
J Sched (2010) 13: 39–47
DOI 10.1007/s10951-008-0092-6

Sequencing a single machine with due dates and deadlines:
an ILP-based approach to solve very large instances

P. Baptiste · F. Della Croce · A. Grosso · V. T’kindt

Received: 24 October 2007 / Accepted: 19 September 2008 / Published online: 6 November 2008
© Springer Science+Business Media, LLC 2008

Abstract We consider the problem of minimizing the
weighted number of tardy jobs on a single machine where
each job is also subject to a deadline that cannot be vio-
lated. We propose an exact method based on a compact in-
teger linear programming formulation of the problem and
an effective reduction procedure that allows to solve to op-
timality instances with up to 30,000 jobs in size, and up to
50,000 jobs in size for the special deadline-free case.

Keywords Sequencing and scheduling · Single machine ·
Tardy jobs · Deadlines

1 Introduction

This paper deals with the problem of minimizing the
weighted number of tardy jobs on a single machine when
both due dates and deadlines are specified for jobs. In the
classical three-fields notation (Graham et al. 1979), the
problem is denoted 1|d̄i |∑wiUi : a job set N = {1,2, . . . , n}

P. Baptiste
CNRS LIX, Ecole Polytechnique, Paris, France
e-mail: philippe.baptiste@polytechnique.fr

F. Della Croce
D.A.I., Politecnico di Torino, Torino, Italy
e-mail: federico.dellacroce@polito.it

A. Grosso (�)
D.I., Universitá di Torino, Torino, Italy
e-mail: grosso@di.unito.it

V. T’kindt
Laboratory of Computer Science, University of Tours, Tours,
France
e-mail: tkindt@univ-tours.fr

is given, with weights, processing times, due dates, and
deadlines wi , pi , di , and d̄i , respectively, for all i ∈ N . The
goal is to find a sequence σ ∗ such that Ci ≤ d̄i for all the job
completion times Ci , i ∈ N , and F(σ ∗) = ∑{wi : Ci > di}
is minimum—or equivalently, f (σ ∗) = ∑{wi : Ci ≤ di} is
maximum. The jobs are executed without idle time or pre-
emption, and all of them are available from time 0 on. We
also make the common assumption di ≤ d̄i for all i ∈ N .

From the complexity point of view, the 1|d̄i |∑wiUi

problem is known to be NP-hard even if wi = 1, for all i ∈ N

(Lawler 1983), or if there are no deadlines (Karp 1972), but
it is still unclear whether it is NP-hard in the strong or in the
ordinary sense. On the other hand, the basic 1| |∑Ui prob-
lem is well known to be polynomially solvable by Moore’s
algorithm (Moore 1968). If the release dates are present, the
1|ri |∑Ui problem is already NP-hard in the strong sense
(Lenstra et al. 1977). Very little work has appeared in the lit-
erature for the 1|d̄i |∑wiUi problem, the state-of-the-art ex-
act algorithm being a branch and bound presented in Hariri
and Potts (1994) able to solve instances with up to 300 jobs.

A richer literature is available for the deadline-free vari-
ant: Potts and Van Wassenhove (1988) gave a branch and
bound algorithm for solving instances with up to 1,000 jobs,
while M’Hallah and Bulfin (2003) propose an exact algo-
rithm capable of handling instances with up to 2,500 jobs.
Several papers are also available for the variants with release
dates (see Dauzère-Pérès and Sevaux 2003, 2004; M’Hallah
and Bulfin 2007). However, the presence of release dates
completely changes the structure of the problem.

Notice that the considered model is of interest not only to
the scheduling community, but also to the wider OR commu-
nity as it generalizes the 1|di = d|∑wiUi problem that cor-
responds to the well known 0/1 Knapsack problem. Hariri
and Potts (1994) cite some interesting applications of the
1|d̄i |∑wiUi model, like crop harvesting in agriculture.

mailto:philippe.baptiste@polytechnique.fr
mailto:federico.dellacroce@polito.it
mailto:grosso@di.unito.it
mailto:tkindt@univ-tours.fr

40 J Sched (2010) 13: 39–47

We note that most of the works on this scheduling prob-
lem explicitly avoid to manage the LP relaxation by standard
LP tools: in Potts and Van Wassenhove (1988) an ILP model
is presented, but a specific dynamic programming algorithm
is used for solving the relaxation; in Hariri and Potts (1994)
no LP is used, the bound being obtained by dynamic pro-
gramming and state–space relaxation; even in more recent
papers, like M’Hallah and Bulfin (2003), a Lagrangian ap-
proach is used, and the simplex method is avoided.

