. In the bounded speed model, this
algorithm requires the processors to have maximum speed
(1 + ε)T for any ε > 0. As mentioned before, when flow
time is the only concern, (1 + ε) times faster processors
can lead to O(1)-competitive algorithm even if the online
algorithm is required to be non-migratory (Chekuri et al.
2004). Thus, it is natural to ask whether there exists an
O(1)-competitive algorithm for flow time plus energy when
extra speed is allowed.

Our contribution. In this paper, we give an enhanced
analysis of CRR for optimizing flow time plus energy
on m ≥ 2 processors, and show that CRR can be O(1)-
competitive when using processors with slightly higher
maximum speed. Table 1 shows a summary of non-migra-
tory results on scheduling for flow time with or without en-
ergy concern.

The core of our analysis is to prove that there always ex-
ists a non-migratory schedule that dispatches jobs accord-
ing to CRR and whose flow time plus energy is within a
constant factor (instead of a factor of O(logP)) of the op-
timal migratory offline schedule. As a result, we can dis-
patch jobs in an online fashion by using CRR. And we can
approximate the optimal schedule of each processor by us-
ing the online algorithm BPS (Bansal et al. 2007b, 2008) or
SRPT-AJC (Lam et al. 2008b) separately for each processor.
Since these algorithms are O(1)-competitive for minimizing
flow time plus energy in the single-processor setting, they
can support CRR to give a competitive result for the multi-
processor setting. The performance of CRR plus SRPT-AJC,
denoted as CRR-SA, in the bounded speed model (where T

denotes the maximum speed) is summarized as below.2 It is
convenient to define a constant ηε = (1 + ε)α[(1 + ε)α−1 +

2Our analysis can also be applied to the unbounded speed model, but
it is of less interest.

(1 − 1/α)(2 + ε)/ε2] for any ε > 0. Following Lam et al.
(2008b), β is defined as 2(α + 1)/(α − α−1

(1+α)1/(α−1) ).

• Against the optimal (offline) non-migratory schedule: For
any ε > 0, CRR-SA can be (2ηεβ)-competitive for mini-
mizing flow time plus energy, when the maximum allow-
able speed is relaxed to (1 + ε)2T . E.g., if α = 2 and
ε = 0.6, the competitive ratio is about 96; if α = 3 and
ε = 0.1, the competitive ratio is 1504.

• Against the optimal (offline) migratory schedule: The
competitive ratio becomes 5ηεβ .

Both the analyses in Lam et al. (2008a) and in this paper
stem from an offline result to eliminate migration.3 Roughly
speaking, the analysis in Lam et al. (2008a) relies on a trans-
formation of an arbitrary job set to an “m-parallel” job set, in
which jobs can be divided into groups of m jobs with same
release time. For m-parallel job set, it is relatively easy to
obtain an optimal non-migratory schedule that dispatches
jobs according to CRR using extra speed. Yet transform-
ing an arbitrary job set to an m-parallel job set and vice
versa require a non-trivial technique to modify the release
times of jobs forward and backward. Such transformation
increases the flow time plus energy of the resulting sched-
ule by a factor of O(logP), and it cannot be improved by
using extra speed. In this paper, instead of relying on such
transformation, we have an observation that we can focus on
some special schedules called “immediate-start” schedules,
from which we can derive a much simpler algorithm to con-
struct CRR schedules and exploit the extra speed to show
that the flow time plus energy increases by only a constant
factor (rather than an O(logP) factor).

Remarks for fixed-speed scheduling. The analysis of CRR
also reveals its performance in the context of traditional
flow-time scheduling, where processors are of fixed-speed
and the concern is on flow time only. In this case, CRR
(plus SRPT for individual processor) would give a non-
migratory online algorithm which, when compared with
the optimal migratory algorithm, can have a competitive
ratio of one or even any constant arbitrarily smaller than

3The cost of eliminating migration has been investigated in the clas-
sical setting such as deadline scheduling (Chan et al. 2005; Kalyana-
sundaram and Pruhs 2001) and flow time scheduling (Awerbuch et al.
2002; Avrahami and Azar 2007).
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one, when using sufficiently fast processors. The compet-
itive ratio can be (56.72/s) when using s-speed proces-
sors for s ≥ 56.72.4 Note that if migration is allowed, the
efficiency can be much better as McCullough and Torng
(2008) have showed that the migratory algorithm SRPT
is 1

s
-competitive when using s-speed processors, where

s ≥ 2 − 1
m

.

1.1 Preliminaries

Definitions and notations. Given a job set J , we want to
schedule J on a pool of m ≥ 2 processors. Note that jobs
are sequential in nature and cannot be executed by more
than one processor in parallel. All processors are identical
and a job can be executed on any processor. Preemption is
allowed and a preempted job can be resumed at the point of
preemption. We differentiate two types of schedules: a mi-
gratory schedule can move partially-executed jobs from one
processor to another processor without any penalty, and a
non-migratory schedule cannot.

We use r(j) and p(j) to denote respectively the re-
lease time and work requirement (or size) of job j . We let
p(J ) = ∑

j∈J p(j) be the total size of J . The time re-
quired to complete job j using a processor with fixed speed
s is p(j)/s.

With respect to a schedule S for a job set J , we use the
notations max-speed(S), EJ (S) and FJ (S) to denote the
maximum speed, energy usage, and total flow time, respec-
tively. It is convenient to define GJ (S) = FJ (S)+EJ (S).
When the context is clear, we will omit the subscript J .
Note that F(S) is the sum, over all jobs, of the time since
a job is released until it is completed, or equivalently, the
integration over time of the number of unfinished jobs. As
processor speed can vary dynamically and the time to exe-
cute a job j is not necessarily equal to p(j), we define the
execution time of job j to be the flow time minus the waiting
time of j , and define the total execution time of S to be the
sum of the execution time over all jobs in S .

