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Abstract This paper considers the scheduling of exams
for a set of university courses. The solution to this exam
timetabling problem involves the optimization of com-
plete timetables such that there are as few occurrences of
students having to take exams in consecutive periods as
possible but at the same time minimizing the timetable
length and satisfying hard constraints such as seating ca-
pacity and no overlapping exams. To solve such a multi-
objective combinatorial optimization problem, this paper
presents a multi-objective evolutionary algorithm that uses
a variable-length chromosome representation and incorpo-
rates a micro-genetic algorithm and a hill-climber for local
exploitation and a goal-based Pareto ranking scheme for as-
signing the relative strength of solutions. It also imports sev-
eral features from the research on the graph coloring prob-
lem. The proposed algorithm is shown to be a more general
exam timetabling problem solver in that it does not require
any prior information of the timetable length to be effective.
It is also tested against a few influential and recent opti-
mization techniques and is found to be superior on four out
of seven publicly available datasets.
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1 Introduction

The exam timetabling problem (ETTP) is a widely studied
combinatorial optimization problem that commonly arises
in universities. In recent years, the problem has been getting
increasingly difficult as universities are enrolling more stu-
dents into a wider variety of courses including an increasing
number of combined degree courses (Merlot et al. 2003).
The basic problem involves the allocation of a set of ex-
ams to a number of periods (or time slots) so as to satisfy a
set of constraints. It follows that different universities have
differing views on what constitutes a good exam timetable.
This has led to many different formulations of the problem
considering different sets of constraints (Burke et al. 1996b;
Carter and Laporte 1996; Schaerf 1999; Qu et al. to appear).
However, there are two constraints that are universal to all
timetabling problems (Burke et al. 1996a; Chan et al. 2002):

• No student is to be scheduled to take more than one exam
at any one time. (Violation of this constraint is referred to
as a conflict.)

• For each period, there must be sufficient seats for all the
exams that are scheduled for that period.

Due to the criticality of these two constraints, they are
usually taken as hard constraints which a timetable must sat-
isfy (at all costs) in order to be feasible. On the other hand,
the other constraints are usually taken as soft constraints
which are regarded as desirable but not absolutely essential
to satisfy all of them. These constraints (Burke et al. 1996b)
include:

• No student should have to take more than one exam in
consecutive periods.

• No student should have to take more than one exam on
the same day.
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• Large exams should be held earlier in the exam period to
allow enough time for marking of the scripts.

• Some exams can only be held in a limited number of pe-
riods.

• All exams should be scheduled in less than a particular
number of periods.

Quality measures (or objectives) of an exam timetable are
usually derived from these soft constraints.

This paper considers an instance of the ETTP that was
first formulated by Burke et al. (1996a) but has since re-
ceived much attention from researchers (Caramia et al.
2001; Di Gaspero and Schaerf 2001; Merlot et al. 2003;
Wong et al. 2004; Abdullah et al. 2007a, 2007b). On top of
considering the two mentioned universal hard constraints,
the problem involves the minimization of the violation of a
soft constraint that if a student is scheduled to take two ex-
ams in any one day, there should be a free period between the
two exams. Violation of this constraint will be referred to as
a clash. This constraint is considered with the aim of spread-
ing out the exams for students and allowing them enough
time to recover between exams. More details of the problem
will be given in the problem formulation in Sect. 2.1.

In minimizing the number of clashes in an exam timeta-
ble, Burke and Newall (1999) commented that if a large
number of periods were allocated, it would most likely be
the case that the clashes can be eliminated. Burke et al.
(1995) also mentioned that longer timetables are usually re-
quired to reduce the number of clashes and that a cap has to
be imposed on the number of periods that can be used, oth-
erwise every other period would be empty. From these two
observations, it is clear that the ETTP is inherently a multi-
objective optimization problem. In minimizing the number
of clashes in an exam timetable, an algorithm for the ETTP
must also ensure that the number of periods used is not ex-
ceedingly large. Therefore, it is required to minimize multi-
ple conflicting cost functions, such as the number of clashes
and the timetable length, concurrently, which is best solved
by means of multi-objective optimization. Most of the exist-
ing literature, however, use single-objective-based heuristic
methods that fix the number of periods that a timetable can
use (Burke et al. 1996a; Caramia et al. 2001; Di Gaspero
and Schaerf 2001; Merlot et al. 2003; Abdullah et al. 2007a,
2007b). To the authors’ knowledge, only Wong et al. (2004)
has attempted a multi-objective approach to the ETTP in-
stance that is being considered in this paper. Even then, their
approach, which is based on a hybrid multi-objective evolu-
tionary algorithm, utilizes a population that is divided into
partitions, each of which contains timetables of a particular
length. During the evolutionary process, the lengths of the
timetables remain constant. The approach is equivalent to
multiple executions of the optimization process, each time
using a population with a different timetable length. The ap-
proach and many others also require prior knowledge of the

timetable length (Burke et al. 1996a; Caramia et al. 2001; Di
Gaspero and Schaerf 2001; Merlot et al. 2003; Abdullah et
al. 2007a, 2007b). While it has to be acknowledged that uni-
versities traditionally know the approximate duration over
which the whole examination procedure spans, resulting in
most of the existing ETTP research to focus on fixed-length
timetables, this approach is hardly optimal from an opera-
tional research point of view. Given that the number of stu-
dents and their course preferences vary for each intake, it
is unacceptable that the same timetable length be used for
scheduling exams every year. As such, it is believed that
a general algorithm for the ETTP should be able to gener-
ate feasible timetables even without presetting the timetable
length, especially when a new instance of the problem is first
encountered and probably only a range of desired timetable
lengths is provided by the timetable planner.

In solving the ETTP, this paper builds upon a recently
presented multi-objective evolutionary algorithm (MOEA)
(Cheong et al. 2007) which incorporates two local search op-
erators, namely a micro-genetic algorithm (MGA) and a hill-
climber, for local exploitation in the evolutionary search.
The algorithm uses an intuitive variable-length chromosome
representation that allows the timetable length to be ma-
nipulated during the evolutionary process. In contrast to
existing single-objective-based approaches, the MOEA uti-
lizes a goal-based Pareto ranking scheme to solve the multi-
objective ETTP. In addition, the algorithm imports several
features from the research on the graph coloring problem.

The developed MOEA is tested against a few influential
and recent optimization techniques on the Toronto bench-
marks (Carter et al. 1996) and on the Nottingham instance
(Burke et al. 1996a), which are the most widely studied
datasets in the exam timetabling community. The participat-
ing algorithms include Burke et al. (1996a), Caramia et al.
(2001), Di Gaspero and Schaerf (2001), Merlot et al. (2003),
Wong et al. (2004), and Abdullah et al. (2007a, 2007b).

This paper is organized as follows: Sect. 2 gives a brief
description of the current state of research on the ETTP as
well as the problem formulation of the ETTP instance that
is being considered in this paper. Section 3 presents the pro-
gram flow of the proposed MOEA. Section 4 presents ex-
tensive simulation results and analysis of the proposed algo-
rithm. Conclusions are drawn in Sect. 5.

2 Background information

2.1 Problem formulation

As mentioned in the introduction, this paper considers
an instance of the ETTP that was first formulated by
Burke et al. (1996a). In this problem, a set of exams E =
{e1, e2, . . . , e|E|} is to be scheduled into a set of periods
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P = {1,2, . . . , |P|}, with each period having a seating capac-
ity S. There are three periods per weekday and a Saturday
morning period. No exam is held on Sundays. It is assumed
that the exam period starts on a Monday.

The problem can be formally specified by first defining
the following:

• aip is one if exam ei is allocated to period p, zero other-
wise.

• cij is the number of students registered for exams ei and
ej .

• si is the number of students registered for exam ei .

The corresponding mathematical formulation is as fol-
lows:

Minimize
|E|−1∑

i=1

|E|∑

j=i+1

|P|−1∑

p=1

aipaj (p+1)cij (1)

and |P| (2)

subject to
|E|−1∑

i=1

|E|∑

j=i+1

|P|∑

p=1

aipajpcij = 0, (3)

|E|∑

i=1

aipsi ≤ S, ∀p ∈ P, (4)

|P|∑

p=1

aip = 1, ∀i ∈ {
1, . . . , |E|}. (5)

Equations (1) and (2) are the two objectives of minimiz-
ing the number of clashes and timetable length, respectively.
Constraint (3) is the constraint that no student is to be sched-
uled to take two exams at any one time, while (4) states a
capacity constraint that for each period, there must be suffi-
cient seats for all the exams that are scheduled for that pe-
riod. These two hard constraints define a feasible timetable.
Constraint (5) indicates that every exam can only be sched-
uled once in any timetable.

