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Abstract In this paper, we develop branch-and-bound al-
gorithms for several hard, two-agent scheduling problems,
i.e., problems in which each agent has an objective function
which depends on the completion times of its jobs only. Our
bounding approach is based on the fact that, for all prob-
lems considered, the Lagrangian dual gives a good bound
and can be solved exactly in strongly polynomial time. The
problems addressed here consist in minimizing the total
weighted completion time of the jobs of agent A, subject
to a bound on the cost function of agent B, which may be:
(i) total weighted completion time, (ii) maximum lateness,
(iii) maximum completion time. An extensive computational
experience shows the effectiveness of the approach.

Keywords Branch-and-bound · Lagrangian relaxation ·
Multi-agent scheduling · Single-machine scheduling

1 Introduction

Recent developments in the field of distributed decision
making have triggered a growing interest towards multi-
agent scheduling problems, i.e., in which different agents
share a common processing resource, and each agent wants
to minimize a cost function depending on its jobs only.
These issues arise in different application contexts, includ-
ing real-time systems, integrated service networks (Peha
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1995), industrial districts (Albino et al. 2006), telecommu-
nication systems (Arbib et al. 2004). Such situations can be
addressed by typical approaches of multi-criteria optimiza-
tion problems, such as combining the agents’ criteria into a
single objective function, minimizing one agent’s cost func-
tion with a bound on the other agents’ cost, or generating all
Pareto-optimal solutions.

A number of papers investigate the two-agent setting.
Baker and Cole Smith (2003) analyze the computational
complexity of combining the agents’ criteria into a single
objective function in a scenario with two agents and various
criteria (maximum completion time, total weighted com-
pletion time and maximum lateness). Agnetis et al. (2000,
2004) address both the problems of finding a single Pareto-
optimal solution and enumerating the whole set of Pareto-
optimal solutions for different machine settings, under three
different criteria: maximum of a regular function (such as
makespan or lateness), weighted total completion time, and
number of tardy jobs. They study the nine problems arising
for the different criteria combinations for the two agents,
and state complexity results for most of the resulting cases.
Cheng et al. (2006, 2008) provide further complexity and ap-
proximation results for some special cases, namely when the
two agents wish to minimize the weighted number of tardy
jobs and the case in which they both hold max-form objec-
tive functions. Ng et al. (2006) address the case in which one
agent minimizes the total completion time of its jobs with a
bound on the number of the other agent’s tardy jobs. Peha
(1995) investigates the problem of lexicographically mini-
mizing the weighted number of tardy jobs of one agent and
then the other agent’s total weighted completion, providing
polynomial time algorithms for the case in which jobs have
unit length.

In this paper, we consider the situation in which two
agents (called A and B) share a single machine for process-
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ing their respective non-preemptive jobs. In particular,
we describe exact algorithms for the following NP-hard
scheduling problems (Agnetis et al. 2004):

Problem WCWC. Given nA jobs of the agent A (the A-
jobs), nB jobs of the agent B (the B-jobs) and an integer
Q, find a schedule which minimizes the weighted sum of
the completion times of the A-jobs such that the maximum
value of the weighted sum of the completion times of the
B-jobs does not exceed Q.

Problem WCLmax. Given nA jobs of the agent A (the A-
jobs), nB jobs of the agent B (the B-jobs) and an integer
Q, each having a due-date, find a schedule which mini-
mizes the weighted sum of the completion times of the A-
jobs such that the maximum lateness of the B-jobs does
not exceed Q.

Problem WCCmax. Given nA jobs of the agent A (the A-
jobs), nB jobs of the agent B (the B-jobs) and an integer
Q, find a schedule which minimizes the weighted sum of
the completion times of the A-jobs such that the maximum
completion time of the B-jobs does not exceed Q.

For all three problems, we propose a branch-and-bound
approach using a Lagrangian relaxation for the computation
of the bound. The Lagrangian dual is solved in polynomial
time in all three cases by ad hoc methods.

The plan of the paper is as follows. In Sect. 2, we intro-
duce the notation and the terminology used throughout the
paper. The above three problems are addressed in Sects. 3, 4
and 5, respectively. Section 6 displays the computational re-
sults. Finally, in Sect. 7, some conclusions are drawn. Most
of the proofs for results in this paper are given in the Appen-
dix.

2 Problems formulation and notation

In this section, we introduce the notation and terminol-
ogy we use throughout the paper. There are two compet-
ing agents, called agent A and agent B. Each of them has
a set of non-preemptive jobs to be processed on a com-
mon machine. The agent A has to execute the job set JA =
{JA

1 , JA
2 , . . . , JA

nA
}, whereas the agent B has to execute the

job set JB = {JB
1 , JB

2 , . . . , J B
nB

}. We call A-jobs and B-jobs
the jobs of the two sets. The processing time of job JA

i (JB
j )

will be denoted by pA
i (pB

j ). Also, let PA = ∑nA

i=1 pA
i and

PB = ∑nB

j=1 pB
j . For A-jobs we will also consider weights

wA
i , and define δA

i = wA
i /pA

i as the density of such jobs.
We suppose that the A-jobs are numbered according to non-
increasing density; hence, δA

1 and δA
nA

is the highest and the
lowest density, respectively.

Each of the two agents will have to schedule its jobs
on the machine complying with the presence of the other
agent’s jobs. Let σ indicate a schedule of the n = nA + nB

jobs, i.e., an assignment of starting times to the jobs of both
agents. The completion times of jobs JA

i and JB
j in σ will

be denoted as CA
i (σ ) and CB

j (σ ), respectively. We use the
notation Jh, ph, Ch(σ ) when referring to any job in the set
JA ∪ JB . Each agent has a certain objective function which
depends on the completion times of its jobs only. We indi-
cate by f A(σ ) and f B(σ ) the two functions. In this paper,
we consider the three following scenarios:

WCWC : f A(σ ) =
nA∑

i=1

wA
i CA

i (σ ),

f B(σ ) =
nB∑

j=1

wB
j CB

j (σ );

WCLmax: f A(σ ) =
nA∑

i=1

wA
i CA

i (σ ),

f B(σ ) = LB
max = max

j∈JB

{
LB

j (σ )
}

= max
j∈JB

{
CB

j (σ ) − dB
j

};

WCCmax: f A(σ ) =
nA∑

i=1

wA
i CA

i (σ ),

f B(σ ) = CB
max = max

j∈JB

{
CB

j (σ )
}
.

Since in all cases the objective functions are regular (i.e.,
non-decreasing in the completion times), there is no conve-
nience in keeping the machine idle, and therefore we can
restrict ourselves to consider the set of active schedules, de-
noted by S . According to Graham’s notation, the problems
addressed in this paper are denoted as:

• 1|∑wB
j CB

j ≤ Q|∑wA
i CA

i ;

• 1|LB
max ≤ Q|∑wA

i CA
i ;

• 1|CB
max ≤ Q|∑wA

i CA
i .

Note that if one is interested in finding all the Pareto-
optimal solutions of such problems, this can be achieved by
solving several instances of the problem, varying the value
of the constant Q.

3 Problem WCWC

In this section, we address the problem in which A wants
to minimize the weighted sum of its jobs’ completion times,
while B requires that the weighted sum of its jobs’ comple-
tion times does not exceed a certain quantity Q. The prob-
lem can be formulated as:

z∗ = min
σ∈S

{
nA∑

i=1

wA
i CA

i (σ ) :
nB∑

j=1

wB
j CB

j (σ ) ≤ Q

}

. (1)
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In Agnetis et al. (2004), it is proved that problem (1) is
NP-hard even when all the weights for both agents are equal
to one. Throughout Sect. 3, we indicate with δB

j = wB
j /pB

j

the density of the j th B-job, similarly as we do for the A-
jobs. We also suppose that the B-jobs are numbered accord-
ing to non-increasing density; hence, δB

1 and δB
nB

indicate the
highest and the lowest values assumed by the B-jobs density.

