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Abstract We study a range of counterparts of the single-
machine scheduling problem with the maximum lateness
criterion that arise in the context of inverse optimization.
While in the forward scheduling problem all parameters are
given and the objective is to find the optimal job sequence
for which the value of the maximum lateness is minimum,
in inverse scheduling the exact values of processing times or
due dates are unknown, and they should be determined so
that a prespecified solution becomes optimal. We perform
a fairly complete classification of the corresponding inverse
models under different types of norms that measure the de-
viation of adjusted parameters from their given estimates.

Keywords Single-machine scheduling · Maximum
lateness · Inverse optimization

1 Introduction

In recent years, the interest in inverse optimization has in-
creased dramatically. Unlike traditional optimization mod-
els for which all parameters are given and the objective is
to find the best solution that satisfies specific constraints,
in inverse optimization the exact values of some parame-
ters are unknown, and they should be determined so that a
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prespecified solution becomes optimal. While inverse opti-
mization has attracted much attention of researchers in dif-
ferent areas of combinatorial optimization, scheduling prob-
lems have not yet been studied in terms of inverse optimiza-
tion (see, e.g., surveys Ahuja and Orlin 2001; Heuberger
2004). In this paper, we study the inverse counterparts of the
single-machine scheduling problem 1‖Lmax with the maxi-
mum lateness criterion.

In the forward scheduling problem 1‖Lmax, a set of jobs
N = {1,2, . . . , n} should be processed by a single machine
without preemption. All jobs are available at time 0. The
processing time of a job j ∈ N is given by pj , and it should
be completed by a given due date dj . We denote a due date
vector (d1, . . . , dn) by d. A schedule is uniquely defined by a
job permutation π , which induces completion times Cj (π)

for the jobs scheduled one after another without idle time.
For a schedule given by permutation π , the lateness of job j

is determined as

Lj (π,d) = Cj (π) − dj ,

and the overall performance of a schedule is measured in
terms of the maximum lateness

Lmax(π,d) = max
j∈N

{
Lj (π,d)

}
.

The objective of the forward problem 1‖Lmax is to find a
permutation π∗ for which Lmax(π,d) achieves its minimum
value:

Lmax
(
π∗,d

) ≤ Lmax(π,d) for any job permutation π.

In what follows we do not use π and d in the notation if no
ambiguity arises.

In the inverse scheduling problem, the typical process-
ing times pj and due dates dj are given together with a
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target job sequence π . Permutation π may not be optimal
for the given values of pj and dj , j ∈ N . The objective
is to modify the parameters within certain limits to be as
close to the typical ones as possible so that the target job
sequence becomes optimal. In what follows we assume that
the target job permutation is given by π = (1,2, . . . , n); oth-
erwise the jobs can be renumbered. If processing times are
fixed and due dates are adjustable, then the inverse prob-
lem is denoted by 1|adjustable dj , π |Lmax. In this prob-
lem, for each job i ∈ N , its typical due date dj is given
together with its variability interval [dj , dj ], dj ∈ [dj , dj ].
The adjusted due dates d̂ = (d̂1, d̂2, . . . , d̂n) should be se-
lected within given boundaries d̂j ∈ [dj , dj ], j ∈ N , so that

the deviation ‖d̂ − d‖ from the original due dates is mini-
mum and the target job permutation π is optimal:

min
∥∥d̂ − d

∥∥

s.t. Lmax
(
π, d̂

) ≤ Lmax
(
σ, d̂

)
for any job permutation σ,

dj ≤ d̂j ≤ dj , j ∈ N.

The typical norms that are considered in inverse opti-
mization have different costs for positive and negative de-
viations:

�1 (Manhattan):
∥∥d̂ − d

∥∥
1,α,β

=
n∑

j=1

[
αj max

{
d̂j − dj ,0

}

+ βj max
{
dj − d̂j ,0

}]
,

�2 (Euclidean):
∥∥d̂ − d

∥∥
2,α,β

=
√√√√

n∑

j=1

[
αj

(
max

{
d̂j − dj ,0

})2 + βj

(
max

{
dj − d̂j ,0

})2]
,

�∞:
∥∥d̂ − d

∥∥∞,α,β

= max
j=1,...,n

[
αj max

{
d̂j − dj ,0

}

+ βj max
{
dj − d̂j ,0

}]
,

��
H (Hamming):

∥∥d̂ − d
∥∥�

H,α,β

=
n∑

j=1

[
αj sgn

(
max

{
d̂j − dj ,0

})

+ βj sgn
(
max

{
dj − d̂j ,0

})]
,

�max
H (Hamming):

∥∥d̂ − d
∥∥max

H,α,β

= max
j=1,...,n

[
αj sgn

(
max

{
d̂j − dj ,0

})

+ βj sgn
(
max

{
dj − d̂j ,0

})]
.

Here all costs αj and βj are nonnegative. Observe that we
consider the generalized form of the two Hamming norms;
the inverse optimization problems with the symmetric ver-
sions of these two norms when αj = βj are studied in Duin
and Volgenant (2006), Liu and Zhang (2006).

In addition to the inverse problem 1|adjustable dj , π |
Lmax, we introduce a reverse problem following the clas-
sification due to Heuberger (2004). In a reverse problem,
instead of a target permutation π , a target value L∗ of the
objective function Lmax is given, and the due dates should
be adjusted to achieve that value:

min
∥∥d̂ − d

∥∥

s.t. Lmax
(
σ, d̂

) ≤ L∗, for some permutation σ,

dj ≤ d̂j ≤ dj , j ∈ N.

We denote this problem by 1|adjustable dj , L∗|Lmax.
The inverse and reverse problems formulated above con-

sider fixed processing times and adjustable due dates. Simi-
lar formulations can be introduced for fixed due dates and
adjustable processing times p̂j which should be selected
within given boundaries p

j
≤ p̂j ≤ pj , j ∈ N , so that the

deviation from the original processing times ‖p̂ − p‖ is
minimum. In the corresponding notation, we simply replace
“adjustable dj ” by “adjustable pj .”

We describe the possible scenarios that involve inverse
and reverse scheduling. In real-life situations, the interests
of customers and producers are often in conflict. Inverse and
reverse models may be used as a negotiation tool to resolve
such conflicts.

In a scenario corresponding to the inverse scheduling
problem with adjustable processing times, a producer may
have a preferred job sequence π predetermined by some es-
timates of processing times and due dates and by technical
restrictions. If the actual values of parameters appear to be
quite different from the estimates so that the customers’ due
dates cannot be met if the preferred production sequence is
used, then the producer may identify a few jobs that can be
produced faster at an additional cost giving an opportunity
to complete all jobs in time following the fixed sequence.
Adjusted processing times must be such that π is the best
possible sequence for the producer and that the customers’
due dates are respected.

