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Abstract The integration of production and distribution de-
cisions presents a challenging problem for manufacturers
trying to optimize their supply chain. At the planning level,
the immediate goal is to coordinate production, inventory,
and delivery to meet customer demand so that the corre-
sponding costs are minimized. Achieving this goal provides
the foundations for streamlining the logistics network and
for integrating other operational and financial components
of the system. In this paper, a model is presented that in-
cludes a single production facility, a set of customers with
time varying demand, a finite planning horizon, and a fleet
of vehicles for making the deliveries. Demand can be satis-
fied from either inventory held at the customer sites or from
daily product distribution. In the most restrictive case, a ve-
hicle routing problem must be solved for each time period.
The decision to visit a customer on a particular day could be
to restock inventory, meet that day’s demand or both. In a
less restrictive case, the routing component of the model is
replaced with an allocation component only.

A procedure centering on reactive tabu search is devel-
oped for solving the full problem. After a solution is found,
path relinking is applied to improve the results. A novel fea-
ture of the methodology is the use of an allocation model
in the form of a mixed integer program to find good feasi-
ble solutions that serve as starting points for the tabu search.
Lower bounds on the optimum are obtained by solving a
modified version of the allocation model. Computational
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testing on a set of 90 benchmark instances with up to 200
customers and 20 time periods demonstrates the effective-
ness of the approach. In all cases, improvements ranging
from 10–20% were realized when compared to those ob-
tained from an existing greedy randomized adaptive search
procedure (GRASP). This often came at a three- to five-fold
increase in runtime, however.
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1 Introduction

The role that the customer plays in logistics management
is becoming increasingly important as the areas in which
businesses compete expand to include quality, on time de-
livery, warranty and repair services, pricing contracts, and
remanufacturing. Many companies now realize that greater
value can be offered to their customers by improving the
timeliness and consistency of delivery. Achieving a level
of integration that will yield new benefits requires that the
production and distribution decisions be made daily to bal-
ance setup, holding and delivery costs while tightly manag-
ing available resources. These decisions have traditionally
been made separately, often at the planning stage without
regard to scheduling, but their integration can have a signif-
icant impact on overall system performance. Chandra and
Fisher (1994) have shown, for example, that solving the pro-
duction scheduling and vehicle routing problems simultane-
ously can result in total operating cost reductions from 3 to
20%.

A vendor managed inventory replenishment (VMI) sys-
tem is a good example of the type of integration mentioned
above (e.g., see Cetinkaya et al. 2006; Zhao et al. 2007). In
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the VMI model a vendor observes and controls the inven-
tory levels of its customers, as opposed to conventional ap-
proaches where customers monitor their own inventory and
decide the time and amount of products to reorder. One of
the benefits of VMI is that vendors can achieve a more uni-
form utilization of transportation resources leading to lower
distribution costs. It also offers them the flexibility to choose
the most preferred transportation mode. Customers benefit
from higher service levels and greater product availability
due to the fact that vendors can use existing inventory data
at their customer sites to more accurately predict future de-
mand. When a single entity is responsible for both planning
and scheduling, efficiencies are realized at all nodes in the
system. This has been the underlying motivation for the em-
phasis on supply chain management that is now widespread
in the economy (e.g., see O’Brien and Tang 2006).

In general, the problem of optimally coordinating pro-
duction and transportation is called the production–
inventory–distribution–routing problem (PIDRP) (e.g., see
Lei et al. 2006). Addressing these components in a single
framework offers a holistic view of the logistics network and
provides a good starting point for the full integration of the
supply chain. The PIDRP commonly arises in the retail in-
dustry where customers or outlets rely on a central supplier
or manufacturer to provide them with a given commodity on
a regular basis. In the version of the problem addressed here,
a manufacturer must develop minimum cost production and
distribution schedules for a single product that are sufficient
to meet all customer demand over the planning horizon.

The purpose of this paper is to outline the full model
of the PIDRP along with a composite solution methodol-
ogy that gives verifiably high quality results within accept-
able runtimes. For planning purposes, this means within one
or two hours. The primary components of the methodology
are an allocation model for obtaining initial solutions and
lower bounds on the optimum and a tabu search metaheuris-
tic (Glover and Laguna 1997) with path relinking (Resende
and Ribeiro 2005) for improving the results. The tabu search
is distinguished by its neighborhood structure, short- and
long-term memory functions, and search strategies.

In the next section, the PIDRP is outlined and a por-
tion of the relevant literature is reviewed with an empha-
sis on the most recent work. In Sect. 3, a formal definition
of the allocation model is given, which takes the form of a
mixed-integer program (MIP). This is followed in Sect. 4
by our tabu search algorithm. Our lower bounding model is
described in Sect. 5 and several theoretical statements are
made to offer some improvement to the results. The compu-
tational results are highlighted in Sect. 6 for benchmark in-
stances with up to 200 customers and 20 time periods. The
analysis is discussed in Sect. 7 and several ideas are pre-
sented for extending the work.

2 Problem statement and literature review

Although the PIDRP can be defined more generally, our fo-
cus is on a single facility that must meet the demand of its
customers for a single commodity. To ensure timely distribu-
tion and to avoid shortages, excess production can be stored
at either the plant or at the customer sites up to some limits;
however, inventory cannot be transferred between sites and
stockouts are not permitted. It is further assumed that de-
mand is known for each day of the planning horizon and that
all initial inventories are given. In the model, two lot-sizing
decisions must be made. The first concerns the production–
inventory tradeoff; the second relates to the daily distribu-
tion decisions over the planning horizon.