Properties of m-processor schedules. The following
lemma shows a lower bound on G(S) which depends on
p(J ), irrelevant of the number of processors.

Lemma 1 For any m-processor schedule S for a job set J ,
G(S) ≥ α

(α−1)1−1/α p(J ).

4Precisely, we can show that for any ε > 0 such that 5
ε2 (2 + ε) ≥ 1,

CRR using processors of speed (1+ε)2 is 5
ε2 (2+ε)-competitive. Com-

bining with the result of McCullough and Torng (2008) that SRPT is
1
s

-competitive for single processor when using processor of speed s,

this implies CRR using processors of speed s(1 + ε)2 is 5
sε2 (2 + ε)-

competitive. By changing variables, we can show that with σ = 56.72,

CRR using processors of speed s ≥ σ is 5σ(
√

σ+1)

s(
√

σ−1)2 -competitive, and
5σ(

√
σ+1)

(
√

σ−1)2 ≈ 56.72.

Proof Suppose that a job j in S has flow time t . The
energy usage for j is minimized if j is run at constant
speed p(j)/t throughout, and it is at least (p(j)/t)αt =
p(j)α/tα−1. Since t + p(j)α/tα−1 is minimized when t =
(α − 1)1/αp(j), we have t + p(j)α/tα−1 ≥ α

(α−1)1−1/α p(j).
Summing over all jobs, we obtain the desired lower
bound. �

We also observe the following property of any optimal
schedule.

Lemma 2 Any optimal schedule runs a job at the same
speed throughout its lifespan.

Proof This is due to the convexity of the power function sα .
In any migratory or non-migratory schedule, if a job j is
not run at the same speed throughout its lifespan, we can
always reduce the energy consumption as follows. Let I

be the set of time intervals during which j is run, and let
s(t) be the speed that j is run at time t (note that j is
processed by at most one processor at t). By Jensen’s In-
equality,

∫
t∈I

s(t)α dt > |I | ·(∫
t∈I

s(t) dt/|I |)α , i.e., running
j at the average speed over the intervals in I reduces the en-
ergy. �

Critical speed. Without loss of generality, we can assume
that at any time an optimal schedule never runs a job at
speed less than the critical speed, defined as 1/(α − 1)1/α

(Albers and Fujiwara 2007), and the maximum speed T is
at least the critical speed. The assumption stems from an ob-
servation (Lemma 4) that a multi-processor schedule can be
transformed without increasing the flow time plus energy
so that it never runs a job j at speed less than the criti-
cal speed. Lemma 4 makes use of a result by Albers and
Fujiwara (2007) (Lemma 3) that when scheduling a single
job j on a single processor for minimizing total flow time
plus energy, j should be executed at the critical speed, i.e.,
1/(α − 1)1/α .

Lemma 3 (Albers and Fujiwara 2007) At any time after a
job j has been run on a processor for a while, suppose that
we want to further execute j for another x > 0 units of work
and minimize the flow time plus energy incurred in this pe-
riod. The optimal strategy is to let the processor always run
at the critical speed.

Lemma 4 Given any m-processor schedule S for a job
set J , we can construct an m-processor schedule S ′ for J
such that S ′ never runs a job at speed less than the crit-
ical speed and G(S ′) ≤ G(S). Moreover, S ′ needs migra-
tion if and only if S does; and max-speed(S ′) is at most
max{max-speed(S), 1/(α − 1)1/α}.
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Proof Assume that there is a time interval I in S during
which a processor i is running a job j below the critical
speed. If S needs migration, we transform S to a migratory
schedule S1 for J such that job j is always scheduled in
processor i. This can be done by swapping the schedules of
processor i and other processors for different time intervals.
If S does not need migration, job j is entirely scheduled
in processor i and S1 is simply S . In both cases, G(S1) =
G(S).

We can then improve G(S1) by modifying the schedule
of processor i as follows. Let x be the amount of work of
j processed during I on processor i. First, we schedule this
amount of work of j at the critical speed. Note that the time
required is shortened. Then we move the remaining schedule
of j backward to fill up the time shortened. By Lemma 3, the
flow time plus energy for j is preserved. Other jobs in J are
left intact. To obtain the schedule S ′, we repeat this process
to eliminate all such intervals I . �

We can assume that the maximum speed T is at least the
critical speed. Otherwise, any multi-processor schedule in-
cluding the optimal one would always run a job at the maxi-
mum speed. It is because when running a job below the criti-
cal speed, the slower the speed, the more total flow time plus
energy is incurred. In other words, the problem is reduced to
minimizing flow time alone.

2 The online algorithm

This section presents the definition of the online algo-
rithm CRR-SA, which produces a non-migratory schedule
for m ≥ 2 processors. The following three sections are de-
voted to proving that, when compared with the optimal non-
migratory or migratory schedule, this algorithm is O(1)-
competitive for flow time plus energy if the maximum al-
lowable speed is slightly relaxed.

Consider any fixed constant ε > 0. A job is said to be in
class k if its size is in the range ((1 + ε)k−1, (1 + ε)k]. In
a CRR(ε) schedule, jobs of the same class are dispatched
upon their arrival to the m processors using a round-robin
strategy, and different classes are handled independently.
Jobs once dispatched to a processor will be processed there
until they finish. Thus a CRR(ε) schedule is non-migratory
in nature.

The intuition of using a CRR schedule comes from a new
offline result that there is a CRR schedule such that the total
flow time plus energy is O(1) times that of the optimal (non-
migratory or migratory) offline schedule and the maximum
allowable speed is only slightly higher. Details are stated in
Theorem 5 below (Sects. 3, 4 and 5 are devoted to prov-
ing this theorem). Recall that the constant ηε is defined as
(1 + ε)α[(1 + ε)α−1 + (1 − 1/α)(2 + ε)/ε2].