2.2 Existing state of research

The ETTP is an annual or semiannual problem for univer-
sities and is widely studied by many operational research
and computational intelligence researchers due to its com-
plexity and practicality. A wide range of approaches for
solving the problem have been proposed and discussed in
the existing literature. These approaches can be divided
into the following broad categories (Carter 1986; Petro-
vic and Burke 2004; Qu et al. to appear): graph-based se-
quential techniques, clustering-based techniques, constraint-
based techniques, meta-heuristics, multi-criteria techniques,
hyper-heuristics, and case-based reasoning techniques.

The ETTP, or timetabling problems in general, without
any soft constraint, can be modeled as graph coloring prob-
lems (Carter 1986; Burke et al. 2004a). In this model, exams
are represented as vertices and conflicts between exams are
represented as edges between the vertices (de Werra 1985;
Carter and Johnson 2001; Burke et al. 2004a). By taking
each color to represent a period in the timetable, the task
is then to color the vertices so that no two adjacent ver-
tices have the same color. Several graph coloring heuristics
(Broder 1964; Wood 1968; Brelaz 1979; Carter et al. 1996)
have been proposed in the literature. These heuristics order
the exams in some way, e.g., exams with the largest conflict
potential first, and then each exam is assigned to a period in
that order. Although these heuristics have been widely em-
ployed in exam timetabling, they are seldom used alone but
hybridized with other search methods (Burke et al. 1995,
1998a; Carter et al. 1996; Burke and Newall 1999, 2004;
Caramia et al. 2001; Di Gaspero and Schaerf 2001; Asmuni
et al. 2005). This is primarily due to their limitation where
early assignments may lead to unavailability of feasible pe-
riods for exams left later in the construction process.

Clustering-based techniques divide exams into groups
such that the exams within each group satisfy all hard con-
straints. The groups are then assigned to periods with the
aim of minimizing the violation of soft constraints (White
and Chan 1979; Lotfi and Cerveny 1991; Balakrishnan et al.
1992).

In constraint-based techniques, such as constraint logic
programming (Hentenryck 1989) and constraint satisfaction
techniques (Brailsford et al. 1999), exams are represented
as finite-domain variables, while periods to which an exam
can be assigned to without violating any constraint are rep-
resented by the values within the domain of the variable
representing the exam. Values (periods) are then sequen-
tially assigned to variables (exams) and, when no value can
be assigned to a particular variable later in the assignment
process, a backtracking procedure enables the reassignment
of values until a feasible timetable is constructed. Like
graph-based sequential techniques, constraint-based tech-
niques are seldom used on their own since they usually can-
not provide high quality solutions (Brailsford et al. 1999).
They are often employed in hybrid algorithms to find an
initial feasible solution whose quality is then improved by
other intensive search methods (David 1998; Merlot et al.
2003; Duong and Lam 2004).

Meta-heuristics form the bulk of some of the most suc-
cessful techniques that have been applied to the ETTP in
the past decade. The MOEA proposed in this paper as
well as the few state-of-the-art approaches used to bench-
mark the performance of the MOEA belong to this cate-
gory of exam timetabling solvers. Meta-heuristics can be
further divided into two sub-categories—local search-based
and population-based. Local search-based meta-heuristics,
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which include tabu search (White and Xie 2001; Paquete
and Stützle 2003; White et al. 2004), simulated annealing
(Dowsland 1996; Thompson and Dowsland 1996a, 1996b,
1998; Bullnheimer 1998; Duong and Lam 2004; Burke et
al. 2004b), variable neighborhood search (Mladenovic and
Hansen 1997; Hansen and Mladenovic 2001; Burke et al.
2006a), great deluge algorithms (Burke and Newall 2003;
Burke et al. 2004b; Yang and Petrovic 2005), and greedy
randomized adaptive search procedures (GRASP) (Casey
and Thompson 2003), involve searching from an incumbent
solution to its neighborhood and are distinguished by their
neighborhood structures and moving strategies. Caramia et
al. (2001), Di Gaspero and Schaerf (2001), Merlot et al.
(2003), Abdullah et al. (2007a), and Abdullah et al. (2007b)
all fall under this sub-category. Caramia et al. (2001) de-
veloped a local search method based on a set of heuristics.
After constructing an initial solution, their algorithm uses a
spreading heuristic to reduce the number of clashes while
not extending the timetable length. Another heuristic, which
extends the timetable by a period and then tries to reduce
the number of clashes in the extended timetable, is used if
the first one fails to register any improvement. The process
is repeated until no further improvement can be found. Di
Gaspero and Schaerf (2001) experimented with tabu search.
Their tabu search uses a short-term tabu list with random
tabu tenure. In the tabu search, two solutions are neigh-
bors if they differ for the period assigned to a single exam.
The neighborhood is further reduced by considering only
the subset of exams that are involved in constraint viola-
tion. To improve the quality of solutions, the algorithm uses
the shifting penalty mechanism of Gendreau et al. (1994).
Merlot et al. (2003) proposed a hybrid algorithm consist-
ing of three phases. In the first phase, an initial solution is
built using constraint programming. The quality of the so-
lution is then improved using simulated annealing based on
the Kempe chain neighborhood. The last phase involves us-
ing a hill-climber to further improve the timetable. Abdul-
lah et al. (2007a) adopted a large neighborhood approach
based on an improvement graph search methodology origi-
nally developed by Ahuja et al. (2001) for solving a capac-
itated minimum cost spanning tree problem. They designed
a cyclic-exchange neighborhood that is substantially larger
than the traditional two-exchange neighborhood structure.
In order to improve computational time, they further devel-
oped their algorithm in a later work to store improvement
moves in a tabu list (Abdullah et al. 2007b). In contrast to
local search-based meta-heuristics where a single solution
is improved through an iterative process, population-based
meta-heuristics, including genetic algorithms (Ross et al.
1996, 1998, 2003; Terashima-Marin et al. 1999a, 1999b; Er-
ben 2001; Sheibani 2003; Erben and Song 2005), memetic
algorithms (Burke et al. 1998b; Burke and Newall 1999;
Burke and Landa Silva 2004; Côté et al. 2005), evolution

strategies (Gani et al. 2004), and ant algorithms (Naji Azimi
2004, 2005; Dowsland and Thompson 2005; Eley 2007), in-
volve the manipulation of a population of solutions in the
search space to solve problems. Burke et al. (1996a) and
Wong et al. (2004) belong to this sub-category. Burke et
al. (1996a) developed a memetic algorithm (Moscato and
Norman 1991; Radcliffe and Surry 1994) which interleaves
the evolutionary operator of mutation with a hill-climber
so that the space of possible solutions is reduced to the
subspace of local optima. Wong et al. (2004) proposed a
hybrid multi-objective evolutionary algorithm. In the algo-
rithm, crossover is replaced by two local search operators.
The first operator is designed to repair infeasible timetables
produced by the initialization process and the mutation op-
erator. The other local search operator implements a simpli-
fied variable neighborhood search meta-heuristic to improve
the quality of timetables. An imperfection often associated
with meta-heuristics is that they are dependent on parameter
tuning and do not work consistently across different ETTP
instances. This problem is aggravated by the fact that meta-
heuristics are reliant on domain knowledge, i.e., they use a
fixed set of heuristics, and are usually tailor made to solve a
particular problem.

Multi-criteria or multi-objective techniques are another
category of exam timetabling solvers that is very much re-
lated to the MOEA proposed in this paper. As mentioned in
the introduction, any practical ETTP is usually characterized
by a number of soft constraints which define the objectives
of the problem. Most existing approaches treat the multi-
objective problem as a single-objective one by combining
all the objectives via an aggregating function. Multi-criteria
optimization presents a more general and flexible approach
by considering a vector of objectives, which enables all the
objectives to be optimized concurrently. Furthermore, it al-
lows a better assessment and understanding of the problem
by studying the relationship between the different objectives
which are usually conflicting in nature since they are con-
sidered from different points of view by different parties in-
volved in the timetabling process (Carter and Laporte 1996).
Despite the suitability of multi-criteria techniques for exam
timetabling, there are very few works in the existing litera-
ture that belong to this category (Burke et al. 2001; Paquete
and Fonseca 2001; Paquete and Stützle 2003; Petrovic and
Bykov 2003; Côté et al. 2005; Asmuni et al. 2007) and only
Wong et al. (2004) has attempted a multi-criteria approach
to the ETTP instance that is being considered in this paper.