In this paper, we present a compact integer linear pro-
gramming formulation and, explicitly relying on an LP/ILP
solver with minimum additional procedures, we design a
simple exact algorithm for the 1|d̄i |∑wiUi problem. The
algorithm, tested on randomly generated instances as pro-
posed by Hariri and Potts (1994), is able to solve to optimal-
ity all randomly generated instances with up to 30,000 jobs
(within 275 seconds on average) for the 1|d̄i |∑wiUi prob-
lem, and up to 50,000 jobs (within 316 seconds on aver-
age) for the special deadline-free case 1| |∑wiUi . Accord-
ingly with the existing literature—particularly with Potts
and Van Wassenhove (1988) for the deadline-free case—
we further study the performance of the algorithm on con-
siderably harder random instances with correlated data; the
proposed algorithm suffers a limited performance degrada-
tion for the so-called weakly correlated instances, still be-
ing able to solve a whole 10,000 jobs batch within 191 sec-
onds on average. Other instances with strongly correlated
data are apparently the hardest ones, and probably a differ-
ent approach is needed to efficiently handle such instances
for large n.

2 ILP model and problem reduction

2.1 Basic properties and model

We first recall that a feasible solution for 1|d̄i |∑wiUi is
immediately defined by selecting an early set of jobs E ⊆ N

required to be early: each job i ∈ N is then required to be
completed within a maximum completion time

Di =
{

di if i ∈ E,

d̄i if i ∈ N \ E.

A feasible sequence with early set E is a sequence where
Ci ≤ Di for all i ∈ N . We recall that such feasible sequences
exist iff the particular sequence where the jobs appear in
nondecreasing order of Di is feasible.

Define Bt = {i ∈ N : d̄i ≤ t}, At = {i ∈ N : di > t}, and
let T = (t1, t2, . . . , tm) be the nondecreasing sequence of the
relevant time points in the problem with t ∈ T iff t = di or
t = d̄i for some i ∈ N . The optimal set of early jobs can be

obtained by solving the following ILP model. Define binary
variables xi , i ∈ N , such that xi = 1 iff job i is early.

maximize z =
∑

i∈N

wixi (1)

subject to

∑

i∈Bt

pi +
∑

i∈N\(Bt∪At)

pixi ≤ t, t ∈ T , (2)

xi ∈ {0,1}, i ∈ N. (3)

With modern ILP solvers and hardware, the model (1)–(3)
is able to handle fairly large instances: in our experiments,
all the considered examples with up to 4,000 jobs within
reasonable average CPU times, although the time exceeded
1,000 seconds for the hardest instances. The failures for
higher sizes were caused essentially by lack of memory—
note that the number of nonzeros in the constraints (2) ex-
hibits a O(n2) growth in the worst case.

In our experience the solver can largely benefit from a
problem preprocessing that is able to significantly reduce
the number of jobs. Suppose a given job j ∈ N is known
to be early or tardy in an optimal solution: this defines its
Dj = dj or d̄j . We define a reduced problem formulated on
the job set N ′ = N \ {j}, with modified data

p′
i ≡ pi, w′

i ≡ wi, i ∈ N ′, (4)

d ′
i =

{
min{di,Dj − pj } if di ≤ Dj ,

di − pj if di > Dj ,
i ∈ N ′, (5)

d̄ ′
i =

{
min{d̄i ,Dj − pj } if d̄i ≤ Dj ,

d̄i − pj if d̄i > Dj ,
i ∈ N ′. (6)

The following result generalizes the reduction theorem
presented in Potts and Van Wassenhove (1988) for the
deadline-free special case.

Property 1 There exists a feasible sequence with early set
E iff there exists a feasible sequence with early set E′ =
E \ {j} for the reduced problem.

Proof Recall that E (respectively, E′) defines the maximum
completion dates Di = di or d̄i (resp., D′

i = d ′
i or d̄ ′

i) for all
jobs i ∈ N (resp., i ∈ N ′).

In the following, let C1, . . . ,Cn and C′
1, . . . ,C

′
n be the

completion times of the jobs in the feasible sequence for the
original and reduced problem, respectively.

J Sched (2010) 13: 39–47 41

(=⇒) Let σjω be a feasible sequence and, without loss
of generality, assume Di ≤ Dj < Dk , for all i ∈ σ , k ∈ ω.
We prove that σω is feasible for the reduced problem.

If i ∈ σ , Ci ≤ Di for feasibility. Also, since i precedes
j and Cj ≤ Dj , Ci ≤ Cj − pj ≤ Dj − pj . Hence, C′

i =
Ci ≤ min{Di,Dj −pj } = D′

i . If k ∈ ω then C′
k = Ck −pj ≤

Dk − pj = D′
k .

Hence, σω satisfies C′
i ≤ D′

i for all i ∈ N ′.
(⇐=) Let σω be a feasible sequence for the reduced

problem. Without loss of generality, assume D′
i ≤ Dj −

pj < D′
k for all i ∈ σ , k ∈ ω—note this implies also D′

k =
Dk − pj for all k ∈ ω. We prove that σjω is feasible for the
original problem.

For all i ∈ σ , Ci = C′
i ≤ D′

i ≤ Di . For all k ∈ ω, Ck =
C′

k + pj ≤ D′
k + pj = Dk .

