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Abstract This study proposes an exact algorithm for the
general single-machine scheduling problem without ma-
chine idle time to minimize the total job completion cost.
Our algorithm is based on the Successive Sublimation Dy-
namic Programming (SSDP) method. Its major drawback is
heavy memory usage to store dynamic programming states,
although unnecessary states are eliminated in the course of
the algorithm. To reduce both memory usage and compu-
tational efforts, several improvements to the previous algo-
rithm based on the SSDP method are proposed. Numerical
experiments show that our algorithm can optimally solve
300 jobs instances of the total weighted tardiness problem
and the total weighted earliness-tardiness problem, and that
it outperforms the previous algorithms specialized for these
problems.

Keywords Single-machine scheduling · Exact algorithm ·
Time-indexed formulation · Lagrangian relaxation ·
Successive sublimation dynamic programming method

1 Introduction

In this study, we treat a class of scheduling problems to
sequence jobs on a single machine so that the sum of job
completion costs is minimized. Consider that a set of n jobs
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N = {1, . . . , n} is to be processed on a single machine with-
out preemption. Job i (i ∈ N ) is given an integer processing
time pi and an integer-valued cost function fi(t). Machine
idle time is not permitted and the machine cannot process
more than one job at a time. All the jobs can be processed
from time zero. Thus, the jobs should be processed in the
interval [0, T ], where T = ∑n

i=1 pi . The objective is to find
an optimal job sequence to minimize

∑n
i=1 fi(Ci), where Ci

denotes the completion time of job i.
For this single-machine scheduling problem without

machine idle time, an efficient lower bound computation
method based on state–space relaxation was proposed by
Abdul-Razaq and Potts (1988), which was originally pro-
posed by Christofides et al. (1981) for routing problems. In
this approach, the constraint on the number of job occur-
rences such that each job should be processed exactly once
is relaxed by Lagrangian relaxation. To improve the lower
bound more, additional constraints on successive jobs and
on state–space modifiers were introduced. These relaxations
with and without the additional constraints can be solved ef-
ficiently by dynamic programming. Abdul-Razaq and Potts
(1988) also proposed a branch-and-bound algorithm where
this lower bounding approach is integrated into.

Following this research, Ibaraki and Nakamura (1994)
applied the Successive Sublimation Dynamic Programming
(SSDP) method (Ibaraki 1987) to this problem. This dy-
namic programming based exact algorithm starts from a re-
laxation obtained by relaxing the constraint on the number
of job occurrences, and next adds the constraints on succes-
sive jobs to the relaxation. Then, the constraints on state–
space modifiers are successively added until the gap be-
tween the lower and upper bounds becomes zero. To sup-
press the increase of dynamic programming states caused
by the additional constraints, unnecessary states are elim-
inated in the course of the algorithm by computing lower

mailto:tanaka@kuee.kyoto-u.ac.jp


576 J Sched (2009) 12: 575–593

bounds for passing through states. Ibaraki and Nakamura
applied this algorithm to the single-machine total weighted
earliness–tardiness problem without machine idle time, and
reported that their algorithm is faster than the branch-and-
bound algorithm by Abdul-Razaq and Potts (1988). How-
ever, they also pointed out that their algorithm will not out-
perform the specialized algorithm by Potts and Van Wassen-
hove (1985) when it is applied to the single-machine total
weighted tardiness problem, and that their algorithm is hard
to apply to those instances with a longer scheduling hori-
zon T (total processing time) due to heavy memory usage.

However, rapid progress in computer technologies has
changed the situation very much from when their paper was
published. Large size memory is available at a cheaper cost
nowadays, and memory size is not so restrictive a limita-
tion as it once was. If this fact is taken into account, the
framework of the SSDP method is still attractive although
we should admit that some modifications and improvements
are necessary.

The purpose of this study is to construct an exact algo-
rithm based on the SSDP method. To reduce both the mem-
ory usage and computational efforts, we propose several im-
provements for the original algorithm by Ibaraki and Naka-
mura (1994):

(1) Lower bound improvement by the dominance of two ad-
jacent jobs

(2) Further improvement by the dominance of four succes-
sive jobs

(3) Sophisticated step sizing in subgradient optimization
(4) Efficient upper bound computation by the enhanced dy-

nasearch (Congram et al. 2002; Grosso et al. 2004)
(5) Improved choice of state–space modifiers

These improvements enable us to solve even 300 jobs in-
stances optimally.

It should be noted that our algorithm is not restricted
to a specific single-machine scheduling problem, but is ap-
plicable to general scheduling problems to minimize an
additive job completion cost without machine idle time.
Among these, one of the most extensively studied is the to-
tal weighted tardiness problem (1‖∑

wiTi , according to the
standard classification). Potts and Van Wassenhove (1985)
proposed a branch-and-bound algorithm for this problem,
and it was so efficient that there had been no better exact
algorithms for a long time. Recently, Pan and Shi (2007)
reported that their branch-and-bound algorithm optimally
solved all the open OR-library benchmark instances (avail-
able from http://people.brunel.ac.uk/~mastjjb/jeb/info.html)
with 100 jobs. However, it still takes maximum 9 hours for
the hardest instance on a 2.8 GHz Pentium 4 computer. On
the other hand, as will be shown by numerical experiments,
our algorithm can solve these 100 jobs instances only within
40 seconds and can solve 300 jobs instances within 1 hour
on a 2.4 GHz Pentium 4 computer.

It will also be shown that the algorithm can solve almost
all the 300 jobs instances of the total weighted earliness–
tardiness problem without machine idle time (1‖∑

(αiEi +
βiTi)). To the best of authors’ knowledge, the most recent
exact algorithm for this problem is the branch-and-bound al-
gorithm proposed by Liaw (1999). However, their algorithm
cannot solve some of 40 jobs instances optimally within 1
hour on a 266 MHz Pentium II computer. This fact together
with the results for 1‖∑

wiTi indicates the potential of our
proposed algorithm.

This paper is organized as follows. In Sect. 2, our prob-
lem is formulated as a 0–1 integer programming problem,
and it is then relaxed by introducing Lagrangian multipliers
to obtain a tight lower bound. The method to improve the
lower bound proposed by Abdul-Razaq and Potts (1988) is
also introduced in this section. Based on this improvement,
Sect. 3 states the exact algorithm proposed by Ibaraki and
Nakamura (1994). The main contributions of this study are
given in Sect. 4, and a new algorithm is proposed. Then, in
Sect. 5 its effectiveness is examined by numerical experi-
ments. Finally, our results and future research directions are
summarized in Sect. 6.

2 Time-indexed formulation and Lagrangian relaxation

In this section, we will first formulate our problem as a
0–1 integer programming problem, which is known as time-
indexed formulation (Pritsker et al. 1969; Dyer and Wolsey
1990; Sousa and Wolsey 1992; van den Akker et al. 1999).
Next, the Lagrangian relaxation technique is applied to com-
pute a lower bound of the problem. Then, it is further im-
proved by the method proposed by Abdul-Razaq and Potts
(1988), which was originally proposed by Christofides et al.
(1981) for routing problems.

2.1 Time-indexed formulation and Lagrangian relaxation

Let us introduce binary decision variables xit (i ∈ N , 1 ≤
t ≤ T ) such that

xit =
{

1 if t ≥ pi and job i is completed at t (t = Ci),

0 otherwise.

(1)

Then, our problem (P) can be formulated as follows.

F opt = min
x

F(x) = min
x

n∑

i=1

T∑

t=1

fi(t)xit , (2)

s.t.
n∑

i=1

min(T , t+pi−1)∑

s=t

xis = 1, 1 ≤ t ≤ T , (3)
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T∑

t=1

xit = 1, i ∈ N , (4)

xit ∈ {0, 1}, i ∈ N , 1 ≤ t ≤ T . (5)

In this formulation, (3) represents the machine capacity con-
straint that the machine should process exactly one job in
each time slot. The constraint on the number of job occur-
rences (4) claims that each job should be processed exactly
once.

It is well-known that a tight lower bound is obtained by
solving the LP relaxation of (P) (cf. Dyer and Wolsey 1990).
However, the relaxation has O(nT ) decision variables and it
is, in general, hard to solve. An alternatively way is to apply
the Lagrangian relaxation technique to (P). There are two
types of Lagrangian relaxations: the relaxation of the ma-
chine capacity constraint (3) and the relaxation of the con-
straint on the number of job occurrences (4). One of the ad-
vantages of the former relaxation is that the original prob-
lem can be decomposed into trivial n subproblems corre-
sponding to the n jobs. There is an early attempt by Fisher
(1973) to use this relaxation for computing lower bounds in
a branch-and-bound algorithm. On the other hand, the pri-
mary advantage of the latter relaxation is that it gives an
easy way to obtain a tighter lower bound than for the LP
relaxation as will be explained in the following subsections.
This type of relaxation (state–space relaxation) is utilized by
Abdul-Razaq and Potts (1988) and by Ibaraki and Nakamura
(1994), as already mentioned in Introduction. It also appears
when the column generation technique is applied to the LP
relaxation of (P) (van den Akker et al. 2000).

In this study, we apply the latter relaxation. The relax-
ation of (4) by introducing Lagrangian multipliers
μi (i ∈ N ) yields the following problem (LR):

L(μ) = min
x

{
n∑

i=1

T∑

t=1

fi(t)xit +
n∑

i=1

μi

(

1 −
T∑

t=1

xit

)}

= min
x

{
n∑

i=1

T∑

t=1

(
fi(t) − μi

)
xit +

n∑

i=1

μi

}

,

s.t. (3), (5).

(6)

For a fixed set of μ, the relaxation (LR) can be solved by
dynamic programming of time complexity O(nT ) (Abdul-
Razaq and Potts 1988). To find multipliers that give a tighter
lower bound, subgradient optimization is applied to the cor-
responding Lagrangian dual (D):

L
(
μopt) = max

μ
L(μ). (7)

It is a standard framework of computing a lower bound by
Lagrangian relaxation.

It is easy to see that L(μopt) is identical to the optimal
objective value of the LP relaxation of (P). To improve it
more, Abdul-Razaq and Potts (1988) imposed two types of
additional constraints on the relaxation (LR). These will be
explained in the following subsections.