Theorem 5 Given a job set J , let O1 and O2 respectively
be an optimal non-migratory schedule and an optimal mi-
gratory schedule for J using maximum speed T . Then, for
any ε > 0,

(i) We can construct from O1 a CRR(ε) schedule S1 for J
such that G(S1) ≤ 2ηεG(O1), and max-speed(S1) ≤
(1 + ε)2 × max-speed(O1); and

(ii) We can construct from O2 a CRR(ε) schedule S2 for J
such that G(S2) ≤ 5ηεG(O2), and max-speed(S2) ≤
(1 + ε)2 × max-speed(O2).

Notice that the CRR schedule stated in Theorem 5 can-
not be constructed online. Nevertheless, with Theorem 5, it
is natural to design an online algorithm that first dispatches
jobs using the policy CRR(ε), and then schedules jobs on
each processor independently in a way that is competitive
in the single-processor setting. For the latter we make use
of the single-processor algorithm SRPT-AJC (Lam et al.
2008b). Below we review the algorithm SRPT-AJC and de-
fine the multi-processor algorithm CRR-SA. The definition
of SRPT-AJC is for reference only, in this paper we only
need to know its performance.

Algorithm SRPT-AJC. At any time, run the job with
the smallest remaining work at speed n1/α , where
n denotes the number of unfinished jobs at the cur-
rent time. If n1/α exceeds the maximum allowable
speed T , just use the maximum speed T .

Algorithm CRR-SA. Jobs are dispatched to the m

processors with the CRR(ε) policy. Jobs in each
processor are scheduled independently using SRPT-
AJC.

For a single processor, SRPT-AJC performs well in min-
imizing flow time plus energy.

Lemma 6 (Lam et al. 2008b) For minimizing flow time
plus energy of a single processor in the bounded speed
model, SRPT-AJC is β-competitive, where β = 2(α + 1)/

(α − α−1
(1+α)1/(α−1) ).

Analysis of CRR-SA. With Theorem 5 and Lemma 6, we
can easily derive the performance of CRR-SA against the
optimal non-migratory or migratory algorithm.

Corollary 7 In the bounded speed model, the performance
of CRR-SA for minimizing flow time plus energy on m ≥ 2
processors is as follows. For any ε > 0,

(i) Against a non-migratory optimal schedule, CRR-SA is
2ηεβ-competitive when using processors with maximum
speed relaxed to (1 + ε)2T .

(ii) Against a migratory optimal schedule, CRR-SA is
5ηεβ-competitive when using processors with maximum
speed relaxed to (1 + ε)2T .
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Proof Let O be the optimal non-migratory schedule for a
job set J . Consider any ε > 0. By Theorem 5(i), there ex-
ists a CRR(ε) schedule S for J such that G(S) ≤ 2ηεG(O)

and max-speed(S) ≤ (1 + ε)2 × max-speed(O). Let S ′ be
the CRR(ε) schedule produced by CRR-SA for J . Ap-
plying Lemma 6 to individual processors, we conclude
that G(S ′) ≤ βG(S) ≤ 2ηεβG(O), and max-speed(S ′) ≤
(1+ε)2 ×max-speed(O). The analysis of the migratory case
is the same. �

3 Restricted but useful optimal schedules

The remaining three sections are devoted to proving The-
orem 5. In essence, for any ε > 0, we want to construct a
CRR(ε) schedule from an optimal schedule with a mild in-
crease in flow time plus energy and in maximum speed. In
this section, we introduce two notions to restrict the possi-
ble optimal (non-migratory or migratory) schedules so as to
ease the construction.

• A job set J is said to be power-of-(1 + ε) if every job
in J has size (1 + ε)k for some k.

• For any job set J and schedule S , we say that S is
immediate-start if every job starts at exactly its release
time in J .

In general, an optimal schedule may not be immediate-start.
The rest of this section shows that it suffices to focus on job
sets that are power-of-(1 + ε) and admit optimal schedules
that are also immediate-start (such schedules will be referred
to as immediate-start, optimal schedules). See Corollary 10
below for a technical summary. The job size restriction is
relatively easy to observe as we can exploit a slightly higher
maximum speed (Lemma 8). The immediate-start property
is non-trivial and perhaps counter-intuitive (Lemma 9).

Technically speaking, the results below (Lemmas 8, 9
and Corollary 10) hold in both the migratory and the non-
migratory setting. To simplify the presentation of this sec-
tion, we will not mention whether schedules are migra-
tory or non-migratory. One should read the lemmas and
proofs by assuming all schedules are either migratory or
non-migratory.

Lemma 8 Given a job set J , we can construct a power-of-
(1 + ε) job set J ′ such that

(i) Any schedule S1 for J defines a schedule S ′
1 for J ′ such

that G(S ′
1) ≤ (1 + ε)αG(S1) and max-speed(S ′

1) ≤
(1 + ε) × max-speed(S1); and

(ii) Any schedule S ′
2 for J ′ defines a schedule S2 for J with

G(S2) ≤ G(S ′
2) and max-speed(S2) = max-speed(S ′

2).

Proof J ′ can be constructed from J by rounding up the
size of each job in J to the nearest power of (1 + ε). (i) S1

naturally defines a schedule S ′
1 for J ′ as follows. Whenever

S1 runs a job j at speed s, S ′
1 runs the corresponding job

in S ′ at speed s′ = s × (1 + ε)	log1+ε p(j)
/p(j). Note that
s′ ≤ (1+ ε)s, E(S ′

1) ≤ (1+ ε)αE(S1), and F(S ′
1) = F(S1).