With regard to the latter, deliveries are made routinely by
a fleet of homogeneous vehicles that begin and end their run
at the plant. In the most complex scenario investigated, a ve-
hicle routing problem (VRP) must be solved daily to deter-
mine, in conjunction with the production decisions, which
customers to visit and how much product to deliver to each.
Due to either vehicle capacity limits or favorable cost trade-
offs, it may be desirable to visit a customer on a day in which
ample stocks exist at his site in order to build up inventory.
In fact, this might be the only feasible option if all demand
is to be met.

The PIDRP is different than traditional VRPs because it
requires multiple customer visits to satisfy demand spread
out over an extended period of time. It is most similar
to the inventory routing problem, IRP (Abdelmaguid and
Dessouky 2006; Bard et al. 1998; Golden et al. 1984, and
Dror and Ball 1987) and the periodic routing problem, PRP
(Gaudioso and Paletta 1992; Mourgaya and Vanderbeck
2007, and Parthanadee and Logendran 2006). Although
there has been much research on these two problems, little
of it carries over to the PIDRP, which has only been studied
intermittently. The primary reason relates to the formidable
complexity of its structure, as defined by a combination
of a capacitated lot-sizing problem (Gutiérrez et al. 2007;
Pochet and Wolsey 2006) and a capacitated, multiperiod
VRP. The full problem has so far proven to be beyond
the capability of exact methods. By decoupling of the lot-
sizing and routing decisions, though, several researchers
have had some success in finding good solutions with heuris-
tics. Chandra and Fisher (1994), for example, first determine
a production schedule without regard to the logistics. Next,
they developed a distribution schedule for each planning pe-
riod based on the results obtained from the first-stage model.
This approach worked well when there was enough inven-
tory in the system to buffer production from the distribution
operations but consequently led to increased holding costs.

The IRP and the PRP are relaxations of the PIDRP, differ-
ing in several ways. Neither, for example, takes the produc-
tion decision and inventory level at the plant into considera-
tion. In addition, the PRP assumes that the delivery patterns
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defined by delivery frequencies or delivery days are given in
advance and tries to select the most suitable pattern for each
customer.

Golden et al. (1984) were the first to investigate the inter-
related problem of inventory allocation and vehicle routing.
The particular application involved an energy-products com-
pany that distributed liquid propane to its customers. They
developed a heuristic for designing an integrated delivery
planning system aimed at comparing the distribution rule
used by the company with their approach. Historical data
was used to calculate an average consumption rate for each
customer, and the latest replenishment data was used to cal-
culate when each customer could be expected to need a re-
supply. The next replenishment was scheduled based on this
information. The proposed heuristic included a customer se-
lection algorithm that decides which customers to visit on
each day in a cost-effective way and a VRP component to
construct daily routes. Testing was done on instances with
up to 3000 customers. The results were compared to those
from a simulation experiment and showed an improvement
of 8.4% in the number of gallons/hour, a 50% reduction
of stockouts, and a 23% reduction in total costs. The basic
methodology was extended by Bard et al. (1998) to better
account for demand uncertainty and the use of satellite fa-
cilities for extending daily tours.

Parthanadee and Logendran (2006) considered a multi-
product, multi-depot periodic distribution problem and for-
mulated it as a MIP. In the model, they assumed that the
daily demand of each customer was known and that all de-
liveries could be completed in one day within specified time
windows and allowing for multiple vehicle trips. Backorder-
ing of products at the depots was allowed. To rationalize de-
liveries over the planning horizon, a set of predefined pat-
terns was introduced and ranked by the customers. Within
a tabu search heuristic, a penalty scheme was used to direct
the search away from those patterns that were deemed unde-
sirable.

In their version of the PRP, Mourgaya and Vanderbeck
(2007) proposed a column generation-based heuristic to fix
dates for customer visits and to assign customers to vehicles.
The daily sequencing decisions were left to an operational
model. In formulating the problem two objectives were con-
sidered: (1) optimizing the compactness of the geographical
regions to which customers were assigned, and (2) balanc-
ing the workload evenly between vehicles. Using a Dantzig–
Wolfe reformulation, they found that the resulting master
problem provided substantially stronger lower bounds than
the LP relaxation of the original problem and that there were
fewer difficulties due to symmetry during branch and bound.
The pricing subproblem decomposed into τ clustering prob-
lems, one for each time period. Computational tests were
performed using 20, 50, and 80 customer data sets that in-
volved comparisons of various implementation options re-
lated to initialization, column generation strategies, number

of passes in the rounding heuristic, and problem specifica-
tions.

Zhao et al. (2007) studied the integration of inventory
control and vehicle routing for a distribution system in
which a set of retailers with constant rates of demand were
resupplied with a single item from a central warehouse. The
objective was to determine inventory policies and routing
strategies such that the long-run average costs were mini-
mized and all demand was satisfied. In their model, no in-
ventory capacity constraints were imposed on the warehouse
or on the retailers. Testing was done on problem instances
with 50 and 75 retailers.

There has been a vast amount of research in the areas of
production planning and inventory management over the last
40 years, with the field now including all aspects of the sup-
ply chain. Anily and Federgruen (1993), for example, ana-
lyzed fixed partition policies for the inventory routing prob-
lem with constant deterministic demand rates and an unlim-
ited number of vehicles. The routing patterns were deter-
mined by using a modified circular clustering scheme. After
the customers were grouped, those within a partition were
assigned to one or more regions. Demand was calculated by
summing the demand of the individual customers assigned
to a region taking into account percentage allocations. The
routing logic required that all customers in a region be vis-
ited as long as there was a need to visit one. A lower bound
on the long-run average cost was also determined to provide
an understanding of the effectiveness of the routing scheme.
For extensions to multiple items and warehouses, see Feder-
gruen and Tzur (1999).