2.2 Lower bound improvement by a constraint on
successive jobs

Let us generate a problem (Pk) (k ≥ 0) by adding the follow-
ing constraint to (P):

Job duplication is forbidden in any (k + 1) successive jobs.

(8)

Since this constraint is satisfied by any feasible solution
of (P), it is redundant for (Pk) and feasible regions of (P)
and (Pk) are identical. However, it does make a difference
when the constraint (4) is relaxed. By relaxing (4), we ob-
tain the relaxation (LRk) given by

Lk(μ) = min
x

{
n∑

i=1

T∑

t=1

(
fi(t) − μi

)
xit +

n∑

i=1

μi

}

,

s.t. (3), (5), (8).

(9)

The feasible region of (LRk) is restricted compared to (LR),
and

Lk(μ) ≥ L0(μ) = L(μ) (10)

holds. This problem can be solved in O(nkT ) time for k > 0
(Abdul-Razaq and Potts 1988; Péridy et al. 2003) if we
choose appropriate dynamic programming states as will be
shown in Appendix A. Since (LRn−1) is equivalent to the
original problem (P), we can improve the lower bound to a
desired extent by choosing a larger k, if we admit the in-
crease of computational efforts. In this study, we assume
k ≤ 2.

2.3 Lower bound improvement by state-space modifiers

Next, we improve Lk(μ) further by introducing state–space
multipliers. This constraint is to restrict the total weighted
number of job occurrences in a solution, where the weights
are called “state–space modifiers.” By summing up (4) af-
ter multiplying nonnegative integer state–space modifiers ql

i

(i ∈ N ) for every l (1 ≤ l ≤ m), we obtain

n∑

i=1

ql
i

T∑

t=1

xit =
n∑

i=1

ql
i = Ql, 1 ≤ l ≤ m, (11)

where Ql = ∑n
i=1 ql

i . Thus, it restricts to Ql for every l

(1 ≤ l ≤ m), the sum of the job modifiers ql
i (i ∈ N ) in a
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solution. Clearly, the feasible region of (Pk) does not change
when (11) is added to (Pk) as a constraint. Hence, as in
Sect. 2.2, we consider the relaxation (Pm

k ) constructed from
(Pk) by adding the constraint (11). Then, the problem (LRm

k )
is derived by relaxing the constraint (4) as follows:

Lm
k (μ) = min

x

{
n∑

i=1

T∑

t=1

(
fi(t) − μi

)
xit +

n∑

i=1

μi

}

,

s.t. (3), (5), (8), (11).

(12)

Obviously,

Lm
k (μ) ≥ Lk(μ) (13)

holds and the lower bound is improved. This relaxation
(LRm

k ) can be solved in O(nkT
∏m

l=1(1 + Ql)) time for
k > 0 and O(nT

∏m
l=1(1 + Ql)) for k = 0

(Abdul-Razaq and Potts 1988). In this study, we only con-
sider (LRm

2 ).

3 An exact algorithm proposed by Ibaraki and
Nakamura

Ibaraki and Nakamura (1994) proposed an exact algo-
rithm for our single-machine scheduling problem, which
is based on the Successive Sublimation Dynamic Program-
ming (SSDP) method (Ibaraki 1987). The SSDP method is
a dynamic programming based exact algorithm that starts
from a relaxation of the original problem and then succes-
sively eliminates unnecessary dynamic programming states
and constructs “sublimations.” When it is applied to our
problem, the construction of sublimations is interpreted as
the addition of the constraints (8) and (11) to the relaxation
(LR). An outline of the algorithm by Ibaraki and Nakamura
(1994) will be stated in Sect. 3.2 and we will explain in
Sect. 3.1 the elimination of dynamic programming states in
our problem via graph representations.

3.1 Graph representation and state elimination

The relaxations (LRk) and (LRm
k ) can be converted into con-

strained and unconstrained shortest path problems on di-
rected graphs. Thus, it is easy to verify that they can be
solved by dynamic programming. However, the number of
dynamic programming states increases exponentially as k

or m increases, and the relaxation becomes intractable. To
avoid this, unnecessary dynamic programming states are
eliminated by computing lower bounds for passing through
states and comparing them with an upper bound. In graph
representations, this corresponds to the elimination of nodes
or arcs. Here, we will give graph representations, dynamic
programming recursions and state elimination inequalities

for (LR), (LR1), (LR2), and (LRm
2 ). Since the complete ex-

pression of the dynamic programming recursion is presented
only for (LR), please refer to Appendix A for the other re-
laxations.

First, we consider (LR), or its equivalent (LR0). For sim-
plicity of notation, we introduce a dummy job n + 1 satisfy-
ing

pn+1 = 1, μn+1 = 0, fn+1(t) = 0, ∀t. (14)

Consider a directed graph G = (V ,A) where the node set
V is given by

V = {v00} ∪ VO,

VO = {vit | i ∈ N , pi ≤ t ≤ T } ∪ {vn+1,T +1},
(15)

and the arc set A is defined by

A = AA ∪ AB ∪ AC, (16)

AA = {
(vj,t−pi

, vit )| i, j ∈ N , pi + pj ≤ t ≤ T
}
, (17)

AB = {
(v00, vipi

)| i ∈ N
}
, (18)

AC = {
(viT , vn+1,T +1)| i ∈ N

}
, (19)

where the arc from v′ to v is denoted by (v′, v). For each arc
a = (vj,t−pi

, vit ) ∈ A, let us define the length ca by

ca = fi(t) − μi. (20)

Then, (LR) can be converted into the shortest path problem
on G from v00 to vn+1,T +1, where a node vit (i ∈ N ) vis-
ited on the path corresponds to the completion of job i at t

(xit = 1). This shortest path is obtained by forward or back-
ward dynamic programming. In forward dynamic program-
ming, the shortest path length h0(t; μ) from v00 to v∗t is
recursively computed by

h0(0; μ) = 0, (21)

h0(t; μ) = min
vit∈VO

{
h0(t − pi; μ) + fi(t) − μi

}
, (22)

and L(μ) = L0(μ) is given by

L(μ) = L0(μ) = h0(T + 1;μ) +
n∑

i=1

μi. (23)

Therefore, the time complexity of (LR) is O(nT ), as already
stated in the preceding section, because the minimization in
the right-hand side of (22) can be computed in O(n) time
for every t .

When backward dynamic programming is applied, the
shortest path length H0(t; μ) from v∗t to vn+1,T +1 is re-
cursively computed by

H0(T + 1; μ) = 0, (24)
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H0(t; μ) = min
vi,t+pi

∈VO

{
H0(t + pi; μ)

+ fi(t + pi) − μi

}
, (25)

and

L(μ) = L0(μ) = H0(0;μ) +
n∑

i=1

μi. (26)

From h0(t; μ) and H0(t; μ), it can be seen that the
lengths of the shortest paths that pass through the nodes v∗t

are not shorter than

h0(t; μ) + H0(t; μ). (27)

Therefore, if there exists an upper bound UB of the original
problem (P) satisfying

UB < h0(t; μ) + H0(t; μ) +
n∑

i=1

μi, (28)

then no jobs are completed at t in any optimal solution
of (P). In this case, we can remove the nodes vit (i ∈ N )
from V and the arcs connected to the nodes from A, when
the shortest path problem is solved. It follows that the dy-
namic programming state h0(t; μ), or H0(t; μ), can be
eliminated and, as a consequence, not only computational
efforts but also memory usage reduces.

Similar arguments hold for (LRk) (k > 0). In the case
of (LR1), the shortest path from v00 to vn+1,T +1 satisfying
(8) is to be computed. It corresponds to the shortest path
from v00 to vn+1,T +1 on GS = (V ,AS), where

AS = AD ∪ AB ∪ AC, (29)

AD = AA\{(vi,t−pi
, vit )| i ∈ N , 2pi ≤ t ≤ T

}
. (30)

Let us define by h1(vit ; μ) the shortest path length from v00

to vit on GS, and by H1(vit ; μ) that from vit to vn+1,T +1

on GS. To obtain the shortest path from v00 to vn+1,T +1

on GS, we recursively compute h1(vit ; μ) in forward dy-
namic programming and H1(vit ; μ) in backward dynamic
programming. As shown in Appendix A, its time complex-
ity is given by O(nT ). To eliminate unnecessary states, the
inequality

UB < h1(vit ; μ) + H1(vit ; μ) +
n∑

i=1

μi (31)

is checked. If (31) is satisfied, job i is never completed at t

in any optimal solution of (P), and the node vit and the arcs
connected to this node can be eliminated from GS.

In the case of (LR2), the problem corresponds to the
shortest path problem from v00 to vn+1,T +1 on GS under

the following constraint:

For any i ∈ N , nodes corresponding to job i, i.e., vi∗,
should not be visited twice in any three successive
nodes on the path. (32)

To solve this problem, the shortest path length from v00

to vit on GS that satisfies the constraint (32) and that passes
through (vj,t−pj

, vit ) is defined by h2((vj,t−pj
, vit ); μ) for

forward dynamic programming. For backward dynamic pro-
gramming, the shortest path length from vit to vn+1,T +1

on GS that satisfies the constraint (32) and that passes
through (vit , vj,t+pj

) is defined by H2((vit , vj,t+pj
); μ).