In a scenario corresponding to the reverse scheduling
problem with adjustable due dates, the producer aims to
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complete the jobs either on time or within an admittable
limit L∗ from the due dates, but he is not restricted by some
preferred job sequences. If adhering to the claimed quality
of service measured by L∗ is not possible, the producer may
offer the customers some compensation to override their
due dates slightly, so that the claimed quality of service is
achieved for the modified due dates. The bargained due dates
must be such that the quality level L∗ is met and the costs
incurred are minimal.

In this paper, we consider the problems with adjustable
due dates first and the counterparts with adjustable process-
ing times next.

2 Preliminaries

It is known (Brucker 2004; Jackson 1955) that the forward
problem 1‖Lmax can be solved by sequencing the jobs in
nondecreasing order of their due dates, which is often called
the earliest due date (EDD) order. The EDD order is suffi-
cient but not necessary for a job permutation to be optimal.

The necessary and sufficient conditions for optimality of
a given job sequence for problem 1‖Lmax were formulated
and proved by Lin and Wang (2007). These conditions are
essentially used in solving the inverse and reverse problems
in the subsequent sections.

Theorem 1 The job sequence π = (1,2, . . . , n) is optimal
for problem 1‖Lmax if and only if there exists a job k such
that the following two conditions are satisfied:

Ck − dk ≥ Cj − dj for 1 ≤ j ≤ n, (1)

dj ≤ dk for 1 ≤ j ≤ k − 1. (2)

Observe that there may exist several jobs satisfying con-
dition (1) with the same value Ck − dk . In what follows we
call the job(s) satisfying condition (1) critical for d and π .

3 Adjustable due dates

In this section we assume that the processing times pj are
fixed for all jobs j ∈ N , while the due dates dj should
be adjusted to guarantee that the target job sequence π =
(1,2, . . . , n) is optimal or a target value L∗ of the maxi-
mum lateness Lmax is achieved. The inverse problem with
the target permutation π is considered first (Sect. 3.1), and
the reverse problem with the target objective value L∗ next
(Sect. 3.2).

3.1 Inverse problem 1|adjustable dj , π |Lmax

The objective of the inverse problem 1‖Lmax is to find
the adjusted due dates d̂ within the given boundaries d̂j ∈
[dj , dj ], j ∈ N , so that the deviation ‖d̂−d‖ from the orig-
inal due dates is minimum and the target job permutation
π = (1,2, . . . , n) is optimal.

First we prove that a job that is critical for the initial
due dates d remains critical for the optimum adjusted due
dates d̂. Then we demonstrate how the optimum adjusted
due dates d̂ = (d̂1, . . . , d̂n) can be found.

Lemma 1 Let h be a critical job for initial due dates d and
a target job sequence π = (1,2, . . . , n). If the inverse prob-
lem 1|adjustable dj , π |Lmax is feasible, then there exists an

optimal solution d̂ such that the same job h is critical for the
adjusted due dates d̂ and job sequence π .

Observe that problem 1|adjustable dj , π |Lmax is infea-
sible if the due dates cannot be adjusted within their bound-
aries to make permutation π optimal.

The proof of the lemma appears in the Appendix.
It follows from Lemma 1 that in order to find the opti-

mum adjusted due dates d̂, we can limit our consideration
to a class of schedules with a fixed critical job h, which is
defined as a critical job for the initial due dates d.

If conditions (1)–(2) of Theorem 1 are satisfied for the
target permutation π with the critical job h for initial due
dates d, then no further action is required; the current sched-
ule is optimal, and the deviation ‖d̂ − d‖ is 0. Otherwise we
consider different values d̂h ∈ [dh, dh] and define the ad-
justed due dates d̂j for all other jobs j ∈ N\{h} depending
on d̂h.

In order to derive the formulas for due date adjustments,
we split the interval [dh, dh] into subintervals in such a way
that in each subinterval the same subset of jobs is subject
to adjustment. Considering the subintervals one by one, we
perform parametric analysis of the whole interval [dh, dh].
In each subinterval, we find an optimum due date d̂h and
corresponding due dates d̂j for j ∈ N\{h} to ensure that the
necessary and sufficient conditions from Theorem 1 are sat-
isfied and the deviation ‖d̂ − d‖ is minimum. The solution
to the problem is found by considering the solutions for all
subintervals and selecting the one with the smallest devia-
tion ‖d̂ − d‖.

The interval [dh, dh] is split by the different values from
{Ch −L1,Ch −L2, . . . ,Ch −Ln}∪ {d1, d2, . . . , dh} that be-
long to that interval. Introduce the ordered sequence of the
above values:

dh = tk1 < tk2 < · · · < tkz = dh. (3)

Observe that for job h, the two values Ch − Lh and dh coin-
cide, so that z ≤ n + h − 1.
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Suppose that the adjusted due date d̂h belongs to the
subinterval [tkg , tkg+1], 1 ≤ g ≤ z − 1. Consider condition
(1) of Theorem 1. For any job j ∈ N\{h}, the value Ch −Lj

satisfies one of the conditions:

Ch − Lj ≤ tkg ≤ d̂h (4)

or

Ch − Lj ≥ tkg+1 ≥ d̂h. (5)

The jobs j ∈ N\{h} that satisfy (4) violate condition (1) of
Theorem 1 for any d̂h ∈ [tkg , tkg+1], and those that satisfy (5)
do not.

Consider now condition (2) of Theorem 1. For any job
j ∈ {1,2, . . . , h − 1}, the value dj satisfies one of the condi-
tions:

dj ≤ tkg ≤ d̂h (6)

or

dj ≥ tkg+1 ≥ d̂h. (7)

The jobs that satisfy (6) do not violate condition (2) of
Theorem 1, and those that satisfy (7) violate it for any
d̂h ∈ [tkg , tkg+1].

Thus we can define two subsets of jobs for which due
dates should be adjusted in order to achieve the necessary
and sufficient conditions of Theorem 1 for the target permu-
tation π with the critical job h and d̂h ∈ [tkg , tkg+1 ]:
Ug = {

u | u ∈ N\{h} and Ch − Lu ≤ tkg

}
—the jobs that

violate condition (1),

Vg = {
v | v ∈ {1, . . . , h − 1} and dv ≥ tkg+1

}
—the jobs that

violate condition (2).