Lei et al. (2006) proposed a two-phase solution approach
for the PIDRP with multiple plants and a heterogeneous
fleet. Our methodology is very similar to theirs. In phase
one, a restricted version of the problem that contained all
but the routing constraints was solved. The results provided
a production schedule and the number of items to be deliv-
ered to each customer in each period. The solutions were
shown to always be feasible to the original problem; how-
ever, they did not allow for the consolidation of less-than
transporter loads (LTL), which could have reduced overall
transportation costs. To address this issue, a routing heuris-
tic based on an extended optimal partitioning procedure was
used in phase two to consolidate the LTL assignments into
more efficient delivery schedules. Testing showed that the
approach gave good solutions to instances with up to 50 cus-
tomer sites over 2 to 4 planning periods.

Boudia et al. (2006, 2007) proposed both a memetic al-
gorithm with population management (MAPA) and a reac-
tive greedy randomized adaptive search procedure (GRASP)
with path-relinking (Resende and Ribeiro 2005) to solve the
PIDRP. The model included a single plant and a set of cus-
tomers located on a grid. Holding costs at the customer sites
were assumed to be negligible compared to the holding costs
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at the plant and so were ignored. Like ours, the objective was
to minimize the sum of production, holding and transporta-
tion costs while ensuring that all demand was satisfied over
the planning horizon.

As an enhancement, the authors proposed two strate-
gies to combine path relinking and GRASP. The first strat-
egy was to perform path relinking upon the termination of
GRASP; the second was to perform path relinking every
time GRASP improved on the incumbent. The computa-
tional results showed that on average the first strategy per-
formed better than the second on the 50 and 100 customer
instances with 20 time periods but was not as good on the
200 customer instances. The algorithms converged within
100 s on a 2.8 GHz computer in all cases but no lower
bounding procedures were provided to gauge the quality
of the solutions. The reactive GRASP on average provided
more savings than the solutions obtained with the GRASP
alone by 0.8% and the solutions obtained with the relinking
feature by 0.42%.

3 Model formulation

We are given a single production facility and a set of n cus-
tomers geographically dispersed on a grid. Each customer
i ∈ N = {1, . . . , n} has a fixed nonnegative demand dit in
time period t of the planning horizon that must be satisfied,
i.e., shortages are not permitted. If production takes place
at the facility in period t , then a setup cost ft is incurred,
t ∈ T0 = {0,1, . . . , τ }. A limited number of items can be
produced in each time period and a limited number can store
at a unit cost of hP . In general, it is natural to equate a period
with a day, which we do, but when production is scheduled
for more than one shift in a day or when transportation times
are measured in weeks, a broader interpretation of a period
is appropriate.

In constructing delivery schedules, each customer can be
visited at most once per day and each of θ homogeneous ve-
hicles can make at most one trip per day. The latter restric-
tion implies that all routes overlap in time. If cij is the cost
of going from customer i to customer j and xijt is a binary
variable equal to 1 if customer i is the immediate predeces-
sor of customer j on a route in period t (0 otherwise), then
the routing costs are given by

∑
ij t cij xij t in the full model.

A limited amount of inventory can be stored at customer i’s
site at a unit cost of hC

i , but transshipments between cus-
tomers are not permitted (cf. Herer et al. 2006).

Moreover, it is assumed that all deliveries take place at
the beginning of the day and arrive in time to satisfy demand
for at least that day. All production on day t is available
for delivery only on the following morning (this is common
in food production and distribution, e.g., see Villegas and
Smith 2006) and all inventories are measured at the end of

the day. Demand on day t can be met from deliveries on day
t and from ending inventory on day t −1 at the customer site.
Initial customer inventory on day 0 simply reduces demand
on subsequent days, while initial inventory at the plant must
be routed; at the end of the planning horizon all inventory
levels are required to be zero.

The goal is to construct a production plan and delivery
schedule that minimizes the sum of all costs while ensuring
that each customer’s demand is met over the planning hori-
zon. In so doing, four critical decisions have to be made:

• How many items to manufacture each day.
• When to visit each customer.
• How much to deliver to a customer during each visit.
• Which delivery routes to use.

As part of the solution methodology, we do not attempt
to solve the full model but instead investigate a relaxation
referred to as the allocation model. In particular, the routing
term in the objective function is replaced by a distribution
component. The following additional notation is used in the
developments.

Parameters

Q capacity of each vehicle
IP

max maximum inventory that can be held at the produc-
tion facility

IC
max,i maximum inventory that can be held by customer i

C production capacity of the plant
f C

it fixed cost of making a delivery to customer i on
day t

eC
it variable cost of delivering one item to customer i

on day t

Decision variables

pt production quantity on day t

zt 1 if there is production on day t;0 otherwise
IP
t inventory at the production facility at the end of day t

IC
it inventory at customer i at the end of day t

wit amount delivered to customer i on day t

zC
it 1 if a delivery is made to customer i on day t;0

otherwise

Model

φIP = Minimize
∑

t∈T

ftzt +
∑

t∈T

∑

i∈N

f C
it zC

it +
∑

t∈T

∑

i∈N

eC
it wit

+
∑

t∈T0\{τ }
hP IP

t +
∑

t∈T \{τ }

∑

i∈N

hC
i IC

it

(1a)
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subject to IP
t = IP

t−1 + pt −
∑

i∈N

wit ,

∀t ∈ T0; (1b)
∑

i∈N

wit ≤ IP
t−1, ∀t ∈ T ; (1c)

pt ≤ Czt , ∀t ∈ T0\{τ }; (1d)

p0 ≥
∑

i∈N

(
di1 − IC

i0

); (1e)

IC
it = IC

i,t−1 + wit − dit ,

∀i ∈ N, t ∈ T ; (1f)

wit ≤ Dmax
it zC

it , ∀i ∈ N, t ∈ T ; (1g)
∑

i∈N

wit ≤ �0.8Qθ�, ∀t ∈ T ; (1h)

0 ≤ IP
t ≤ IP

max, 0 ≤ IC
it ≤ IC

max,i ,

∀i ∈ N, t ∈ T \{τ };
IP
τ = IC

iτ = 0, ∀i ∈ N; (1i)

zt ∈ {0,1}, zC
it ∈ {0,1}, pt ≥ 0,

wit ≥ 0, ∀i ∈ N, t ∈ T , (1j)

where T = T0\{0} and

Dmax
it = min

{

Q,

τ∑

l=t

dil

}

.