In contrast to the above techniques, hyper-heuristics rep-
resent a completely different approach to exam timetabling.
Instead of working in a search space of solutions, hyper-
heuristics work in a search space of heuristics to select
the best set of heuristics for solving the current instance
of the problem. This category of exam timetabling solvers
(Terashima-Marin et al. 1999c; Ahmadi et al. 2003; Kendall
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Fig. 1 Variable-length
chromosome representation

and Hussin 2003, 2005; Ross et al. 2004; Asmuni et al. 2005;
Burke et al. 2005, 2006b, 2007; Hussin 2005; Yang and
Petrovic 2005; Qu and Burke 2005, to appear; Bilgin et al.
2007) are motivated by the imperfection of meta-heuristics
mentioned earlier and are aimed at achieving a higher level
of generality.

Case-based reasoning techniques are a relatively recent
approach inspired by the human learning process where past
experience with a problem is used to solve a newly encoun-
tered and similar problem. In terms of exam timetabling,
the solutions of previously solved ETTPs are utilized to
aid the search of solutions to new problem instances. Such
an approach has been employed by Burke et al. (2002,
2005, 2006b) and Yang and Petrovic (2005) for exam
timetabling.

For the interested readers, there are also a number of
comprehensive survey papers on the exam timetabling re-
search in the literature. These include de Werra (1985),
Carter (1986), Carter and Laporte (1996), Bardadym (1996),
Burke et al. (1996b, 1997), Schaerf (1999), Burke and
Petrovic (2002), Petrovic and Burke (2004), and Qu et al.
(to appear).

3 Multi-objective evolutionary algorithm

From the discussions in the introduction, it is clear that
the ETTP is inherently a multi-objective problem. This
section presents the multi-objective evolutionary algorithm
(MOEA) specifically designed to solve the ETTP by mini-
mizing concurrently the objectives of the number of clashes
and timetable length. The main features of the MOEA will
first be introduced in turn before describing the algorithmic
flow.

3.1 Variable-length chromosome

Most of the existing approaches in the literature use fixed-
length timetables. It was mentioned in the introduction
that fixed-length timetables inevitably convert the ETTP
to a single-objective problem even though it is inherently

a multi-objective one. Another problem with fixed-length
timetables is that feasibility cannot be guaranteed, since it is
not always possible to schedule all exams into a fixed-length
timetable without violating any of the hard constraints. Spe-
cial fixing operators have to be designed to ensure that a fea-
sible timetable can be found (Di Gaspero and Schaerf 2001;
Merlot et al. 2003; Wong et al. 2004).

In the MOEA, a variable-length chromosome represen-
tation (Tan et al. 2007), shown in Fig. 1, is applied such
that each chromosome encodes a complete and feasible
timetable, including the number of periods and the exams
scheduled in each of the periods. Such a representation is ef-
ficient and allows the number of periods to be manipulated
and minimized directly for multi-objective optimization in
the ETTP, avoiding the two problems encountered by fixed-
length timetables.

3.2 Day-exchange crossover

Crossover operators are the way that evolutionary algo-
rithms allow good combinations of genes to be passed be-
tween different members of the population. However, most
of the existing evolutionary algorithms that have been ap-
plied to the ETTP do not use any crossover operator (Burke
et al. 1996a; Burke and Newall 1999; Wong et al. 2004).
Burke and Newall (1999) commented that their experiments
with crossover operators for their algorithm have been un-
fruitful. One criticism that has been leveled against the use
of standard crossover operators is that they ignore the notion
that “what is good about any timetable is the temporal rela-
tionship between exams, rather than their absolute times”
(Burke et al. 1995). In contrast to standard crossover oper-
ators, the day-exchange crossover operator adopted by the
MOEA is able to perpetuate favorable temporal relationship
between exams. The operation of this crossover is shown in
Fig. 2.

In day-exchange crossover, only the best days (excluding
Saturdays, since exams scheduled on Saturdays are always
clash-free) of chromosomes, selected based on the crossover
rate, are eligible for exchange. The best day consists of three
periods and is the day with the lowest number of clashes per
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Fig. 2 Illustration of
day-exchange crossover

student. To ensure the feasibility of chromosomes after the
crossover, duplicated exams are deleted. These exams are
removed from the original periods, while the newly inserted
periods are left intact.

From Fig. 2, it can be seen that the timetable lengths
for the two chromosomes have increased after the crossover
operation. In order to control the lengths of timetables af-
ter crossover, a period control operator is applied. For the
operation, it is assumed that a desired range of timetable
lengths, in the form of maximum and minimum lengths,
is provided by the timetable planner. Chromosomes with
timetable lengths within the desired range remain intact,
while chromosomes with lengths below the minimum length
will undergo a period expansion operation and those with
lengths above the maximum length will undergo a period
packing operation. These two operations are described be-
low.

(1) Period expansion: The operation first adds empty pe-
riods to the end of the timetable such that the timetable

length is equal to a random number within the desired range.
A clash list, consisting of all exams that are involved in at
least one clash, is also maintained. An exam is randomly
selected from the clash list and the operation searches in a
random order for a period which the selected exam can be
rescheduled without causing any clashes while maintaining
feasibility. The exam remains intact if no such period exists.
The operation ends after one cycle through all exams in the
clash list.

(2) Period packing: Starting from the period with the
smallest number of students, the operation searches in or-
der of available period capacity, starting from the smallest,
for a period which can accommodate exams from the former
without causing any clashes while maintaining feasibility.
The operation stops when it goes one cycle through all pe-
riods without rescheduling any exam or when the timetable
length is reduced to a random number within the desired
range.
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3.3 Mutation

Mutation operators complement crossover operators in al-
lowing a larger search space to be explored. The MOEA
implements a mutation operator that is similar to the light
mutation operator of Burke et al. (1996a). For each chro-
mosome selected for mutation based on the mutation rate,
the operator removes a number of exams, selected based
on the reinsertion rate, from the chromosome. These ex-
ams are then reinserted into randomly selected periods while
maintaining feasibility. Unlike Burke et al. (1996a), the rein-
sertion process is more elaborate, adopting features from
the research on the graph coloring problem. It is widely
known that the basic ETTP is a variant of the graph color-
ing problem. As such, many ETTP researchers have made
use of graph coloring heuristics to improve the quality
of their timetables (Burke et al. 1995, 1998a; Carter et
al. 1996; Burke and Newall 1999, 2004; Caramia et al.
2001; Di Gaspero and Schaerf 2001; Asmuni et al. 2005).
The heuristics used here are such that they affect the or-
der in which exams are reinserted into the timetable. If
the reinsertion process concentrates on scheduling those
more difficult exams first, it is likely that it would have
fewer problems at the end scheduling the easier exams. Five
versions of the MOEA based on five different heuristics
are tested in this paper. The heuristics are described be-
low.

(1) Largest Degree (LD): Exams with the largest number of
conflicts with other exams are reinserted first.

(2) Color Degree (CD): Exams with the largest number of
conflicts with other exams that have already been sched-
uled are reinserted first.

(3) Saturation Degree (SD): Exams with the fewest valid
periods, in terms of satisfying the hard constraints, re-
maining in the timetable are reinserted first.

(4) Extended Saturation Degree (ESD): Exams with the
fewest valid periods, in terms of satisfying both hard
and soft constraints, remaining in the timetable are rein-
serted first.

(5) Random (RD): Exams are randomly selected for rein-
sertion. This is used as a benchmark to check whether
the other heuristics are having any effect.

When reinserting exams into a timetable, it is very likely
that it will come to a point when it is not possible to schedule
an exam without violating any of the hard constraints. In this
case, a new period will be created at the end of the timetable
to accommodate the exam.