3.1 Lagrangian relaxation and Lagrangian dual

In this section, we introduce the Lagrangian relaxation of
problem (1) and give an efficient algorithm to solve the La-
grangian dual. Relaxing the constraints on B-jobs in prob-
lem (1) we get the Lagrangian problem:

L(λ) = min
σ∈S

{
nA∑

i=1

wA
i CA

i (σ ) + λ

(
nB∑

j=1

wB
j CB

j (σ ) − Q

)}

.

(2)

Note that for each value of λ ≥ 0, problem (2) is in the
format of a classical, single-agent problem 1||∑ w̄jCj , in
which the weights are defined as follows:

w̄h =
{

wh if Jh ∈ JA,
λwh if Jh ∈ JB .

As pointed out by Baker and Cole Smith (2003), the opti-
mal schedule σ(λ) for this problem can be found by simply
applying the Smith’s rule (Smith 1956), i.e., scheduling the
jobs in non-increasing order of their ratio w̄h/ph. (As a con-
sequence, the order in which the A-jobs are scheduled and
that in which the B-jobs are scheduled remain the same for
all values of λ.) Each solution of (2) is a lower bound for
(1). The Lagrangian dual of problem (1) consists in finding
the highest of such bounds, i.e., computing

L(λ∗) = max
λ≥0

[

min
σ∈S

{
nA∑

i=1

wA
i CA

i (σ )

+λ

(
nB∑

j=1

wB
j CB

j (σ ) − Q

)}]

. (3)

It is well known that L(λ) is a concave, piecewise lin-
ear function (Fig. 1). Calling breakpoint the values of λ in
which the slope of L(λ) changes, we note that λ∗ is always
a breakpoint. General methods for solving the Lagrangian
dual (such as the subgradient method) generate a sequence
of points asymptotically converging to λ∗. In our case, also
exploiting the fact that λ is indeed a scalar, we are able to ex-
actly compute λ∗ in a polynomial number of computational
steps.

Let λmin = δA
nA

/δB
1 and λmax = δA

1 /δB
nB

. Notice that if
λ ≤ λmin, σ(λ) is the schedule in which all the A-jobs are

Fig. 1 Shape of Lagrangian function

processed before all the B-jobs. Conversely, if λ ≥ λmax,
σ(λ) is the schedule in which all the B-jobs are processed
before all the A-jobs. (Clearly, in the latter case, if σ(λ) is
infeasible, so is the whole problem (1)). As λ monotonically
decreases from λmax to λmin, in the optimal schedule σ(λ)

the B-jobs migrate from the head to the tail of the schedule
(Fig. 2). Each intermediate schedule is optimal for a certain
range of values of λ. If λ̄ is not a breakpoint, the slope of
L(λ) in λ̄ is

nB∑

j=1

wB
j CB

j

(
σ(λ̄)

) − Q,

which represents the violation of the constraint for schedule
σ(λ̄). If λ̄ is a breakpoint, then, for a sufficiently small ε > 0,
the schedules σ(λ̄ − ε) and σ(λ̄ + ε) are obtained one from
the other simply by swapping the jobs of all adjacent pairs
(JA

i , JB
j ) for which δA

i = λ̄δB
j . (Note that there is at least one

such pair.) Both these schedules are optimal for problem (2)
with λ = λ̄.

The maximum L(λ∗) is attained at the breakpoint λ∗
where the slope of L(λ) switches from non-negative to
non-positive, and therefore the schedule σ(λ∗ − ε) is fea-
sible. The breakpoint λ∗ can be efficiently found as follows.
First, notice that the total number of breakpoints cannot ex-
ceed nAnB since going from σ(λmin − ε) to σ(λmax + ε)

each B-job overtakes each A-job exactly once, and that
all breakpoints can be generated in O(nAnB), by comput-
ing the values λij = δA

i /δB
j , i = 1, . . . , nA, j = 1, . . . , nB .

Second, the schedule σ(λij − ε) can be generated from
σ(λij + ε) by simply swapping all job pairs JA

p ,JB
q such

that δA
p /δB

q = λij . If λij and λuv are two consecutive break-
points, with λij < λuv , σ(λij + ε) ≡ σ(λuv − ε). Hence,
all breakpoints can be a priori ordered, which requires
O(nAnB log(nAnB)). Thereafter, L(λ∗) can be attained in
O(nAnB). In conclusion, the complexity is therefore domi-
nated by the ordering of the breakpoints, and the following
theorem holds.

Theorem 3.1 Problem (3) can be solved in
O(nAnB log(nAnB)).
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Fig. 2 Optimal schedules for problem (2) for decreasing values of λ, where λ0 = λmin and λk = λmax

3.2 Extension to the bicriteria problem

Here we want to briefly illustrate how to extend the approach
described for problem (1) can be extended to address the
more general bicriteria problem in which two weights wh

and vh are given for each job Jh, and a single agent wants
to minimize total weighted completion time using weights
wh, with a bound on total weighted completion time using
weights vh:

z∗ = min
σ∈S

{
n∑

h=1

whCh(σ ) :
n∑

h=1

vhCh(σ ) ≤ Q

}

.

The Lagrangian dual problem becomes

L
(
λ∗) = max

λ≥0
L(λ)

= max
λ≥0

min
σ∈S

{
n∑

h=1

(wh + λvh)Ch(σ ) − λQ

}

. (4)

We can associate with each job Jh two densities δW
h =

wh/ph and δV
h = vh/ph. For λ = 0, the Lagrangian problem

is solved by sorting the jobs according to densities δW
h (W -

ordering), while for sufficiently large λ, the jobs are sorted
according to densities δV

h (V -ordering). As λ increases, the
slope of L(λ) changes at a breakpoint λ̄, such that two adja-
cent jobs Ji and Jj swap their positions:

λ̄ = δW
i − δW

j

δV
j − δV

i

for 0 ≤ λ ≤ λ̄, the two jobs follow the W -ordering, while
for λ ≥ λ̄ they follow the V -ordering. (Note that if δW

i ≥ δW
j

and δV
i ≥ δV

j , Ji precedes Jj for all λ.) Since two jobs can

overtake each other at most once, there are at most O(n2)

breakpoints, and in conclusion the following theorem holds.

Theorem 3.2 Problem (4) can be solved in O(n2 logn).

3.3 Enumeration

The algorithm described in the previous section has been
embedded in a branch-and-bound scheme. The adopted
branching rule simply consists in fixing the first l jobs in
the schedule. In doing so, a simple dominance rule is en-
forced, i.e., two adjacent jobs belonging to the same agent
must respect Smith’s rule.

At each node of level l, the algorithm solves the La-
grangian dual of a problem having the same structure of the
root problem, but only n− l jobs to schedule. Notice that the
breakpoints are ordered once for all at the root node, so that
solving the Lagrangian dual at each node indeed requires
only O(nAnB) time. If either a subproblem is infeasible or
it is trivially solved by scheduling all the B-jobs at the end,
then the subproblem is fathomed.

The open subproblems are kept in an ordered dynamic
list. At each step, the subproblem having the lowest bound
is chosen from the list, and all of its subproblems are
processed.