Clearly the due dates of the jobs from Ug should be in-
creased, while those of the jobs from Vg should be de-
creased.

Observe that Ug ∩ Vg = ∅: for any job v ∈ Vg ,

Cv < Ch

and

dv ≥ tkg+1 > tkg ,

so that

Lv = Cv − dv < Ch − tkg ,

and condition (4) which characterizes Ug does not hold.
The subsets Ug and Vg defined for the subinterval

[tkg , tkg+1 ] may differ from Ug+1 and Vg+1 defined for the

next subinterval [tkg+1 , tkg+2]. In particular, for two consec-
utive intervals, Ug ⊆ Ug+1 and Vg ⊇ Vg+1.

We start the solution process with the adjusted due date
d̂h belonging to the leftmost interval [tk1 , tk2 ] and then pro-
ceed with next intervals [tkg , tkg+1], g = 2,3, . . . , z, consid-
ering them one by one. For each interval [tkg , tkg+1], we de-
note the adjusted due dates of the jobs from Ug and Vg by

d̂u = du + xu, u ∈ Ug,

d̂v = dv − yv, v ∈ Vg,

and define the associated problem as follows:

min F
(
d̂h,x,y

)

s.t. tkg ≤ d̂h ≤ tkg+1,

Cu − (du + xu) ≤ Ch − d̂h, u ∈ Ug,

dv − yv ≤ d̂h, v ∈ Vg,

0 ≤ xu ≤ du − du, u ∈ Ug,

0 ≤ yv ≤ dv − dv, v ∈ Vg,

(8)

where the objective function F is of the form

F(d̂h,x,y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αh

(
d̂h − dh

) +
∑

u∈Ug

αuxu +
∑

v∈Vg

βvyv

for �1,α,β norm,

αh

(
d̂h − dh

)2 +
∑

u∈Ug

αux
2
u +

∑

v∈Vg

βvy
2
v

for �2,α,β norm,

max
{
αh

(
d̂h − dh

)
, max
u∈Ug

αuxu,max
v∈Vg

βvyv

}

for �∞,α,β norm,

αhsgn
(
d̂h − dh

) +
∑

u∈Ug

αusgnxu

+
∑

v∈Vg

βvsgnyv for ��
H,α,β norm,

max
{
αhsgn

(
d̂h − dh

)
,

max
u∈Ug

αusgnxu,max
v∈Vg

βvsgnyv

}

for �max
H,α,β norm.

The cost of these adjustments is minimum if conditions
(1) and (2) hold as equalities for the adjusted due dates:

Cu − (du + xu) = Ch − d̂h, u ∈ Ug,

dv − yv = d̂h, v ∈ Vg.

Finding the expressions for xu and yv from the above con-
ditions and substituting them into (8), we obtain a problem
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with one variable d̂h:

min F
(
d̂h

)

s.t. max
{
tkg , max

u∈Ug

{Auh},max
v∈Vg

{dv}
}

≤ d̂h ≤ min
{
tkg+1 , min

u∈Ug

{Auh}, min
v∈Vg

{dv}
}
,

(9)

where

F(d̂h) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αh

(
d̂h − dh

) +
∑

u∈Ug

αu

(
d̂h − Auh

)

+
∑

v∈Vg

βv

(−d̂h + dv

)
for �1,α,β ,

αh

(
d̂h − dh

)2 +
∑

u∈Ug

αu

(
d̂h − Auh

)2

+
∑

v∈Vg

βv

(−d̂h + dv

)2 for �2,α,β ,

max
{
αh

(
d̂h − dh

)
, max
u∈Ug

αu

(
d̂h − Auh

)
,

max
v∈Vg

βv

(−d̂h + dv

)}
for �∞,α,β ,

αh +
∑

u∈Ug

αu +
∑

v∈Vg

βv for ��
H,α,β,

max
{
αh, max

u∈Ug

αu,max
v∈Vg

βv

}
for �max

H,α,β,

and the constants Auh and Auh are defined for all u ∈ Ug as

Auh = du − Cu + Ch,

Auh = du − Cu + Ch.

Observe that in the case of the Hamming norm ��
H,α,β and

�max
H,α,β , the function F(d̂h) is constant and does not depend

on d̂h.
The constraint of problem (9) may be infeasible with

the left-hand side larger than the right-hand side. In such
a case no adjusted value d̂h ∈ [tkg , tkg+1] exists such that
permutation π is optimal. If this happens for all intervals
[tkg , tkg+1 ], g = 1,2, . . . , z − 1, then the inverse problem
1|adjustable dj , π |Lmax does not have a solution. For ex-
ample, if the due dates of all jobs are fixed, i.e., dj = dj ,
j ∈ N , and a given permutation π is not optimal, then no
adjustments are possible and no solution to inverse problem
exists.

We estimate the time complexity of the described ap-
proach. For the first problem with d̂h ∈ [tk1 , tk2], the sets
V1 and U1 can be constructed in O(n) time. The objective
function F(d̂h) and the box constraint can be obtained in
O(n) time.

Consider the transition from the problem with d̂h ∈
[tkg−1, tkg ] to the problem with d̂h ∈ [tkg , tkg+1], 2 ≤ g ≤

z − 1. Each additional job that joins the U -set and each re-
dundant job that is removed from the V -set can be found in
O(1) time, and the new formulation (9) is solvable in O(1)

time for any type of the norm. Repeating this process, we
can find the optimal adjusted due date d̂h in O(n) time since
z ≤ n+h−1. Taking into account that the ordered sequence
(3) can be found in O(n logn) time, the overall time com-
plexity of solving the inverse problem is O(n logn) for any
type of the norm.

3.2 Reverse problem 1|adjustable dj ,L
∗|Lmax

Suppose that the target value L∗ of the maximum lateness
Lmax is given and the objective is to find the adjusted due
dates d̂j , d̂j ∈ [dj , dj ], such that ‖d̂ − d‖ is minimum and
the target value L∗ is achieved.

Since the smallest value of Lmax can be guaranteed by
sequencing the jobs in the earliest due date order (EDD)
(Jackson 1955), we can limit our search to the class of EDD-
schedules.

We start with the EDD-schedule with the original due
dates. If the value of Lmax for it is no larger than L∗, then no
further action is required. Otherwise the due dates of some
jobs should be increased.

Let H = {hi} be the set of critical jobs (the notion of a
critical job was introduced in Sect. 2), and let L be the value
of the maximum lateness, L = Lmax. If L > L∗, then the due
dates of the jobs from H should be increased. Clearly, the
increment amount should be the same for all jobs from H,

d̂j = dj + x, x ≥ 0, j ∈ H,

and the due date boundaries should be observed:

x ≤ min
j∈H

{
d̄j − dj

}
.