3.4 Goal-based Pareto ranking

As mentioned in the introduction, the ETTP is a multi-
objective optimization problem where a number of objec-
tives, such as the number of clashes and the timetable length,

need to be minimized concurrently. In contrast to single-
objective optimization, the solution to a multi-objective op-
timization problem exists in the form of alternate tradeoffs
known as the Pareto optimal set, which consists of all non-
dominated solutions. Each objective component of any so-
lution in the Pareto optimal set can only be improved by de-
grading at least one of its other objective components. Thus,
the role of multi-objective optimization in the ETTP is to
discover such a set of Pareto optimal solutions from which
the timetable planner can select an optimal solution based
on how much he is willing to sacrifice timetable length for a
lower number of clashes in the timetable.

A goal-based Pareto fitness ranking scheme is proposed
in this paper to assign the relative strength of solutions. The
ranking scheme consists of two phases. The first phase is
similar to the Pareto fitness ranking scheme (Fonseca 1995)
which assigns the same smallest rank to all non-dominated
solutions, while the dominated ones are inversely ranked
according to the number of solutions dominating them. In
Fig. 3, a population of seven hypothetical solutions is plot-
ted in the objective domain. Each solution defines a rectan-
gular box encompassing the origin as shown in the figure.
For each solution, another solution will dominate the solu-
tion if and only if it is within or on the box defined by the
first solution but not equal to the first solution in terms of
the two considered objectives. The rank of each of the so-
lutions is also shown in the figure. The rank of a solution is
given by (1 + q), where q is the number of solutions in the
population dominating the solution. The second phase of the
ranking scheme makes use of the desired range of timetable
lengths provided by the timetable planner as mentioned in
Sect. 3.2. The desired range is used as a goal and solutions

Fig. 3 Example to demonstrate the principle of dominance
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Fig. 4 MGA chromosome
representation

not meeting the goal are penalized based on the following
pseudo-code:

IF timetable length > max length THEN
rank2 = rank1 + (timetable length – max length)

ELSE IF timetable length < min length THEN
rank2 = rank1 + (min length – timetable length)

rank1 is the rank of a solution after the first phase,
whereas rank2 is the adjusted rank after the second phase.
The goal-based Pareto ranking scheme allows the MOEA
to focus its search on the desired range of timetable lengths
and is similar in principle to the goal-sequence domination
scheme of Tan et al. (2003).

3.5 Local exploitation

It is widely believed that incorporating local search within
evolutionary algorithms is an effective approach for find-
ing high quality exam timetables (Burke et al. 1996a; Burke
and Newall 1999; Di Gaspero and Schaerf 2001; Merlot et
al. 2003; Gani et al. 2004; Wong et al. 2004). Local ex-
ploitation can contribute to the intensification of the opti-
mization results and is usually regarded as a complement
to the evolutionary operators that mainly focus on global
exploration. As such, the MOEA utilizes two local search
operators, namely a micro-genetic algorithm (MGA) and a
hill-climber. These two operators are applied in turn to chro-
mosomes selected based on a tournament selection scheme,
where all the chromosomes in the population are randomly
grouped into fours and from each group, the chromosome
with the smallest rank is selected. Only a quarter of the
population will undergo local exploitation. Applying local
search to a larger proportion of the population has been ex-
perimented but no improvement in the results was obtained.
A description of the two local search operators is given be-
low.

(1) Micro-genetic algorithm: Micro-genetic algorithm
(MGA) is a genetic algorithm with small population and
short evolution (Dozier et al. 1994; Coello Coello and Pulido
2001; Kazarlis et al. 2001; Pulido and Coello Coello 2003).
For each solution produced by the main algorithm that is se-
lected for local search, the operation solves a smaller, single-
objective problem by treating each period as an entity and
seeks to minimize (1) by searching for the optimal order in
which the periods are placed in the timetable. The chromo-
some representation used in MGA is as shown in Fig. 4.

Fig. 5 Operation of order crossover

The main components of MGA are highlighted below:

• Initialization: The initial population of MGA is generated
by randomly shuffling the order of the periods of the so-
lution provided by the main algorithm.

• Crossover: MGA uses an adapted version of the well-
known order crossover (Goldberg 1989). For each pair
of parents, a random fragment of the chromosome from
one of them is copied onto the offspring. The empty posi-
tions of the offspring are then sequentially filled accord-
ing to the chromosome of the other parent, following the
sequence of periods. The roles of the parents are then re-
versed to produce the second offspring. The operation is
detailed in Fig. 5.

• Mutation: Each period will swap position with a ran-
domly chosen period with a probability equal to the swap
rate.

• Selection: A binary tournament selection scheme is used.
All the chromosomes in the MGA population are ran-
domly grouped into pairs and from each pair, the chro-
mosome with the smaller rank is selected for reproduc-
tion. This procedure is performed twice to preserve the
original population size.

• Stopping criterion: MGA stops after a predefined number
of generations.

(2) Hill-climber: This operation will be applied on the
best solution from MGA or the original solution provided by
the main algorithm depending on which has a lower number
of clashes. In order to identify the most promising moves,
a clash list, like the one used in the period expansion op-
erator, is maintained. Hill-climber operates on a neighbor-
hood defined by randomly selecting an exam from the clash
list and rescheduling it in another randomly chosen period
or swapping periods with an exam in the chosen period. To
avoid the time consuming process of an exhaustive search,
only a quarter of the periods will be tested. Hill-climber
uses delta evaluation (Ross et al. 1994; Burke and Newall
1999) to avoid performing a full evaluation of each move.
The move which leads to the greatest decrease in the num-
ber of clashes is selected and the exam is removed from the
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clash list. If the exam is still not clash-free, it will re-enter
the clash list after hill-climber has cycled through all the ex-
ams in the clash list. The operation stops when it has cycled
through the clash list five times without any improvement in
the number of clashes.

3.6 Algorithmic flow of MOEA

The algorithmic flow of the MOEA is shown in Fig. 6. At
the start of the algorithm, a conflict matrix C (Burke and
Newall 1999) is created. The matrix has dimensions |E| by
|E| with the definition cij from Sect. 2.1 being the (i, j)th
element of the matrix. The matrix enables efficient conflict
checking and eliminates the number of students as a factor
in the complexity of the problem.

(1) Initialization: The population initialization process is
similar to the reinsertion process of the mutation operator
described in Sect. 3.3. For each chromosome, a timetable
with a random number of empty periods within the desired
range is created. Exams are then inserted into randomly se-
lected periods in the order determined by the graph color-
ing heuristic, depending on the version of the MOEA. Like
the mutation operator, when it is not possible to schedule an
exam without violating any of the hard constraints, a new
period will be created at the end of the timetable to accom-
modate the exam.

(2) Evaluation: After the initial evolving population is
formed, all the chromosomes are evaluated based on (1) and
ranked using the goal-based Pareto ranking scheme. Follow-
ing the ranking process, an archive population is updated.
The archive population has the same size as the evolving
population and is used to store all the best solutions found
during the search. The archive population updating process
consists of a few steps. The evolving population is first
appended to the archive population. All repeated chromo-
somes, in terms of the objective domain, are deleted. Goal-
based Pareto ranking is then performed on the remaining
chromosomes in the population. The larger ranked (weaker)
chromosomes are then deleted such that the size of the
archive population remains the same as before the updating
process. The evolving population remains intact during the
updating process.

(3) Genetic operations: The binary tournament selection
scheme, same as that used in MGA, is then performed.
The genetic operators consist of day-exchange crossover and
mutation. To further improve the quality of the exam timeta-
bles, the two local search operators of MGA and hill-climber
are applied to the evolving and archive populations every 20
generations (setting was chosen after some preliminary ex-
periments) for better local exploitation in the evolutionary
search.

Fig. 6 Flowchart of MOEA
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(4) Elitism: A strong elitism mechanism is employed
in the MOEA for faster convergence. The solutions in the
archive population form the elites. The elitism strategy is
similar to the archive population updating process with the
roles of the evolving and archive populations reversed. Re-
peated chromosomes are however not deleted.

This is one complete generation of the MOEA and the
evolution process iterates for a predefined number of gener-
ations.

Although some of the operations of the MOEA re-
quire the timetable planner to provide his desired range of
timetable lengths, this is not mandatory. Even without the
information, the MOEA would still be able to generate fea-
sible timetables by using an arbitrarily large range. It is be-
lieved that this is an important feature which a general algo-
rithm for the ETTP should have. In this aspect, the MOEA is
superior to most existing single-objective-based approaches
which require prior knowledge of the exact timetable length
and only produce single-length timetables (Burke et al.
1996a; Caramia et al. 2001; Di Gaspero and Schaerf 2001;
Merlot et al. 2003; Abdullah et al. 2007a, 2007b). However,
providing the MOEA with the desired range of timetable
lengths would allow the algorithm to focus its efforts on the
desired range and produce higher quality timetables.