Part (ii) is obvious as we can apply any schedule S ′
2 for J ′

to schedule J with extra idle time. �

We now explain why we can focus on optimal schedules
that are immediate-start. Unless otherwise stated, an optimal
schedule O below means a schedule that has the smallest
flow time plus energy among all schedules with maximum
speed not exceeding max-speed(O). To ease the discussion,
we add a subscript J to the notations F,E, and G to denote
that the job set under concern is J . Given a power-of-(1+ε)

job set J1 and an optimal schedule O1 for J1, Algorithm
MAKEISO constructs a power-of-(1 + ε) job set J2 and an
immediate-start, optimal schedule O2 for J2, and Lemma 9
states the properties of the constructed schedule.

Algorithm MAKEISO. We first construct O2 from J1

and O1. The idea is to repeatedly pick two jobs of the same
size and swap their schedules in O1. More specifically, each
time we consider all jobs in J1 of a particular size, and swap
their schedules so that their release times and start times in
O2 are in the same order (note that the speed at any time
stays unchanged and ties are broken by job ids). That is, for
all i, the job with the ith smallest release time will take up
the schedule of the job with the ith smallest start time; note
that the ith smallest start time can never be earlier than the
ith smallest release time. Thus, O2 is also a valid schedule
for J1.

Next, we modify J1 to J2, by replacing the release time
of each job j with its start time in O2. Note that the release
time of j can only be delayed (and never gets advanced).
Any schedule for J2 (including O2) is also a valid schedule
for J1.

We now show the following properties of the job set and
the schedule constructed by MAKEISO.

Lemma 9 Given a power-of-(1 + ε) job set J1 and an opti-
mal schedule O1 for J1, Algorithm MAKEISO constructs a
power-of-(1+ ε) job set J2 and an immediate-start, optimal
schedule O2 for J2 with max-speed(O2) ≤ max-speed(O1).
Furthermore, any CRR(ε) schedule S2 for J2 defines a
CRR(ε) schedule S1 for J1, and if GJ2(S2) ≤ γGJ2(O2)

for some γ ≥ 1, then GJ1(S1) ≤ γGJ1(O1).

Proof By construction, O2 is an immediate-start schedule
for J2. We now analyze the relationship between O1 and
O2 and show that CRR preserves performance.

O1 and O2 incur the same flow time plus energy for J1.
Since O1 and O2 use the same speed at any time, EJ1(O1) =
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EJ1(O2). Furthermore, at any time, O1 completes a job if
and only if O2 completes a (possibly different) job, and
thus O1 and O2 always have the same number of un-
finished jobs. This means that FJ1(O1) = FJ1(O2) and
GJ1(O1) = GJ1(O2).

O2 is optimal for J2 (in terms of flow time plus energy).
Suppose on the contrary that there is a schedule O′ for J2

with GJ2(O′) < GJ2(O2). Any schedule for J2, includ-
ing O′ and O2, is also a valid schedule for J1. Note that
EJ1(O′) = EJ2(O′), and FJ1(O′) = FJ2(O′) + d , where
d is the total delay of release times of all jobs in J2 (when
comparing with J1). Therefore, GJ1(O′) = GJ2(O′) + d ,
and similarly for O2. Thus, if GJ2(O′) < GJ2(O2), then

GJ1(O′) = GJ2(O′) + d

< GJ2(O2) + d = GJ1(O2) = GJ1(O1).

This contradicts the optimality of O1 for J1.
CRR preserves performance. Consider any CRR(ε)

schedule S2 for J2 satisfying GJ2(S2) ≤ γGJ2(O2), for
some γ ≥ 1. By definition, jobs of the same class are also
of same size and have the same order of release times in J1

and J2. Therefore, S2 is also an CRR(ε) schedule for J1.
For total flow time plus energy,

GJ1(S2) = GJ2(S2) + d ≤ γGJ2(O2) + d

≤ γ
(
GJ2(O2) + d

)

= γGJ1(O2) = γGJ1(O1).

Thus the lemma follows. �

In summary, the two lemmas above allow us to focus on
power-of-(1 + ε) job sets that admit immediate-start, opti-
mal schedules.

Corollary 10 Let J be a job set and let O be an opti-
mal schedule for J . For any ε > 0, there exist a power-
of-(1 + ε) job set J ′ and a schedule O′ for J ′ that is
immediate-start and optimal among all schedules with max-
imum speed (1 + ε) × max-speed(O). Furthermore, any
CRR(ε) schedule S ′ for J ′ defines a CRR(ε) schedule S
for J , and if GJ ′(S ′) ≤ γGJ ′(O′) for some γ ≥ 1, then
GJ (S) ≤ γ (1 + ε)αGJ (O).

Proof By Lemma 8(i), we construct from J and O a
power-of-(1 + ε) job set J1 and a schedule S1 for J1 with
GJ1(S1) ≤ (1+ε)αGJ (O) and max-speed(S1) ≤ (1+ε)×
max-speed(O). Let O1 be the optimal schedule for J1 with
maximum speed (1+ε)×max-speed(O). Then GJ1(O1) ≤
GJ1(S1) ≤ (1 + ε)αGJ (O). Next we apply Lemma 9 to J1

and O1, and we obtain J ′ and an immediate start, optimal
schedule O′ with maximum speed at most max-speed(O1),
which is at most (1 + ε)max-speed(O). Furthermore, by

Lemma 9 and Lemma 8(ii), S ′ defines a CRR(ε) schedule
S for J such that if GJ ′(S ′) ≤ γGJ ′(O′) for some γ ≥ 1,
then GJ (S) ≤ γGJ1(O1) ≤ γ (1 + ε)αGJ (O). �

In the rest of this paper, we further exploit the fact that
any optimal schedule runs a job at the same speed through-
out its lifespan (Lemma 2). Also, without loss of generality,
at any time an optimal schedule never runs a job at speed
less than the critical speed, defined as 1/(α − 1)1/α (Albers
and Fujiwara 2007), and the maximum speed T is at least
the critical speed (see Sect. 1.1 for justification).