Then, the problem can be solved in O(n2T ) time (see Ap-
pendix A). To eliminate unnecessary states, the inequality

UB < h2
(
(vj,t−pi

, vit ); μ
) + H2

(
(vj,t−pi

, vit ); μ
)

− (fit − μi) +
n∑

i=1

μi (33)

is checked, and the arc (vj,t−pi
, vit ) is eliminated from GS

if (33) is satisfied.
Finally, for (LRm

2 ), we should construct a new graph
Gm

S = (V m,Am
S ) from GS by setting

V m = {
v0

00

} ∪ V m
O , (34)

V m
O = {

vb
it |vit ∈ VO\{vn+1,T +1}, qk

i ≤ bk ≤ Qk,

1 ≤ k ≤ m
} ∪ {

v
Q
n+1,T +1

}
, (35)

Am
S = Am

D ∪ Am
B ∪ Am

C , (36)

Am
D = {(

v
b−qi
j,t−pi

, vb
it

)| (vj,t−pi
, vit ) ∈ AD,

qk
i + qk

j ≤ bk ≤ Qk, 1 ≤ k ≤ m
}
, (37)

Am
B = {(

v0
00, v

qi
pi t

)| (v00, vpi t ) ∈ AB
}
, (38)

Am
C = {(

v
Q
iT , v

Q
n+1,T +1

)| (viT , vn+1,T +1) ∈ AC
}
, (39)

where b = (b1, . . . , bm), qi = (q1
i , . . . , qm

i ), Q = (Q1, . . . ,

Qm), and qn+1 = (q1
n+1, . . . , q

m
n+1) = 0. The length cm

a of

an arc a = (v
b−qi
j,t−pi

, vb
it ) ∈ Am

S is given by

cm
a = fi(t) − μi. (40)

Then, (LRm
2 ) is equivalent to the shortest path problem from

v0
00 to v

Q
n+1,T +1 on Gm

S under the following constraint:

For any i ∈ N , nodes corresponding to job i, i.e., v∗
i∗,

should not be visited twice in any three successive
nodes on the path. (41)

This problem can be solved by dynamic programming in
O(n2T

∏m
l=1(1 + Ql)) time. For this dynamic program-

ming, hm
2 ((v

b−qi
j,t−pi

, vb
it ); μ) and Hm

2 ((vb
it , v

b+qj

j,t+pj
); μ)
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on Gm
S are defined similarly to h2((vj,t−pj

, vit ); μ) and
H2((vit , vj,t+pj

); μ) on GS, respectively. The condition for
state elimination is also similar to (33), and if

UB < hm
2

((
v

b−qi
j,t−pi

, vb
it

); μ
) + Hm

2

((
v

b−qi
j,t−pi

, vb
it

); μ
)

− (
fi(t) − μi

) +
n∑

i=1

μi (42)

is satisfied, the arc (v
b−qi
j,t−pi

, vb
it ) can be eliminated from Gm

S .

3.2 An outline of the algorithm

The exact algorithm by Ibaraki and Nakamura (1994) con-
sists of four stages. In short, it searches for a better set of
Lagrangian multipliers by subgradient optimization: first for
(LR) in Stage 1 and then for (LR1) in Stage 2. Later, they
are fixed and (LR2) is solved in Stage 3. After that, (LRm

2 ) is
solved in Stage 4 by adding state–space modifiers (increas-
ing m) until the gap between the lower and upper bounds
vanishes. State elimination is performed in every stage to
reduce the increase of dynamic programming states caused
by the addition of the constraints. The detailed algorithm is
given as follows.

Stage 1 Construct the following two schedules, and use the
better as the initial upper bound UB:

(a) A schedule sequenced greedily in the forward direction
(b) An EDD (Earliest DueDate order) schedule

Apply subgradient optimization to the Lagrangian dual
corresponding to (LR) for a better set of Lagrangian mul-
tipliers, where (LR) is solved by forward dynamic pro-
gramming. An upper bound is computed by the method
explained in Sect. 3.4 in every five iterations of the subgra-
dient optimization, and UB is updated if it is dominated by
the new upper bound. If there is no gap between L(μ) and
UB, halt. Otherwise, backward dynamic programming is
applied for the best multipliers μstage1 obtained by the sub-
gradient optimization, and state elimination is performed.
That is, the nodes vit for all i ∈ N are eliminated from
G = (V ,A) if

UB ≤ h0
(
t; μstage1) + H0

(
t; μstage1)

+
n∑

i=1

μ
stage1
i (43)

is satisfied.
Stage 2 Starting from the multipliers μstage1, apply sub-
gradient optimization to the Lagrangian dual correspond-
ing to (LR1) for a smaller number of iterations. When
(LR1) is solved, the dynamic programming states elimi-
nated in Stage 1 are not considered. In other words, the

graph GS = (V ,AS) is constructed by (30) from the re-
duced graph G = (V ,A) obtained after the state elimina-
tion in Stage 1. After the subgradient optimization is ter-
minated, an upper bound is computed by using the solution
of (LR1) for the best multipliers μstage2, and UB is updated
if it is dominated. Halt if no gap exists. Otherwise, state
elimination is performed: The node vit is eliminated from
of GS if

UB ≤ h1
(
vit ; μstage2) + H1

(
vit ; μstage2)

+
n∑

i=1

μ
stage2
i (44)

is satisfied.
Stage 3 Solve (LR2) for the multipliers μstage2 on the re-

duced graph GS after the state elimination in Stage 2.
An upper bound is also computed, and UB is updated if
it is dominated. Halt if no gap exists. Otherwise, the arc
(vj,t−pi

, vit ) satisfying

UB ≤ h2
((

vj,t−pi
, vit

); μstage2)

+ H2
((

vj,t−pi
, vit

); μstage2)

− (
fi(t) − μi

) +
n∑

i=1

μ
stage2
i (45)

is eliminated from GS.
Stage 4 The following procedure is applied until the gap be-

tween Lm
2 (μstage2) and UB becomes zero.

0° m := 0 and Gm
S = GS.

1° m := m + 1. State–space modifiers qm
i are determined

and Gm
S is constructed from Gm−1

S according to (34)–
(40). Then, (LRm

2 ) for the multipliers μstage2 is solved
by forward dynamic programming. An upper bound is
also computed, and UB is updated if it is dominated.

Then, the arc (v
b−qi
j,t−pi

, vb
it ) satisfying

UB ≤ hm
2

((
v

b−qi
j,t−pi

, vb
it

); μstage2)

+ Hm−1
2

((
v

b′−q ′
i

j,t−pi
, vb′

it

); μstage2)

− (
fi(t) − μi

) +
n∑

i=1

μ
stage2
i (46)

is eliminated from Gm
S , where b′ = (b1, . . . , bm−1) and

q ′
i = (q1

i , . . . , qm−1
i ).

2° m := m + 1. State-space modifiers qm
i (i ∈ N ) are de-

termined and (LRm
2 ) for the multipliers μstage2 is solved

by backward dynamic programming. An upper bound
is also computed, and UB is updated if it is dominated.
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Then, the arc (v
b−qj

j,t−pi
, vb

it ) is eliminated from Gm
S if

UB ≤ hm−1
2

((
v

b′−q′
i

j,t−pi
, vb′

it

); μstage2)

+ Hm
2

((
v

b−qi
j,t−pi

, vb
it

); μstage2)

− (
fi(t) − μi

) +
n∑

i=1

μ
stage2
i (47)

is satisfied.
3◦ Go to 1◦.

The conditions (43)–(47) of the algorithm imply that state
elimination is performed even when the upper and lower
bounds are identical. Therefore, it is possible that all fea-
sible paths in the corresponding graph are eliminated and
that dynamic programming becomes infeasible. However, it
does not cause any problems because, in this case, the cur-
rent upper bound is not dominated by any solutions, and thus
its optimality is ensured.

In addition, the conditions for state elimination in Stage 4,
i.e., (46) and (47), differ from (42). It is because state elimi-
nation for some m is performed by using the result for m−1
at the previous iteration instead of applying both backward
and forward dynamic programming for this m.

How to apply subgradient optimization in Stages 1 and 2,
how to compute upper bounds in every stage, and how to
choose state-space modifiers in Stage 4 will be explained in
the following subsections.

3.3 Subgradient optimization

A better set of Lagrangian multipliers is searched for in
both Stages 1 and 2 by applying subgradient optimization to
the corresponding Lagrangian duals. In the subgradient op-
timization, the multipliers are updated at the r th iteration by

μ
(r+1)
i := μ

(r)
i + ŨB(r) − LB(r)

∑n
j=1(1 − ∑T

t=1 x
(r)
j t )2

×
(

1 −
T∑

t=1

x
(r)
it

)

, i ∈ N , (48)

where μ(1) = 0, and x
(r)
it (i ∈ N , 1 ≤ t ≤ T ) and LB(r) de-

note the optimal solution and the optimal objective value of
the corresponding relaxation for μ(r), respectively (LB(r) =
L(μ(r)) or LB(r) = L1(μ

(r))). In (48), ŨB(1) is initialized
by an upper bound and ŨB(r) is updated by the following
rule.

(a) If LB(r) ≥ ŨB(r),

ŨB(r+1) := LB(r) + ∣
∣ŨB(r) − ŨB(r−1)∣∣/2. (49)

(b) If the best lower bound is not updated during the last K1

iterations,

ŨB(r+1) := ∣
∣ŨB(r) + LB

(r)∣∣/2, (50)

where

LB
(r) = max

1≤k≤r
LB(r). (51)

(c) Otherwise,

ŨB(r+1) = ŨB(r)
. (52)

The iterations are terminated when ŨB(r+1) is updated K2

times by (a) or (b). The parameters (K1,K2) are chosen
as (7,5) in Stage 1 and (7,3) in Stage 2.

3.4 Upper bound computation

An upper bound is computed as follows. Assume that a dy-
namic programming solution of the relaxation (LR), (LR1),
(LR2), or (LRm

2 ) is already obtained. From this solution, we
first construct a partial job sequence by removing jobs other
than those occurring exactly once or only successively. For
example, if the solution is 3,5,5,1,1,7,4,5, the partial job
sequence 3,1,7,4 is obtained. Next, we solve the problem
to find a job sequence minimizing the total cost without
changing job precedence relations in the partial sequence.
It can be done by dynamic programming of time complex-
ity O(N2(N1 + 1)2N2), where N1 is the length of the partial
sequence and N2 = n − N1. This dynamic programming is
time and space consuming and thus is applied only when
N2 ≤ 9.

In Stage 1 of the SSDP algorithm, partial job sequences
are generated from both the current dynamic programming
solution of (LR) and the solution constructed by always
choosing the second best in the minimization of (22). Then,
the above dynamic programming is applied to them.