The objective function minimizes the sum of production
setup costs, a surrogate for the routing costs (second and
third terms), holding costs at the plant, and holding costs
at the customer sites. An explanation of the values used for
the coefficients f C

it and eC
it is given in the next section. Be-

cause all demand must be met, production costs, which are
assumed to be linear and independent of time, can be omit-
ted, as can any initial inventory costs. Constraints (1b) and
(1f) are inventory flow balance equations in which it is as-
sumed that the initial inventories IP

0 and IC
i0 are given for all

customers i ∈ N . Constraint (1d) limits production on day
t to the capacity of the plant. A simple way to tighten this
constraint is to replace C with Ct = min{C,IP

max,D
max
t+1 },

where the third term is the demand of all customers for
the remainder of the planning horizon. The assumption that
items produced on day t are only available for delivery on
day t + 1 implies that pt ≤ IP

max and pτ = 0. It is possible
to strengthen the latter inequality by subtracting from IP

max
the reduction in inventory due to deliveries on day t to get
pt ≤ IP

max − (IP
t−1 − ∑

i∈N wit ), but this constraint is dom-
inated by (1b). To ensure that demand on day 1 can be met,
it is necessary to include (1e) which allows production on
day 0. If IP

0 = IC
i0 = 0, then p0 ≥ ∑

i∈N di1 or the problem
is infeasible.

As indicated by constraints (1c), the total amount avail-
able for delivery on day t is limited by the amount in inven-
tory at the plant on day t − 1. The specific amount deliv-
ered to customer i is limited by the parameter Dmax

it in (1g),
which is the smaller of the vehicle capacity Q or the cu-
mulative demand from day t to the end of planning horizon
τ . Constraints (1h) represent an aggregate relaxation of the
routing constraints common to capacitated VRPs. They sim-
ply restrict the total amount that can be delivered on day t

to a fixed percentage of the total transportation capacity, and
provide a hedge against the need for split deliveries. Testing
showed that using a value of 80% always yielded feasible
solutions. To conclude the formulation, variable bounds are
specified in (1i) and (1j).

To obtain the full PIDRP model, several modifications
to (1a)–(1j) are needed. First, the second and third terms in
(1a) should be omitted and replaced with

∑
ij t cij xij t ; next,

constraint (1h) should be deleted; finally, routing constraints
that take into account the load on the vehicles must be added.

Figure 1 depicts an abbreviated network flow diagram of
the PIDRP. The top portion of the figure represents the pro-
duction facility, denoted by C0, for days 0 through τ . Instead
of demand driving the decisions on each day t for the plant,
a series of delivery decisions has to be made for each cus-
tomer i. The amount delivered, denoted by wit , is combined
with customer i’s inventory IC

i,t−1 at the beginning of day
t to satisfy demand, dit . The corresponding flow is shown
in the bottom portion of the figure. Because the inventory
at the end of the planning horizon at both the plant and the
customers’ sites is required to be zero, there is no horizontal
flow exiting node τ in either network.

The size of model (1) is determined largely by constraints
(1f) and (1g) and the number of binary variables, zC

it , all of
which grow at a rate proportional to O(nτ). The majority
of the other constraints only grow at a rate proportional to
O(τ). Problem instances with nτ ≤ 30 can be solved with
CPLEX 8.1 in less than 10 min; for example, with n = 5 and
τ ∈ {2,4,6}, corresponding solution times, tcplex,τ , were 4,
196, and 494 s. However, for n = 10 and τ = 4, CPLEX
did not converge within 2 hours on any instances, and at the
point exhibited an optimality gap of over 10%.

Although not specified in (1i) and (1j), our solution
methodology requires that the delivery quantities wit be in-
tegral. The following proposition shows that the allocation
model always returns integer values for not only wit , but for
pt , I

P
t and IC

it as well.

Proposition 1 When the setup variables zt and zC
it are fixed

at 0 or 1, there exists and optimal solution to model (1a)–
(1j) such that wit ,pt , I

P
t , and IC

it are integral for all i ∈ N

and t ∈ T0.

Proof We show that when zt and zC
it are fixed, the remain-

ing components of the model are equivalent to a pure net-
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Fig. 1 Network flow
representation of produc-
tion–inventory–distribution
problem

work flow problem whose constraint matrix is known to be
totally unimodular. The first step is to represent the flows
at the plant more accurately by accounting for the fact that
production on day t is held in inventory that day and is only
available for delivery on day t + 1. This can be done by
creating three inventory nodes at the plant in each period:
one for serving customers, a second to bind the flow to cus-
tomers, and a third to receive the current day’s production.
This division is shown in Fig. 2, where primes and double
primes are used to distinguish the three nodes. At node 1′,
for example, items may be withdrawn and delivered to cus-
tomers; however, an upper bound of �0.8θQ� is placed on
the arc from node 1′ to node 1′′ to ensure adherence to the
capacity restrictions (not shown). Items produced on day 1
are channeled to node 1 rather than node 1′. At the end of
the day, whatever inventory remains flows to node 2′, as in-
dicated by the variableIP ′