4 Simulation results and analysis

The MOEA was programmed in C++ and simulations were
performed on an Intel Pentium 4 3.2 GHz computer. Table 1
shows the parameter settings chosen after some preliminary
experiments.

Carter et al. (1996) and Burke et al. (1996a) have made
several real enrollment datasets for exam timetabling pub-
licly available. Table 2 lists the datasets used in this paper
together with the characteristics of each dataset. As all the
datasets indicated their desired timetable lengths instead of
the desired range of timetable lengths that the MOEA takes

Table 1 Parameter settings for simulation study

Parameter Values

Population size 100

Generation number 200

Crossover rate 0.7

Mutation rate 0.3

Reinsertion rate 0.02

MGA population size 20

MGA generation number 40

MGA crossover rate 0.7

MGA mutation rate 0.3

MGA swap rate 0.3

as input, a desired range, which includes three periods above
and below the indicated desired timetable length, is set for
each of the datasets. For example, the desired range for
CAR-F-92 is from 37 to 43 periods. It is to be noted that
NOT-F-94 indicated two desired timetable lengths. While
most single-objective-based approaches would require two
separate runs to obtain two timetables with the two desired
lengths, the problem can be solved by the MOEA in one run
by setting the desired range to be from 23 to 29 periods.
It is also important to note that no fine-tuning of the MOEA
was performed and the same parameters as shown in Table 1
were used in all simulations unless otherwise stated.

The subsequent sections present the extensive simulation
results and analysis. Section 4.1 studies the performance of
the MOEA based on the different graph coloring heuristics.
Sections 4.2 and 4.3 present, respectively, the contribution of
day-exchange crossover and the two local search operators
of MGA and hill-climber to the performance of the MOEA.
Section 4.4 demonstrates the advantages of multi-objective
optimization and at the same time validates the relationship
between the two objectives of number of clashes and number
of periods required in a timetable. Section 4.5 shows why the
MOEA is a more general ETTP solver compared to existing
single-objective-based approaches. Lastly, Sect. 4.6 presents
the comparison results of the MOEA with a few influential
and recent optimization techniques.

4.1 Performance of graph coloring heuristics

Several graph coloring heuristics are incorporated in the
MOEA during the solution initialization process as well as
in the mutation operator. These heuristics affect the order in
which exams are scheduled into the timetable for the two
operations and have significant impact on the search trajec-
tory of the MOEA. This section studies the performance of
the MOEA based on the different graph coloring heuristics.

The five versions of the MOEA, namely LD, CD, SD,
ESD, and RD, using the different graph coloring heuristics
described in Sect. 3.3 were applied to the datasets shown in
Table 2. Ten independent runs of each of the settings on each
of the datasets were conducted. The results obtained are rep-
resented in box plots and are shown in Fig. 7. Each box plot
represents the distribution of the number of clashes for non-
dominated solutions with the desired number of periods for
the 10 runs where the horizontal line within the box encodes
the median, and the upper and lower ends of the box are the
upper and lower quartiles, respectively. The two horizontal
lines beyond the box give an indication of the spread of the
data. A plus sign outside the box represents an outlier.

From Fig. 7, considering the medians and the variances of
the results, it is clear that SD gives the best performance for
CAR-F-92, CAR-S-91, and UTA-S-92, while ESD works
best on NOT-F-94 (for both desired number of periods) and



J Sched (2009) 12: 121–146 131

Table 2 Characteristics of datasets

Dataset code Number of exams Number of students Enrolment Seating capacity Number of periods

CAR-F-92 543 18419 55522 2000 40

CAR-S-91 682 16925 56877 1550 51

KFU-S-93 461 5349 25113 1995 20

NOT-F-94 800 7896 33997 1550 23/26

TRE-S-92 261 4360 14901 655 35

UTA-S-92 622 21266 58979 2800 38

Fig. 7 Performance comparison for different graph coloring heuristics

TRE-S-92. The results for KFU-S-93 are less conclusive
since the MOEA, regardless of version, is not able to find
solutions with the desired number of periods for some of the
runs. Table 3 shows the number of runs that the respective
versions of the MOEA are not able to find solutions having
the desired number of periods for the various datasets.

The results in Table 3 show that SD is able to find solu-
tions with the desired timetable length for seven out of the 10
runs conducted on KFU-S-93, the most out of the five graph
coloring heuristics. It is also obvious that KFU-S-93 is the
bane of ESD, since the heuristic is only able to produce one
timetable with the desired length although its performance
is comparable to SD on the other datasets. In general, KFU-
S-93 seems to pose some problems to the MOEA, regardless
of version. One probable reason for the MOEA’s inability to
find feasible timetables with the desired length for KFU-S-
93 on all the runs could be that the desired number of peri-
ods for the dataset is set too low and the number of feasible
timetables having the desired length is very small. Another
reason could be that since the MOEA is designed to produce

a Pareto optimal set of timetables, its search space is signifi-
cantly larger than that handled by existing single-objective-
based approaches. The MOEA has to spread out its efforts
to find timetables with lengths within the desired range in-
stead of focusing only on the desired length. Nonetheless,
the MOEA is designed to produce feasible timetables even if
it is not able to achieve timetables of the desired length. The
five versions of the MOEA are able to schedule all the exams
of KFU-S-93 in 21 periods (one period more than desired)
for all the simulation runs conducted. This result is a conse-
quence of the use of the variable-length chromosome repre-
sentation in the MOEA. The representation is flexible as the
length of the timetable is not fixed but is allowed to be ma-
nipulated during the evolution process. This is unlike most
of the existing approaches (Burke et al. 1996a; Caramia et al.
2001; Di Gaspero and Schaerf 2001; Merlot et al. 2003; Ab-
dullah et al. 2007a, 2007b) which fix the timetable length at
the desired length and any exam that cannot be inserted into
the timetable are left unscheduled. For these approaches,
certain operators have to be designed to ensure that all ex-
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Table 3 Comparison of number
of runs that a solution with the
desired timetable length could
not be found

RD LD CD SD ESD

CAR-F-92 0 0 0 0 0

CAR-S-91 0 0 0 0 0

KFU-S-93 9 8 7 3 9

NOT-F-94 (23) 9 6 3 0 0

NOT-F-94 (26) 0 0 0 0 0

TRE-S-92 0 0 0 0 0

UTA-S-92 8 0 0 0 0

ams are scheduled at the end of the optimization process.
Merlot et al. (2003) designed a greedy heuristic and relaxed
a hard constraint by allowing students to have two exams
scheduled at the same time to tackle the case where not all
exams are scheduled at the end of the main optimization
process. Burke et al. (1996a) included in their evaluation
function a term to penalize solutions with unscheduled ex-
ams. Even with these measures, it is not guaranteed that they
will be able to come up with feasible timetables. This prob-
lem becomes even more significant when the desired length
of timetables is set too low. The MOEA, on the other hand,
does not face such a problem. The solutions are kept fea-
sible and all exams are scheduled throughout the optimiza-
tion process, since the representation allows for the flexibil-
ity of increasing the number of periods when the timetable
is deemed too short to accommodate all the exams.

Table 4 compares the best solutions with the desired
timetable lengths obtained by the five graph coloring heuris-
tics for all the datasets. Each grid shows the number of
clashes in the solution and the average computation time
over the 10 runs performed in brackets. The best solutions
for each of the datasets are highlighted in boldface.

From Table 4, it is clear that SD dominates over all the
other versions of the MOEA in terms of generating the best
solutions. The results in this section have shown that the
effectiveness of a graph coloring heuristic depends on the
structure of the dataset. A heuristic may perform well on
some datasets but poorly on others. The results have also
shown that graph coloring heuristics can significantly im-
prove the quality of solutions over the random setting. As
such, it is beneficial to incorporate some graph coloring
heuristics when solving the ETTP but the choice of heuris-
tic is crucial to the success of the algorithm. From the above
results, it seems that the saturation degree heuristic is able to
perform well in general. On top of being able to find timeta-
bles with lower number of clashes, the heuristic is also su-
perior in terms of packing exams into a smaller number of
periods. Carter et al. (1996), Burke and Newall (1999), and
Merlot et al. (2003) have also made similar conclusions that
the saturation degree heuristic gives the best performance.
As such, SD is selected as the default setting for any further
analysis of the MOEA unless otherwise stated.