For job j , let i be the last job of σ , and note that Ci ≤
D′

i ≤ Dj − pj , thus Cj = Ci + pj ≤ Dj .
Hence, σjω satisfies Ci ≤ Di for all i ∈ N . �

Property 1 allows removing job j from consideration and
solving the reduced problem only, without loss of optimality.

We iteratively identify early or tardy jobs by variable fix-
ing techniques, removing them from the problem by means
of Property 1. Components needed for such reduction proce-
dure are a quick method for solving the LP relaxation of (1)–
(3) and a heuristic solution.

2.2 Solving the LP relaxation

For the LP relaxation, instead of using the dense formula-
tion (1)–(3) we introduce a maximum profit flow problem.
Define a graph G(N ∪T ,A) where nodes represent jobs and
time points, whereas the arc set A is defined as

A = Ad ∪ Ad̄ ∪ AT ,

where

Ad = {
(i, tk) : i ∈ N, tk ∈ T , tk = di

}
,

Ad̄ = {
(i, tk) : i ∈ N, tk ∈ T , tk = d̄i

}
,

AT = {
(tk, tk+1) : tk, tk+1 ∈ T , k = 1, . . . ,m − 1

}
.

We formulate the following flow problem on G:

maximize z =
∑

(i,di)∈Ad

wi

pi

yi,di
(7)

subject to

yi,di
+ yi,d̄i

= pi, i ∈ N, (8)

yt1,t2 −
∑

(i,t1)∈Ad∪Ad̄

yi,t1 = 0, (9)

ytk,tk+1 −ytk−1,tk −
∑

(i,tk)∈Ad∪Ad̄

yi,tk =0, k =2, . . . ,m − 1,

(10)

− ytm−1,tm −
∑

(i,tm)∈Ad∪Ad̄

yi,tm = −
∑

i∈N

pi, (11)

ytk,tk+1 ≤ tk, (tk, tk+1) ∈ AT , (12)

yij ≥ 0, (i, j) ∈ A, k = 1, . . . ,m − 1. (13)

The shape of G is sketched in Fig. 1. Constraints (8)–
(11) are flow balance constraints, and constraints (12) are
capacity constraints. Nodes i ∈ N are sources injecting pi

units of flow each in the network, node tm is the unique sink
of the network, and the problem is balanced. All arcs have
zero cost except the arcs (i, di) ∈ Ad having cost wi

pi
. All

arcs have infinite capacity except the arcs (tk, tk+1) ∈ AT

that have finite capacities tk .

Property 2 (yij : (i, j) ∈ A) is a feasible flow of value z

for (7)–(13) iff

xi = yi,di

pi

(i ∈ N)

is a feasible solution of value z for the LP relaxation of
(1)–(3).

Proof In any feasible flow on G, the ingoing flow in any
node tk ∈ T is, by flow conservation:

ytk,tk+1 =
∑

i : d̄i≤tk

yi,d̄i
+

∑

i : di≤tk

yi,di

=
∑

i : d̄i≤tk

(yi,d̄i
+ yi,di

) +
∑

i : di≤tk,d̄i>tk

yi,di

=
∑

i∈Btk

pi +
∑

N\(Btk
∪Atk

)

yi,di

=
∑

i∈Btk

pi +
∑

N\(Btk
∪Atk

)

pixi .

The capacity constraints ytk,tk+1 ≤ tk and the sink balance
correspond one-to-one to constraints (2).

For the objective function, we have z = ∑
(i,di)∈A1

wi

pi
yi,di

= ∑
i∈N wixi . �

Property 2 establishes the equivalence between model
(7)–(13) and the LP relaxation of (1)–(3). In our experi-
ments we kept solving the flow model (7)–(13) that requires
O(n) space instead of O(n2), thus overcoming the memory
problems experienced with formulation (1)–(3) on large in-
stances. For example, on a 4000-job instance with over 13
million nonzeros for model (1)–(3), the flow model requires
only 42548 nonzeros.

42 J Sched (2010) 13: 39–47

Fig. 1 Graph G(N ∪ T ,A) for
a four-job example

2.3 Heuristic solution and core problem

Once the LP relaxation is solved, we need to determine a
heuristic solution of (1)–(3). Preliminary testing with a con-
structive procedure (first, an initial solution having as early
all the jobs corresponding to variables having value 1 in the
lower bound solution is generated, and then all the other jobs
are tested one at a time for inclusion in the early set accord-
ing to a greedy rule) did not reach satisfactory results. Notice
that in all tests most of the variables present an integer value
in the LP relaxation solution. Based on this consideration,
we propose here a heuristic solution corresponding to the
optimal solution of model (1)–(3) applied to a core problem.

To this extent we introduce the following dominance
property.

Property 3 Let pi ≤ pj , di ≥ dj , d̄i ≤ d̄j and wi ≥ wj with
at least one strict inequality. Then

• if i is tardy also j must be tardy;
• if j is early also i must be early.