1 .
When zt and zC

it are fixed, the remaining variables are
bounded by integer values. Conservation of flow at the nodes
with primes is IP

t−1 = IP ′
t−1 − ∑

i∈N wit , which is equivalent
to (1c) given the variable bound IP

t−1 ≥ 0 for all t . Conser-
vation of flow at the nodes without primes is essentially (1b)
with IP

t−1 replaced with its equivalent. The delivery limits
in (1h) are enforced by the bounds on the arcs between the
nodes with single and double primes. Finally, constraint (1f)
represents conservation of flow at the customer sites and is
already in pure network form. Thus, we have a bounded pure
network flow problem that is guaranteed to have an optimal
integral solution. �

4 Solution methodology—tabu search

A two-phase approach is used in the design of our reactive
tabu search algorithm for solving the PIDRP. In the first part
of phase 1, an initial solution is found by solving the alloca-
tion model (1a)–(1j). The results provide customer delivery
quantities wit for all i = 1, . . . , n and t = 1, . . . , τ . In the
second part, these values become the demand for τ indepen-
dent routing problems. An efficient CVRP subroutine also
based on tabu search (Carlton and Barnes 1996) is called
to find solutions. It is treated as a “black box” and will not
be discussed here. In phase 2, neighborhood search is per-
formed to improve the allocations and routing assignments
found in phase 1.

4.1 Initial solution

Absent of the routing component, model (1) represents a
pure lot-sizing distribution problem. The two terms∑

it f
C
it zC

it and
∑

it e
C
it wit in (1a) serve as surrogates for

the actual routing costs given by
∑

ij t cij xij t . In our imple-

mentation, the specification of the coefficients f C
it and eC

it

depends on the dimensions of the problem. For instances
where n2τ ≤ 500, we set f C

it = 2ci0 and eC
it = 0 for all i

and t; that is, the routing costs on any day t are approxi-
mated solely by the cost of a round trip between the depot
and customer i. When n2τ > 500, indicating a fairly large
instance, it is not practical to solve (1a)–(1j) with the setup
variables zC

it included. In this case, we set zC
it = f C

it = 0 and
put eC

it = 2c0i/dit for all i and t; that is, the cost of making
a delivery to customer i on day t is approximated by the
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Fig. 2 Network flow with
detailed inventory nodes

round trip cost of visiting customer i directly from the de-
pot divided by his demand on day t . Empirically, solutions
to the allocation model with these settings were seen to be
close to those of the full model when the production and
fleet capacities were larger than the total daily demand. This
is shown in the computations section of the paper.

Solving model (1) determines the amount of produc-
tion in each day t (p̄t , t = 0,1, . . . , τ ), and the quan-
tity delivered to each customer i on each day t (w̄it , t =
0,1, . . . , τ ; i = 1, . . . , n). Given these values, an initial so-
lution to the PIDRP is found by calling the VRP subroutine
to construct delivery routes for each day t .

4.2 Neighborhood definition

A neighborhood is a set of points that can be reached from
the current solution by performing one or more moves that,
in general, take the form of insertions, exchanges or replace-
ments. From any incumbent, a new solution is determined
by identifying the best solution within its neighborhood. For
the PIDRP, we define the neighborhood as all feasible points
that can be reached by two types of moves between periods.
The first is called a swap and involves a (partial) exchange
of delivery quantities between two customers i1 in period
t1 (with quantity w̄i1t1) and i2 in period t2 (with quantity
w̄i2t2), where t2 is the first period after t1 in which w̄i2t2 > 0.
For customer i1, the move considers the maximum portion
of w̄i1t1 that can be reassigned to period t2 without caus-
ing a shortage in period t1 to be exchanged with the full
amount w̄i2t2 . (We show below that it is suboptimal to trans-
fer less than the maximum portion of w̄i1t1). If customer i1
was not scheduled for a delivery in period t2, then he must
be inserted into one of the θ routes. In general, a swap pro-
duces a change in holding costs and a change in transporta-
tions costs in periods t1 and t2. If the net effect is negative,
then the swap is beneficial. Note once again that in the full
model, the transportation costs are the sum of the routing
costs cij and hence do not depend on the delivery quantities.

Proposition 2 Let w̄i1t1 be the planned delivery quantity
to customer i1 in period t1 and let Ī C

i1t1
be the net inven-

tory position after demand is satisfied, i.e., Ī C
i1t1

= Ī C
i1,t1−1 +

w̄i1t1 − di1t1 . For any feasible swap between customers i1

and i2 in periods t1 and t2, the optimal swap amount is equal
to min{w̄i1t1 , Ī

C
i1t1

}.

Proof Consider any swap amount χ for customer i1 in
period t1 such that χ < min{w̄i1t1 , Ī

C
i1t1

}. We will show
that there exists a swap amount χ∗ such that χ < χ∗ ≤
min{w̄i1t1, Ī

C
i1t1

} that results in a better move_value.
The move_value is equal to the sum of the change in

holding costs for customers i1 and i2, the change in trans-
portation costs in periods t1 and t2, and the change in hold-
ing cost at the plant. For the case where the swap amount
is χ , the move_value is −hC

i1
χ + ε1

t1
+ ε1

t2
+ hC

i2
w̄i2t2 + ρ1,

where ε1
t1

and ε1
t2

represent the change in transportation
costs in period t1 and t2, respectively, and ρ1 is the change
in holding cost at the plant. For the latter, we have ρ1 =
−hP (χ − w̄i2t2)(τ

1
t2

− τ 1
t1
), where τ 1

t1
≤ τ 1

t2
are, respectively,

the periods associated with t1 and t2 in which production
must be adjusted to ensure that the swap is feasible. (Al-
though the results are stated for a single pair of adjustment
periods, τ 1

t1
and τ 1

t2
, it is easy to show that they hold when

production must be adjusted in more than these two periods.)
Similarly, for the case where the swap amount is χ∗, the

move_value is equal to −hC
i1
χ∗ + ε2

t1
+ ε2

t2
+ hC

i2
w̄i2t2 + ρ2.