3.5 The choice of state–space modifiers

The state–space modifiers are determined in Stage 4 by the
following procedure. Two jobs, jobs i1 and i2, are selected
from those that do not occur in the current dynamic pro-
gramming solution of (LRm−1

2 ). If there is only one such
job, job i2 is selected from those that occur more than once.
Then, the modifiers qm

i are chosen as

qm
i =

⎧
⎪⎨

⎪⎩

1 if i = i1,

2 if i = i2,

0 otherwise,

(53)

and Qm as Qm = 3. In the case that states at the current
iteration occupy more than 95% of the maximum available
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memory, only one job is selected and its modifier is set to be
one (qm

i = 1 and Qm = 1).
By choosing state–space modifiers as in (53), it is ensured

that at least jobs i1 should occur in the solution of (LRm
2 ).

Since the job chosen as “job i1” differs for each m, Stage 3
terminates in a finite number of iterations.

4 Proposed algorithm

The algorithm stated in the preceding section was success-
fully applied to 35 jobs instances of the total weighted
earliness–tardiness problem without machine idle time
(Ibaraki and Nakamura 1994). However, it is hard to ap-
ply their algorithm to larger instances because of its heavy
memory usage. Therefore, it is inevitable to reduce both the
memory usage and computational efforts, although comput-
ers have become much powerful since the paper was pub-
lished. To achieve this, we propose the following improve-
ments:

(1) Lower bound improvement by the dominance of two ad-
jacent jobs

(2) Further improvement by the dominance of four succes-
sive jobs

(3) Sophisticated step sizing in subgradient optimization
(4) Efficient upper bound computation by the enhanced dy-

nasearch (Congram et al. 2002; Grosso et al. 2004)
(5) Improved choice of state–space modifiers

These improvements enable us to reduce memory usage,
i.e., dynamic programming states. Thus, they also lead to
the reduction of computational efforts because the reduc-
tion of states improves the efficiency of dynamic program-
ming for the relaxations. Among these, our main contribu-
tions are (1), (2), and (5). In (1), an additional constraint is
imposed on the relaxations, which enables us to reduce dy-
namic programming states and to improve the lower bound,
at the same time without increasing the computational com-
plexity. (2) also reduces dynamic programming states and
improves the lower bound a little more, at the expense of
additional computational efforts. (5) is to suppress the in-
crease of dynamic programming states caused by the addi-
tion of state–space modifiers. The other two, (3) and (4), are
also necessary for tight lower and upper bounds, and they
improve the effectiveness of state elimination because it is
performed by lower and upper bounds.

In the following subsections, we will explain these im-
provements step by step.

4.1 Lower bound improvement by the dominance of two
adjacent jobs

First, we propose a simple but powerful method to improve
the lower bound and to reduce dynamic programming states.

The key notion for this improvement is the dominance the-
orem of dynamic programming (Potts and Van Wassenhove
1985). It compares two partial sequences consisting of iden-
tical subsets of jobs, and the one having the larger cost can
be eliminated. If the costs are identical, either can be elim-
inated. Based on this theorem, Potts and Van Wassenhove
(1985) proposed to improve the efficiency of their branch-
and-bound algorithm. In their algorithm, the current node in
the search tree is eliminated if the total cost decreases when
the two jobs added most recently to the partial schedule are
interchanged. Abdul-Razaq and Potts (1988) also utilized
this method in their branch-and-bound algorithm.

In this study, we apply this theorem to improve the lower
bound and to reduce memory usage. As we have already
seen in Sect. 2, we can improve the lower bound by adding
some constraint to a relaxation. Thus, we introduce a con-
straint for (LR2) and (LRm

2 ) that takes into account this the-
orem for two adjacent jobs.

Let j → i(t) denote such a situation that job i is com-
pleted at t (Ci = t) and job j is completed just before i

(Cj = t − pi ). Define by Δj→i (t) the cost sum of the two
jobs i and j when j → i(t). More specifically,

Δj→i (t) = fj (t − pi) + fi(t). (54)

From the dominance theorem of dynamic programming, it
is easily checked that we need not consider such schedules
where j → i(t), if

Δj→i (t) > Δi→j (t) (55)

is satisfied. On the other hand, if

Δj→i (t) < Δi→j (t) (56)

is satisfied, we need not consider such schedules where
i → j (t). This fact motivates us to introduce a constraint
that restricts the processing order of adjacent jobs by check-
ing whether Δi→j (t) is larger than Δj→i (t) or not.

It should be noted that adding such a constraint to (P)
eliminates even feasible schedules and restricts the feasi-
ble region of (P), unlike the constraint (8) or (11). In the
case that Δi→j (t) is strictly less than or strictly greater
than Δj→i (t), it does not cause any problems because
eliminated schedules are strictly dominated by some other
schedules, and hence they are never optimal. However, it
is not true when Δi→j (t) = Δj→i (t), and optimal sched-
ules may be eliminated. Therefore, the tie-breaking rule, i.e.,
which processing order is to be forbidden when Δi→j (t) =
Δj→i (t), should be determined carefully. The following
proposition claims that at least one optimal schedule is not
eliminated under a mild assumption that the tie-breaking
rule is independent of t .
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Proposition 4.1 There exists at least one optimal schedule
such that any two adjacent jobs j and i completed at t (j →
i(t)) satisfy

Δj→i (t) < Δi→j (t), (57)

or

Δj→i (t) = Δi→j (t), j = Rij , (58)

where Rij (= Rji ) defines a tie-breaking relation between
jobs i and j . More specifically, Rij determines which of
jobs i and j should precede when these jobs are in an adja-
cent position and when interchanging them does not change
the cost sum.

Proof See Appendix B. �

Remark 4.1 Péridy et al. (2003) also applied dominance
properties for their problem (minimization of the weighted
number of late jobs with release dates) to reduce possible
states in dynamic programming for a similar type of relax-
ation. However, their method uses dominance properties of
the targeted problem class, which, in general, requires prob-
lem specific analyses. On the other hand, our framework is
more general and does not depend on such a priori infor-
mation. This point is the primary advantage of our method
because it enables us to apply the method to a wider class of
problems.

Remark 4.2 Sourd (2006) independently proposed the same
lower bound improvement for their problem, the single-
machine total weighted earliness–tardiness problem with
machine idle time (we also proposed this technique in the
same year (Tanaka et al. 2006)). In his method, “reinforced
Lagrangean relaxation,” the constraint on the dominance of
two adjacent jobs is added to a relaxation corresponding to
(LR1) and it is solved by dynamic programming in O(n2T )

time. It is quite interesting that in his recent study (Sourd
2008) elimination of dynamic programming states is per-
formed as in Sect. 3.1, which is also parallel to this study. As
a matter of course, there are several differences between his
approach and ours: He imposed the dominance of two adja-
cent jobs not on (LR2) but on (LR1), he did not consider the
difficulty arising from the tie-breaking rule, the state elimi-
nation was not motivated by the SSDP method, and so on.
Among these, the primary difference is that he applied the
method for computing lower bounds in a branch-and-bound
algorithm, whereas our algorithm is based fully on dynamic
programming. We also tried a branch-and-bound algorithm
at first (Tanaka et al. 2006), but the SSDP method turned out
to be far more efficient.

Now, we define by Pi (t) (i ∈ N , pi + 1 ≤ t ≤ T ) the
set of jobs j (j �= i) satisfying pi + pj ≤ t and either (57)

or (58). If no job satisfies the conditions, Pi (t) becomes
empty, i.e., Pi (t) = φ. By using Pi (t), the following con-
straint is introduced:

Job i completed at t should be adjacently preceded
by job j (j ∈ Pi (t)). (59)

This constraint is added to (P2) and (Pm
2 ), and then the con-

straint (4) is relaxed. The corresponding relaxations are de-
noted by (L̂R2) and (L̂Rm

2 ), respectively.
It is easy to see that (L̂R2) and (L̂Rm

2 ) can be solved by
dynamic programming of the time complexities O(n2T )

and O(n2T
∏m

l=1(1 + Ql)), respectively. Therefore, the
lower bound can be improved by the additional con-
straint (59) without increasing the time complexity from
(LR2) or from (LRm

2 ). In practice, both the computational
efforts and the memory usage reduce. It can be explained by
using the graph representation in Sect. 3.1.

To solve (L̂R2), we are to consider the constrained short-
est path problem on ĜS = (V , ÂS) instead of GS, where ÂS

is defined by

ÂS = ÂD ∪ AB ∪ AC, (60)

ÂD = {
(vj,t−pi

, vit )| (vj,t−pi
, vit ) ∈ AD, j ∈ Pi (t)

}
. (61)

More specifically, ÂS is defined by removing from AS those
arcs that do not satisfy the constraint (59). Therefore, the op-
timal objective value L̂2(μ) of (L̂R2) can be computed in a
similar way as L2(μ) by the dynamic programming recur-
sions (A.15)–(A.26) (we define ŷ2(vit ; μ), λ̂2(vit ; μ), . . . ,

on ĜS as y2(vit ; μ), λ2(vit ; μ), . . . , on GS, respectively).
Moreover, the optimal objective value L̂m

2 (μ) of (L̂Rm
2 ) can

also be computed by defining Ĝm
S from ĜS as Gm

S in (34)–
(39) and by solving the constrained shortest path problem
on Ĝm

S . Since the number of arcs reduces in both problems,
not only the memory usage for storing states but also the
efforts to compute the minimization in the dynamic pro-
gramming recursions (corresponding to (A.16)–(A.18) and
(A.22)–(A.24)) reduce.

As it will be summarized in Sect. 4.6, our algorithm con-
sists of three stages. We first apply subgradient optimization
to the Lagrangian dual corresponding to (LR1) in Stage 1
and next to the dual corresponding to (L̂R2) in Stage 2.
Then, (L̂Rm

2 ) is solved in Stage 3 by increasing m. Unlike
the original algorithm in Sect. 3.2, (LR) is not solved in
our algorithm because the time complexities of (LR) and
(LR1) are the same O(nT ), and hence it seems unneces-
sary to solve (LR). One of the reasons why (LR) was solved
in the original algorithm would be that less efficient dy-
namic programming was applied: The time complexities
for (LR1), (LR2), and (LRm

2 ) were O(n2T ), O(n3T ), and
O(n3T

∏m
l=1(1 + Ql)), respectively. In this case, it is nat-

ural to solve all these problems if we take into account a
trade-off between the improvement of the lower bound and
the increase of computational efforts (or memory usage).
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4.2 Lower bound improvement by the dominance of four
successive jobs

As we have already seen in the preceding subsection, the
dominance theorem of dynamic programming plays an im-
portant role in improving the lower bound and reducing dy-
namic programming states. Therefore, we further introduce
the dominance of four successive jobs for (L̂Rm

2 ).