Proof (By interchange argument) Suppose by contradiction
that an optimal sequence S = σjπiρ with j early preceding
i tardy exists where σ,π and ρ are possibly empty subse-
quences of jobs. We show that the sequence S′ = σ iπjρ has
cost function value f (S′) ≤ f (S) and is feasible. For the
feasibility, as pj ≥ pi , we have that job j and all jobs in σ

and π complete not later in S′ than in S. Further, all jobs in
ρ keep the same completion time they have in S. Hence, all
these jobs do not violate their deadline in S′ as in S. Finally,
job j completes in S′ at time Cj(S

′) = Ci(S). But then we
have Cj(S

′) = Ci(S) ≤ d̄i ≤ d̄j , namely, job j completion
time does not violate the deadline d̄j . For the optimality, the
cost function value contribution of the jobs in σ and ρ for
S′ is lower than or equal to the corresponding cost function
value contribution in S as they all do not increase their com-
pletion times. With respect to the cost function value contri-
bution of jobs i and j , it is equal to wi in S as job i is tardy
and job j is early, while it reduces to at most wj (assuming
j tardy) as we have Ci(S

′) ≤ Cj(S) ≤ dj ≤ di , namely, job
i is early in S′. �

Let X∗ = [x∗
1 , . . . , x∗

n] be the optimal solution of the lin-
ear programming continuous relaxation of the problem. The
core problem is determined by selecting

• all variables presenting non integer value in X∗,
• all variables xj set to 0 in X∗ and that are non-dominated

according to Property 3 by any other variable xi set to 0
in X∗,

• all variables xj set to 1 in X∗ and that are dominated ac-
cording to Property 3 by every other variable xi set to 1
in X∗,

that is, by means of the following procedure:

CoreProblem(x∗
1 , . . . , x∗

n : solution of LP relaxation)

1: Let C := ∅;
2: for all j ∈ N do
3: if (0 < x∗

j < 1)
or (x∗

j = 0 and
 ∃i : x∗
i = 0 dominating j

according to Property 3)
or (x∗

j = 1 and
 ∃i : x∗
i = 1 dominated by j

according to Property 3) then
4: C := C ∪ j ;
5: else
6: Set j early if x∗

j = 1 and set j tardy if x∗
j = 0;

7: end if
8: end for
9: return C.

A first heuristic solution is then obtained by applying
model (1)–(3) to the core jobset C. The size of C has in all
tests been always less than 5% of the original problem size,
and this core problem is therefore solvable to optimality in a
very short time by the ILP solver. In order to further improve
the quality of the heuristic solution, we then perform a local
search phase that uses the optimal solution of the core prob-
lem as initial solution. Two feasible solutions (x̄1, . . . , x̄n)

and (x̃1, . . . , x̃n) are neighbors if
∑

i∈N |x̄i − x̃i | = 2, i.e.,
a job tardy and a job early are swapped. The correspond-
ing neighborhood can be generated and evaluated in O(n3)

time, and a best-improve exploration is adopted. Once again,
to save time, a job j tardy (early) is swapped iff
 ∃i : x∗

i = 0
(x∗

i = 1) dominating j (dominated by j) according to Prop-
erty 3. In this way, in practice, always much less than 1%
of the neighborhood is explored. Denote by z̄ the solution
value provided by the local search phase.

2.4 Fixing jobs

Job fixing is performed by applying variable-fixing tech-
niques from Integer Linear Programming. Given an optimal

J Sched (2010) 13: 39–47 43

basis B∗ for (1)–(3), let

z = z∗ +
∑

xi /∈B∗
c̄ixi ,

xj = x∗
j +

∑

xi /∈B∗
αjixi (xj ∈ B∗),

xi ≥ 0, i ∈ N,

be the corresponding reformulation with c̄i being the re-
duced cost of variable xi, and αji being the updated coef-
ficient of variable xi in the constraint related to the in-base
variable xj . We apply the following fixing rules.

For nonbasic variables:

(R1) fix xi = 0 (job i tardy) if c̄i < 0 and z∗ + c̄i ≤ z̄,
(R2) fix xi = 1 (job i early) if c̄i > 0 and z∗ − c̄i ≤ z̄.

For basic variables xj ∈ B∗, we compute the branching
penalties uj , lj for branching at xj = 1 and at xj = 0,

respectively (often indicated as pseudo-costs—see, for in-
stance, Linderoth and Savelsbergh 1999):

uj = (x∗
j − 1)min

{

− c̄i

αji

: xi /∈ B∗, c̄iαji ≤ 0, αji
= 0

}

,

(14)

lj = −x∗
j min

{
c̄i

αji

: xi /∈ B∗, c̄iαji ≥ 0, αji
= 0

}

, (15)

then we apply

(R3) fix xj = 0 if z∗ + uj ≤ z̄,
(R4) fix xj = 1 if z∗ + lj ≤ z̄.