As shown in Sect. 3.1, one property of the optimal so-
lution to the Lagrangian dual is that it is always attained
for a schedule σ̃ which is feasible for the original prob-
lem. Such a schedule, that we get at no extra computational
cost, can be exploited to compute an initial upper bound as
well as to update the incumbent. Note that σ̃ is the sched-
ule having largest

∑
wB

j CB
j among all feasible schedules

encountered in the solution of the Lagrangian dual, so the
quantity |∑wB

j CB
j (σ̃ ) − Q| is usually quite small (recall

that since σ̃ is feasible,
∑

wB
j CB

j (σ̃ ) ≤ Q). Since the differ-
ence between L(λ∗) and the value of the feasible schedule
∑

wA
i CA

i (σ̃ ) is λ∗(
∑

wB
j CB

j (σ̃ )−Q), and since it turns out
in most experiments that λ∗ is typically close to 1, chances
are that σ̃ is also a good schedule. Moreover, note that if
∑

wB
j CB

j (σ̃ ) − Q = 0, then σ̃ is optimal for that subprob-
lem, which can therefore be fathomed.
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4 Problem WCLmax

In this section, we address the problem in which A wants
to minimize the weighted sum of its jobs’ completion times,
while B wants to complete each of its jobs JB

j within Q

from its due date dB
j . This problem has been shown to be

strongly NP-hard by Cheng et al. (2008).
We suppose that the B-jobs are numbered according to

non-decreasing due dates (EDD order). We let d̄nB
= dnB

and, for j = (nB − 1), . . . ,1, d̄j = min{dj , d̄j+1 − pB
j+1}.

For each B-job we define a shifted due date Qj = d̄j + Q,
for which the following holds

Qj ≤ Qj+1 − pB
j+1, j = 1, . . . , nB − 1. (5)

This simple preprocessing plays a key role to speed up
the solution algorithm. Note that, with no loss of generality,
we can always assume that the B-jobs are scheduled in EDD
order in an optimal solution, and hence we can use shifted
due dates in the formulation of the problem:

z∗ = min
σ

{
nA∑

i=1

wA
i CA

i (σ )

}

s.t. CB
j (σ ) ≤ Qj, j = 1, . . . , nB, (6)

σ ∈ S.

We note that WCLmax is a special case of the scheduling
problem with deadlines 1|d̃j |∑wjCj , in which jobs hav-
ing weight wj > 0 have infinite deadline. This problem has
received some attention in the literature. In particular, Pan
(2003) proposes an enumeration scheme which significantly
enhances the results obtained using a bounding scheme pre-
viously proposed by Posner (1985). Our approach exploits
the special structure of our problem. After introducing an
algorithm for solving the Lagrangian dual (Sect. 4.2) and
proving its correctness (Sect. 4.2.1), we will show that our
bound is tighter than Posner’s (Sect. 4.3). Also, we will
discuss how we embedded Pan’s ideas in an enumeration
scheme for our problem (Sect. 4.4).

4.1 Lagrangian relaxation

Relaxing the nB constraints on B-jobs’ completion times in
(6) we get the Lagrangian problem:

L(λ) = min
σ∈S

{
nA∑

i=1

wA
i CA

i (σ ) +
nB∑

j=1

λj (C
B
j (σ ) − Qj)

}

(7)

Fig. 3 The Lagrangian dual algorithm

and the corresponding Lagrangian Dual:

L
(
λ∗) = max

λ≥0

[

min
σ∈S

{
nA∑

i=1

wA
i CA

i (σ )

+
nB∑

j=1

λj

(
CB

j (σ ) − Qj

)
}]

. (8)

We let δB
j = λB

j /pB
j , and denote with δA, δB and δ

the vectors (δA
1 , . . . , δA

nA
), (δB

1 , . . . , δB
nB

) and (δA
1 , . . . , δA

nA
,

δB
1 , . . . , δB

nB
), respectively. The Lagrangian problem (8) then

becomes

L
(
δB

) = min
σ∈S

{
nA∑

i=1

δA
i pA

i CA
i (σ )

+
nB∑

j=1

δB
j pB

j (CB
j (σ ) − Qj)

}

. (9)

Note that in (9) only the δB
j are variables, whereas the δA

i

are given. Let us restate the dual problem (8) as

L
(
δ∗B

) = max
δB≥0

{
L

(
δB

)}
. (10)

4.2 Algorithm

For convenience of exposition, we introduce a dummy A-
job, JA

nA+1, such that pA
nA+1 = QnB

and wA
nA+1 = 0. Clearly,

such a job will be always scheduled last in an optimal solu-
tion to (6) and (9). We next consider the Lagrangian Dual
Algorithm (LDA) for (10) reported in Fig. 3.

We denote with σ ∗
LDA and δB

LDA the schedule and, respec-
tively, the densities of the B-jobs given by LDA. Note that in
LDA each B-job’s δB

j is set equal to the value δA
i of some A-

job JA
i . We denote with J B

i the set of the B-jobs whose δB
j

was set equal to δA
i , and call cluster Ji the set J B

i ∪ {JA
i }.

Note that the B-jobs belonging to the same cluster are sched-
uled consecutively, followed by the corresponding A-job at
the end of the cluster.
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4.2.1 Correctness of the Lagrangian dual algorithm

In this section, we show that LDA optimally solves problem
(10). To this aim, we first need to establish some preliminary
results.

Proposition 4.1 If (6) is feasible then, for each JB
j , (a)

Qj − CB
j (σ ∗

LDA) ≥ 0 and (b) letting Ji be the cluster JB
j

belongs to, Qj − CB
j (σ ∗

LDA) < pA
i .

Proof For simplicity, in this proof we omit σ ∗
LDA from the

completion times notation (so we write CB
j for CB

j (σ ∗
LDA)).

We prove the thesis by induction. From the feasibility of
(6), it immediately follows that Q1 − pB

1 ≥ 0. Then JB
1 will

be scheduled starting at time T = ∑i−1
k=1 pA

k , where i such
that T ≤ Q1 − pB

1 < T + pA
i (or T = 0 if i = 1). Hence,

CB
1 = T +pB

1 ≤ QB
1 , proving (a) for j = 1, and Q1 −CB

1 =
Q1 − T − pB

1 < pA
i , proving (b) for j = 1.

Now, suppose that (a) and (b) hold for job JB
j . Note that,

after JB
j has been scheduled, T is set equal to CB

j . Two cases
can occur:

(i) CB
j + pA

i > Qj+1 − pB
j+1. In this case, JB

j+1 is sched-

uled immediately after the end of JB
j , and

CB
j+1 = CB

j + pB
j+1

≤ Qj + pB
j+1 by the induction hypothesis

≤ Qj+1 for (5)

proving (a). Moreover, Qj+1 − CB
j+1 = Qj+1 − CB

j −
pB

j+1 < pA
i , proving (b). (Note that, in particular, for

cluster JnA+1 this holds because pA
nA+1 = QnB

.)

(ii) CB
j + pA

i ≤ Qj+1 − pB
j+1. In this case, after the end

of job JB
j , the A-jobs JA

i , . . . , JA
i′ will be consecutively

scheduled, where i′ is such that

CB
j +

i′−1∑

k=i

pA
k ≤ Qj+1 − pB

j+1 < CB
j +

i′∑

k=i

pA
k .

Then JB
j+1 is scheduled to start at the end of JB

i′−1,

and so CB
j+1 = CB

j + ∑i′−1
k=i pA

k + pB
j+1 ≤ Qj+1, prov-

ing (a). Moreover, Qj+1 − CB
j+1 = Qj+1 − CB

j −
∑i′−1

k=i pA
k − pB

j < pA
i′ , proving (b). (Again, for JnA+1

this holds because pA
nA+1 = QnB

.)
�

Note that schedule σ ∗
LDA is feasible as a consequence of

(a).
The following is a well known general property that holds

for all scheduling problems, and can be easily proved by a
simple pairwise interchange argument.

Proposition 4.2 Let σ be a schedule of the n jobs {J1, . . . ,

Jn} with durations {p1, . . . , pn}, and let I ⊆ {J1, . . . , Jn} be
a subset of consecutively scheduled jobs. The quantity

∑

Ji∈I
piCi(σ ) (11)

does not depend on the ordering of the jobs in J .