First we discuss how the ties should be broken in the
EDD-sequence if several jobs have equal due dates. If none
of them is critical, then their order is immaterial. Otherwise,
only the last job among those with equal due dates is critical
and requires adjustment. Depending on the type of the norm,
the deviation ‖d̂ − d‖ is calculated by

‖d̂ − d‖ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
h∈H αhx for �1,α,β norm,

∑
h∈H αhx

2 for �2,α,β norm,

maxh∈H{αh} × x for �∞,α,β norm,
∑

h∈H αh for ��
H,α,β norm,

maxh∈H{αh} for �max
H,α,β norm.

In the class of EDD-schedules, the value of ‖d̂ − d‖ is mini-
mum for each of the above norms, if the jobs with equal due
dates are sequenced in nonincreasing order of αj .
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We introduce a notion of the main permutation. Permuta-
tion σ is called the main permutation if the jobs are sorted in
nondecreasing order of dj and the jobs with equal due dates
are additionally sorted in nonincreasing order of costs αj .

The due date adjustment of the critical jobs may violate
the EDD order, and/or new critical jobs may appear. In or-
der to maintain the main permutation σ and keep track of
the critical jobs H, the due date adjustment should be per-
formed iteratively. At each iteration we assume that the jobs
are numbered in accordance with the main permutation. In-
creasing due date dhi

of job hi ∈ H may cause a structural
change that corresponds to one of the following three events.
We assume that hi is the kth job in permutation σ , i.e.,
hi = σ(k).

Event A: the due date of job σ(k) reaches the due date of
the next job σ(k + 1) of the main permutation.

Event B: a job j ∈ N\H becomes critical.
Event C: the target value L∗ of the maximum lateness is

achieved.
Event D: the due date of job σ(k) reaches its upper bound

dσ(k).

It is straightforward to verify that increasing dσ(k) by the
amount

xA
σ(k) = dσ(k+1) − dσ(k),

xB
σ(k) = L − max

j∈N\H
{Cj − dj },

xC
σ(k) = L − L∗,

or

xD
σ(k) = dσ(k) − dσ(k)

leads to Event A, B, C, or D, respectively.
The value of Lmax decreases if the due dates of all jobs

from H are increased by the same amount x until the earliest
event A, B, C, or D occurs. Hence x is defined as

x = min
[

min
σ(k)∈H

{dσ(k+1) − dσ(k)},L − max
j∈N\H

{Cj − dj },

L − L∗, min
σ(k)∈H

{dσ(k) − dσ(k)}
]
. (10)

If Event A occurs and the due dates of jobs σ(k) and
σ(k + 1) become equal, then renumbering and updating the
current permutation may be required so that the jobs with
equal due dates are sequenced in nonincreasing order of αj .
If Event B occurs, then the set H should be updated. In both
cases the current value L of the maximum lateness should
be decreased by x. Increasing the due dates of the set H
continues iteratively until one of the Events C or D occurs.
In the case of Event C the target value L∗ is achieved; the
resulting solution is optimal since in each iteration the EDD

permutation is considered and among the jobs with equal
due dates the one with the smallest value of αj is selected
for due date adjustment. In the case of Event D the due date
of at least one critical job cannot be increased any more so
that the target value L∗ cannot be achieved.

The initial job sequence can be constructed in O(n logn)

time. In each iteration, the adjustment amount x is calculated
in O(n) time. Events A and B occur no more than n times
each, while Event C or D occurs once. Thus the overall time
complexity of solving the reverse problem is O(n2). Thus
we have proved the following result.

Theorem 2 The reverse problem 1|adjustable dj , L∗|Lmax

is solvable in O(n2) time for any type of the norm by de-
compressing all critical jobs iteratively by the same amount
x defined by (10). If no solution exists, then this can be ver-
ified also in O(n2) time using the same approach.

4 Adjustable processing times

In this section we assume that the due dates dj are fixed
for all jobs j ∈ N , while the processing times pj should
be adjusted to guarantee that the target job sequence π =
(1,2, . . . , n) is optimal or the target value L∗ is achieved.

4.1 Inverse problem 1|adjustable pj ,π |Lmax

The objective of the inverse problem 1|adjustable pj ,π |Lmax

is to find the adjusted processing times p̂ within the given
boundaries so that p̂j ∈ [p

j
, pj ], j ∈ N , the deviation from

the original processing times ‖p̂ − p‖ is minimum, and the
target job permutation π = (1,2, . . . , n) is optimal.

Consider a schedule defined by permutation π with initial
processing times p. Let H be a set of critical jobs, |H| ≥ 1.
If there exists at least one critical job which satisfies the nec-
essary and sufficient conditions of optimality of permutation
π , then processing times p are optimal, and no further action
is required. Otherwise condition (1) of Theorem 1 is satis-
fied, while condition (2) is violated for each critical job from
H and cannot be repaired by adjusting processing times.
This means that in an optimal solution to the inverse prob-
lem a new job h should be critical, h /∈ H. Since potentially
any job h /∈ H can be critical, we consider different classes
of schedules with the fixed critical job h, 1 ≤ h ≤ n. Ob-
serve that for the inverse problem 1|adjustable dj , π |Lmax

studied in Sect. 3.1, Lemma 1 justifies that only one class of
problems can be considered.

Let h, 1 ≤ h ≤ n, be a selected job which should be-
come critical for adjusted processing times p̂. If the due
dates do not satisfy relations (2) for the target permutation π

and selected job h, then no adjustment of processing times
can make permutation π optimal for the critical job h. If
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relations (2) are satisfied, then adjusting processing times
changes job completions times Cj so that relations (1) can
be achieved. Taking into account that

Cj =
j∑

i=1

p̂i ,

inequalities (1) reduce to the following relations:

h∑

i=j+1

p̂i ≥ dh − dj for 1 ≤ j ≤ h − 1,

j∑

i=h+1

p̂i ≤ dj − dh for h + 1 ≤ j ≤ n.

Thus the problem can be formulated as follows:

min
∥∥p̂ − p

∥∥

s.t.
h∑

i=j

p̂i ≥ dh − dj−1, 2 ≤ j ≤ h,

j∑

i=h+1

p̂i ≤ dj − dh, h + 1 ≤ j ≤ n,

p
j

≤ p̂j ≤ pj , 1 ≤ j ≤ n.