Although sometimes overlooked in textbooks, this tech-
nique is known in integer programming as well as in con-
straint programming (see Baptiste et al. 1998; T’kindt et
al. 2007 for an application to scheduling problems). Also,
note that uj , lj are easily computed on the maximum profit
flow problem—computing penalties for setting yj,dj

= pj ,
yj,dj

= 0.
The complete reduction procedure works as follows—

fixed jobs in steps (2) and (3) below are removed by means
of Property 1.

(1) the LP relaxation is solved via model (7)–(13),
(2) jobs are fixed if possible, by rules (R1) and (R2),
(3) jobs are fixed if possible, by rules (R3) and (R4),
(4) if (R3), (R4) were successful in fixing jobs, steps (1)–

(3) are reiterated on the reduced problem, otherwise the
procedure stops.

3 An exact algorithm

The solution algorithm we considered is a depth-first branch
and bound procedure relying on problem reduction and the

model (1)–(3). We observed that the ILP model already
reaches good performances for fairly large n: the limit seems
to be memory consumption, due to the quadratic growth
of the constraint matrix size as n increases. We then im-
plemented a depth-first enumeration scheme which incor-
porates the reduction procedure sketched in Sect. 2.4: at
each node, the LP relaxation of model (1)–(3) is solved
via the equivalent network flow model, and the reduction
procedure is applied. If the reduced problem allows to
build an instance of (1)–(3) with no more than 1.4 · 107

nonzeros, such integer program is solved directly by call-
ing the ILP solver. Otherwise, the fractional variable xi

with the largest max–min pseudo-cost, namely the one with
maxi:0<x∗

i <1{min{|li |, |ui |}} value, is selected and binary
branching is performed by setting xi = 0 (job i tardy) and
xi = 1 (job i early) in the descendant nodes. The resulting
algorithm is quite simple, and adds a minimal machinery on
top of the ILP solver. The performances of the algorithm are
further enhanced by incorporating Property 3 in the branch-
ing phase.

4 Computational results

4.1 Test instances

Following Hariri and Potts (1994), we considered ten classes
of instances structured as follows:

• The values for processing times p1, . . . , pn and weights
w1, . . . ,wn are integers drawn randomly from the uni-
form distribution [1,100]. We note that in Hariri and Potts
(1994) the range was [1,10].

• The due dates d1, . . . , dn are integers drawn randomly
from the uniform distribution [Pu,Pv], with
P = ∑

i∈N pi . Ten pairs of values for u,v were con-
sidered: u ∈ {0.1,0.3,0.5,0.7}, v ∈ {0.3,0.5,0.7,0.9},
u < v.

• The deadlines d̄1, . . . , d̄n are integers drawn for each job
i from the uniform distribution [di,1.1P].

Unfeasible examples (that can occur but are trivially de-
tected whenever the earliest deadline sequence violates
at least one deadline) were discarded by the generation
scheme. We generated 20 feasible examples for each u,v

class—thus creating batches of 200 examples—with size n

ranging from 1000 to 30,000.
All the testing ran on a Pentium IV PC with 3 GHz clock

and 1 Gb memory. The ILP solver used is XPRESS-MP 18.1
by Dash Optimization.

4.2 Results

As previously remarked, the model (1)–(3) already reaches
fairly good performances for n ≤ 4000—see Table 1.

44 J Sched (2010) 13: 39–47

The solver did not manage to solve the whole n = 5000
batch because of memory problems. The enumerative algo-
rithm was able to solve all the batches up to n = 30000,
the worst case being a 25,000 jobs instance with distribution
u = 0.1, v = 0.5 that required 3982 seconds. The results are
summarized in Table 2.

The columns NODES refer to nodes of the enumeration
scheme, i.e., nodes where the reduction procedure was ap-

Table 1 Performances of the model (1)–(3)

n CPU Time (s)

avg max

1000 7.2 21.3

2000 44.8 170.9

3000 135.3 577.2

4000 289.7 1278.5

plied, then either branch or ILP solution occurred (the re-
lated instance of (1)–(3) presented no more than 1.4 · 107

nonzeros). Columns UB-GAP and LB-GAP indicate the per-
centage relative deviations UB−OPT

OPT and OPT−LB
OPT of upper

and lower bounds at the root node from the optimal solu-
tion value. For n = 1000,2000,3000,4000, the CPU times
(both average and worst-case) were drastically reduced with
respect to those in Table 1. Also, we note that for n up to
9000 jobs, the enumeration scheme only needed to handle
the root node.

Indeed, as indicated in Table 3 dedicated to the 30,000-
job instances, the high quality of both upper and lower
bounds allows strongly decreasing the problem size by
means of the reduction procedure already at the root node
(see the related “Red. probl. size” column). From Table 3,
we evince also that the hardest distributions are those with
u = 0.1 and v = 0.3,0.5.