Let us consider an arc (v
b−qi
j,t−pi

, vb
it ) in the graph represen-

tation Ĝm
S = (V m, Âm

S ) of (L̂Rm
2 ). In the forward dynamic

programming for (L̂Rm
2 ), the constrained shortest path from

v0
00 to vb

it that passes through the arc is computed among
all such paths. To apply the dominance theorem of four suc-
cessive jobs, we concentrate on the last four nodes of the
paths. More specifically, we consider a set of partial paths

E ((v
b−qi
j,t−pi

, vb
it )) defined by

E
((

v
b−qi
j,t−pi

, vb
it

))

= {(
v

b−qi−qj −qk

l,t−pi−pj −pk
, v

b−qi−qj

k,t−pi−pj
, v

b−qi
j,t−pi

, vb
it

)

∣
∣ l �= j, l �= i, k �= i,

(
v

b−qi−qj −qk

l,t−pi−pj −pk
, v

b−qi−qj

k,t−pi−pj

)
,

(
v

b−qi−qj

k,t−pi−pj
, v

b−qi
j,t−pi

) ∈ Âm
S

}
. (62)

Now, assume that job i is completed at t and job j is com-
pleted at t − pi in an optimal schedule for the original prob-
lem (P). Then, it should include one of the partial schedules

corresponding to the partial paths in E ((v
b−qi
j,t−pi

, vb
it )). If this

partial path is denoted by (v
b−qi−qj −qkO
lO,t−pi−pj −pkO

, v
b−qi−qj

kO,t−pi−pj
,

v
b−qi
j,t−pi

, vb
it ), the included partial schedule consists of jobs

lO, kO, j , and i, and they are completed at t in this order.
From the optimality of the schedule, this partial schedule
should be optimal and never dominated by the other par-
tial schedules of jobs lO, kO, j , and i completed at t . In
other words, for the schedule to be optimal, it is necessary
that the included partial schedule is optimal. Therefore, if
all the partial schedules corresponding to the partial paths in

E ((v
b−qi
j,t−pi

, vb
it )) are not optimal, any schedule where job i

is completed at t and job j is completed at t − pi cannot be

optimal. In this case, the arc (v
b−qi
j,t−pi

, vb
it ) can be eliminated.

Whether the partial schedule corresponding to a

partial path (v
b−qi−qj −qk

l,t−pi−pj −pk
, v

b−qi−qj

k,t−pi−pj
, v

b−qi
j,t−pi

, vb
it ) ∈

E ((v
b−qi
j,t−pi

, vb
it )) is dominated or not can be checked by enu-

merating all the permutations of jobs l, k, j , and i completed
at t . However, this dominance check should be performed

for all the partial paths in E ((v
b−qi
j,t−pi

, vb
it )) to eliminate the

arc (v
b−qi
j,t−pi

, vb
it ). Thus, it requires O(n2) time for one arc

and causes additional computational efforts, unlike the im-
provement by the dominance of two adjacent jobs in the
preceding subsection. Therefore, this improvement is ap-
plied only to (L̂Rm

2 ) for which heavy memory usage can be

a bottleneck, although it is also applicable to (L̂R2). More-
over, tie-breaking is not considered in the dominance check
and a partial path is assumed to be dominated only when a
strictly dominating partial schedule is found.

For example, suppose that a part of Ĝm
2 (m = 1) is given

by Fig. 1. In this case, there are five partial paths pass-
ing through the arc (v0

3,21, v
0
2,25) on Ĝm

2 : (v0
1,16, v

0
5,18, v

0
3,21,

v0
2,25), (v0

4,16, v
0
5,18, v

0
3,21, v

0
2,25), (v0

2,13, v
0
1,18, v

0
3,21, v

0
2,25),

(v0
4,13, v

0
1,18, v

0
3,21, v

0
2,25), and (v0

5,14, v
0
2,18, v

0
3,21, v

0
2,25).

Since v0
2∗ occurs twice in (v0

2,13, v
0
1,18, v

0
3,21, v

0
2,25) and

(v0
5,14, v

0
2,18, v

0
3,21, v

0
2,25), E ((v0

3,21, v
0
2,25)) consists only

of the other three partial paths. For the partial schedules
corresponding to these partial paths, dominance check
is performed. Here, assume that Δ1→5→3→2(25) >

Δ5→3→2→1(25), Δ4→5→3→2(25) > Δ5→3→2→4(25),
and Δ4→1→3→2(25) > Δ3→4→2→1(25) hold, where
Δl→k→j→i (t) denotes the cost sum of jobs l, k, j , and i

when they are sequenced in this order, so that job i is
completed at t . In this case, we can eliminate the arc
(v0

3,21, v
0
2,25).

The above arguments are for forward dynamic program-
ming, but it is easy to see that parallel arguments hold in
backward dynamic programming. Thus, the improvement is
performed in both forward and backward dynamic program-
ming.

4.3 Sophisticated step sizing in subgradient optimization

To search for a better set of Lagrangian multipliers, subgra-
dient optimization is applied to the Lagrangian duals corre-
sponding to (LR1) and (L̂R2). It is a standard way (cf. Fisher
1985) to decrease the step size in subgradient optimization
when the solution is not updated for some number of it-
erations. However, it sometimes happens that the step size
becomes too small and premature convergence occurs. To
avoid this, the step size is controlled in such a sophisticated
way that it is both decreased and increased depending on the
situation.

There are six controllable parameters (γ ini, δT, δS, ε,

κS, κE) for our subgradient procedure. The parameter γ ini

specifies the initial step size parameter. The step size para-
meter γ (r) is shrunken by κS if the best lower bound, i.e.,
the best solution of the relaxation is not updated for the last
δS iterations. To avoid too small γ (r), it is expanded by κE

if the best lower bound is updated. By using this γ (r), the
multipliers μ(r) is updated at the r th iteration as follows:

μ
(r+1)
i := μ

(r)
i + γ (r) UB − LB(r)

∑n
j=1(1 − ∑T

t=1 x
(r)
j t )2

×
(

1 −
T∑

t=1

x
(r)
it

)

, i ∈ N , (63)
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Fig. 1 An example of state
elimination by the dominance of
four successive jobs

where UB is the current upper bound. The procedure is ter-
minated if

(a) The current upper bound is proved to be optimal

or if

(b) The best lower bound does not increase by 100ε/

(1 − ε)% , and the gap between the best lower and up-
per bounds does not decrease by 100ε% for the last δT

iterations

In the former case, the current upper bound is proved to be
optimal if the gap between the best lower and upper bounds
becomes less than one. It is because we assume that the job
cost function fi(t) is integer-valued.

This procedure is applied first to (LR1) and then to (L̂R2)
in our algorithm. For (LR1), μ(1) is initialized by μ(1) = 0,
and UB by the initial upper bound. For (L̂R2), μ(1) is initial-
ized by the best multipliers obtained for (LR1), and UB is
updated if a better upper bound is found, which is searched
for every five iterations. Moreover, state elimination is per-
formed for (L̂R2) every time when UB or the best lower
bound is updated.

4.4 Upper bound improvement

The algorithm stated in Sect. 3.4 is effective only for small-
size instances and is not applicable to large-size instances
because the time and space complexities of the dynamic pro-
gramming increase exponentially as N2 increases. To cope
with this difficulty, we combine two types of algorithms:

(a) A slightly modified version of the algorithm in Sect. 3.4
(b) A simple algorithm to avoid job duplication greedily

If (a) cannot be applied due to a large N2, (b) is applied.
Then, the enhanced dynasearch is applied to the solution to

improve it more. Here, the enhanced dynasearch is an ef-
ficient neighborhood search for single-machine scheduling
problems that utilizes the enhanced dynasearch neighbor-
hood (Grosso et al. 2004) in the dynasearch (Congram et al.
2002).

To summarize, the upper bound computation procedure
is given by the following:

1° Construct a partial job sequence by resolving job dupli-
cation in the current solution of a relaxation. It is done
by removing all duplicated jobs except the one that ap-
pears the earliest (if the current direction is forward) or
the latest (if the current direction is backward). For ex-
ample, if the solution is 3,5,1,5,1,7,4,5, the partial
job sequence 3,5,1,7,4 is obtained if the direction is
forward, and 3,1,7,4,5 if backward.1 Define the length
of this partial schedule by N1 and let N2 := n − N1. If
N2 > 12, go to 3◦.

2° Solve the problem to find a job sequence minimizing
the total job completion cost under the constraint that
job precedence relations in the partial sequence are kept
unchanged. It is done by the dynamic programming in
Sect. 3.4. The current direction is reversed, and go to 4◦.

3° Construct a feasible schedule by avoiding job dupli-
cation greedily. Here, only the algorithm correspond-
ing to forward dynamic programming for (L̂R2) is ex-
plained. On the graph ĜS, go along the shortest path
from vn+1,T +1 to v00 and append to a list L jobs corre-
sponding to the visited nodes. If job duplication occurs,
in other words, if the node vit is visited although job i is

1Since (LR) is not solved in the proposed algorithm, jobs never oc-
cur successively in feasible solutions of the relaxations. Therefore, the
example solution 3,5,5,1,1,7,4,5 in Sect. 3.4 that is taken from the
original paper (Ibaraki and Nakamura 1994) is not appropriate here.
If we dare to construct a partial sequence from this solution, the same
sequences with those for 3,5,1,5,1,7,4,5 will be obtained.
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already in L, find i′ = arg minj /∈L ŷ2(vjt ; μ). If such i′
does not exist, choose i′ arbitrarily from N \L. Then, ap-
pend job i′ to L and go along the shortest path again from
vi′t to v00. Repeat the procedure until v00 is reached.

4° Improve the obtained solution by the enhanced dy-
nasearch.