4 Constructing CRR schedules

This section presents an algorithm, called MAKECRR, to
construct a CRR schedule from an optimal non-migratory
or migratory schedule S ∗ for a job set J . By Corollary 10,
we focus on the case where J consists of power-of-(1 + ε)

jobs only and S ∗ is immediate-start. Note that in a CRR(ε)

schedule for J , jobs in each class are of identical size, and
the round robin policy is effectively applied independently
to every subset of jobs of the same size. It is non-trivial to
prove that MAKECRR only increases the flow time and en-
ergy of the schedule by a moderate amount.

Before we detail the algorithm, it is useful to observe the
nature of the CRR schedule S to be constructed. The order-
ing of job execution in S could be very different from S ∗.
Roughly speaking, S only makes reference to the speed used
by S ∗. Recall that in S ∗, a job is run at the same speed
throughout its lifespan. For any job, S determines its speed
as the average of a certain subset of (b + 1)m jobs in S ∗,
where b = 1 or 4 depending on whether S ∗ is non-migratory
or migratory. The constant b arises from an upper bound of
the number of jobs of the same size that have started but not
yet finished at any time. We assume that the processors are
numbered from 0 to m − 1.

Algorithm MAKECRR. The algorithm has a parameter
λ > 0 to control the extra speed (we will eventually set λ = ε

to derive the desired result).
The construction runs in multiple rounds, from the small-

est job size to the largest. Let S0 denote the intermedi-
ate schedule, which is initially empty and eventually be-
comes S . We modify S0 in each round to include more
jobs. In the round for size p, suppose that J contains n

jobs {j1, j2, . . . , jn} of size p, arranged in increasing or-
der of release times. It is convenient to define jn+1 = j1,
jn+2 = j2, etc. For i = 1 to n, let xi be the average speed in
S ∗ of the fastest m jobs among the following (b + 1)m jobs:
ji, ji+1, . . . , ji+(b+1)m−1. We modify S0 by adding a sched-
ule for ji in processor (i mod m): it can start as early as at
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its release time, runs at constant speed (1 + λ)xi , and occu-
pies the earliest possible times, while avoiding times already
committed to earlier jobs for processor (i mod m).

Performance of the constructed schedule S . To study the
performance of S constructed by Algorithm MAKECRR,
we need to be very specific about the properties of the job
set J and the optimal schedule S ∗. By Corollary 10, we as-
sume that J consists of power-of-(1 + ε) jobs only and S ∗
is immediate-start. Furthermore, if S ∗ is non-migratory, it is
useful to observe the following property.

Property 11 Consider any optimal non-migratory schedule
for J on m ≥ 2 processors. At any time, for each job size,
there are at most m jobs which have started but not yet fin-
ished. We call this property m-proceeding.

Property 11 holds because in any optimal non-migratory
schedule (no matter whether it is immediate-start or not),
jobs of the same size dispatched to a processor must work
in a First-Come-First-Serve manner. Otherwise we can shuf-
fle the execution order to First-Come-First-Serve and reduce
the total flow time, and the schedule is not optimal.

Note that the m-proceeding property may not hold for
an optimal migratory schedule. Nevertheless, we observe a
weaker property. In Sect. 5, we will prove that there exists
an optimal migratory schedule for J that is 4m-proceeding
and immediate-start.

Now we are ready to state the performance of the sched-
ule S constructed by Algorithm MAKECRR. Roughly
speaking, if S ∗ is immediate-start and m-proceeding (or
4m-proceeding), then S is a CRR schedule with compara-
ble performance. Details are as follows. It is useful to define
με = (1 + ε)α−1 + (1 − 1/α)(2 + ε)/ε2 for any ε > 0. Note
that ηε = (1 + ε)αμε .

Lemma 12 Consider any ε > 0. Given a power-of-(1 + ε)

job set J with an optimal (migratory or non-migratory)
schedule S ∗ that is immediate-start and bm-proceeding
for some b ≥ 1, Algorithm MAKECRR (with λ = ε) con-
structs a CRR(ε) schedule S for J such that G(S) ≤
(b + 1)μεG(S ∗), and max-speed(S) ≤ (1 + ε) ×
max-speed(S ∗).5

The rest of this section is devoted to proving Lemma 12.
In Sect. 4.1, we analyze the energy usage. The analysis
of flow time is based on an upper bound on the execu-
tion time S spends on jobs of certain classes within a pe-
riod of time. This upper bound is stated and proved in

5In general, if Algorithm MAKECRR uses an arbitrary λ, then we
have G(S) ≤ (b + 1)((1 + λ)α−1 + (1 − 1/α)(2 + ε)/λε)G(S ∗), and
max-speed(S) ≤ (1 + λ) × max-speed(S ∗).

Sect. 4.2. With this upper bound, we can analyze the flow
time in Sect. 4.3.

Before going into the details of Lemma 12, we show how
to exploit Lemma 12 to construct a CRR schedule from any
(unrestricted) job set and optimal schedule with the flow
time and energy as stated in Theorem 5 (which was first
mentioned in Sect. 2).
Theorem 5. Given a job set J , let O1 and O2 respectively
be an optimal non-migratory schedule and an optimal mi-
gratory schedule for J using maximum speed T . Then, for
any ε > 0,

(i) We can construct from O1 a CRR(ε) schedule S1 for J
such that G(S1) ≤ 2ηεG(O1), and max-speed(S1) ≤
(1 + ε)2 × max-speed(O1); and

(ii) We can construct from O2 a CRR(ε) schedule S2 for J
such that G(S2) ≤ 5ηεG(O2), and max-speed(S2) ≤
(1 + ε)2 × max-speed(O2).