Lemma 4.3 Given σ ∗
LDA and any cluster Ji , let σ̃ be any

schedule obtained from σ ∗
LDA by arbitrarily reordering the

jobs within cluster Ji . Also, denote with JB
π1

, . . . , J B
π�−1

, JA
π�

,

JB
π�+1

, . . . , J B
π|Ji |

the jobs belonging to Ji , ordered according

to their position in the schedule σ̃ . Then

h∑

k=1

pB
πk

(
CB

πk
(σ̃ ) − Qπk

) ≤ 0 ∀h = 1, . . . , � − 1, (12)

|Ji |∑

k=h

pB
πk

(
CB

πk
(σ̃ ) − Qπk

)
> 0 ∀h = � + 1, . . . , |Ji |. (13)

Proof Let σ̄ be the schedule obtained reordering the jobs of
σ ∗

LDA within cluster Ji as follows: schedule in EDD order
the B-jobs JB

π1
, . . . , J B

π�−1
, then schedule JA

i , then sched-

ule in EDD order the B-jobs JB
π�+1

, . . . , J B
π|Ji |

. Note that

CB
πk

(σ̄ ) ≤ CB
πk

(σ ∗
LDA) for any k < �. Then, from Proposi-

tion 4.1(a), it follows that CB
πk

(σ̄ ) − Qπk
≤ CB

πk
(σ ∗

LDA) −
Qπk

≤ 0 for any k < �. Also, note that CB
πk

(σ̄ ) ≥
CB

πk
(σ ∗

LDA)+pA
i for any k > �, then from Proposition 4.1(b)

it follows that CB
πk

(σ̄ )−Qπk
≥ CB

πk
(σ ∗

LDA)−Qπk
+pA

i > 0
for any k > �. Hence, for schedule σ̄ it holds

h∑

k=1

pB
πk

(
CB

πk
(σ̄ ) − Qπk

) ≤ 0 ∀h = 1, . . . , � − 1, (14)

|Ji |∑

k=h

pB
πk

(
CB

πk
(σ̄ ) − Qπk

)
> 0 ∀h = � + 1, . . . , |Ji |. (15)

Schedule σ̃ differs from σ̄ only by the order of the jobs
within the two blocks of consecutively scheduled B-jobs,
before and after JA

i , respectively. Then, in view of Proposi-
tion 4.2, the thesis holds. �

We are now in the position of proving the main result of
this section.

Theorem 4.4 Algorithm LDA correctly solves problem (10)
in O(n).

Proof We first show that vector δB
LDA is optimal for (10).

From the concavity of L(δB), it is sufficient to prove that
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δB
LDA is locally optimal. To this aim, let us consider an ar-

bitrary perturbed vector δB
LDA + εΔ, where ε > 0 is a suffi-

ciently small scalar so that if δB
h > δB

k , then δB
h + εΔh >

δB
k + εΔk . By resequencing all jobs by the Smith’s rule,

we obtain an optimal schedule σ̃ for Problem (9) in which
the jobs that belong to the same cluster in σ ∗

LDA are still se-
quenced consecutively (in nonincreasing order of Δj ).

The value of the perturbed Lagrangian function can be
expressed as a summation over all clusters:

L
(
δB

LDA + εΔ
)

=
nA∑

i=1

[

δA
i pA

i CA
i (σ̃ )

+
∑

JB
j ∈J B

i

(
δB
j + εΔj

)
pB

j

(
CB

j (σ̃ ) − Qj

)
]

(16)

=
nA∑

i=1

δA
i

[

pA
i CA

i (σ̃ ) +
∑

JB
j ∈J B

i

pB
j

(
CB

j (σ̃ ) − Qj

)
]

︸ ︷︷ ︸
#1

+ ε

nA∑

i=1

[ ∑

JB
j ∈J B

i

Δjp
B
j

(
CB

j (σ̃ ) − Qj

)
]

︸ ︷︷ ︸
#2

. (17)

From Proposition 4.2, it follows that the term #1 is equal
to L(δB

LDA). Then the variation of the Lagrangian function is
given by the term #2. We next show that all terms in square
brackets in the summation #2 are non-positive. Each of such
terms can be split into two parts, taking into account the B-
jobs for which Δj > 0 and Δj < 0, respectively. Note that
the B-jobs for which Δj is strictly positive are scheduled
before JA

i in σ̃ and the B-jobs for which Δj is strictly neg-
ative are scheduled after JA

i in σ̃ , so

L
(
δB

LDA + εΔ
) − L

(
δB

LDA

)

= ε

nA∑

i=1

[ Δj >0∑

JB
j ∈JB

i

Δjp
B
j

(
CB

j (σ̃ ) − Qj

)

+
Δj <0∑

JB
j ∈JB

i

Δjp
B
j

(
CB

j (σ̃ ) − Qj

)
]

. (18)

For any cluster Ji , denote with JB
π1

, . . . , JA
π�

, . . . , J B
π|Ji |

the jobs belonging to Ji , ordered according to their position
in the schedule σ̃ (i.e., by non-increasing values of Δj ). Let-
ting Δπ�

= 0 for uniformity of notation, the summations for

Δj > 0 and Δj < 0 in (18) can be respectively rewritten as

�−1∑

k=1

Δπk
pB

πk

(
CB

πk
(σ̃ ) − Qπk

)

=
�−1∑

h=1

(Δπh
− Δπh+1)︸ ︷︷ ︸

#1

h∑

k=1

pB
πk

(
CB

πk
(σ̃ ) − Qπk

)

︸ ︷︷ ︸
#2

, (19)

|Ji |∑

k=�+1

Δπk
pB

πk

(
CB

πk
(σ̃ ) − Qπk

)

=
|Ji |∑

h=�+1

(Δπh
− Δπh−1)︸ ︷︷ ︸

#1

|Ji |∑

k=h

pB
πk

(
CB

πk
(σ̃ ) − Qπk

)

︸ ︷︷ ︸
#2

. (20)

Since Δπh
≥ Δπh+1 , all the coefficients #1 in (19) are

non-negative, and from Lemma 4.3, all the terms #2 in (19)
are non-positive. Similarly, all the coefficients #1 in (20) are
non-positive, while from Lemma 4.3 all the terms #2 in (20)
are strictly positive. Then L(δB

LDA + εΔ) − L(δLDA), being
the sum of non-positive terms, is non-positive, which im-
plies that L(δB

LDA) is a local maximum.
As for the complexity of LDA, we observe that each job

is considered exactly once throughout the algorithm. As-
suming that the A-jobs have preliminarily been ordered ac-
cording to WSPT and B-jobs according to EDD, the thesis
follows. �

4.3 Comparison with Posner’s lower bound

In this section, we show that our bounding scheme is strictly
better that the best known bound in the literature. Let us first
briefly review Posner’s bounding scheme (PBS), when ap-
plied to problem (6). PBS works in two phases and builds a
preemptive schedule from left to right as follows. (1) Each
B-job JB

j is scheduled to start at its latest start time, Qj −
pB

j (recall that because of (5) this is always possible with
no overlap among B-jobs). (2) The A-jobs are scheduled in
WSPT order, filling the gaps left by the B-jobs. Whenever
an A-job does not fit one interval, it is split into two smaller
jobs, each having the same density of the original job. To
be more precise, suppose that we have built the schedule up
to time T and JA

i is the next A-job to be scheduled, in the
interval G = [T ,Qj −pB

j ]. If JA
i fits the interval, it is sched-

uled to start at T , and T is updated to T + pA
i . Else, JA

i is
split into two smaller split jobs, say J ′ and J ′′. J ′ has length
p′ equal to the size of G , while J ′′ has length pA

i − p′. The
weights of J ′ and J ′′ are such that both split jobs have the
same density of JA

i . Then, J ′ is scheduled to fill the interval
G while J ′′ will be scheduled in the next gap.
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Posner (1985) shows that the total weighted completion
time of such a schedule (including all newly generated split
jobs) gives a lower bound for (6). We next show that the
bound provided by PBS is always not tighter than the La-
grangian dual bound provided by LDA, and the two bounds
coincide only when both bounding schemes attain the opti-
mal solution.