In the algorithm of Sect. 3.4, a partial schedule is con-
structed by removing all duplicated jobs (except those oc-
curring successively). On the other hand, in our algorithm
it is constructed by removing all duplicated jobs except
one. Because the latter partial schedule is not shorter than
the former, N2 decreases and the dynamic programming in
Sect. 3.4 is more likely to be applied.

4.5 Improved choice of state–space modifiers

In our algorithm, (L̂Rm
2 ) is solved successively by adding

state–space modifiers. Since the way of assigning state–
space modifiers to jobs affects the efficiency of the algorithm
much, it is improved from the original algorithm in Sect. 3.5.

When state–space modifiers are determined as in
Sect. 3.5, it can happen that the same job is chosen twice
at different iterations. To be more precise, the state–space
modifiers of some job i can be q

m1
i �= 0 and q

m2
i �= 0 for

m1 �= m2. Let us assume that the state–space modifiers of
the two jobs i1 and i2 are chosen as in (53). Since the con-
straint (11) requires that the total modifier value should be 3
(Qm = 3), the following two schedules are both feasible for
the relaxation:

(a) Both the jobs i1 and i2 occur exactly once
(b) Job i1 occurs three times, but job i2 never occurs

Therefore, it is not ensured that job i2 occurs in the solutions
of the relaxation. As a result, a nonzero modifier may be
assigned to job i2 at another iteration.

To avoid this, we simply assign an independent set
of state–space modifiers to each job. When, for example,
jobs i1 and i2 are selected, we choose state–space modifiers
as follows:

qm
i =

{
1 if i = i1,

0 otherwise,

qm+1
i =

{
1 if i = i2,

0 otherwise.

(64)

In this case, it is ensured that these two jobs should occur
exactly once. This can also be checked by the fact that the
constraint (11) reduces to the constraint (4) for a subset of
jobs if all the modifiers are chosen as (64). In other words,
the constraint on the number of job occurrences (4) is once
relaxed for all jobs, but the constraint for a subset of jobs is
recovered in the relaxation. Hence, it is easy to see that at

most (n − 1) sets of state–space modifiers are necessary to
obtain an optimal solution of the original problem (P). It is
also clear that the time complexity of the dynamic program-
ming is the same as that in the original algorithm.

In our algorithm, at maximum three jobs are assigned
nonzero modifiers at each iteration. The number of such
jobs, mc (≤3), is determined by the current memory usage.
Let M be the memory occupation ratio (M =
(current memory usage)/(maximum memory size)). Then,
mc is determined so that

mc =

⎧
⎪⎨

⎪⎩

1 if 2−2 < M ,

2 if 2−3 < M ≤ 2−2,

3 if M ≤ 2−3.

(65)

It is because the memory usage is doubled in the worst case
when one set of modifiers is added.

These mc jobs are selected by the following two strate-
gies:

(S1) As in the original algorithm stated in Sect. 3.5, the jobs
that do not occur in the current solution of (L̂Rm−1

2 )

are selected. If there are more than mc jobs, the num-
ber of occurrences of v∗

i∗ in the graph Ĝm−1
S is counted

for each job i ∈ N , and those jobs that occur less fre-
quently are selected first. If there are fewer than mc

jobs, those that occur more than once in the solution
are selected.

(S2) Jobs occurring less frequently in the graph Ĝm−1
S are

selected, regardless of whether they occur in the cur-
rent solution or not.

The first strategy is similar to that in the original algo-
rithm. The only difference is that it explicitly specifies how
to break ties when there are many jobs that do not occur in
the current solution. Since the influence of adding modifiers
is assumed to be suppressed if we assign a nonzero mod-
ifier to a job occurring less frequently in the graph Ĝm−1

S ,
ties are broken by the number of occurrences in Ĝm−1

S . On
the other hand, the second strategy selects jobs only by the
number of occurrences in Ĝm−1

S to suppress the increase
of dynamic programming states as much as possible. How-
ever, in this case, the lower bound may not improve even
when state–space modifiers are added, and hence the num-
ber of iterations in Stage 3 tends to increase. Thus, it de-
pends on the situation which strategy is better or not. To
check this, we performed some preliminary experiments and
the second strategy turned out to be more effective when the
number of dynamic programming states is large. Therefore,
the two strategies are switched by the memory occupation
ratio M just before we start adding state–space modifiers.
More specifically, if M is less than 2−6, the strategy (S1) is
applied. Otherwise, (S2) is applied.
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4.6 Overall algorithm

The proposed algorithm is summarized as follows:

Stage 1 Compute the initial upper bound UB by applying
the enhanced dynasearch to the best of the following three
schedules:

(a) An SPT (shortest processing time order) schedule
(b) A schedule sequenced greedily in the forward direction
(c) A schedule sequenced greedily in the backward direc-

tion

Apply subgradient optimization to the Lagrangian dual
corresponding to (LR1) for a better set of Lagrangian mul-
tipliers. If the gap between UB and L1(μ) is less than one,
halt. After the subgradient optimization is terminated, for-
ward dynamic programming is applied for the best multi-
pliers μstage1 obtained in the subgradient optimization. An
upper bound is computed and UB is updated if UB is dom-
inated. In this case, the gap is checked again. Then, back-
ward dynamic programming is applied and state elimina-
tion is performed. That is, the node vit is eliminated from
the graph G if

UB − 1 < h1
(
vit ; μstage1) + H1

(
vit ; μstage1)

+
n∑

i=1

μ
stage1
i (66)

is satisfied.
Stage 2 Construct ĜS from GS and apply subgradient op-
timization to the Lagrangian dual corresponding to (L̂R2),
starting from the multipliers μstage1. At the initial iteration,
dynamic programming states are eliminated by the states
for (LR1). More specifically, the arc (vj,t−pi

, vit ) is elimi-
nated from ĜS if

UB − 1 < ĥ2
(
(vj,t−pi

, vit ); μstage1)

+ H1
(
vit ; μstage1) +

n∑

i=1

μ
stage1
i (67)

is satisfied, where ĥ2(·) is defined in a similar way to h2(·)
in (A.15)–(A.26). In the course of the subgradient opti-
mization, an upper bound is computed in every five iter-
ations and UB is updated if UB is dominated. Every time
when either the best lower bound or UB is updated, the arc
(vj,t−pi

, vit ) satisfying

UB − 1 < ĥ2
(
(vj,t−pi

, vit ); μ
) + Ĥ2

(
(vj,t−pi

, vit ); μ
)

− (
fi(t) − μi

) +
n∑

i=1

μi (68)

is eliminated from ĜS. Halt if the gap between L̂2(μ) and
UB is less than one.

Stage 3 Solve (L̂R2) for the best multipliers μstage2 by both
forward and backward dynamic programming, and per-
form state elimination. Also consider the dominance of
four successive jobs. Check the memory occupation ratio
M and determine the modifier strategy. Then, state–space
modifiers being successively added, (L̂Rm

2 ) is solved by
forward or backward dynamic programming in turns un-
til the gap between L̂m

2 (μstage2) and UB becomes less than

one. The arc (v
b−qi
j,t−pi

, vb
it ) is eliminated if

UB − 1 < ĥm
2

((
v

b−qi
j,t−pi

, vb
it

); μstage2)

+ Ĥ
m−mc
2

((
v

b′′−q ′′
i

j,t−pi
, vb′′

it

); μstage2)

− (
fi(t) − μi

) +
n∑

i=1

μ
stage2
i , (69)

or

UB − 1 < ĥ
m−mc
2

((
v

b′′−q ′′
i

j,t−pi
, vb′′

it

); μstage2)

+ Ĥm
2

((
v

b−qi
j,t−pi

, vb
it

); μstage2)

− (
fi(t) − μi

) +
n∑

i=1

μ
stage2
i , (70)

where b′′ = (b1, . . . , bm−mc) and q ′′
i = (q1

i , . . . ,

q
m−mc
i ). The dominance of four successive jobs is con-

sidered every time when (L̂Rm
2 ) is solved. An upper bound

is computed only when the lower bound is updated, and
UB is updated if necessary.

In every stage of the algorithm, a dynamic programming
state is eliminated if the lower bound for passing through
the state is greater than (UB − 1). It is because the job cost
function fi(t) is assumed to be integer-valued.

5 Computational experiments

In this section, the effectiveness of our algorithm will be
examined by computational experiments. We will test our
algorithm on two types of single-machine scheduling prob-
lems: the TWT (Total Weighted Tardiness) problem and the
TWET (Total Weighted Earliness–Tardiness) problem with-
out machine idle time. In the TWT problem, the cost func-
tion of job i is given by

fi(t) = wi max(t − di,0), (71)

and in the TWET problem it is given by

fi(t) = αi max(di − t,0) + βi max(t − di,0), (72)
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where wi , αi , and βi are assumed to be positive integers,
and di is a nonnegative integer.

With regard to the TWT problem, the benchmark in-
stances by Crauwels et al. (1998) are used as 40, 50, and 100
jobs instances (n = 40, 50, 100), which are available from
the OR-Library: http://people.brunel.ac.uk/~mastjjb/jeb/
info.html. These instances were generated randomly by the
following procedure. For each job i, an integer process-
ing time pi and an integer weight wi were generated
from the uniform distributions [1,100] and [1,10], re-
spectively. An integer duedate di was generated from the
uniform distribution [T (1 − TF − RDD/2), T (1 − TF +
RDD/2)], where TF = 0.2,0.4,0.6,0.8,1.0 and RDD =
0.2,0.4,0.6,0.8,1.0 are the parameters to control the tight-
ness and the range of duedates, respectively. For each com-
bination of n, TF and RDD, five instances were gener-
ated. Thus, 125 problem instances were generated for each
n. The instances for n = 150, 200, 250, 300 are gener-
ated in a similar way to the OR-Library instances. The
only difference is how to generate duedates. In the above
procedure, it is possible that duedates become negative
when TF and RDD are large. Since negative duedates can
be converted to zero duedates without changing the prob-
lem complexity, they are set to be zero in the OR-library
instances. As a result, more than half of the jobs have
zero duedates in some instances. To avoid such a situa-
tion, duedates are generated from the uniform distribution
[max(T (1 − TF − RDD/2),0), T (1 − TF + RDD/2)] for
n = 150, 200, 250, 300.