Table 4 Comparison of best solutions and average computation times
(in seconds)

RD LD CD SD ESD

CAR-F-92 427 319 347 240 270

(194.5) (136.7) (142.2) (172.2) (251.3)

CAR-S-91 156 91 104 0 0

(141.7) (123.3) (119.7) (183.3) (372.3)

KFU-S-93 591 513 665 513 698

(213.1) (206.2) (206.9) (211) (273.6)

NOT-F-94 (23) 230 211 135 18 21

(217.4) (209) (199.6) (282.8) (404.5)

NOT-F-94 (26) 52 34 17 0 0

(193) (184.1) (180.2) (272.2) (419.4)

TRE-S-92 6 2 0 0 0

(30.8) (30) (30.1) (36.1) (50.8)

UTA-S-92 701 524 498 439 475

(454.4) (294.9) (284.5) (377.7) (527.1)

4.2 Contribution of day-exchange crossover to the
performance of MOEA

It was mentioned in Sect. 3.2 that most of the existing evo-
lutionary algorithms that have been applied to the ETTP do
not use any crossover operator (Burke et al. 1996a; Burke
and Newall 1999; Wong et al. 2004). The reason is that
many researchers find that the inclusion of crossover op-
erators does not bring about any improvement in perfor-
mance. This section presents the performance improvement
that day-exchange crossover brings to the MOEA.

In order to see the effect of day-exchange crossover on
the performance of the MOEA, the MOEA was applied to
the six datasets without using the operator. The results of this
setting based on 10 independent runs are shown in Fig. 8.
The results of the SD version of the MOEA in Fig. 7 have
also been included in the plots for comparison. A compari-
son of the number of runs that the two settings are not able
to find solutions having the desired number of periods for
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Fig. 8 Performance comparison for MOEA with and without day-exchange crossover

Table 5 Comparison of number of runs that a solution with the desired
timetable length could not be found and average computation times (in
seconds)

MOEA MOEA without crossover

CAR-F-92 0 0

(172.2) (126.7)

CAR-S-91 0 0

(183.3) (180.7)

KFU-S-93 3 2

(211) (105.4)

NOT-F-94 (23) 0 2

(282.8) (262.9)

NOT-F-94 (26) 0 2

(272.2) (267.4)

TRE-S-92 0 0

(36.1) (37.1)

UTA-S-92 0 5

(377.7) (171.2)

the various datasets is shown in Table 5. The average com-
putation times over the 10 runs performed are also shown in
brackets in Table 5.

The performance comparison in Fig. 8 shows that the
MOEA definitely performs better with the crossover opera-
tor. With the exception of KFU-S-93 and NOT-F-94 (23 pe-
riods), the MOEA, with day-exchange crossover, is able to

produce timetables with distinctly lower number of clashes.
For NOT-F-94 (23 periods), although the results in Fig. 8d
suggest that the MOEA performs slightly better without the
crossover operator, it has to be noted that the setting is not
able to find a timetable with the desired number of periods
for two of the runs as can be seen in Table 5. KFU-S-93
continues to pose a problem for the MOEA. As mentioned,
it seems that the relatively poorer performance of the MOEA
on the dataset is due to the dataset’s desired number of peri-
ods being set too low so that the number of feasible timeta-
bles having the desired length is very small. This expla-
nation probably also applies for the slightly poorer perfor-
mance of the MOEA on NOT-F-94 (23 periods) in Fig. 8d,
since the performance of the MOEA is significantly better
with day-exchange crossover for NOT-F-94 (26 periods) in
Fig. 8e. Table 5 shows that, with day-exchange crossover,
the MOEA is generally more geared towards finding timeta-
bles with the desired number of periods.

4.3 Contribution of local exploitation to the performance
of MOEA

The MOEA incorporates two local search operators, an
MGA and a hill-climber, to complement the evolutionary
operators of day-exchange crossover and mutation. Like the
previous section, this section shows the performance of the
MOEA with and without the local search operators.

Simulations were conducted using three other settings.
MOHC and MOMGA are the settings which use solely
hill-climber and MGA, respectively, for local exploitation.
MONLS is the setting that does not use local search at all.
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Fig. 9 Performance comparison for MOEA with different local search settings

Ten independent runs of the three settings are again con-
ducted to obtain statistical results which are shown in Fig. 9.
The results of the SD version of the MOEA in Fig. 7 have
again been included in the plots for comparison. The average
computation times over the 10 simulation runs performed
are shown in Table 6.

From Fig. 9, the contribution of hill-climber to the per-
formance of the MOEA is obvious, since the two settings
which use the operator are able to generate solutions with
significantly lower number of clashes. In contrast, the ef-
fectiveness of MGA is relatively more subtle. It is observed
that the inclusion of MGA in the MOEA allows a slight per-
formance improvement over MOHC for CAR-F-92, CAR-
S-91, KFU-S-93, NOT-F-94 (23 periods), and UTA-S-92. It
was commented that the desired number of periods for KFU-
S-93 and NOT-F-94 (23 periods) have been set too low. The
performance improvement attributed to MGA for these two
datasets seems to agree well with this comment. For these
two datasets, due to the low desired timetable lengths, the
timetable would be very tight and the hill-climber will not
be able to function to its full potential, since the operator
requires some allowance to move exams between periods.
On the other hand, the operations of MGA, which sought
to find the optimal order in which periods are arranged in
a timetable, are not affected by how packed the timetable
is. Comparing the number of clashes in the best solutions
obtained by the MOEA and MOHC in Table 7, it is obvi-
ous that the inclusion of MGA in the MOEA is vital to the
success of the algorithm.

Table 6 Comparison of average computation times (in seconds)

MOEA MOHC MOMGA MONLS

CAR-F-92 172.2 135.3 147.1 111.8

CAR-S-91 183.3 139.1 160.7 116.7

KFU-S-93 211 168.3 162.7 118.8

NOT-F-94 (23) 282.8 178.7 261.8 157.3

NOT-F-94 (26) 272.2 169.1 251.1 147.6

TRE-S-92 36.1 22.7 33.7 20.4

UTA-S-92 377.7 331.1 312.6 273.2

Table 7 Comparison of best solutions

MOEA MOHC

CAR-F-92 240 287

CAR-S-91 0 0

KFU-S-93 513 594

NOT-F-94 (23) 18 28

NOT-F-94 (26) 0 0

TRE-S-92 0 0

UTA-S-92 439 508

4.4 Performance of multi-objective optimization

This section presents the multi-objective optimization per-
formance of the MOEA. On top of showing the advantages
of multi-objective optimization, the relationship between the
two objectives of number of clashes and number of periods
required in a timetable will also be validated.
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The discussions in the introduction have revealed that the
ETTP is inherently a multi-objective optimization problem.
However, in the literature, the ETTP is often formulated and
solved with respect to a particular objective or by linearly
combining the multiple objectives into a scalar objective us-
ing a predetermined aggregating function. The drawback of
such an objective function approach is that the weights are
difficult to be determined precisely, especially when there is
insufficient information or knowledge concerning the large
real-world timetabling problem. Clearly, these issues can be
easily addressed by the proposed MOEA that optimizes the
two considered objectives concurrently and effectively with-
out the need of calibrating weighting coefficients.

The main role of the MOEA is to generate a Pareto opti-
mal set of timetables from which the timetable planner can
make an informed decision. Having seen the results for the
desired timetable length in the previous sections, the results
for the desired range of timetable lengths for each of the
datasets are plotted in Fig. 10. The figures show the Pareto
optimal set of timetables for a randomly chosen run of each
of the five versions of the MOEA on each of the datasets.

The results in Fig. 10 again show that the saturation de-
gree heuristic generally produces lower-clash timetables for
all the datasets in comparison to the other graph coloring
heuristics.

In addition, the relationship between the two objectives
of number of clashes and timetable length can also be ob-
served from Fig. 10. It can be seen that the two objectives
are conflicting with each other, i.e., any attempt to mini-
mize either of the objectives will cause the other objective
to increase. This result shows the importance of taking a
multi-objective approach in solving the ETTP. The MOEA
is able to minimize concurrently the two conflicting objec-
tives and generate a Pareto optimal set of timetables from
which the timetable planner can select a solution to imple-
ment based on whether the priority is to have a smaller num-
ber of clashes or to conduct the exams in as few periods as
possible.