(11)

Clearly, if the original processing times p do not satisfy
the constraints of problem (11), then the processing times of
some jobs from N1 = {2,3, . . . , h} should be increased, and
those of the jobs from N2 = {h + 1, h + 2, . . . , n} should be
decreased. It follows that the adjustments required can be
represented in the form

p̂j = pj + xj , j ∈ N1,

p̂j = pj − yj , j ∈ N2,

and the deviations are within the boundaries:

0 ≤ xj ≤ pj − pj , j ∈ N1,

0 ≤ yj ≤ pj − p
j
, j ∈ N2.

We introduce constants Pj , Qj and Aj , Bj by

Pj = (dh − dj−1) −
h∑

i=j

pi, j ∈ N1,

Qj =
j∑

i=h+1

pi − (dj − dh), j ∈ N2,

Aj = pj − pj , j ∈ N,

Bj = pj − p
j
, j ∈ N,

and rewrite formulation (11) as follows:

min F(x,y)

s.t.
h∑

i=j

xi ≥ Pj , j ∈ N1,

j∑

i=h+1

yi ≥ Qj, j ∈ N2,

0 ≤ xj ≤ Aj , j ∈ N1,

0 ≤ yj ≤ Bj , j ∈ N2,

(12)

where the objective function F is of the form

F(x,y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

j∈N1

αjxj +
∑

j∈N2

βjyj for �1,α,β ,

∑

j∈N1

αjx
2
j +

∑

j∈N2

βjy
2
j for �2,α,β ,

max
{

max
j∈N1

{αjxj }, max
j∈N2

{βjyj }
}

for �∞,α,β ,

∑

j∈N1

αj sgnxj +
∑

j∈N2

βj sgnyj for ��
H,α,β,

max
{

maxj∈N1{αj sgnxj },maxj∈N2{βj sgnyj }
}

for �max
H,α,β .

The solution to problem (12) defines an optimal solu-
tion to the inverse problem in a class of schedules with
the critical job h. Observe that in some classes no so-
lution may exist. The solution to the inverse problem
1|adjustable pj , π |Lmax can be found by enumerating all
classes for which a solution exists and selecting the one with
the smallest value of F .

In what follows we study problem (12) for different types
of the norms.

4.1.1 Norms �1 and �2

Consider first the norms �1,α,β and �2,α,β . It is convenient to
rewrite formulation (12) using complementary variables uj

and vj ,

uj = pj − p̂j = Aj − xj , j ∈ N1,

vj = p̂j − p
j

= Bj − yj , j ∈ N2,
(13)

which are bounded by Aj and Bj :

0 ≤ uj ≤ Aj , j ∈ N1,

0 ≤ vj ≤ Bj , j ∈ N2.
(14)
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Then formulation (12) can be rewritten as

min F�(u,v)

s.t.
h∑

i=j

ui ≤
h∑

i=j

Ai − Pj , j ∈ N1,

j∑

i=h+1

vi ≤
j∑

i=h+1

Bi − Qj, j ∈ N2,

0 ≤ uj ≤ Aj , j ∈ N1,

0 ≤ vj ≤ Bj , j ∈ N2,

(15)

where

F�(u,v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

j∈N1

αj (Aj − uj ) +
∑

j∈N2

βj (Bj − vj )

for �1,α,β ,
∑

j∈N1

αj (Aj − uj )
2 +

∑

j∈N2

βj (Bj − vj )
2

for �2,α,β .

Since the objective function F�(u,v) is separable, prob-
lem (15) can be decomposed into two subproblems with
nested constraints defined: for variables N1,

min
∑

j∈N1

αj (Aj − uj ) for norm �1 or

∑

j∈N1

αj (Aj − uj )
2 for norm �2

s.t.
h∑

i=j

ui ≤
h∑

i=j

Ai − Pj , j ∈ N1,

0 ≤ uj ≤ Aj , j ∈ N1,

and, for variables N2,

min
∑

j∈N2

βj (Bj − vj ) for norm �1 or

∑

j∈N2

βj (Bj − vj )
2 for norm �2

s.t.
j∑

i=h+1

vi ≤
j∑

i=h+1

Bi − Qj, j ∈ N2,

0 ≤ vj ≤ Bj , j ∈ N2.

The above problems can be classified as Resource Al-
location Problems with Nested Constraints with continu-
ous variables, which are solvable in O(n logn) time for lin-
ear and quadratic objective functions by the algorithm from
Hochbaum and Hong (1995) and Katoh and Ibaraki (1998,
p. 219). Hence in the class of schedules with the critical job

h, the problem can be solved in O(n logn) time, and the
overall time complexity for considering n classes of sched-
ules is O(n2 logn).

4.1.2 Norm �∞

Consider the norm �∞ and formulation (12). The ob-
jective function to be minimized is max{maxj∈N1{αjxj },
maxj∈N2{βjyj }}. We introduce an auxiliary variable θ for
the value of the objective function and rewrite problem (12)
accordingly:

min θ (16)

s.t. αj xj ≤ θ, j ∈ N1, (17)

βjyj ≤ θ, j ∈ N2, (18)

h∑

i=j

xi ≥ Pj , j ∈ N1, (19)

j∑

i=h+1

yi ≥ Qj, j ∈ N2, (20)

0 ≤ xj ≤ Aj , j ∈ N1, (21)

0 ≤ yj ≤ Bj , j ∈ N2. (22)

It is easy to see that if the optimal value θ∗ =
max{maxj∈N1{αjxj },maxj∈N2{βjyj }} of the objective func-
tion were known, then all variables xj and yj could be set
equal to their largest possible values:

x∗
i = min{Ai, θ

∗/αi}, i ∈ N1,

y∗
k = min{Bk, θ

∗/βk}, k ∈ N2.

Clearly, the optimum value θ∗ should be as small as possible
so that all constraints (19)–(22) are satisfied. We start with
θ = 0 and increase it iteratively. For each current value of θ ,
the x- and y-values are given by

xi(θ) = min{Ai, θ/αi}, i ∈ N1,

yk(θ) = min{Bk, θ/βk}, k ∈ N2.

Let N1 ⊆ N1 and N2 ⊆ N2 be the subsets of variables which
have already reached their upper bounds:

xi(θ) = Ai, i ∈ N1,

yk(θ) = Bk, k ∈ N2.

We calculate the deficits Dj for constraints (19)–(20):

Dj = max

{
Pj −

h∑

i=j

xi(θ),0

}
if j ∈ N1,
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Dj = max

{
Qj −

j∑

i=h+1

yi(θ),0

}
if j ∈ N2.