The TWET instances are generated from the TWT in-
stances, where an integer earliness weight αi of job i is gen-
erated from the uniform distribution [1,10], and an integer
tardiness weight βi is chosen as βi = wi .

Computation is performed on a 2.4 GHz Pentium 4 desk-
top computer with 512 MB RAM by running a code written
in C (gcc). The maximum memory size for dynamic pro-
gramming states (for storing the graph structure) is restricted
to 384 MB. The tie-breaking rule for the dominance of two
adjacent jobs in Sect. 4.1 is determined by some preliminary
experiments, and the lexicographical order of (di,pi, i) is
used (the smaller should precede the larger). The six para-
meters (γ ini, δT, δS, ε, κS, κE) for the subgradient optimiza-
tion in Sect. 4.3 are also determined by preliminary exper-
iments and are chosen as (2.0, n/4�,4,0.02,0.75,2.0) in
Stage 1, and (2.0, n/4�,4,0.002,0.8,2.0) in Stage 2.

To compare with the proposed algorithm, we imple-
mented an improved version of the algorithm by Ibaraki and
Nakamura (1994). The improvements from the original al-
gorithm are:

(a) Faster dynamic programming is applied: the time
complexities of the dynamic programming for
(LR1), (LR2), and (LRm

2 ) are O(nT ), O(n2T ), and

O(n2T
∏m

l=1(1 + Ql)), respectively (see the discussion
in Sect. 4.1). Accordingly, the memory usage is reduced.

(b) Dynamic programming states are eliminated when
(lower bound) > (upper bound) − 1. In addition, the
current upper bound is assumed to be optimal when
(upper bound) − (lower bound) < 1.

(c) The algorithm in Sect. 3.4 to compute an upper bound is
applied when N2 ≤ 12 in Stage 1, and when N2 ≤ 15 in
the other stages.

(d) The two parameters (K1,K2) of the subgradient opti-
mization in Sect. 3.3 are re-adjusted for each problem
size and problem type by some preliminary experiments
so that the number of optimally solved instances is max-
imized and CPU time is minimized.

First, the results for the TWT instances are shown in
Table 1 where the average (ave) and maximum (max)
CPU times over optimally solved instances (solved) are
given in seconds. In this table, the computational results by
Pan and Shi (2007) are also shown. Their branch-and-bound
algorithm specialized for the TWT problem utilizes a lower
bound based on the transportation problem relaxation and
several known techniques for this problem are integrated
into it. They reported that all the OR-Library instances were
optimally solved for the first time by this algorithm. How-
ever, it took at maximum 9 hours to solve the 100 jobs in-
stances on a 2.8 GHz Pentium 4 computer. On the other
hand, our algorithm can solve these instances within 40 sec-
onds and even the 300 jobs instances within 1 hour on a
2.4 GHz Pentium 4 computer. Clearly, our general algo-
rithm outperforms the specialized algorithm by Pan and Shi
(2007). Moreover, the improved version of the original al-
gorithm failed to solve some of the 40 jobs instances. This
fact shows the effectiveness of our algorithm.

Next, the results for the TWET instances are shown in
Table 2 where our algorithm is compared only with the
improved version of the original algorithm. The most re-
cent exact algorithm for the TWET problem without ma-
chine idle time is, to the best of authors’ knowledge, the
branch-and-bound algorithm proposed by Liaw (1999),
which is based on the results for the TWT problem by
Potts and Van Wassenhove (1985). However, the improved
version of the algorithm by Ibaraki and Nakamura (1994)
seems to be much faster because the Liaw’s algorithm failed
to solve some of 40 jobs instances within one hour on a 266
MHz Pentium II computer.

From Table 2, we can see that our algorithm outperforms
the improved version of the original algorithm, but not all
of the 300 jobs instances are optimally solved due to the ex-
cess memory usage. However, two out of the unsolved five
instances can be solved by tuning the parameters in subgra-
dient optimization. The other three can be solved by tuning
the parameters and by increasing the maximum memory size
to 768 MB.

http://people.brunel.ac.uk/~mastjjb/jeb/info.html
http://people.brunel.ac.uk/~mastjjb/jeb/info.html
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Table 1 Computational results for the TWT instances

n Proposed Original Pan and Shi (2007)a

CPU time Solved CPU time Solved CPU time Solved

Ave Max Ave Max Ave Max

40 0.19 0.73 125 2.56 28.02 88 68.98 235 125

50 0.39 0.89 125 142.8 466 125

100 6.42 38.52 125 1811 32400 125

150 26.12 111.44 125

200 74.24 256.08 125

250 170.36 610.43 125

300 353.61 2066.38 125

aResults on a 2.8 GHz Pentium 4 computer

Table 2 Computational results for the TWET instances

n Proposed Original

Ave Max Solved Ave Max Solved

40 0.23 0.45 125 0.98 22.54 125

50 0.51 1.16 125 5.18 41.72 125

100 10.04 21.03 125 133.35 409.44 69

150 55.17 141.36 125

200 195.08 561.99 125

250 538.20 2356.81 125

300 1317.50 6391.81 120

Table 3 CPU times and gaps in Stage 1 of the proposed algorithm

n TWT instances TWET instances

CPU time (s) Gap (%) Solved CPU time (s) Gap (%) Solved

Ave Max Ave Max Ave Max Ave Max

40 0.13 0.38 22.93 100.00 33/125 0.19 0.38 3.24 26.13 10/125

50 0.28 0.86 22.40 100.00 23/125 0.41 0.73 2.86 20.75 1/125

100 4.22 14.49 15.75 100.00 22/125 5.64 7.96 1.60 8.48 0/125

150 17.65 55.72 11.33 100.00 26/125 20.83 60.95 1.48 10.63 0/125

200 45.10 135.27 13.56 88.44 25/125 51.51 71.92 1.43 11.68 0/125

250 91.12 287.17 10.78 95.04 26/125 102.56 127.97 1.15 7.00 0/125

300 168.75 479.34 11.89 100.00 25/125 177.90 227.00 1.16 7.10 0/120

The detailed results of our algorithm are shown in Ta-
bles 3, 4, and 5. In Tables 3 and 4, CPU times, gaps between
the lower and upper bounds (100(UB − LB)/UB), and the
numbers of optimally solved instances in Stage 1 and Stage
2 are given separately. CPU times and the numbers of state–
space modifiers added in Stage 3 are given in Table 5. From
Tables 3 and 4, we can see that the lower bound for the TWT
problem is so tight that 33 out of 125 instances with 40 jobs
are optimally solved in Stage 1, and 91 out of 92 are op-
timally solved in Stage 2. The lower bound for the TWET

problem is less effective, but 10 out of 125 instances with
40 jobs are optimally solved in Stage 1, and 95 out of 115
in Stage 2. The gap between the lower and upper bounds in
Stage 1 for the TWT problem is relatively large because sub-
gradient optimization sometimes fails to improve the lower
bound from its initial value. Although the parameters in the
subgradient optimization can be chosen so that the lower
bound improves in Stage 1, they are tuned to minimize the
average of the total CPU time in our experiments. Since
Stage 1 can be regarded as a procedure to find good initial



590 J Sched (2009) 12: 575–593

Table 4 CPU times and gaps in Stage 2 of the proposed algorithm

n TWT instances TWET instances

CPU time (s) Gap (%) Solved CPU time (s) Gap (%) Solved

Ave Max Ave Max Ave Max Ave Max

40 0.05 0.66 0.00 0.11 91/92 0.02 0.29 0.29 6.28 95/115

50 0.10 0.74 0.02 0.57 93/102 0.08 0.49 0.41 5.99 90/124

100 2.39 35.58 0.03 0.61 69/103 3.78 14.19 0.22 1.99 22/125

150 9.37 104.92 0.04 0.48 50/99 28.27 82.20 0.19 1.81 5/125

200 32.34 239.49 0.03 0.56 47/100 106.18 374.53 0.20 3.01 1/125

250 88.94 456.37 0.03 0.33 36/99 297.42 2153.37 0.14 1.87 1/125

300 204.90 1722.53 0.03 0.39 35/100 643.63 2995.35 0.14 1.82 0/120

Table 5 CPU times and numbers of state–space modifiers in Stage 3 of the proposed algorithm

n TWT instances TWET instances

CPU time (s) Modifiers CPU time (s) Modifiers

Ave Max Ave Max Ave Max Ave Max

40 0.00 0.00 3.00 3 0.02 0.15 9.90 24

50 0.01 0.04 8.33 15 0.05 0.63 13.56 33

100 0.23 1.38 18.44 45 0.76 5.71 24.55 54

150 0.88 6.20 22.39 57 6.33 86.27 44.44 147

200 3.93 29.15 33.13 86 37.69 361.39 91.11 199

250 10.78 64.72 47.51 249 139.35 1506.94 162.92 249

300 29.40 117.16 90.75 297 495.97 3243.63 238.07 299

multipliers for Stage 2, it is more important whether tight
lower and upper bounds are obtained or not in Stage 2. In
this sense, the lower bound improvement by the dominance
of two adjacent jobs and the sophisticated step sizing in sub-
gradient optimization work very well, and the gap for the
TWT problem is very small in Stage 2. For the TWET prob-
lem, the gap in Stage 1 is smaller than that for the TWT
problem, while it is larger in Stage 2. This implies that sub-
gradient optimization works better for the TWET problem
than for the TWT problem, but the gap itself is larger for the
TWET problem than for the TWT problem. This is consis-
tent with the fact that the proposed algorithm is less efficient
for the TWET problem, and some of 300 jobs instances are
unsolved.

From Table 5, it can be checked that the number of state–
space modifiers added in Stage 3 (m) increases a lot as n

increases. For the larger instances, memory usage increases
and the second modifier selection strategy is applied. In this
strategy, it often happens that the lower bound is not im-
proved even if modifiers are added, and hence many sets
of modifiers are necessary. Table 5 also indicates that the
number of added modifiers is larger for the TWET problem
than for the TWT problem. It is because the gap between the
lower and upper bounds is larger for the TWET problem,

Table 6 The effects of proposed improvements to maximum optimally
solvable problem sizes

Method Optimally solvable size

TWT TWET

Original <40 <100

A1 <40 <150

A2 ≥300 <250

A3 ≥300 <200

Proposed ≥300 <300

and thus the second modifier selection strategy is applied to
even smaller instances due to heavier memory usage.