Theorem 4.5 Let LPBS be the value of Posner’s lower
bound for (6). Then LPBS ≤ L(δ∗B), and LPBS = L(δ∗B)

if and only if PBS solves (6) to optimality.

Proof See Appendix. �

4.4 Enumeration

The algorithm described in the previous sections has been
embedded in a branch-and-bound scheme. The branching
rule consists in fixing the first A-jobs in the schedule. No-
tice that we need not consider the B-jobs in the branching
rule. In fact, if the sequence of A-jobs is fixed, the position
of each B-job JB

j is consequently determined as the latest

position which still allows JB
j to complete within Qj .

Open subproblems are kept in a dynamic list ordered by
the value of the bound. From such a list, the subproblem with
the most promising bound is extracted and branching is per-
formed. For each generated child, the following processing
steps are carried out.

(i) A fast heuristic is applied to find a (possibly good) solu-
tion for the corresponding subproblem to be compared
with the actual incumbent, or to check the infeasibil-
ity of the current node. The heuristic simply schedules
each B-job as late as possible (from the last to the first),
and then fills the space between B-jobs with the A-jobs
(from the first to the last, in WSPT order).

(ii) A dominance test is checked, similarly to what Pan
(2003) proposed for 1|d̃j |∑wjCj . In particular, at
level h of the enumeration tree, the first h A-jobs are
fixed. Then, among all possible permutations of the last
k fixed A-jobs, we search for one that strictly improves
the cost function. If such a permutation exists, we can
then fathom the current node. In our experiments, we
set such a retrospect depth k to 5, which gave the best
results on some preliminary tests.

(iii) If the node has not been fathomed, the Lagrangian
bound is evaluated and the node is inserted in the list
of open nodes.

5 Problem WCCmax

In this section, we address the problem in which A wants
to minimize the weighted sum of its jobs’ completion

times, while B wants to complete all its jobs within Q. Of
course, this can be viewed as a special case of 1|LB

max ≤
Q|∑wA

j CA
j , obtained when dB

j = 0 for all B-jobs. We
exploit the peculiarity of this special case to devise a spe-
cific, more efficient solution algorithm. The problem is still
NP-hard (Agnetis et al. 2004), but can be solved in pseudo-
polynomial time (Sect. 5.3).

A simple but relevant observation (Baker and Cole
Smith 2003) is that in an optimal solution to 1|CB

max ≤
Q|∑wA

j CA
j , all the B-jobs are scheduled consecutively. (If

a B-job exists which is not the last and is followed by an A-
job, we can always swap the B-job and the A-job getting a
schedule which is strictly better for A and equivalent for B .)
Hence, from now on, in this section we assume that JB con-
sists of a single job JB , of length pB , and therefore denote
by CB(σ) its completion time in σ (which equals CB

max(σ )).
This observation implies that 1|CB

max ≤ Q|∑wA
j CA

j is also
a special case of WCWC, in which B holds a single job of
weight 1.

z∗ = min
σ

{
nA∑

i=1

wA
i CA

i (σ )

}

s.t. CB(σ) ≤ Q, (21)

σ ∈ S.

By the above observation, the structure of an optimal so-
lution to problem (21) is

{
JA

prec

}{JB}{JA
succ

}
, (22)

where JA
prec ∪ JA

succ = JA and JA
prec ∩ JA

succ = ∅. Another
property is stated in the following proposition which can
be easily established by a simple pairwise interchange ar-
gument (Smith’s rule).

Proposition 5.1 In an optimal solution σ ∗ to 1|CB
max ≤

Q|∑wA
j CA

j , jobs in JA
prec and JA

succ are ordered by non-

increasing values of the ratio wA
i /pA

i .

Due to this proposition, the optimal solution is com-
pletely defined by the partition (JA

prec, J
A
succ) of the set JA.

5.1 Lagrangian relaxation and Lagrangian dual

In the following sections, we first address the solution to the
Lagrangian dual of problem (21) at the root node of the enu-
meration tree, i.e., with no branching constraints. The struc-
ture of its solution will be exploited to devise a branching
rule. Finally, we give an algorithm to solve the Lagrangian
dual of problem (21) at non-root nodes.
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Fig. 4 A pair of critical
schedules

5.1.1 Solving the root node

Relaxing the constraint on CB in Problem (21), we get the
Lagrangian problem:

L(λ) = min
σ∈S

{
nA∑

i=1

wA
i CA

i (σ ) + λ
(
CB(σ) − Q

)
}

. (23)

As in the previous sections, we address the Lagrangian
dual of problem (21)

L
(
λ∗) = max

λ≥0

[

min
σ∈S

{
nA∑

i=1

wA
i CA

i (σ ) + λ
(
CB(σ) − Q

)
}]

.

(24)

In the following, we indicate with JA(δ) the set of the
A-jobs whose densities are greater or equal to δ. For each
value of λ ≥ 0, the solution to problem (23) can be sim-
ply found by first scheduling the A-jobs belonging to set
JA(λ/pB) ordered according to Smith’s rule, then the B-
job, and finally the remaining A-jobs ordered according to
Smith’s rule.

We next show that as λ varies from 0 to +∞, there are
nA + 1 different schedules, which are optimal for problem
(23). If λ/pB ≥ δA

1 , the optimal schedule for problem (23)
(call it σ0) is obtained by scheduling the B-job before all A-
jobs. (Such a schedule is feasible for the original problem,
unless problem (21) is infeasible.) Varying λ/pB from δA

1
down to δA

nA
, we get a sequence S = {σ1, . . . , σi, . . . σnA−1}

of nA−1 schedules, with σi optimal for λ ∈ [δA
i+1p

B, δA
i pB ]

and in which JB is scheduled immediately after job JA
i .

Finally, for λ/pB ≤ δA
nA

, the optimal schedule for problem
(23) (call it σnA

) is obtained by scheduling the B-job after
all A-jobs. (Note that such a schedule is infeasible for the
original problem, unless the problem itself is trivial.)

In the sequence S , there is an index h such that σ0, σ1,

. . . , σh are feasible, and σh+1, . . . , σnA
are infeasible. The

value of λ (call it critical) for which the optimal schedule
switches from σh to σh+1 is (wA

h+1/p
A
h+1)p

B . Note that the
two critical schedules σh and σh+1 are both optimal when
λ = δA

h+1p
B , and they are obtained one from the other sim-

ply swapping JB with the critical job JA
h+1.

Whether any of the schedules in the sequence S is feasi-
ble or not for the original problem can be easily checked by
the following condition:

CB =
∑

i∈J (λ/pB)

pA
i + pB ≤ Q. (25)

Hence, we can find the last feasible schedule and the first
infeasible schedule in the sequence S by simply adding one
by one the durations of the A-jobs until their total duration
exceeds the quantity (Q − pB). The critical job JA

h+1 is the
last added job when infeasibility arises, i.e., such that

h∑

i=1

pA
i ≤ Q − pB <

h+1∑

i=1

pA
i . (26)

Hence, to obtain the optimal value λ∗ for the Lagrangian
dual we only need to build the two critical schedules σh and
σh+1 by (26), and then compute the value of λ such that:

nA∑

i=1

wA
i CA

i (σh) + λ
(
CB(σh) − Q

)

=
nA∑

i=1

wA
i CA

i (σh+1) + λ
(
CB(σh+1) − Q

)
. (27)

Figure 4 illustrates the structure of two critical schedules
σh and σh+1. From (27), and since CB(σh) = CB(σh+1) +
pA

h+1, CA
h+1(σh) = CA

h+1(σh+1) − pB , while the comple-
tion time of all other A-jobs is unchanged, one gets λ∗ =
δA
h+1p

B .