Table 2 Performances of the
enumerative algorithm n CPU Time (s) NODES UB-GAP% LB-GAP%

avg max avg max avg max avg max

1000 0.9 4.7 1.0 1 0.008 0.084 0.001 0.037

2000 2.2 22.6 1.0 1 0.003 0.041 0.001 0.042

3000 3.6 12.4 1.0 1 0.002 0.026 < 10−3 0.016

4000 5.9 20.6 1.0 1 0.002 0.027 < 10−3 0.009

5000 8.4 42.2 1.0 1 0.001 0.013 < 10−3 0.006

6000 12.6 71.6 1.0 1 0.001 0.013 < 10−3 0.011

7000 16.4 116.2 1.0 1 0.001 0.011 < 10−3 0.007

8000 20.2 65.3 1.0 1 0.001 0.010 < 10−3 0.003

9000 26.5 238.4 1.0 1 0.001 0.007 < 10−3 0.006

10000 32.1 197.2 1.0 3 0.001 0.007 < 10−3 0.007

15000 79.5 1858.2 1.2 21 < 10−3 0.005 < 10−3 0.008

20000 139.0 2957.9 1.5 55 < 10−3 0.004 < 10−3 0.004

25000 204.5 3981.7 1.8 57 < 10−3 0.003 < 10−3 0.001

30000 274.8 3491.1 2.1 81 < 10−3 0.002 < 10−3 0.001

Table 3 Enumerative
algorithm: details of
performances for the case
n = 30,000

u v Red. probl. size CPU Time (s) NODES UB-GAP% LB-GAP%

avg max avg max avg max avg max avg max

0.1 0.3 3486.2 10406 420.3 1644.5 6.3 81 0.001 0.002 < 10−3 0.001

0.1 0.5 4974.4 10883 581.2 3491.1 6.3 47 0.001 0.001 < 10−3 0.001

0.1 0.7 2620.6 5643 262.7 416.8 1.0 1 < 10−3 0.001 < 10−3 0.001

0.1 0.9 876.7 4452 225.9 272.8 1.0 1 < 10−3 < 10−3 < 10−3 < 10−3

0.3 0.5 1596.8 10047 263.0 335.8 1.1 3 < 10−3 0.001 < 10−3 0.001

0.3 0.7 1352.8 7538 239.3 278.9 1.0 1 < 10−3 0.001 < 10−3 0.001

0.3 0.9 254.6 654 205.4 276.8 1.0 1 < 10−3 < 10−3 < 10−3 < 10−3

0.5 0.7 163.8 373 203.3 222.8 1.0 1 < 10−3 < 10−3 < 10−3 < 10−3

0.5 0.9 310.4 500 181.9 214.9 1.0 1 < 10−3 < 10−3 < 10−3 < 10−3

0.7 0.9 233.6 546 165.1 185.7 1.0 1 < 10−3 < 10−3 < 10−3 < 10−3

J Sched (2010) 13: 39–47 45

Additionally, we performed some tests on instances with
a larger [1,10000] distribution for pi ’s and wi ’s. Appar-
ently, the algorithm is not sensitive to such enlargement; for
example, a whole batch of 10,000 jobs instances was han-
dled within 321 seconds in the worst case (average 45), with
all instances solved at the root node.

The proposed algorithm exhibits extremely good perfor-
mances also when applied to the deadline-free special case
1| |∑wiUi with the results summarized in Table 4.

For this case, the algorithm solves to optimality all in-
stances with up to 50,000 jobs, strongly outperforming the
state-of-the-art algorithms (see M’Hallah and Bulfin 2003).

Correlated instances

In Potts and Van Wassenhove (1988), also correlated in-
stances (linking processing times and weights) are studied

for the deadline-free problem. Such instances are likely to
be harder than purely random instances; random weakly cor-
related instances are generated by drawing each wi from
the uniform distribution [pi,pi + 20], while strongly corre-
lated instances are obtained by setting wi = pi + 20 for all
i ∈ N . We note that no correlated instances were considered
in Hariri and Potts (1994).

In Table 5 we report the computational experience
with n = 10,000 for the weakly correlated instances of
the 1|d̄i |∑wiUi problem; such instances are consider-
ably harder than the uncorrelated ones, but not dramatically
harder for our algorithm. With respect to the corresponding
uncorrelated instances, we get a reduced problem size at the
root node that is larger by a factor of approximately 2.3 (2.6
for the u = 0.1, v = 0.3 class). The average CPU times are
inflated by a factor of 6 (but 32 for u = 0.1, v = 0.3). The
worst figures are due to the fact that the reduction devices