Finally, the following three algorithms are tested to ex-
amine the effects of the proposed improvements:

(A1) The proposed algorithm without the dominance of two
adjacent jobs and without four successive jobs (with-
out the improvements in Sects. 4.1 and 4.2),

(A2) The proposed algorithm without the dominance of
four successive jobs (without the improvement in
Sect. 4.2),

(A3) The proposed algorithm only with the first modifier
selection strategy.
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Table 6 shows the maximum problem sizes such that the al-
gorithms can solve all the instances optimally. It can be seen
that the dominance of two adjacent jobs is very effective,
especially for the TWT problem. When duedates are not so
tight, there are many optimal solutions of the TWT prob-
lem because adjacent pairs of on-time jobs in an optimal
solution can be interchanged arbitrarily as far as they do not
become tardy. This increases dynamic programming states
and makes state elimination less effective. Hence, the orig-
inal algorithm or the algorithm (A) fails to solve instances
even with 40 jobs. With the constraint on two adjacent jobs,
the processing order of such on-time jobs is restricted, which
contributes much to the reduction of dynamic programming
states. As a consequence, the algorithm succeeded in solv-
ing 300 jobs instances optimally. On the other hand, the
dominance of four successive jobs and the second modifier
selection strategy do not have so much impact on the scal-
ability of the algorithm. Nevertheless, the algorithm cannot
solve some of the TWET instances with 200 or 250 jobs op-
timally without these improvements. This fact confirms the
effectiveness of our proposed improvements.

6 Conclusion

In this paper, we proposed an exact algorithm for the general
single-machine scheduling problem without machine idle
time to minimize the total job completion cost. We proposed
several improvements for the previous algorithm based on
the SSDP method to reduce both the memory usage and
computational efforts. Numerical experiments showed that
the proposed algorithm can solve instances even with 300
jobs. It was also shown that our algorithm outperforms the
existing specialized algorithms for the single-machine to-
tal weighted tardiness problem and the single-machine total
weighted earliness–tardiness problem without machine idle
time.

Our algorithm can handle arbitrary job completion costs,
but it is applicable only to the problem without machine idle
time. Hence, it will be necessary to extend our algorithm to
those problems with machine idle time. We are now working
on this extension and some preliminary results show that this
direction of research is quite promising. It will be also im-
portant to extend our results to more general problems with
setup times, precedence constraints, and so on.
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Appendix A: Dynamic programming recursions for
(LR1), (LR2), and (LRm

2 )

Here, we will present the dynamic programming recursions
to solve the relaxations (LR1), (LR2), and (LRm

2 ).

The relaxation (LR1) can be solved by dynamic program-
ming in O(nT ) time. The forward recursion is given by

L1(μ) = y1(T + 1; μ) +
n∑

i=1

μi, (A.1)

y1(t; μ) = min
vit∈VO

h1(vit ; μ), (A.2)

λ1(t; μ) = arg min
i

vit ∈VO

h1(vit ; μ), (A.3)

z1(t; μ) = min
vit ∈VO

i �=λ1(t; μ)

h1(vit ; μ), (A.4)

y1(0; μ) = 0, z1(0; μ) = +∞,

λ1(0; μ) = φ,
(A.5)

h1(vit ; μ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y1(t − pi; μ) + fi(t) − μi

if i �= λ1(t − pi; μ),

z1(t − pi; μ) + fi(t) − μi

if i = λ1(t − pi; μ).

(A.6)

In (A.1)–(A.6), y1(t; μ) and z1(t; μ) denote the shortest
and the second shortest path lengths from v00 to v∗t on GS,
respectively.

It would be more intuitive to compute h1(vit ; μ) by tak-
ing the minimum over the connected arcs:

h1(vit ; μ) = min
(vj,t−pi

,vit )∈AS
h1(vj,t−pi

; μ) + fi(t) − μi

= min
vj,t−pi

∈V

j �=i

h1(vj,t−pi
; μ) + fi(t) − μi. (A.7)

However, the time complexity for (LR1) is given by O(n2T )

when this is applied recursively. To reduce it, the relation

min
vj,t−pi

∈V

j �=i

h1(vj,t−pi
; μ)

=
{

y1(t − pi; μ) if i �= λ1(t − pi; μ),

z1(t − pi; μ) if i = λ1(t − pi; μ),
(A.8)

is utilized in the forward recursion (A.1)–(A.6).
The backward recursion is given in a similar way by

L1(μ) = Y1(0; μ) +
n∑

i=1

μi, (A.9)

Y1(t; μ) = min
vi,t+pi

∈VO

{
H1(vi,t+pi

; μ)

+ fi(t + pi) − μi

}
, (A.10)

Λ1(t; μ) = arg min
i

vi,t+pi
∈VO

{
H1(vi,t+pi

; μ)

+ fi(t + pi) − μi

}
, (A.11)
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Z1(t; μ) = min
vi,t+pi

∈VO
i �=Λ1(t; μ)

{
H1(t + pi, i; μ)

+ fi(t + pi) − μi

}
, (A.12)

Y1(T + 1; μ) = 0, Z1(T + 1; μ) = +∞,

Λ1(T + 1; μ) = φ,
(A.13)

H1(vit ; μ) =
{

Y1(t; μ) if i �= Λ1(t; μ),

Z1(t; μ) if i = Λ1(t; μ),
(A.14)

where Y1(t; μ) and Z1(t; μ) denote the shortest and the
second shortest path lengths from v∗t to vn+1,T +1 on GS,
respectively.

In the case of the relaxation (LR2), the forward recursion
is given by

L2(μ) = y2(vn+1,T +1; μ) +
n∑

i=1

μi, (A.15)

y2(vit ; μ) = min
(vj,t−pi

,vit )∈AS
h2

(
(vj,t−pi

, vit ); μ
)
, (A.16)

λ2(vit ; μ)

= arg min
j

(vj,t−pi
,vit )∈AS

h2
(
(vj,t−pi

, vit ); μ
)
, (A.17)

z2(vit ; μ) = min
(vj,t−pi

,vit )∈AS
j �=λ2(vit ; μ)

h2
(
(vj,t−pi

, vit ); μ
)
, (A.18)

y2(v00; μ) = 0, z2(v00; μ) = +∞,

λ2(v00; μ) = φ,
(A.19)

h2
(
(vj,t−pi

, vit ); μ
)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y2(vj,t−pi
; μ) + fi(t) − μi

if i �= λ2(vj,t−pi
; μ),

z2(vj,t−pi
; μ) + fi(t) − μi

if i = λ2(vj,t−pi
; μ),

(A.20)

and the backward recursion is given by

L2(μ) = Y2(v00; μ) +
n∑

i=1

μi, (A.21)

Y2(vit ; μ) = min
(vit ,vj,t+pj

)∈AS
H2

(
(vit , vj,t+pj

); μ
)
, (A.22)

Λ2(vit ; μ)

= arg min
j

(vit ,vj,t+pj
)∈AS

H2
(
(vit , vj,t+pj

) μ
)
, (A.23)

Z2(vit ; μ) = min
(vit ,vj,t+pj

)∈AS
j �=Λ2(vit ; μ)

H2
(
(vit , vj,t+pj

); μ
)
, (A.24)

Y2(vn+1,T +1; μ) = 0,

Z2(vn+1,T +1; μ) = +∞,

Λ2(vn+1,T +1; μ) = φ,

(A.25)

H2
(
(vit , vj,t+pj

); μ
)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Y2(vj,t+pj
; μ) + fj (t + pj ) − μj

if i �= Λ2(vj,t+pj
; μ),

Z2(vj,t+pj
; μ) + fj (t + pj ) − μj

if i = Λ2(vj,t+pj
; μ),

(A.26)

where their time complexities are O(n2T ).
The forward and backward recursions in the dynamic

programming for (LRm
2 ) are given by changing AS to Am

S
and the other variables accordingly in (A.15)–(A.26): L2

to Lm
2 , y2 to ym

2 , Y2 to Ym
2 , and so on. Hence, (LRm

2 ) can
be solved in O(n2T

∏m
l=1(1 + Ql)).

Appendix B: Proof of Proposition 4.1

Consider that there exists an optimal schedule Sopt that does
not satisfy the condition of the proposition. We will show
that this schedule can be converted into another optimal
schedule satisfying the condition by interchanging adjacent
jobs that break the condition. From the optimality of Sopt we
assume, without loss of generality, that any adjacent jobs j

and i in Sopt with j → i(t) satisfy

Δj→i (t) ≤ Δi→j (t). (B.1)

Otherwise, Sopt can be converted to a better schedule, and
thus it is not optimal. Let us define by Bi (Sopt) (i ∈ N )
the set of jobs j that precede job i in Sopt and that satisfy
j �= Rij . In other words, Bi (Sopt) denotes the set of jobs
preceding job i that should be interchanged with job i when
they become an immediate predecessor of job i. Similarly,
we define by Ai (Sopt) (i ∈ N ) the set of jobs j that are pre-
ceded by job i in Sopt and that satisfy j = Rij . Assume that
jobs l and k satisfy l → k(t) in Sopt, and that

Δl→k(t) = Δk→l (t), l �= Rkl (B.2)

is satisfied. Since these jobs break the condition (58), l ∈
Bk(Sopt) and k ∈ Al(Sopt) from their definitions. Therefore,
if we construct a new optimal schedule S′

opt by interchanging
the two jobs k and l, then

Bi (S
′
opt) =

{
Bi (Sopt)\{l} if i = k,

Bi (Sopt) otherwise,
(B.3)

and

Ai (S
′
opt) =

{
Ai (Sopt)\{k} if i = l,

Ai (Sopt) otherwise
(B.4)
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hold. Since Bi (Sopt) and Ai (Sopt) are finite sets, Sopt can be
converted to another optimal schedule satisfying (58) after a
finite number of interchanges.
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