From Figs. 10b, 10d, and 10e, it can be observed that
clash-free timetables shorter than the desired lengths actu-
ally exist. For CAR-S-91, NOT-F-94, and TRE-S-92, the
MOEA is able to generate clash-free timetables with 49, 25,
and 33 periods, respectively. This is a reduction of up to two
periods from the respective desired lengths indicated in Ta-
ble 2. These clash-free results would never have surfaced
for existing single-objective-based approaches that only pro-
duce single-length timetables.

Experiments were conducted to further examine the
multi-objective optimization performance of the MOEA.
Two additional types of simulations, with settings similar
to the MOEA but have different optimization criteria (for
evolutionary selection operation), were performed. The two
simulation types are concerned with the single objectives

of minimizing the number of clashes (SOC) and the num-
ber of periods (SOP), respectively. Ten independent runs
of each of the simulation types were conducted on each of
the datasets. The results of this experiment are tabulated
in Table 8. The table shows the values for the two consid-
ered objectives averaged over all the non-dominated solu-
tions. It has to be emphasized that, due to their optimization
criteria, SOC and SOP produce only one non-dominated
solution per run. The desired timetable length for each of
the datasets is also shown in the table under the respective
dataset codes.

In Table 8, SOC and SOP provide two extreme results.
The average number of periods of the non-dominated so-
lutions obtained by SOC for each of the datasets is usu-
ally much larger than the corresponding desired number
of periods. From the relationship between the two objec-
tives, it is therefore expected that SOC generates timetables
with the lowest number of clashes, which can be seen in
Table 8. On the other hand, the timetables obtained by SOP
are usually much shorter than the corresponding desired
number of periods, resulting in them having the largest num-
ber of clashes. The MOEA typically produces timetables
with lengths around the desired timetable length since the
average number of periods of its solutions is relatively closer
to the desired timetable length. This leads to its timetables
having more moderate number of clashes. To give a visual
description of these results, the search spaces in the ob-
jective domain explored by a random run of each of the
three simulation types on CAR-F-92, which has a desired
timetable length of 40, are plotted in Fig. 11. Each point in
the plots is a point in the objective domain that has been
found by the respective simulation types during the opera-
tion of the algorithm. The scales of the plots have been kept
the same to allow direct comparison of the search spaces.

The plots in Fig. 11 show that the three simulation types
focus their search efforts on different areas of the search
space. As can also be seen from the results in Table 8, SOC
is able to find lower-clash timetables but its search is mainly
focused on longer timetables. From the voids in the search
space in Fig. 11a, it is clear that very little effort is spent
on timetables with lengths around the desired length. From
Fig. 11b, SOP concentrates on finding shorter timetables and
it is the only simulation type that is able to find feasible
timetables with lengths shorter than 36 periods. However,
the long and low-clash as well as the short but high-clash
timetables obtained by these two simulation types are def-
initely sub-optimal as far as the desired timetable length is
concerned in this multi-objective optimization problem. Fur-
thermore, they tend to focus their search efforts on a few
timetable lengths while neglecting the rest. On the other
hand, it can be seen that the MOEA is able to distribute its
search efforts to a wider range of periods, focusing particu-
larly on the desired range of periods, which includes three
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Fig. 10 Pareto optimal solutions for the datasets

periods above and below the desired timetable length. As

such, it can be observed from Fig. 11 that, within the desired

range of timetable lengths, the solutions obtained by the

MOEA are more competitive compared to those obtained

by the other two single-objective-based simulation types.

4.5 A general exam timetabling problem solver

The previous section has shown how the MOEA, when pro-
vided with information of the desired range of timetable
lengths, can focus its search efforts to the desired areas of
the search space. This section displays the performance of
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Table 8 Performance comparison of different optimization criteria

CAR-F-92 CAR-S-91 KFU-S-93 NOT-F-94 TRE-S-92 UTA-S-92

(40) (51) (20) (23/26) (35) (38)

MOEA Avg. number of periods 40.03 49.96 21.37 25.14 33.76 38.70

Avg. number of clashes 359.59 59.70 467.56 52.67 25.07 496.52

SOC Avg. number of periods 48.30 51.90 29.20 27.40 35.56 50.44

Avg. number of clashes 118.80 0.00 26.00 0.00 0.00 122.78

SOP Avg. number of periods 35.30 41.10 19.70 22.40 25.90 36.20

Avg. number of clashes 1774.90 2297.10 719.40 992.80 945.30 780.50

Fig. 11 Comparison of search spaces for different optimization criteria

the MOEA in the absence of period information, i.e., the
timetable planner does not provide the desired timetable
length or the desired range of timetable lengths.

One of the main drawbacks with most of the exist-
ing single-objective-based approaches (Burke et al. 1996a;
Caramia et al. 2001; Di Gaspero and Schaerf 2001; Mer-
lot et al. 2003; Abdullah et al. 2007a, 2007b) is that they
rely strongly on a desired timetable length input from the

timetable planner. Even the multi-objective approach taken
by Wong et al. (2004) required the period information to
be effective in solving the problem. It has been stressed
throughout this paper that a general ETTP solver should
be able to generate feasible timetables even without preset-
ting the timetable length. There are a few features of the
MOEA that require the timetable planner to provide his de-
sired range of timetable lengths. On top of the goal-based
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Pareto ranking scheme, the period information is utilized
in the population initialization process as well as the pe-
riod control operator during crossover. Although requiring
the timetable planner to provide a desired range of timetable
lengths is less demanding compared to requiring a desired
timetable length input, it will definitely be more flexible
if the MOEA can still perform its task effectively with-
out all these inputs. It has been mentioned at the end of
Sect. 3 that the MOEA would still be able to generate fea-
sible timetables by using an arbitrarily large range as the
desired range. As such, an experiment was conducted us-
ing this version of the MOEA, which will be referred to as
MONDR, by setting the desired range to be from 1 to 100
periods. MONDR was applied to the datasets and a com-
parison between the two versions is shown in Fig. 12. The
plots provide a period-wise comparison of the number of
clashes of the non-dominated timetables found by the two
versions. The normal Pareto ranking scheme (Fonseca 1995)
has been used to post-process the timetables found by the
two versions to determine the non-dominated timetables so
as to include timetables that fall outside the desired range
of timetable lengths in the comparison. For simplicity of
comparison, the timetables of a run of the MOEA are only
compared with their counterparts of the matching MONDR
run, i.e., run 1 of MOEA is only compared with run 1 of
MONDR. As such, a run-wise, period-wise comparison is
made and a point is awarded to the version with the lower
number of clashes. In the case that both timetables have the
same number of clashes, the point goes to ‘equal’. If any of
the versions is not represented by a non-dominated timetable
for any period, i.e., there is a gap in the Pareto optimal front,
the timetable with one period shorter is used for the compar-
ison. This is equivalent to adding an imaginary period to that
timetable. However, if there is no shorter timetable, an imag-
inary timetable with an infinitely large number of clashes is
used instead. In the case that both versions are represented
by this imaginary timetable, no point is awarded. The points
obtained by the two versions for each period is accumulated
over the 10 runs. From the above description of the compar-
ison system, it can be seen that the total number of points
obtained by the two versions and ‘equal’ for a particular pe-
riod is at most 10. If the total is less than 10, this implies
that both versions are not represented by a timetable for that
period and they do not have shorter timetables for some of
the runs.

In Fig. 12, the black portions of the stacked column
charts indicate the points achieved by the MOEA, while the
gray areas indicate the points obtained by MONDR in the
comparison. The desired timetable lengths for the respec-
tive datasets have been highlighted in boldface. The MOEA
uses the three periods below and above the desired timetable
length as the desired range of timetable lengths for each of
the datasets. From the comparison results in Fig. 12, it can

be observed that the MOEA typically generates lower-clash
timetables around the desired range of timetable lengths.
Away from the desired range of timetable lengths, MONDR
is comparable, if not superior, to the MOEA. The results
again show that the three features of the MOEA, which make
use of the period information, mentioned at the beginning of
this section, can contribute to the intensification of search
efforts to the desired range of periods. However, more im-
portantly, the results also show MONDR occasionally com-
ing up with comparable or even better solutions within the
desired range of timetable lengths, as well as its emergence
for periods away from the desired range. These results were
achieved without prior knowledge of the timetable planner’s
desired timetable lengths.