Table 4 Performances of the
enumerative algorithm on
instances of the deadline-free
1| |∑wiUi problem

n CPU Time (s) NODES UB-GAP% LB-GAP%

avg max avg max avg max avg max

1000 0.6 4.1 1.0 1 0.003 0.069 0.001 0.037

2000 1.2 4.5 1.0 1 0.001 0.028 < 10−3 0.008

3000 2.0 5.8 1.0 1 0.001 0.022 < 10−3 0.005

4000 3.3 8.8 1.0 1 0.001 0.022 < 10−3 0.005

5000 4.9 11.1 1.0 1 < 10−3 0.009 < 10−3 0.004

10000 19.3 211.7 1.0 1 < 10−3 0.005 < 10−3 0.007

15000 37.3 84.4 1.0 1 < 10−3 0.003 < 10−3 0.001

20000 61.2 233.3 1.0 7 < 10−3 0.003 < 10−3 0.005

25000 93.9 459.7 1.1 11 < 10−3 0.002 < 10−3 0.003

30000 128.4 193.8 1.0 1 < 10−3 0.001 < 10−3 0.001

35000 177.1 1671.6 1.4 59 < 10−3 0.001 < 10−3 0.002

40000 215.6 966.0 1.2 43 < 10−3 0.002 < 10−3 0.001

45000 281.1 537.0 1.0 7 < 10−3 0.001 < 10−3 0.002

50000 315.3 736.0 1.2 17 < 10−3 0.002 < 10−3 0.001

Table 5 Weakly correlated
instances, n = 10,000 u v Red. probl. size CPU Time (s) Nodes UB-GAP% LB-GAP%

avg max avg max avg max avg max avg max

0.1 0.3 3460.9 9027 1077.3 10094.7 35.4 293 0.002 0.009 0.001 0.005

0.1 0.5 2949.9 7689 501.2 3775.9 10.2 137 0.001 0.002 0.001 0.004

0.1 0.7 1685.0 4935 95.5 276.3 1.0 1 < 10−3 0.002 < 10−3 0.001

0.1 0.9 495.1 1182 41.1 76.6 1.0 1 < 10−3 < 10−3 < 10−3 < 10−3

0.3 0.5 1106.4 5335 47.3 99.3 1.0 1 < 10−3 0.002 < 10−3 < 10−3

0.3 0.7 926.1 7120 41.4 70.1 1.1 3 < 10−3 0.003 < 10−3 < 10−3

0.3 0.9 306.1 627 32.2 38.0 1.0 1 < 10−3 < 10−3 < 10−3 < 10−3

0.5 0.7 608.9 2575 31.9 37.8 1.0 1 < 10−3 0.001 < 10−3 < 10−3

0.5 0.9 355.1 717 27.9 32.3 1.0 1 < 10−3 < 10−3 < 10−3 < 10−3

0.7 0.9 407.6 822 23.3 25.0 1.0 1 < 10−3 < 10−3 < 10−3 < 10−3

Overall 1230.1 9027 191.9 10094.7 5.4 293 < 10−3 0.009 < 10−3 0.005

46 J Sched (2010) 13: 39–47

embedded in the algorithm are less effective with correlated
data. Interestingly enough, the 10,094 seconds instance in
class (0.1,0.3) does not produce the largest 9,027 jobs re-
duced problem at the root. Instead it gives a smaller—but
quite difficult—problem with 7,719 jobs, that is solved in
233 nodes, whereas the 9,027 jobs reduced problem only
takes 26 nodes and 867 seconds. The second-worst time in
the batch is 5,254 seconds.

The strongly correlated case is by far the hardest one.
Here the dominance conditions no longer hold and all re-
duction devices are apparently ineffective even though the
gap between UB and LB remains very limited (less than
0.2% on average): the enumerative algorithm basically ex-
hibits the performances of the underlying ILP solver and
is just able to solve the whole n = 100 batch within a few
seconds on average, but already with a bottleneck instance
requiring approximately 60 seconds. For the n = 200 batch,
only 191 out of the 200 considered instances could be solved
within a time limit of 3600 seconds per instance. In order to
assess the rationale of such behavior, we worked on some
of the unsolved instances, and came up with a family of
hard examples having two due dates only and no deadlines;
the (1)–(3) model for such examples is thus a particular
2-constraint knapsack problem. In the appendix, we provide
data for one of such examples that turned out to be (with
others of the same family), in our experience, extremely dif-
ficult: all the solvers we tried were not able to solve it to
optimality within 3600 seconds. The solvers were XPRESS-
MP 18.10, CPLEX 10.11, and the 2 − KP exact algorithm
MT of Martello and Toth (2003) (applied on an equivalent
instance without zeros in the constraints matrix to meet the
input assumptions of MT). This suggests that the presence
of correlated processing times and weights is already suf-
ficient enough to make our problem very hard, similarly
to any (multi)knapsack-like problem with strong correlation
between items sizes and profits. Particularly, even if the up-
per bound quality does not break down (less than 0.26%
from optimum for the instance in the appendix) the UB-LB
gap narrows very slowly.

5 Conclusions

We have proposed for the 1|d̄i |∑wiUi problem an exact
procedure that is able to solve to optimality very large size
instances by exploiting a compact ILP formulation of the
problem. As an outcome of this work, we remark that, also
for scheduling problems, whenever structural properties al-
low to derive “good” LP/ILP formulations, then already
commercial solvers standalone can handle reasonably large
size instances. Moreover, adding minimal additional proce-
dures that rely on some problem structure can greatly boost

performances. The special strongly-correlated instances ap-
parently stand as the real challenge for future research on
the considered problem.