If Dj > 0, then the corresponding inequality is violated,
and the variables involved should be increased by the to-
tal amount of Dj . That increase is only possible if θ is in-
creased.

Suppose that the current value of θ is increased by δ > 0.
Then each variable xi(θ), i ∈ N1\N1, is increased by δ/αi ,
and each variable yk(θ), k ∈ N2\N2, is increased by δ/βk .
As a result, the left-hand side of each inequality j from (19)
is increased by δ

∑
i∈{j,...,h}\N1

1/αi and that of each in-
equality j from (20) is increased by δ

∑
i∈{h+1,...,j}\N2

1/βi .
Select δ to be the smallest value such that either all in-

equalities from (19)–(20) are satisfied or at least one of the
variables xi , i ∈ N1\N1, or yk , k ∈ N2\N2, reaches its upper
bound Ai or Bk :

δ = min

{

min
j∈N1

{
Dj∑

i∈{j,...,h}\N1
1/αi

,max
{
Aj − xj (θ),0

}}
,

min
j∈N2

{
Dj∑

i∈{h+1,...,j}\N2
1/βi

,

max
{
Bj − yj (θ),0

}}
}

.

We set θ := θ + δ and modify the subsets of jobs N1, N2.
If there are still violated constraints from (19)–(20), then we
find the next δ-increment and continue increasing θ .

Since each time at least one variable reaches its upper
bound Ai or Bk , there are no more than n iterations that
involve increasing θ . Each value of an increment δ can be
found in O(n) time. Hence in the class of schedules with
the critical job h, the problem can be solved in O(n2) time,
and the overall time complexity is O(n3).

4.1.3 Norm ��
H

Consider now the Hamming norm ��
H,α,β . Similar to the case

of norms �1 and �2, the objective function for norm ��
H,α,β

is separable, and the corresponding problem can be decom-
posed into two subproblems:

min
∑

j∈N1

αj sgn(Aj − uj )

s.t.
h∑

i=j

ui ≤
h∑

i=j

Ai − Pj , j ∈ N1,

0 ≤ uj ≤ Aj , j ∈ N1,

and

min
∑

j∈N2

βj sgn(Bj − vj )

s.t.
j∑

i=h+1

vi ≤
j∑

i=h+1

Bi − Qj, j ∈ N2,

0 ≤ vj ≤ Bj , j ∈ N2.

It is easy to see that there always exists an optimal solu-
tion to the above problems such that uj ∈ {0,Aj }, j ∈ N1,
and vj ∈ {0,Bj }, j ∈ N2. Thus we can introduce new vari-
ables u′

j = uj/Aj and v′
j = vj /Bj and reformulate the

above two subproblems as follows:

min
∑

j∈N1

αj sgn
(
1 − u′

j

)

s.t.
h∑

i=j

Aiu
′
i ≤

h∑

i=j

Ai − Pj , j ∈ N1,

u′
j ∈ {0,1}, j ∈ N1,

(23)

and

min
∑

j∈N2

βj sgn(1 − v′
j )

s.t.
j∑

i=h+1

Biv
′
i ≤

j∑

i=h+1

Bi − Qj, j ∈ N2,

vj ∈ {0,1}, j ∈ N2.

(24)

Consider the special case of problem (23) with

pj ≤ dj − dj−1 for all j ∈ N1. (25)

We show that the specified special case of problem (23) is
NP-hard. Indeed, inequalities (25) imply

h∑

i=j

pi − (dh − dj−1) ≤
h∑

i=j+1

pi − (dh − dj ),

or equivalently

h∑

i=j

Ai − Pj ≤
h∑

i=j+1

Ai − Pj+1,

so that the nested inequalities of problem (23) are redundant
for all j ∈ N1 except for the first inequality with j = 2. Since
minimizing sgn(1−u′

j ) for u′
j ∈ {0,1} is equivalent to max-

imizing u′
j , the special case of problem (23) is equivalent to
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the knapsack problem, which is known to be NP-hard:

max
h∑

i=2

αiu
′
i

s.t.
h∑

i=2

Aiu
′
i ≤

h∑

i=2

Ai − P2,

u′
i ∈ {0,1}, 2 ≤ i ≤ h.

Using similar arguments, one can demonstrate that prob-
lem (24) is NP-hard as well. Thus the inverse problem
1|adjustable pj ,π |Lmax under the Hamming norm ��

H,α,β

is NP-hard.

4.1.4 Norm �max
H

The problem with the norm �max
H,α,β is similar to that with the

norm �∞ studied in Sect. 4.1.2 and can be represented in the
form

min max
{

max
j∈N1

{αj sgnxj }, max
j∈N2

{βj sgnyj }
}

s.t. constraints (19)–(22).

Due to the type of the objective function, the solution can
be found by considering the variables xj and yj one by one
in the nondecreasing order of the corresponding penalties αj

and βj and increasing them to their maximum values Aj and
Bj , respectively, until all constraints (19) and (20) become
satisfied.

Thus given the sequenced penalties αj and βj , the inverse
problem can be solved in O(n) time in the class of schedules
with the critical job h and in O(n2) time in all classes.

4.2 Reverse problem 1|adjustable pj , L∗|Lmax

Suppose that the optimal value of Lmax for the given values
pj and dj is L, a target value of the maximum lateness is
L∗, L > L∗, and the objective is to find adjusted processing
times p̂j , p̂j ∈ [p

j
, pj ], so that ‖p̂−p‖ is minimum and the

target value L∗ is achieved. This means that the processing
times of some jobs should be compressed at the minimum
cost.

The target value L∗ induces the deadlines dj = dj + L∗
for the jobs j ∈ N . Thus the reverse problem 1|adjustable pj ,
L∗|Lmax reduces to the single-machine problem with con-
trollable processing times 1|pj contr, dj ≤ dj |K defined as
follows. In that problem, job processing times can be com-
pressed within given boundaries [p

j
,pj ]. Compression of

the processing time of job j from the maximum value pj by

the amount yj , 0 ≤ yj ≤ pj − p
j
, incurs the cost

K(y1, . . . , yn) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n
j=1 βjyj for �1-norm,

∑n
j=1 βjy

2
j for �2-norm,

max{βjyj } for �∞-norm,
∑n

j=1 βj sgnyj for ��
H -norm,

max{βj sgnyj } for �max
H -norm.

(26)

The objective is to find the compressed processing times
p̂j = pj − yj for all jobs j ∈ N such that the jobs meet
their deadlines dj and the compression cost K is minimum.