(The symbols have the same meaning as above but a su-
perscript 2 is used instead of 1.) To compare transportation
costs, the following two cases must now be considered.

Case 1: When χ∗ < w̄i1t1 (the situation when χ∗ = Ī C
i1t1

)

there is no difference in transportation costs, that is, ε1
t1

= ε2
t1

and ε1
t2

= ε2
t2

, because the customers who are scheduled for
a delivery in period t1 are the same as those scheduled for a
delivery in t2.
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Case 2: When χ∗ = w̄i1t1 it is not necessary to make a
delivery to customer i1 in period t1 so ε2

t1
≤ ε1

t1
in period t1

and ε2
t2

= ε1
t2

in period t2.
Because χ∗ > χ , more product is moved to a later period,

which implies a greater reduction in the holding cost at the
plant: ρ2 < ρ1. Finally, by noting that the amount of product
moved to an earlier period, w̄i2t2 , is the same in both cases,
we have −hC

i1
χ +ε1

t1
+ε1

t2
+hC

i2
w̄i2t2 +ρ1 > −hC

i1
χ∗ +ε2

t1
+

ε2
t2

+ hC
i2
w̄i2t2 + ρ2. �

The second move is called a transfer and examines each
customer i one at a time and tries to reassign the delivery
quantity w̄it1 scheduled for t1 to the latest period, call it t2,
preceding t1 in which a delivery is scheduled for at least one
customer i; that is, t2 = max{t : t < t1,∃w̄it > 0 for some
i ∈ N}. In this case, we have the following result.

Proposition 3 For any customer i, when considering a
transfer move between periods t1 and t2, it is suboptimal
to reassign less than the full amount w̄it1 to period t2.

Proof If only a portion of w̄it1 were transferred, then the
holding costs would increase in t1 for customer i, while
the transportation costs would remain the same in both peri-
ods so there would be no benefit in considering intermediate
cases. �

Whether a swap or a transfer, only moves that result in
feasible solutions are permitted, so it is necessary to check
for violations of the production constraints and the inven-
tory bounds at the plant and the customer sites. Moreover,
a VRP must be solved in periods t1 and t2 to see whether
feasible routes can be found after the move, and if so, what
their (optimal) costs are. The value of a move is determined
in part by these costs, which must be calculated for each
candidate. To begin, Feasibility_Check_Algorithm is called
to determine whether the move violates any of the produc-
tion, storage, or vehicle capacity constraints. If not, then
Move_Value_Algorithm is called to determine the net ben-
efit (see Nananukul 2008).

Complexity of neighborhood A swap involves an exchange
in delivery quantities between pairs of customers in two
different periods t1 < t2, so the number of possible can-
didates in the worst case is O(n2) in each period. Cal-
culating the portion of w̄i1t1 that can be exchanged with-
out causing a shortage in period t1 can be done in O(1).
The feasibility check is O(n + τ) and determining the
move value by solving the VRP takes O(n3). For τ pe-
riods then, the amount of work associated with a swap is
O((n3 +n+τ) ·n2τ) = O(n5τ +n2τ 2). For transfer moves,
deliveries to each of the n customers in period t are consid-
ered for reassignment to period t −1. In the worst case, there

are O(n) possibilities in each period. Taking the feasibility
check and the move value computations into account, the
amount of work associated with a transfer for all τ periods
is O((n3 + n + τ) · nτ) = O(n4τ + nτ 2). Thus, the neigh-
borhood size is O(n5τ + n2τ 2).

Example of moves Figure 3 depicts a swap between cus-
tomers 1 and 3 in periods 2 and 3, respectively. The periods
are numbered on the far left and the customers on a specific
route are represented by circles. The depot (customer 0) is at
the start and end of each route, implying that a single vehi-
cle only is required in each period. The parameter values for
the five customers in the example are as follows. The hold-
ing cost for customer 1 is hC

1 = 20, while the holding costs
for customers 2 to 5 are hC

2 = hC
3 = hC

4 = hC
5 = 10. Initial

inventories at all customer sites in period 2 are IC
11 = IC

21 =
IC

31 = IC
41 = IC

51 = 0. It is also assumed that the storage ca-
pacity at the customer sites is unlimited and that the vehicle
capacity Q = 60.

Beginning at the depot, route costs are calculated by sum-
ming the individual link costs, cij , between customers i and
j on the route, where c01 = 175, c04 = 10, c12 = 25, c02 =
c20 = 50, c23 = 75, c03 = c30 = 25, c45 = 30, and c51 = 10.
The route cost in period 2, for example, is c04 + c45 + c51 +
c12 + c23 + c30 = 175. Demand for customers 1 to 5 in pe-
riod 2 is 8, 7, 7, 6, and 8, respectively, and in period 3 is 4,
4, 8, 6, and 8. These values are shown in the squares below
the circles in Fig. 3 only if a delivery is scheduled for the
customer in the period of interest.

Before the swap, customer 1 is scheduled for deliveries of
8 and 4 items in periods 2 and 3, respectively, and customer
3 is scheduled for a delivery of 15 items in period 2. After
the swap, the amount to be delivered to customer 1 is in-
creased to 12 in period 2 and reduced to 0 in period 3. Also,
the amount to be delivered to customer 3 is decreased to 7
in period 2 in accordance with Proposition 2 and a new de-
livery of 8 units is scheduled in period 3. Thus, for customer
3, the exchange involves the maximum number of items, 8,
that can be moved in period 2 without causing a shortage
(customer 3 has a demand of 7 in period 2 and currently, 15
items are scheduled for delivery). For customer 1, all 4 units
that were to be delivered in period 3 are now scheduled for
period 2. Note that before and after the swap the total num-
ber of items scheduled for delivery in either period do not
exceed the vehicle capacity. Before the swap, a total of 58
and 12 items are scheduled to be delivered in periods 2 and
3, respectively, while after the swap the delivery quantities
are 54 and 16.