Proof We prove the non-migratory case only. The migratory
case can be proven in the same way.

First of all, we apply Corollary 10 on J and O1, and we
obtain a power-of-(1+ ε) job set J ′ and an immediate-start,
optimal non-migratory schedule O′ for J ′ with maximum
speed (1 + ε) × max-speed(O1). Recall that every optimal
non-migratory schedule including O′ is m-proceeding.

Next, we apply Algorithm MAKECRR to J ′ and O′ and
construct a CRR(ε) schedule S ′ for J ′. By Lemma 12,
GJ ′(S ′) ≤ 2μεGJ ′(O′), and max-speed(S ′) ≤ (1 + ε) ×
max-speed(O′). By Corollary 10, S ′ also defines a CRR(ε)
schedule S1 for J such that GJ (S1) ≤ 2(1 + ε)αμε ×
GJ (O1). Note that max-speed(S1) ≤ (1 + ε) ×
max-speed(O′) ≤ (1 + ε)2 × max-speed(O1). �

4.1 Speed and energy

We now start to prove Lemma 12, in which the given job
set J consists of power-of-(1 + ε) jobs, S ∗ is an optimal
schedule that is immediate-start and bm-proceeding, and S
is the schedule constructed by Algorithm MAKECRR. We
first note that in S , the speed of a job is (1 + ε) times
the average speed of m jobs in S ∗, so max-speed(S) ≤
(1 + ε) × max-speed(S ∗). Next, we consider the energy.

Lemma 13 The energy used by S produced by Algorithm
MAKECRR is at most (b + 1)(1 + ε)α−1G(S ∗).

Proof We first note that the energy incurred by running a
job of size p at constant speed s is sαp/s = sα−1p, which
is a convex function of the speed. Consider m jobs of size
p being run at different constant speeds, and let x be their
average speed. Running a job of size p at speed x incurs
energy at most 1/m times the total energy for running these
m jobs. If we further increase the speed to (1 + ε)x, the
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power increases by a factor of (1 + ε)α , and the running
time decreases by a factor of (1+ ε). Thus, the energy usage
increases by a factor of (1 + ε)α−1. In S , running a job at
(1 + ε) times the average speed of m jobs in S ∗ requires no
more energy than (1+ ε)α−1/m times the sum of the energy
usage of those m jobs in S ∗.

To bound E(S), we use a simple charging scheme: for a
job j in S , we charge to every one of the m jobs j ′ chosen
for determining the speed of j in Algorithm MAKECRR;
the amount to be charged is 1/m times of the energy us-
age of j ′ in S ∗. By Algorithm MAKECRR, each job can be
charged by at most (b + 1)m jobs. Thus,

E(S) ≤ (1 + ε)α−1

m
(b + 1)mE(S ∗)

≤ (b + 1)(1 + ε)α−1E(S ∗)

≤ (b + 1)(1 + ε)α−1G(S ∗). �

4.2 Upper bound on job execution time of S

To analyze the flow time of a job in S , we attempt to up-
per bound the execution time of other jobs dispatched to the
same processor during its lifespan. Lemmas 14 and 15 below
look technical, yet the key observation is quite simple—for
any processor z, if we consider all jobs that S dispatches to
z during an interval I , excluding the last (b+1) jobs of each
class (size), their total execution time is at most �/(1 + ε),
where � is the length of I .

Consider any job h0 ∈ J . Let h1, h2, . . . , hn be all the
jobs in J such that r(h0) ≤ r(h1) ≤ · · · ≤ r(hn) and they
have the same size as h0. Suppose that n ≥ im for some i ≥
b + 1. We focus on two sets of jobs: {h0, h1, . . . , him−1} and
{h0, hm,h2m, . . . , h(i−b−1)m}. The latter contains jobs dis-
patched to the same processor as h0. Lemma 14 below gives
an upper bound on the execution time of S for {h0, hm,h2m,

. . . , h(i−b−1)m} with respect to S ∗. Roughly speaking, this
lemma stems from the fact that S ∗ is immediate-start and
bm-proceeding as well as Algorithm MAKECRR sets the
speed of S as (1 + ε) times the average speed of certain jobs
in S ∗.

Lemma 14 For any job h0 and i ≥ b + 1, suppose him ex-
ists. Let t be the execution time of S ∗ for the jobs h0, h1, . . . ,

him−1 during the interval [r(h0), r(him)]. Then in the en-
tire schedule of S , the total execution time of the jobs
h0, hm, . . . , h(i−b−1)m is at most t/m(1 + ε).

Proof Since S ∗ is immediate-start, jobs h0, . . . , him−1 each
starts within the interval [r(h0), r(him)]. As S ∗ is bm-
proceeding, at time r(him), at most bm jobs among these im

jobs have not yet finished, or equivalently, S ∗ has completed
at least (i − b)m jobs. Let  denote a set of any (i − b)m

such completed jobs. Based on release times, we partition
 accordingly into i − b subsets 0, 1, . . . , i−b−1, each
of size exactly m. 0 contains the m jobs with smallest re-
lease times in , 1 contains jobs with the next m smallest
release times in , etc.