To illustrate the scale of the performance difference be-
tween the two versions, the Pareto optimal timetables ob-
tained by a random run of MONDR on each of the datasets
are shown in Fig. 13. The Pareto optimal timetables obtained
by the SD version of the MOEA in Fig. 10 have also been in-
cluded in the plots for comparison. The lowest-clash timeta-
bles having lengths outside the desired range of timetable
lengths have also been included. Although these timetables
are not non-dominated under the definition of the goal-based
Pareto ranking scheme, they give an indication of the perfor-
mance of the MOEA outside the desired range of timetable
lengths.

From Fig. 13, it can be observed that MONDR generally
explores a wider range of periods. Due to the lack of pe-
riod information, MONDR does not concentrate its search
efforts to any range of periods but distribute the efforts to a
wider range. The plots in Fig. 13 also show that given the
understanding that MONDR operates without any guidance
of priori information, the quality of the solutions obtained
is generally acceptable when benchmarked against those of
the MOEA. In contrast, it can be seen from Figs. 13a, 13b,
and 13e that the timetables outside the respective desired
ranges of periods obtained by the MOEA are definitely in-
ferior to their counterparts generated by MONDR. The re-
sults in Figs. 12 and 13 are consistent with the ‘No free
lunch’ theorem (Wolpert and Macready 1995, 1997). While
the MOEA outperforms MONDR within the desired range
of periods, the opposite occurs outside the range.

To summarize, the results in this section have shown
that given prior period information, the MOEA is able to
produce lower-clash timetables within the desired range of
timetable lengths. The requirement of supplying the MOEA
with the desired range of periods to improve the quality
of solutions is definitely less demanding than most exist-
ing approaches (Burke et al. 1996a; Caramia et al. 2001;
Di Gaspero and Schaerf 2001; Merlot et al. 2003; Abdul-
lah et al. 2007a, 2007b), which require the availability of the
desired timetable length information since they operate on
single-length timetables. While some may argue that these
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Fig. 12 Performance
comparison of MOEA with and
without prior period information

approaches are still able to generate timetables over a de-
sired range of periods through multiple executions of the
optimization process, each time setting a different timetable
length, this approach is hardly effective. The main problem
comes when a timetable planner is not even certain about his
desired range of timetable lengths for a newly encountered
timetabling problem. Although the timetable planner may
face the same set of courses every year and experience may
tell him the desired timetable length or the desired range

of timetable lengths to set for the optimization process, the
problem evolves over time as the course preference of stu-
dents change and this can greatly modify the structure of
the problem. The fact that the length of a timetable is itself
an optimization process further emphasizes the point that
the length of a timetable should not be set based on expe-
rience. The timetable planner might set his desired range
of timetable lengths but a clash-free timetable could actu-
ally exist below that range. As such, the importance of a
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Fig. 12 (Continued)

general ETTP solver, which can generate feasible timeta-
bles even without any period information, has been empha-
sized throughout this paper. In this aspect, this section has
shown that the MOEA is still able to produce competitive
results by setting it to operate on a large period interval. Of
course, the timetable planner could then make use of the re-
sults obtained by this setting to decide on his desired range
of timetable lengths and then rerun the MOEA based on this
range.

4.6 Performance comparison with established approaches

To assess the effectiveness of the MOEA, a comparison with
a few influential and recent optimization techniques was
conducted. Since most of these techniques are based on the
single-objective approach, the comparison was carried out
using the desired timetable lengths indicated in Table 2. The
results of the comparison are shown in Table 9. In each grid
of Table 9, there are two numbers representing the number
of clashes in the best solution (upper) and the average num-
ber of clashes in solutions (lower). The best solutions for
each of the datasets are highlighted in boldface. It has to be
noted that there has been some confusion in the literature
due to the existence of different datasets having the same
name (Qu et al. to appear). Efforts have been made to ensure
that the results in Table 9 were all obtained for the datasets
listed in Table 2. This is done so that the results obtained

by the various optimization techniques can be fairly com-
pared.

It can be seen from Table 9 that the MOEA produces
timetables with the lowest number of clashes for four (CAR-
S-91, NOT-F-94 (23 periods), NOT-F-94 (26 periods), and
TRE-S-92) out of the seven datasets. The MOEA is ranked
third for CAR-F-92 and is ranked fifth for UTA-S-92 and
KFU-S-93 albeit falling behind Di Gaspero and Schaerf
(2001) in this dataset by only one clash. While some prob-
able reasons explaining why the MOEA is not able to per-
form as well on some of the datasets have been discussed
in Sect. 4.1, it is also widely known that evolutionary algo-
rithms, on which the MOEA is based, produce better results
the longer it is allowed to run. In order to test this theory, the
MOEA was set to run for 1000 generations, five times longer
than it was allowed to run previously, on the three datasets
that it could not achieve the best ranking. The results of this
experiment are shown in Table 10. The average computation
times over the 10 runs performed are shown in brackets in
Table 10.

From Table 10, it is clear that the results get better the
longer the MOEA is allowed to run. This characteristic of
the MOEA is particularly useful for the ETTP where the
time it takes to produce a timetable manually may, in prac-
tice, often be measured in months (Burke et al. 1996b; Qu
et al. to appear). While it appears plausible that the MOEA
may be able to catch up, in terms of ranking, if it is al-
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Fig. 13 Comparison of Pareto optimal solutions for MOEA and MONDR

lowed to perform an even longer run, it is undeniable that

the MOEA is not as effective on the three datasets. In spite

of this, the MOEA is still proven to be a worthwhile and

more general algorithm, among the best that have been ap-

plied to the ETTP.

5 Conclusions

In this paper, the exam timetabling problem (ETTP) has
been considered as a multi-objective optimization problem
that involves the minimization of the two objectives of num-
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Table 9 Comparison with other optimization techniques

MOEA Burke et al. Caramia et Di Gaspero Merlot et al. Wong et al. Abdullah et Abdullah et

(1996a) al. (2001) and Schaerf (2003) (2004) al. (2007a) al. (2007b)

(2001)

CAR-F-92 240 331 268 424 158 204 525 278

337.1 – – 443 212.8 267.4 – –

CAR-S-91 0 81 74 88 31 70 47 37

21.2 – – 98 47 78.8 – –

KFU-S-93 513 974 912 512 247 292 206 548

679.1 – – 597 282.8 322.9 – –

NOT-F-94 (23) 18 269 – 123 88 156 – –

132.1 – – 134 104.8 182.4 – –

NOT-F-94 (26) 0 53 44 11 2 – – 18

7.7 – – 13 15.6 – – –

TRE-S-92 0 3 2 4 0 0 4 0

5.5 – – 5 0.4 2.4 – –

UTA-S-92 439 772 680 554 334 245 310 300

561 – – 625 393.4 338.4 – –

Table 10 Comparison results for long run MOEA and average com-
putation times (in seconds)

200 generations 1000 generations

CAR-F-92 240 218

337.1 286.9

(172.2) (592.3)

KFU-S-93 513 408

679.1 617.9

(211) (835.6)

UTA-S-92 439 397

561 514.5

(377.7) (1391)

ber of clashes and number of periods in a timetable. A multi-
objective evolutionary algorithm (MOEA), featured with
variable-length chromosome representation, graph coloring
heuristics, goal-based Pareto ranking scheme, and two lo-
cal search operators of micro-genetic algorithm and hill-
climber, has been presented.

The proposed MOEA differs from most existing single-
objective-based approaches in that it optimizes all objec-
tives concurrently and generates a Pareto optimal set of so-
lutions within the desired range of timetable lengths instead
of producing single-length timetables. It has been demon-
strated that such an approach is more general and would

still be able to function effectively even without any prior
timetable length information. The results have also shown
that the MOEA is able to generate shorter clash-free timeta-
bles which can never be found by existing single-objective-
based approaches. On top of these, the MOEA has also per-
formed well in comparison with seven other recent and es-
tablished optimization techniques. The MOEA is able to
produce the best results for four out of the seven publicly
available datasets tested.

The work in this paper has focused on the temporal aspect
of the ETTP, i.e., the allocation of exams to periods. It has to
be acknowledged that for a more complete treatment of the
timetabling problem, the spatial aspect of the problem, i.e.,
the assignment of exams to rooms, has to be considered as
well. This opens up another dimension of the multi-objective
optimization problem, which would be the subject for future
research.
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