5.1.2 Branching strategy

Due to the structure of the optimal solution to problem (24),
i.e., the existence of a critical A-job, we branch at the root
node by defining two subproblems. In one subproblem, the
critical job is constrained to be scheduled before the B-job,
in the other it is constrained to be scheduled after the B-job.

The same branching strategy can be applied at any non-
root node, provided that a suitable definition of critical job
is given. This leads to a binary enumeration tree in which
branching constraints at each node result in precedence con-
straints between some A-jobs and JB . Hence, in the general
case, we have to deal with precedence constraints in the form
of a tripartition C = {P,S,F } of the job set JA, with P , S

and F being, respectively, the set of A-jobs constrained to
precede JB , the set of A-jobs constrained to follow JB , and
the set of unconstrained (free) A-jobs.

z∗ = min
σ

{
nA∑

i=1

wA
i CA

i (σ )

}

s.t. CB(σ) ≤ Q,
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Fig. 5 Breakpoints on the
Lagrangian function

JA
i ≺ JB ∀i ∈ P, (28)

JA
i � JB ∀i ∈ S,

σ ∈ S.

We refer to jobs in P ∪ S as constrained. The structure
of an optimal solution to problem (28) is still given by (22),
where now P ⊆ JA

prec and S ⊆ JA
succ. The property stated in

Proposition 5.1 still holds, too.

5.1.3 Solving non-root nodes

In this section, we extend the results of Sect. 5.1.1 to solve
the Lagrangian dual for a subproblem defined by constraints
C = {P,S,F }. The Lagrangian relaxation of such a sub-
problem is:

L(λ) = min
σ∈S

{
nA∑

i=1

wA
i CA

i (σ ) + λ
(
CB(σ) − Q

)
}

s.t. JA
i ≺ JB ∀i ∈ P, (29)

JA
i � JB ∀i ∈ S.

As in the previous section, we address the Lagrangian
dual problem. Let n̄ = |F |, and let JF (δ) be the set of
free A-jobs whose density wA

i /pA
i is greater than or equal

to δ. Similar to what is done at the root node, for each
λ ≥ 0, the solution to (29) can be found by first schedul-
ing the A-jobs belonging to set P ∪ JF (λ/pB) ordered ac-
cording to Smith’s rule, then the B-job, and finally the re-
maining A-jobs ordered according to Smith’s rule. At each
subproblem of the enumeration tree, there is a sequence
S = {σ0 . . . σk . . . σn̄} of n̄+1 schedules having such a struc-
ture. Each of them corresponds to a line in the (λ,L(λ))-
plane (Fig. 5):

�σk
(λ) =

nA∑

i=1

wA
i CA

i (σk) + λ
(
CB(σk) − Q

)
.

Note that in the schedule σk the job B is scheduled after
the kth and before the (k+1)th free A-job. Each schedule of
S is optimal for (29) as λ/pB varies from 0 to +∞. Whether

any of these schedules is feasible or not for the original prob-
lem can be easily checked by the following condition which
generalizes (25):

∑

i∈JF (λ/pB)

pA
i +

∑

i∈P

pA
i + pB = CB ≤ Q.

Let λi−1,i be the value for which lines �σi−1(λ) and �σi
(λ)

intersect. The following result ensures that for each pair of
adjacent schedules (σi−1, σi) in the sequence S , the point
λi−1,i is a breakpoint of the Lagrangian function, as shown
in Fig. 5(a). (In other words, the situation of Fig. 5(b) cannot
occur.)

Lemma 5.2 λi−1,i ≥ λi,i+1.

Proof See Appendix. �

As a consequence of this lemma, the breakpoint corre-
sponding to λ∗ is the intersection of the lines corresponding
to the last feasible schedule and the first infeasible sched-
ule in the sequence S . We can find such critical schedules
by a very similar condition to (26). Adding one by one the
durations of free A-jobs, the job JA

h+1 such that

∑

i≤h
i∈F

pA
i ≤ Q −

∑

i∈P

pA
i − pB <

∑

i≤h+1
i∈F

pA
i

is the critical job. As for the root node, we solve the La-
grangian dual by constructing only the two critical sched-
ules, say σh and σh+1, and by computing the value λ∗ such
that

nA∑

i=1

wA
i CA

i (σh) + λ∗(CB(σh) − Q
)

=
nA∑

i=1

wA
i CA

i (σh+1) + λ∗(CB(σh+1
) − Q).

The structure of σh and σh+1 is shown in Fig. 6, in which
P̃ is the set of A-jobs belonging to P having density less
than wA

h+1/p
A
h+1, and S̃ is the set of A-jobs belonging to S
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Fig. 6 A pair of critical
schedules

having density greater than wA
h+1/p

A
h+1. From the structure

of the critical schedules, it can be easily obtained

λ∗ = δA
h+1

(

pB +
∑

i∈P̃∪S̃

pA
i

)

−
∑

i∈P̃∪S̃

wA
i .

Concerning the complexity, note that P̃ and S̃ can be built
in O(n). Then, finding the critical index h requires O(nA)

additions, as well as the computation of the value λ∗. Hence,
the following result holds:

Theorem 5.3 Problem (28) can be solved in O(n).

5.2 Enumeration

As for the previous problems, the Lagrangian bound has
been used in a branch-and-bound scheme. Unlike previous
cases, the branching rule adopted is binary, and consists in
constraining the A-job to belong to P , or, respectively, S in
the two subproblems. Thus, at each node of level l the al-
gorithm solves the Lagrangian dual of problems having the
same job sets of the root problem, but l precedence con-
straints. At each step, the subproblem having lowest bound
is extracted from the list.

Note that the critical schedule σh found at a node of the
enumeration tree is feasible for the original problem (21).
Such solutions can be used to obtain an initial upper bound
and for effective tree fathoming. In fact, arguments similar
to that given in Sect. 3.3 show that the difference between
L(λ∗) and the value of the feasible schedule

∑
wA

i CA
i (σ̃ ) is

usually small, so σ̃ is often a good schedule.

5.3 A pseudo-polynomial algorithm

As pointed out by Sourd (2008), problem WCCmax can, in
fact, be solved in pseudo-polynomial time by means of a
dynamic programming algorithm.

Let F(k, t1, t2) be the optimal value of a subproblem re-
stricted to the first k A-jobs (numbered according to their
density) and the B-job, in which the machine continuously
works between 0 and t1, it is idle from t1 to t2, and the
B-jobs starts at t2. This means that each A-job is either
processed within 0 and t1, after t2 + pB . In particular, in
an optimal solution to such a restricted problem, either job
JA

k completes at time t1, or it is the last job in the sched-

ule, hence completing at time pB + (t2 − t1) + ∑k
i=1 pA

i .
F(k, t1, t2) is taken equal to 0 if k = 0 and t1 = 0, while it

is taken equal to +∞ if no feasible schedule exists for the
associated subproblem, i.e.:

F(k, t1, t2) = +∞ for all k and for t1 < 0 or t1 > t2,

F (0, t1, t2) = +∞ for t1 > 0.

If none of the above boundary conditions hold, the value
F(k, t1, t2) is given by the following recursive formula:

F(k, t1, t2) = min

{

F
(
k − 1, t1 − pA

k , t2
) + wA

1 t1;

F(k − 1, t1, t2)

+ wA
1

(

pB + (t2 − t1) +
k∑

i=1

pA
i

)}

.

The optimal solution to the problem is given by

min
t1

{
F(n, t1, t1)

}

and can therefore be computed in O(nA(
∑nA

i=1 pA
i )2).