Since  misses out only bm jobs in {h0, h1, . . . , him−1},
each u, for u ∈ {0, . . . , i − b − 1}, is a subset of the
(b + 1)m jobs {hum,hum+1, . . . , hum+(b+1)m−1}. Because
the speed used by S for hum is (1 + ε) times the average
speed of the m fastest jobs in hum,hum+1, . . . , hum+(b+1)m−1

used by S ∗, which is faster than (1 + ε) times the average
speed of u in S ∗, it follows that the execution time of hum

in S is at most 1/m(1 + ε) times the total execution time
of u in S ∗. Summing over all u ∈ {0, . . . , i − b − 1}, the
execution time of S for h0, hm, . . . , h(i−b−1)m is no more
than 1/m(1 + ε) times the total execution time of  in S ∗.
In S ∗,  is only executed during [r(h0), r(him)], and the
lemma follows. �

Below is the main result of this section (to be used for
analyzing the flow time of S in Sect. 4.3). Basically, we have
proved in Lemma 14 that for any processor z, we can bound
the execution time of all jobs that S dispatches to z during an
interval I , excluding the last (b+1) jobs of each class (size).
The remaining jobs can be bounded by the fact that the speed
used by S ∗ is at least the critical speed 1/(α − 1)1/α (see
Sect. 1.1).

Lemma 15 Consider any k and any time interval I of
length �. For jobs of size at most (1 + ε)k that are released
during I , the total execution time of any processor in S
for these jobs is at most �/(1 + ε) + (b + 1)(1 + ε)k+1 ·
(α − 1)1/α/ε(1 + ε).

Proof Consider a particular k′ ≤ k. Let yk′ be the total ex-
ecution time over all processors that S ∗ uses for jobs of
size (1 + ε)k

′
during the interval I . Consider a particular

processor z in S ; suppose that S dispatches i jobs of size
(1 + ε)k

′
to processor z during I , and denote these i jobs

as J ′ = {h′
0, h

′
m, . . . , h′

(i−1)m}, arranged in the order of their
release times. We claim that the execution time of processor
z in S for these i jobs is at most yk′/m(1+ε) plus the execu-
tion time of S for the last b + 1 jobs of J ′. This is obvious
if J ′ contains b + 1 or fewer jobs. It remains to consider
the case when J ′ has i ≥ b + 2 jobs. By Lemma 14, if t

is the execution time of S ∗ for h′
0, h

′
1, . . . , h

′
(i−1)m−1 during

[r(h′
0), r(h

′
(i−1)m)], then S uses no more than t/m(1 + ε)

time to execute h′
0, h

′
m, . . . , h′

(i−b−2)m. The claim then fol-
lows by noticing that t ≤ yk′ , and we only have b + 1 jobs
h′

(i−b−1)m
· · ·h′

(i−1)m
not being counted.

Now we sum over all k′ ≤ k the upper bound of these
flow times, i.e., yk′/m(1 + ε) plus the execution time of S
for the last b + 1 jobs in J ′. The sum of the first part is
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∑
k′≤k yk′/m(1 + ε). Note that

∑
k′≤k yk′ is the execution

time of S ∗ during I , so
∑

k′≤k yk′ ≤ m|I | = m�, and the
sum of the first part is

∑
k′≤k yk′

m(1 + ε)
≤ �

1 + ε
.

The sum of the second part is over at most b + 1 jobs for
each k′. Recall that the speed used by S ∗ is at least the criti-
cal speed 1/(α −1)1/α (see Sect. 1.1), and the speed used by
S is (1+ε) times the average of some job speeds in S ∗. Thus
the speed used by S for any job is at least (1+ε)/(α−1)1/α ,
and the execution time of each job of size (1+ε)k

′
is at most

(1 + ε)k
′
(α − 1)1/α/(1 + ε). Summing over all k′ the execu-

tion time for these jobs, we have

k∑

k′=0

(b + 1)(1 + ε)k
′
(α − 1)1/α

1 + ε

<
(b + 1)(1 + ε)k+1(α − 1)1/α

ε(1 + ε)
.

The lemma follows by summing the two parts. �

4.3 Flow time

In this section, we show that the flow time of each job in S
is O(1/ε2) times of its job size (Lemma 16), which implies
that the total flow time is O(1/ε2)G(S ∗) (Corollary 17). To-
gether with Lemma 13, Lemma 12 can be proved. We first
bound the flow time of a job of a particular job size in S ,
making use of Lemma 15.

Lemma 16 In S , the flow time of a job of size (1 + ε)k is at
most (b + 1)(2 + ε)(1 + ε)k(α − 1)1/α/ε2.

Proof Consider a job j of size (1 + ε)k that is scheduled on
some processor z in S . Let r = r(j), and f be the flow time
of j in S , i.e., j completes at time r + f . To determine f ,
we focus on the scheduling of processor z in the intermedi-
ate schedule S0 immediate after Algorithm MAKECRR has
scheduled j . Note that f is due to jobs that have been exe-
cuted in S during [r, r +f ]. They can be partitioned into two
subsets: J1 for jobs released at or before r , and J2 for jobs
released during (r, r + f ]. Let f1 and f2 be the contribution
on f by J1 and J2, respectively, i.e., f = f1 + f2.

We first consider J1. Let t be the last time before r such
that processor z is idle right before t in S0. Thus all jobs
executed by processor z at or after t , and hence all jobs
in J1, must be released at or after t . By Lemma 15, the ex-
ecution time of processor z for jobs in J1 is no more than
(r − t)/(1 + ε) + [(b + 1)(1 + ε)k+1(α − 1)1/α/ε(1 + ε)].
Since processor z is busy throughout [t, r), the amount of

execution time for jobs in J1 remaining at r is at most

r − t

1 + ε
+ (b + 1)(1 + ε)k+1(α − 1)1/α

ε(1 + ε)
− (r − t)

≤ (b + 1)(1 + ε)k+1(α − 1)1/α

ε(1 + ε)
.

This implies f1 ≤ (b + 1)(1 + ε)k+1(α − 1)1/α/ε(1 + ε).
Next we consider J2. Since Algorithm MAKECRR

schedules jobs from the smallest to the largest size, jobs
in J2 are of size at most (1 + ε)k−1. We apply Lemma 15
to the interval [r, r + f ] for jobs of size at most (1 + ε)k−1.
The execution time of processor z for jobs in J2, i.e., f2, is
no more than

f

1 + ε
+ (b + 1)(1 + ε)k(α − 1)1/α

ε(1 + ε)
.