4.2.1 Norms �1 and �2

Consider first the norms �1,α,β and �2,α,β . The problem with
controllable processing times 1|pj contr, dj ≤ dj |K can be
represented in the form

min K

s.t.
j∑

i=1

(pi − yi) ≤ dj , j ∈ N,

0 ≤ yj ≤ Bj , j ∈ N,

(27)

where Bj = pj − p
j
, and K is linear or quadratic, see

(26). The latter problem corresponds to the well-known Re-
source Allocation Problem with Nested Constraints and can
be solved O(n logn) time by an algorithm described in
Hochbaum and Hong (1995) and Katoh and Ibaraki (1998,
p. 219) for linear and quadratic objective function K .

4.2.2 Norm �∞

Consider the norm �∞,α,β . The reverse problem 1|adjustable
pj , L∗|Lmax reduces to the single-machine problem with
controllable processing times 1|pj contr, dj ≤ dj |
max{βjyj } with the min–max compression cost function.
For this problem, Choi et al. (1998) have suggested an al-
gorithm of time complexity O(n logn + cn), where c is a
constant depending on log[maxj∈N {αj (pj − p

j
)}].

4.2.3 Norm ��
H

Consider now the Hamming norm ��
H,α,β . Since the smallest

value of Lmax can be guaranteed by sequencing the jobs in
the earliest due date order (EDD) (Jackson 1955), we can
limit our search to the class of EDD-schedules. Renumber
the jobs in the EDD order and sequence them in the order
of their numbering. Define job completion times using their
initial processing times p1, p2, . . . , pn:

Ci =
i∑

j=1

pj .
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Suppose that all jobs meet their deadlines except for the
last job n:

n∑

j=1

pj > dn.

We demonstrate that finding a set of jobs the processing
times of which should be compressed is NP-hard even if
there is only one job n that does not meet its deadline dn.
We assume that all jobs j ∈ N are compressible, i.e.,
pj − p

j
> 0.

The problem of finding the optimum job compressions
is similar to problem (27), but the objective function corre-
sponds to the Hamming norm ��

H,α,β :

min
∑

j∈N

βj sgnyj

s.t.
n∑

j=1

(pj − yj ) ≤ dn,

0 ≤ yj ≤ Bj , 1 ≤ j ≤ n,

where Bj = pj − p
j
.

It is easy to see that there always exists an optimal so-
lution to the above problem such that yj ∈ {0,Bj }. Thus we
can introduce new variables y′

j = yj/Bj and reformulate the
above problem as follows:

min
∑

j∈N

βjy
′
j

s.t.
n∑

j=1

(
pj − Bjy

′
j

) ≤ dn,

y′
j ∈ {0,1}, 1 ≤ j ≤ n.

To demonstrate that the latter problem is equivalent to the
knapsack problem, we rewrite the problem using the new
variables zj = 1 − y′

j :

max
∑

j∈N

βjzj

s.t.
n∑

j=1

Bjzj ≤ dn −
n∑

j=1

(pj − Bj ),

zj ∈ {0,1}, 1 ≤ j ≤ n.

Since the knapsack problem is known to be NP-hard, the
reverse problem 1|adjustable pj , L∗|Lmax under the Ham-
ming norm ��

H,α,β is NP-hard as well.

4.2.4 Norm �max
H

Consider now the norm �max
H,α,β . Since the smallest value of

Lmax can be guaranteed by sequencing the jobs in the earli-
est due date order (EDD) (Jackson 1955), we can limit our

search to the class of EDD-schedules. Renumber the jobs
in the EDD order; break ties by giving priority to smaller
weights βj . Sequence the jobs N in the order of their num-
bering using their normal processing times p1,p2, . . . , pn.
If deadlines dj are met for every job j ∈ N , then no fur-
ther action is required. Otherwise the cost K(y1, . . . , yn) =
max{βj sgnyj } can take one of the values from the set
{β1, β2, . . . , βn}.

If the optimum value K(y1, . . . , yn) = βg , then all jobs j

with costs βj ≤ βg can be compressed down to their small-
est processing times p

j
and in the corresponding EDD-

schedule all jobs meet their deadlines. In order to find the
smallest K-value, binary search can be used to consider the
trial values βg one by one, checking each time if in the EDD-
schedule all jobs meet their deadlines. Since for the given
EDD-sequence, the feasibility check can be done in O(n)

time, the time complexity of solving the reverse problem
1|adjustable pj , L∗|Lmax under the Hamming norm �max

H,α,β

is O(n logn).

5 Conclusions

In this paper, we have studied the inverse and reverse coun-
terparts of the single-machine scheduling problem 1‖Lmax

in the case of adjustable due dates or processing times under
five different types of the norm: �1, �2, �∞, ��

H , and �max
H .

Two problems appeared to be NP-hard; for the remaining
problems, we have produced their mathematical program-
ming formulations and developed efficient solution algo-
rithms.

The results are summarized in Table 1. Interestingly, the
inverse problems with adjustable due dates appear to be eas-
ier than those with adjustable processing times, while some
reverse problems with adjustable due dates appear to be
more difficult than those with adjustable processing times.

Observe that the results summarized in Table 1 can be
reformulated for inverse and reverse counterparts of prob-
lem 1|rj |Cmax. The forward problem 1|rj |Cmax consists in
scheduling the jobs without overlapping starting not earlier
than their release times rj , so that the finish time of the last
job is minimum. The necessary and sufficient conditions for
optimality of a given job sequence for problem 1|rj |Cmax

are symmetric to those specified in Theorem 1 for problem
1‖Lmax, see Lin and Wang (2007).

It is an interesting research goal to study the inverse
and reverse counterparts of problems 1‖Lmax and 1|rj |Cmax

with two types of parameters adjustable simultaneously: ad-
justable processing times and due dates for the first problem
or adjustable processing times and release times for the sec-
ond one.
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Table 1 Time complexity of the inverse and reverse counterparts of problem 1‖Lmax

Adjustable dj Norm Section Adjustable pj Norm Section

Inverse problem O(n logn) �1, �2, 3.1 O(n2 logn) �1, �2, 4.1.1

with a given π O(n logn) �∞ 3.1 O(n3) �∞ 4.1.2

O(n logn) ��
H 3.1 NP-hard ��

H 4.1.3

O(n logn) �max
H 3.1 O(n2) �max

H 4.1.4

Reverse problem O(n2) �1, �2 3.2 O(n logn) �1, �2 Hochbaum and Hong (1995); Katoh and Ibaraki (1998)

with a given L∗ O(n2) �∞ 3.2 O(n logn + cn) �∞ Choi et al. (1998)

O(n2) ��
H 3.2 NP-hard ��

H 4.2.3

O(n2) �max
H 3.2 O(n logn) �max

H 4.2.4
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Appendix

Proof of Lemma 1 Suppose that job h is critical for the orig-
inal (non-adjusted) due dates d, but it is not critical for some
optimum adjusted due dates d̂. If another job k is critical for
d̂, then

Lh = Ch − dh ≥ Ck − dk = Lk

(h is critical for due dates d),

L̂h = Ch − d̂h < Ck − d̂k = L̂k (28)

(k is critical for due dates d̂).