6 Computational experience

In this section, we present the results of computational ex-
periments on the algorithms for Problems WCWC, WCLmax

and WCCmax presented in Sects. 3, 4 and 5. The algorithms
have been run on a large set of instances, for various values
of nA and nB . Each problem and each pair (nA,nB) defines
a scenario. For each scenario, 50 instances were run, and in
Tables 1, 2 and 3 we report:

• the number of instances solved to optimality within the
time limit of 1800 seconds;

• the average time required to solve such instances to opti-
mality;

• the average number of nodes of the enumeration tree for
these instances;

• the average gap (UB − LB/LB) at the root node (on all
instances), where LB is the Lagrangian bound at the root
node and UB is the value of the heuristic solution;

• average gap after 1800 seconds (for instances not solved
to optimality);

• number of instances (out of 50) in which the gap drops
below 0.01 and 0.001, and the average number of enu-
merated nodes and time elapsed at that point.

The algorithms were implemented in the C++ language,
using Visual C++ 2005, and run on an Intel Pentium 4
Processor, 2.6 GHz clock frequency, 1 GB RAM and Win-
dows XP sp2 installed.



412 J Sched (2009) 12: 401–415

Table 1 Computational results for WCWC

nA nB # proved Elapsed Generated Root Final Gap < 0.01 Gap < 0.001

optimal time nodes gap gap # inst. @node @time # inst. @node @time

10 10 50 0.02 500 0.003 − 50 17 0.009 50 183 0.017

10 20 50 0.03 2253 0.002 − 50 3 0.003 50 212 0.006

10 30 50 0.09 417 < 0.001 − 50 1 0.003 50 105 0.039

10 40 50 0.17 408 < 0.001 − 50 1 0.006 50 10 0.015

20 10 49 0.07 7518 0.003 0.001 50 1 < 0.001 49 413 0.007

20 20 50 0.32 89994 0.002 − 50 1 0.005 50 373 0.013

20 30 49 1.13 9469 0.001 < 0.001 50 1 0.001 50 88 0.013

20 40 48 1.23 14525 < 0.001 < 0.001 50 1 0.001 50 55 0.006

30 10 46 0.22 28564 0.001 < 0.001 50 1 0.000 48 136 0.002

30 20 49 1.73 16273 0.001 < 0.001 50 1 0.002 49 72 0.014

30 30 50 2.12 27534 0.001 − 50 1 0.007 50 46 0.011

30 40 47 2.31 49087 < 0.001 < 0.001 50 1 < 0.001 50 33 0.003

40 10 39 3.39 64908 0.001 < 0.001 50 1 0.001 45 405 0.040

40 20 37 3.7 43903 < 0.001 < 0.001 50 1 0.002 49 16 0.003

40 30 44 5.23 83479 < 0.001 < 0.001 50 1 0.001 50 14 0.003

40 40 50 5.8 583392 < 0.001 − 50 1 0.006 50 5 0.007

50 50 44 43.05 2418292 < 0.001 < 0.001 50 1 0.004 48 8 0.005

60 60 31 119.04 54364647 < 0.001 < 0.001 50 1 0.002 50 3 0.004

6.1 Problem WCWC

In Table 1, we report our results for 20 scenarios, gener-
ated with all processing times and weights being integers
uniformly distributed in [1 . . .25]. Concerning Q, let f B

min
be the value of

∑
wB

j CB
j when all B-jobs are scheduled

in WSPT order at the beginning of the schedule, and let
f B

max be the value of
∑

wB
j CB

j when all B-jobs are sched-
uled in WSPT order at the end of the schedule, after all A-
jobs. Clearly, if Q < f B

min the problem is infeasible, and if
Q ≥ f B

max the problem is trivial. Actually, preliminary tests
showed that when Q is close to f B

min or f B
max the problem is

easy to solve, i.e., the hardest instances are those in which Q

is close to (f B
max − f B

min)/2. For this reason, in each instance
we set Q = αf B

min + (1 − α)f B
max, drawing α randomly be-

tween 0.4 and 0.6.
The main observation is that our approach solves to opti-

mality significantly large problems, up to 60 jobs per agent.
We note that in all cases considered, the gap at the root node
is already extremely small, indicating that the heuristic so-
lution at the root node is optimal or near-optimal. Actually,
as the number of jobs increases, the gap drops below 0.1%
very soon.

It is worth noticing that, although the problem is sym-
metric, the fact that the two agents play different roles in
the optimization model does have a consequence in terms
of computational efficiency. In fact, for the same total num-
ber n of jobs, instances in which nA is smaller appear to

be easier. (For instance, notice that solving an instance with
nA = 40 and nB = 10 takes 3.39 seconds vs. only 0.17 sec-
onds for the opposite case.) This is probably due to the fact
that only the completion times of the A-jobs directly affect
the objective function.

6.2 Problem WCLmax

In Table 2, we report our results for 11 scenarios, generated
for various combinations of nA and nB , and again drawing
all integer processing times and weights from the uniform
distribution on [1 . . .25]. Since we were able to solve all in-
stances with nA ≤ 30 and nB ≤ 30, we also launched some
experiments for larger values of nA and nB . Since in this
problem Q is simply an offset on the due date values, we
set Q = 0, so that Qj = d̄B

j for all B-jobs. Clearly, if for

some B-job d̄B
j < pB

j , the problem is infeasible, whereas,
if P is the total processing time of all nA + nB jobs, if
dB
j ≥ P , job JB

j can be removed. For this reason, the due
dates were randomly generated from a uniform distribution
on [0.1P,0.9P ].

From Table 2, this problem appears more difficult than
the previous one. While all instances were solved to opti-
mality up to nA = 30 and nB = 30, the number of certified
optimal solutions decreases in larger scenarios. However, in
all instances the final gap is below 1%, with an average
of 0.6% on largest instances. Note that even in largest in-
stances, in most cases (84%) a solution at most 0.1% away
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Table 2 Computational results for WCLmax

nA nB # proved Elapsed Generated Root Final Gap < 0.01 Gap < 0.001

optimal time nodes gap gap # inst. @node @time # inst. @node @time

10 10 50 0.01 367 0.089 – 50 20 0.001 50 298 0.006

10 20 50 0.02 312 0.115 – 50 57 0.003 50 266 0.010

10 30 50 0.03 215 0.117 – 50 46 0.003 50 168 0.012

20 10 50 0.26 8679 0.028 – 50 1 0.000 50 2918 0.090

20 20 50 0.84 19814 0.045 – 50 34 0.001 50 10008 0.407

20 30 50 1.08 26478 0.053 – 50 2 < 0.001 50 14977 0.564

30 10 50 2.68 68657 0.013 – 50 1 < 0.001 50 4311 0.173

30 20 50 7.24 187377 0.022 – 50 1 < 0.001 50 29096 1.159

30 30 50 23.79 615546 0.036 – 50 1 < 0.001 50 169654 6.732

40 40 19 95.22 1930592 0.029 0.006 50 1 < 0.001 42 184994 9.244

50 50 4 113.43 1863063 0.022 0.006 50 1 < 0.001 42 107249 6.498

Table 3 Computational results for WCCmax

nA nB # proved Elapsed Generated Root Final Gap < 0.01 Gap < 0.001

optimal time nodes gap gap # inst. @node @time # inst. @node @time

10 10 50 0.01 512 0.009 – 50 3 < 0.001 50 10 0.002

20 20 50 0.09 481 0.01 – 50 1 < 0.001 50 22 0.001

30 30 50 0.47 21874 0.004 – 50 1 < 0.001 50 4 0.001

40 40 49 4.54 189464 0.008 <0.001 50 2 0.016 50 121 0.23

50 50 47 7.68 389926 0.004 <0.001 50 1 0.003 50 2 1.002

60 60 39 23.43 11933565 0.006 <0.001 50 1 < 0.001 48 103 12.006

from optimality is available after a few seconds of computa-
tion. It is also worth noticing that in all instances (and more
so for large n) the gap drops below the 1% threshold very
quickly, most often at the root node. This indicates that the
Lagrangian bound is indeed strong.