The results indicate that a big cost reduction is achieved
by eliminating the link from the depot to customer 1 (c01 =
175) in period 3. This cannot be realized, though, by simply
rescheduling the 4 items to be delivered to customer 1 in
period 3, to period 2 because the vehicle capacity, 60, would
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Fig. 3 Example of an exchange
or swap move between
customers 1 and 3

be exceeded. A swap between periods is required. Before the
swap the transportation cost in period 3 is c01 + c12 + c20 =
250 and after the swap it is c02 + c23 + c30 = 150, where the
solution to the VRP for period 3 indicated that it was optimal
to insert customer 3 after customer 2. In period 2, there is no
change in route so the transportation cost remains the same,
as do the holding cots. Calculating the difference between
the before and after costs gives the move_value, which in
this case is −100.

Using the same data and starting with the schedule in the
bottom portion of Fig. 3, Fig. 4 gives an example of a sin-
gle customer transfer move. Before the transfer, customer
2 is scheduled to receive deliveries of 7 and 4 items in pe-
riods 2 and 3, respectively, where now t1 = 3 and t2 = 2.
The transfer eliminates the delivery in period 3 by moving
all 4 items to period 2 in accordance with Proposition 3,
and is feasible because the total load on the vehicle only
goes up to 58, which is less than the capacity. The move in-
creases the holding cost for customer 2 from 0 of 40, but
the transportation cost in period 3 is reduced by 100, giving
a move_value of −60. More specifically, after the transfer
the net change in holding cost is 4 ×10 = 40 and is asso-
ciated with customer 2, the total transportation cost in pe-
riod 3 is c0,3 + c3,0 = 50, and the net change in transporta-

tion cost in period 2 is 0. As a result, the move_value is
50 + 40 − 150 = −60.

4.3 Tabu list and aspiration criterion

Tabu search transcends local optimality by forbidding cer-
tain moves on a temporary basis. In general, the process is
implemented with a short-term memory structure that pro-
scribes a subset of the moves in a neighborhood. The tabu
list stores all forbidden moves. Its length, normally called
the tabu tenure, indicates how many iterations a certain
move is forbidden. The tabu status indicates whether a move
on the tabu list is currently forbidden.

In our implementation, we use a reactive tabu list mean-
ing that the tabu tenure is dynamic. We also specify an as-
piration criterion that allows the tabu status of a move to be
overridden. Specifically, each entry on the tabu list is a com-
bination of a pair of customers and a pair of time periods
represented by the 4-dimensional vector (customer i1, cus-
tomer i2, period t1, period t2). Note that for a transfer move
where only a single customer is involved, a default value of
zero is used for customer i2. The length of tabu list is kept
constant as long as progress is being made, but it is increased
when there is no improvement in some fixed number of it-
erations. Because a move associated with a customer in one
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Fig. 4 Example of a transfer
move that assigns a delivery to
an earlier period

period could create a series of moves in the following peri-

ods, thus affecting up to τ −1 periods, we set the tabu tenure

proportional to τ . Its initial value is set to τ/2 and then in-

creased to τ when there is no improvement for 5 iterations.

However, when a new incumbent is found, the tabu tenure is

set back to τ/2. The process is repeated until the tabu search

stopping criteria are met.

Although some implementations allow infeasible moves

as an additional means of overcoming local optimality, we

do not. Preliminary testing showed that when infeasible

moves were considered at each iteration, runtimes became

excessive due to the increase in neighborhood size for even

small instances with up to 20 customers.

After the current neighborhood is searched and a new

incumbent is found, the move that led to the incumbent is

added to the tabu list. The tabu status of a move can be

overridden, though, when a certain aspiration condition is

met. In our case, this condition is associated with a move

on the tabu list that gives a better solution than the incum-

bent.

4.4 Search strategy

Two important strategies for tabu search are intensification
and diversification. Intensification focuses on creating so-
lutions that have good attributes (with respect to routing,
for example, solutions that include low cost arcs). Diversi-
fication is the ability of the algorithm to expand the search
by generating solutions that have attributes different from
those encountered at previous iterations. These two strate-
gies counterbalance and reinforce each other.

In our algorithm, intensification is implemented by using
incentives and diversification by using penalties and short-
term memory. The latter is provided by the tabu list. Incen-
tives and penalties are a function of long-term memory and
are represented by the (n × n × τ × τ)-dimensional ma-
trices FI and FP , respectively. For a move that involves
customer i1 in period t1 and customer i2 in period t2, an
element FI

i1i2t1t2
of FI represents the number of times the

set {i1, i2, t1, t2} has been involved in a move that improves
the solution. Similarly, an element FP

i1i2t1t2
of FP repre-

sents the number of times the set {i1, i2, t1, t2} has been
involved in a nonimproving move. Any move associated
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with these sets is either rewarded or penalized in accor-
dance to the values of FI

i1i2t1t2
and FP

i1i2t1t2
. With respect to

the above example, if a candidate swap involves customers
i1 and i2 in periods t1 and t2, then the actual value of the
move is move_value − ρIF I

i1i2t1t2
+ ρP FP

i1i2t1t2
rather than

move_value alone, where ρI and ρP represent incentive and
penalty multipliers (see next section for more detail).