In addition, we will use the following two conditions which
hold for any job u ∈ N :

Lu = Cu − du ≤ Ch − dh = Lh (29)

(h is critical for due dates d),

L̂u = Cu − d̂u ≤ Ck − d̂k = L̂k (30)

(k is critical for due dates d̂).

To prove the lemma, we demonstrate that there exists an-

other set of optimum due dates ˆ̂d such that the following
properties hold:

(i) Both jobs k and h are critical for due dates ˆ̂d.

(ii) Due date boundaries are observed, i.e., ˆ̂
dj ∈ [dj , dj ]

for all jobs j ∈ N .

(iii) Due date deviation of ˆ̂d from the initial due dates is no
larger than that of d̂:
∥∥∥ ˆ̂d − d

∥∥∥ ≤ ∥∥d̂ − d
∥∥. (31)

(iv) The necessary and sufficient conditions of Theorem 1
of optimality of permutation π are satisfied for the

modified due dates ˆ̂d and job k.

The latter property implies that π is an optimal permu-

tation for ˆ̂d, which, together with Property (i), proves the
lemma.

We define the new values ˆ̂d so that the maximum lateness
L0 = maxj∈N {Cj − ˆ̂

dj } calculated for permutation π and

due dates ˆ̂d satisfies

L0 = min
{
L̂k, Lh

}
. (32)

Consider the two cases.

Case 1

L0 = L̂k ≤ Lh. (33)

In this case, condition (30) implies

L̂u ≤ L̂k = L0,

so that any job u ∈ N\{k} has the lateness with respect to
due dates d̂ no larger than L0, and Property (i) holds for
job k.

In order to achieve Property (i) for job h, its due date
should be modified to the value

ˆ̂
dh = Ch − L0, (34)

so that

ˆ̂
Lh = Ch − ˆ̂

dh = L0.

Observe that the modified due date ˆ̂
dh is smaller than d̂h:

ˆ̂
dh − d̂h = (

Ch − L0) − d̂h = L̂h − L0 (28)
< L̂k − L0 (33)= 0.

Thus the due dates ˆ̂d are obtained from d̂ by decreasing one

component d̂h down to ˆ̂
dh.
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We demonstrate that Properties (ii)–(iii) hold for job h:

ˆ̂
dh

(34)= Ch − L0(33)≥ Ch − Lh = dh ≥ dh,

so that

dh ≤ ˆ̂
dh ≤ d̂h ≤ dh.

Thus condition (31) is satisfied.
Consider now Property (iv). Due to Property (i), job k

is critical for the due dates d̂ and ˆ̂d, so that condition (1)
holds. We need to demonstrate that condition (2) holds for
ˆ̂d and any job j that precedes k. Indeed, according to the
assumption, due dates d̂ are optimum, so that condition (2)
holds for d̂ and any job j that precedes the critical job k.

Clearly, after one component of d̂ is decreased leading to ˆ̂d,

condition (2) will still hold for ˆ̂d and the same critical job k.

Case 2

L0 = Lh < L̂k. (35)

In order to achieve Property (i) and to decrease the max-
imum lateness value down to L0, consider the due dates d̂
and the set of jobs U = {u ∈ N | L̂u > L0} which lateness
is larger than L0. Clearly, set U includes job k. For each job
u ∈ U , its due date d̂u should be modified to the value

ˆ̂
du = Cu − L0, (36)

so that its lateness decreases to the value L0:

ˆ̂
Lu = Cu − ˆ̂

du = L0. (37)

Observe that each modified due date ˆ̂
du is larger than the

corresponding due date d̂u:

ˆ̂
du − d̂u = (

Cu − L0) − d̂u = L̂u − L0 > 0.

Due to condition (37), after the due dates of the jobs from U

are increased, all of them (including job k) become critical

for ˆ̂d.
Consider now Property (i) for job h. If h ∈ U , then job

h is properly adjusted as described above, and it becomes

critical for ˆ̂d. Otherwise, h /∈ U , or equivalently

L̂h ≤ L0, (38)

and its due date d̂h should be modified to the value

ˆ̂
dh = Ch − L0, (39)

so that

ˆ̂
Lh = Ch − ˆ̂

dh = L0.

Observe that the modified due date ˆ̂
dh is smaller than d̂h:

ˆ̂
dh − d̂h = (

Ch − L0) − d̂h = L̂h − L0(38)≤ 0.

Now we demonstrate that Properties (ii)–(iii) hold for the
jobs from U and for job h. The due date of any job u ∈ U

increases from d̂u ≥ du to

ˆ̂
du

(36)= Cu − L0(35)= Cu − Lh

(29)≤ du ≤ du.

It follows that

du ≤ d̂u ≤ ˆ̂
du ≤ du,

so that the due date deviation of any job u ∈ U does not
increase:
∣∣∣ ˆ̂
du − du

∣∣∣ ≤ ∣∣d̂u − du

∣∣.

Consider now the adjustment of the due date of job h. If
h ∈ U , then the above arguments hold for job h. Otherwise
the due date of job h decreases from d̂h ≤ dh to

ˆ̂
dh

(39)= Ch − L0(35)= Ch − Lh = dh ≥ dh,

so that

dh ≤ ˆ̂
dh ≤ d̂h ≤ dh.

Thus condition (31) is satisfied.
Finally, we prove Property (iv). Due to property (i), job

k is critical for the due dates d̂ and ˆ̂d, so that condition (1)
holds. We need to demonstrate that condition (2) holds for
ˆ̂d and any job j that precedes k. Since the necessary and
sufficient conditions of optimality of permutation π hold for
the critical job k and due dates d̂, we have

d̂j ≤ d̂k.

If j /∈ U , then its due date is not increased, so that

ˆ̂
dj ≤ ˆ̂

dk.

If j = u ∈ U , then condition (2) is violated only if

Cu < Ck

and

ˆ̂
du >

ˆ̂
dk,

which implies

Cu − ˆ̂
du < Ck − ˆ̂

dk = L0,

a contradiction to (37).
Lemma 1 is proved. �
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