Similarly to the previous problem, the computation time
is more sensitive to the growth of nA than of nB . In fact, this
is more apparent here than for WCWC, which is not surpris-
ing since the two agents have asymmetric objectives here. It
is interesting to note that, on the contrary, the quality of the
bound at the root node (slightly) decreases as nB increases.
This is probably due to the fact that the number of multipli-
ers increases with nB .

6.3 Problem WCCmax

For this problem we generated 6 scenarios, with the parame-
ters generated as for the previous problems. Recall that the
B-jobs are scheduled consecutively in any optimal schedule.
If their total length P B is very small, the WSPT rule is likely
to produce an optimal solution. On the other hand, if P B is
very large, the problem becomes similar to a classical knap-
sack, since the problem is then to maximize the total weight

of the A-jobs scheduled from 0 to Q − P B . We therefore
generated “balanced” instances, i.e., with nA = nB . Con-
cerning Q, we let Q = α(P A + P B) + P B/2, where α is
drawn randomly from the interval [0.4,0.6]. This choice
corresponds to locating the B-jobs roughly in the middle of
the schedule, hence dividing the A-jobs into two sets having
similar total duration.

From Table 3, we see that our algorithm is able to op-
timally solve almost all instances up to 50 A-jobs. More-
over, in all instances the final gap is below 0.1%. The qual-
ity of the bound at the root node is already very high, which
confirms the fact that this problem is indeed easier than
WCLmax.

7 Conclusions

In this paper, we addressed the problem of generating mean-
ingful schedules for two agents, A and B , who have to ne-
gotiate the usage of a common single machine. In particu-
lar, we focused our attention on the problem of finding an
optimal schedule for agent A subject to the constraint that
the cost for agent B does not exceed a given value. We ad-



414 J Sched (2009) 12: 401–415

Fig. 7 Structure of three
consecutive optimal schedules

dressed three such scenarios, all NP-hard from the complex-
ity viewpoint, different for the cost functions of agent B .

We devised a Lagrangian approach for which, in all
cases, we were able to solve the Lagrangian dual very ef-
ficiently by ad hoc algorithms. Our approach allows to solve
instances of significant size, always providing optimal or
near-optimal solutions. The hardest case is when agent B

wants to minimize the maximum lateness of its jobs, while
the other two cases appear to be easier, also because in these
cases the Lagrangian relaxation involves a single multiplier.

Several venues for future research are open, including the
following:

• Different bounding schemes for the same two-agent
scheduling problems addressed here. This would prob-
ably require very different approaches, since other clas-
sical bounding schemes are not effective in this context
(e.g., preemption does not help).

• Extension to more than two agents. Note that such a
generalization is straightforward if A wants to minimize∑

wA
i CA

i and the maximum lateness or makespan for all
other agents is bounded, whereas it is less obvious if some
of the other agents also want to minimize total weighted
completion time.

• Extension of the Lagrangian approach to devise exact al-
gorithms for bicriteria, single-agent scheduling problems.
In particular, computational experiments to test the ap-
proach in Sect. 3.2 for the bicriteria version of WCWC
should be carried out. Also, it may be worth investigating
whether the Lagrangian approach of Sect. 4 for WCLmax

can be extended to the bicriteria problem 1|d̃j |∑wjCj ,
either to devise an exact or a heuristic algorithm.

Appendix: Proofs

In this section, we give the proofs for results given in previ-
ous sections.

Proof of Theorem 4.5 For the sake of simplicity, we assume
that, at any step of PBS, the next two gaps are separated by
a single B-job JB

j , and that the total size of these two gaps

exceeds the length of the current job JA
i to be scheduled.

Indicate by [T ,Qj −pB
j ] the next gap. Two cases can occur.

(i) If Qj −pB
j −T ≥ pA

i , PBS schedules the entire job JA
i ,

starting at T . In this case, also LDA schedules JA
i at the

same starting time. So, the contribution to the value of
the bound is the same in both schemes.

(ii) If Qj − pB
j − T < pA

i , the two schemes give different

contributions. PBS splits JA
i into J ′ and J ′′, of total

length p′ + p′′ = pA
i , that will complete respectively

at C′ = T + p′ and C′′ = T + pA
i + pB

j . Hence, the
contribution of J ′ and J ′′ to Posner’s bound is given by

δA
i p′C′ + δA

i p′′C′′

= δA
i

(
pA

i T + p′2 + p′′2 + p′p′′ + p′′pB
j

)
. (30)

Now turn to LDA. In this case, LDA moves JB
j back-

ward, to start at T , so that CB
j = T +pB

j , and assigns to

JB
j the density δB

j = δA
i . Thereafter, JA

i is scheduled to

start at T + pB
j , so CA

i = T + pB
j + pA

i . Hence, recall-

ing that T + p′ + pB
j = Qj , the contribution of JA

i and

JB
j to the Lagrangian dual bound is given by

δA
i pA

i

(
T + pA

i + pB
j

) + δA
i pB

j

(
T + pB

j − Qj

)

= δA
i

(
pA

i T + p′2 + p′′2 + 2p′p′′ + p′′pB
j

)
. (31)

Subtracting (30) from (31), we get δA
i p′p′′ > 0, proving

the first part of the thesis.

To prove the second part, one only needs to note that the
two bounds coincide if and only if case (ii) never occurs,
i.e., no A-job is ever split during PBS (and hence each B-
job JB

j completes at Qj ). In this case, PBS finds a feasible
and hence optimal solution. Finally, dropping the initial as-
sumptions, very similar arguments apply. �

Proof of Lemma 5.2
From Figs. 5 and 7, in which

• P1 is the set of A-jobs belonging to P having density in
[wA

i+1/p
A
i+1,w

A
i /pA

i ],
• P2 is the set of A-jobs belonging to P having density less

than wA
i+1/p

A
i+1,

• S1 is the set of A-jobs belonging to S having density
greater than wA

i+1/p
A
i+1,

• S2 is the set of A-jobs belonging to S having density in
[wA

i+1/p
A
i+1,w

A
i /pA

i ],
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we can establish the following expressions for λi−1,i and
λi,i+1:

λi−1,i = δA
i

(

pB +
∑

P1,P2,S1

pA
k

)

−
( ∑

P1,P2,S1

wA
k

)

,

λi,i+1 = δA
i+1

(

pB +
∑

P2,S1,S2

pA
k

)

−
( ∑

P2,S1,S2

wA
k

)

,

from which one has:

λi−1,i − λi,i+1

= δA
i

(

pB +
∑

P1,P2,S1

pA
k

)

− δA
i+1

(

pB +
∑

P2,S1,S2

pA
k

)

+
( ∑

P2,S1,S2

wA
k

)

−
( ∑

P1,P2,S1

wA
k

)

= (
δA
i − δA

i+1

)
(

pB +
∑

P2,S1

pA
k

)

+
(∑

S2

wA
k −

∑

P1

wA
k

)

+
(

δA
i

∑

P1

pA
k − δA

i+1

∑

S2

pA
k

)

.

Omitting the first term of last member, which is non-
negative, we get:

λi−1,i − λi,i+1

≥
(

δA
i

∑

P1

pA
k −

∑

P1

wA
k

)

−
(

δA
i+1

∑

S2

pA
k −

∑

S2

wA
k

)

+
∑

P1

(
δA
i+1p

A
k − wA

k

) −
∑

S2

(
δA
i+1p

A
k − wA

k

)
.

The first sum in the last member is non negative while
the second is non positive. In fact, due to the structure of
schedules σi−1 and σi , the following holds:

δA
i ≥ δA

k = wA
k

pA
k

⇒ δA
i pA

k − wA
k ≥ 0, k ∈ P1,

δA
i ≤ δA

k = wA
k

pA
k

⇒ δA
i pA

k − wA
k ≤ 0, k ∈ S2.

Hence, the thesis holds. �
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