Appendix

We provide data for a 200-jobs 2-due dates difficult instance
of 1| |∑wiUi . Note that pi and wi are strongly corre-
lated (wi = pi + 20), and that the due dates d1, . . . , d100

and d101, . . . , d200 are set approximately to 1/4 and 1/2 of
∑

i pi .

n = 200

wi = pi + 20, i = 1, . . . ,200.

p1, . . . , p200 = 72 48 6 28 24 85 50 42 93 16 31 39 82 100
94 49 13 95 49 40 81 17 10 73 31 83 41 73 33 13 93 55 6 88
27 43 56 48 33 31 84 6 70 11 69 100 43 85 68 14 52 100 65
66 44 49 96 77 87 2 43 52 34 26 44 85 94 69 36 73 75 65 1
44 38 47 93 59 43 44 65 17 44 78 34 54 53 80 74 4 68 78
90 13 35 54 27 41 28 17 14 11 89 29 52 13 83 49 27 2 76
97 96 13 79 54 29 80 76 87 61 63 72 76 13 86 44 52 93 37
6 63 77 30 45 30 52 20 15 56 25 12 78 81 93 70 52 40 68 2
48 80 47 52 11 18 1 96 61 3 49 69 75 70 47 96 62 57 46 75
72 87 28 81 100 8 29 66 4 74 75 29 92 2 97 82 93 72 63 51
49 69 74 47 42 62 52 89 91 62

d1, . . . , d100 = 2547, d101, . . . , d200 = 5094.

References

Baptiste, Ph., Le Pape, C., & Péridy, L. (1998). Global constraints for
partial CSPs: a case-study of resource and due date constraint. In
LNCS (Proc. of CP) (Vol. 1520, pp. 87–101).

Dauzère-Pérès, S., & Sevaux, M. (2003). Using Lagrangean relaxation
to minimize the weighted number of late jobs on a single machine.
Naval Research Logistics, 50, 273–288.

Dauzère-Pérès, S., & Sevaux, M. (2004). An exact method to minimize
the number of tardy jobs in single machine scheduling. Journal of
Scheduling, 7, 405–420.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy Kan, A. H. G.
(1979). Optimization and approximation in deterministic se-
quencing and scheduling: a survey. Annuals of Discrete Mathe-
matics, 5, 287–326.

Hariri, A. M. A., & Potts, C. N. (1994). Single machine scheduling
with deadlines to minimize the weighted number of tardy jobs.
Management Science, 40(12), 1712–1719.

Karp, R. M. (1972). Reducibility among combinatorial problems. In
R. E. Miller & J. W. Thatcher (Eds.), Complexity of Computations
(pp. 85–103). New York: Plenum.

Lawler, E. L. (1983). Scheduling a single machine to minimize
the number of late jobs (Report CSD-83-139). EECS De-
partment, University of California, Berkeley. Available from
http://techreports.lib.berkeley.edu.

http://techreports.lib.berkeley.edu

J Sched (2010) 13: 39–47 47

Lenstra, J. K., Rinnooy Kan, A. H. G., & Brucker, P. (1977). Complex-
ity of machine scheduling problems. Annals of Discrete Mathe-
matics, 1, 343–362.

Linderoth, J. T., & Savelsbergh, M. W. P. (1999). A computational
study of search strategies for mixed integer programming. IN-
FORMS Journal on Computing, 11(2), 173–187.

Martello, S., & Toth, P. (2003). An exact algorithm for the two-
constraint 0–1 knapsack problem. Operations Research, 51, 826–
835.

M’Hallah, R., & Bulfin, R. L. (2003). Minimizing the weighted num-
ber of tardy jobs on a single machine. European Journal of Oper-
ational Research, 145(1), 45–56.

M’Hallah, R., & Bulfin, R. L. (2007). Minimizing the weighted number
of tardy jobs on a single machine with release dates. European
Journal of Operational Research, 176, 727–744.

Moore, J. M. (1968). An n job, one machine sequencing algorithm
for minimizing the number of late jobs. Management Science, 15,
102–109.

Potts, C. N., & Van Wassenhove, L. M. (1988). Algorithms for schedul-
ing a single machine to minimize the weighted number of late
jobs. Management Science, 34(7), 843–858.

T’kindt, V., Della Croce, F., & Bouquard, J.-L. (2007). Enumeration of
Pareto optima for a flowshop scheduling problem with two crite-
ria. INFORMS Journal on Computing, 19(1), 64–72.

	Sequencing a single machine with due dates and deadlines: an ILP-based approach to solve very large instances
	Abstract
	Introduction
	ILP model and problem reduction
	Basic properties and model
	Solving the LP relaxation
	Heuristic solution and core problem
	Fixing jobs

	An exact algorithm
	Computational results
	Test instances
	Results
	Correlated instances

	Conclusions
	Appendix
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