Then we have

f = f1 + f2

≤ (b + 1)(2 + ε)(1 + ε)k(α − 1)1/α

ε(1 + ε)
+ f

1 + ε
,

immediately implying f ≤ (b + 1)(2 + ε)(1 + ε)k ×
(α − 1)1/α/ε2. �

Summing over all jobs and recalling that G(S ∗) ≥
α

(α−1)1−1/α p(J ) (see Lemma 1), we have the following
corollary.

Corollary 17 The total flow time incurred by S produced
by Algorithm MAKECRR is at most ((b + 1)(1 − 1/α)(2 +
ε)/ε2)G(S ∗).

By Lemma 13 and Corollary 17, we have G(S) =
E(S) + F(S) ≤ (b + 1)[(1 + ε)α−1 + (1 − 1/α)(2 +
ε)/ε2]G(S ∗) = (b + 1)μεG(S ∗). We have also noted
that max-speed(S) ≤ (1 + ε) × max-speed(S ∗). Hence,
Lemma 12 follows.

5 Optimal migratory schedules

Algorithm MAKECRR and Lemma 12 can be applied to an
optimal migratory schedule as long as it is immediate-start
and bm-proceeding for some integer b ≥ 1. Note that the
m-proceeding property or even the 4m-proceeding property
does not hold for every optimal migratory schedule. Nev-
ertheless, Lemma 18 below shows that at least one optimal
schedule satisfies the 4m-proceeding property (i.e., at any
time, there are at most 4m jobs of the same size started
but not yet completed). Once we know the existence of
such schedule, we can apply the construction in Algorithm
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MAKEISO and Lemma 9 to further modify the job set and
the schedule to obtain an optimal migratory schedule that is
4m-proceeding and immediate-start (since the only manipu-
lation done by Algorithm MAKEISO is to swap the sched-
ule of pairs of jobs). The rest of the arguments then follow,
leading to Theorem 5(ii).

Lemma 18 For any job set J , there exists an optimal mi-
gratory schedule S ∗ that is 4m-proceeding.

The rest of this section is devoted to proving the above
lemma. Recall that m-proceeding property holds for every
optimal non-migratory schedule. For optimal migratory
schedules, we find that some of them, which we call
lazy-start optimal migratory schedules, satisfy the 4m-
proceeding property. The definition is as follows: Given a
schedule S , we define its “start time sequence” to be the se-
quence of start time of each job, sorted in the increasing or-
der of time. Among all optimal migratory schedules (which
may or may not be immediate-start), a lazy-start optimal
schedule is the one with lexicographically maximum start
time sequence. Such a schedule has the following property.

Lemma 19 In a lazy-start optimal schedule, suppose a
job j1 starts at time t , while another job j2 of the same size
that has already started before t but has not finished at t is
not running at t . Then after t , j1 runs whenever j2 runs.

Proof Suppose the contrary, and let t ′ be the first time af-
ter t that j2 runs but j1 does not. Let p0 be the amount of
work processed for j1 during [t, t ′] when j2 is not running.
We divide the analysis into three cases, each arriving at a
contradiction.

Case 1: j1 is not yet completed by t ′. We can exchange
some x > 0 units of work of j2 starting from t ′ with the x

units of work of j1 starting from t , without changing proces-
sor speed at any time. The start time of j1 is thus delayed
without changing the start times of other jobs or increasing
the energy or flow time, so the original schedule is not lazy-
start.

Case 2: j1 is completed by t ′, and the amount of work
processed for j2 after t ′ is at most p0. We can exchange all
work of j2 after t ′ with some work of j1 starting from t .
The completion times of j1 and j2 are exchanged, but the
total flow time and energy is preserved. The start time of j1

is delayed without changing the start times of other jobs, so
the original schedule is not lazy-start.

Case 3: j1 is completed by t ′, and the amount of work
processed for j2 after t ′ is more than p0. Since j1 and j2

are of the same size, these conditions imply that there must
be some work processed for j1 when both j1 and j2 are run-
ning. Furthermore, j2 must be running slower than j1 during
this period, otherwise the total amount of work processed

for j2 would be larger than the size of j1, so the two jobs
cannot be of the same size. Since jobs run at constant speed
in optimal schedules, the speed of j1 is higher than the speed
of j2.

Note that j1 lags behind j2 at t but is ahead of j2 at t ′.
So there must be a time t0 ∈ (t ′, t) such that j1 and j2 has
been processed for the same amount of work. Exchange the
scheduling of j1 and j2 after t0 gives a schedule with the
completion time of j1 and j2 exchanged, while the energy
consumption and flow time remain the same. But now j1 and
j2 are not running at constant speed, so the schedule is not
optimal. �

Now we are ready to prove Lemma 18 by showing that a
lazy-start optimal migratory schedule is 4m-proceeding.

Proof of Lemma 18 Given a job set J , let S be a lazy-start
optimal migratory schedule. Suppose, for the sake of contra-
diction, that at some time in S , there are 4m jobs started but
not yet finished. Consider these 4m jobs. At the time when
the (m+ i)th job j starts, at least i jobs which started earlier
must be idle. For each such idling job j ′, Lemma 19 dictates
that after r(j), whenever j ′ runs, j must also be running. In
this case, we say that j ′ implies j . Since there are 4m jobs,
there are 1 + 2 + · · · + 3m = 3

2m(3m + 1) such relations.
Thus some job j0 implies at least 3

2m(3m + 1)/4m > m

other jobs. After all these other jobs are released, they must
all run whenever j0 runs. This contradicts that there are only
m processors. The lemma follows. �
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