Implementing exhaustive search for the neighborhood
defined in Sect. 4.2 is possible for small size problems
(n2τ ≤ 500). This was the approach that we took during al-
gorithmic development. For larger instances (n2τ > 500),
including those in the Boudia et al. (2007) data sets, it is
not practical to examine all candidate moves. To reduce the
computational effort, we randomly select a subset of moves
and then adaptively decide according to the progress of the
algorithm, which of two rules to follow. The first rule places
a 4 to 1 emphasis on transfers over swaps and is used when
the most recent tabu iteration resulted in an overall cost re-
duction. The second rule reverses the emphasis and is used
when the most recent tabu iteration did not improve upon the
incumbent. More detail is provided in Nananukul (2008).

At this point, all moves on the candidate list are processed
and the one with the best move_value is selected. The rele-
vant production and inventory levels are updated, the stop-
ping criteria are checked, and if not met, the next tabu itera-
tion is performed.

4.5 Algorithm description

Figure 5 summarizes the major steps of the tabu search algo-
rithm for large instances. In the first step, an initial feasible
solution is created with the procedure described in Sect. 4.1.
The result is saved as both the current solution and the best
solution found. Then the algorithm iterates until either a pre-
specified max_iterations is reached or there is no improve-
ment in max_no_improve iterations. Of all the admissible
candidates, the move selected at each iteration is the one
that has the smallest value of move_value+move_penalty+
move_incentive. A move is considered admissible if it is not
on the tabu list or its tabu status has been overridden by the
aspiration criterion. For the current iteration, once the best
move is found it is executed and the tabu data structures are
updated.

The parameters and data structures used in the algorithm
are as follows:

• num_iteration: current iteration number
• max_iterations: maximum number of iterations allowed
• curr_soln: current solution after executing the best move
• curr_cost: cost of current solution
• best_soln: incumbent solution
• best_cost: cost of incumbent solution
• move_value: difference in the cost before and after the

swap move

• best_move_value: lowest move_value among all candi-
dates

• freq_matrix: long-term memory function that stores the
frequency of each possible move

• move_penalty: additional penalty imposed by long-term
memory freq_matrix FP ; when a swap involves customer
i in period k and customer j in period l,move_penalty =
ρP FP

ijkl, ρ
P is set to 5% of the objective function value

of the initial feasible solution divided by max_iterations.
This value gives an approximation of the average amount
of penalty per iteration.

• move_incentive: additional incentive imposed by long-
term memory freq_matrix FI ; when a swap involves
customer i in period k and customer j in period l,
move_incentive = −ρIF I

ijkl , where ρI is set to ρP be-
cause we penalize a move that results in a non-improved
solution the same amount as the incentive of the same
move that results in an improved solution.

• best_move_penalty: move_penalty for the best move of
all candidates

• best_move_incentive: move_incentive for the best move
of all candidates

• no_improve: number of consecutive iterations during
which no better solutions are found

• max_no_improve: maximum number of consecutive no
improvement iterations allowed

• tabu_list: short-term memory function that stores a list of
moves that are forbidden

• tabu_size: total number of iterations for which a move is
held on the tabu_list

• candidate_rule: candidates that are considered during
each iteration in accordance with rules 1 and 2

• candidate_move: solution that results when the moves as-
sociated with candidate_rule are applied

• Admissible_move: candidate move that either satisfies the
aspiration criterion or is not on the tabu_list

When evaluating each candidate move, it may be pos-
sible to achieve a further cost reduction by adjusting the
production (and inventory) levels which are not necessar-
ily optimal for the updated delivery schedule. Given the
updated values of wit , Proposition 1 allows us to solve a
linear program to find the optimal production and corre-
sponding inventory levels; however, doing so at each it-
eration is too costly because of the large number of pos-
sible moves, so in the implementation exact solutions are
computed once every five iterations. At all other times, we
attempt to improve the solution by calling the heuristic
Production_Level_Adjustment_Algorithm. See Appendix
for the details.
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Fig. 5 Tabu search algorithm

5 Lower bound computations

To gauge the quality of the solutions provided by tabu
search, lower bounds on the true optimum are needed. The
simplest way to obtain a lower bound is to solve the LP re-
laxation of the full model. Initial testing on small instances
showed gaps of roughly 30% to 260%—not a useful mea-
sure. As an alternative, we developed a procedure based on
the allocation model that gives much better results.

To obtain a lower bound on the true optimum, and hence
on the feasible solutions provided by tabu search, a valid re-
laxation of the full model must be solved. To formulate such
a relaxation, we begin with (1a)–(1j) and make several mod-
ifications. First, the cost coefficients f C

it for each customer
i are set to the shortest distance to either the depot or any
of the other customers, that is, f C

it = min{cij : j ∈ N0\(i)}.
Next, the cost coefficients associated with wit are set as fol-
lows: eC

it = c0/Q, where c0 = min{c0j : j ∈ N}. Finally, the

right-hand side of (1h) is increased to Qθ in each period t

and the corresponding allocation model solved to get φLB.

Proposition 4 The solution to the modified allocation
model (lower bounding model) provides a valid lower bound
on the true optimum to the PIDRP; that is, φLB ≤ φPIDRP.

Proof First note that any solution that is feasible to the full
model is feasible to the modified allocation model. This fol-
lows because (1h) with its right-hand side set to Qθ is a valid
relaxation of the routing constraints in the full model. We
now show that the modified costs

∑
it f

C
it zC

it + ∑
it e

C
it wit

underestimate the true costs
∑

ij t cij xij t , which in any feasi-
ble solution contain one arc cost for each customer that re-
ceives a delivery in period t and one arc cost for each vehicle
used in period t . By design, the first term underestimates the
individual customer arc costs and the second underestimates
the vehicle arc costs from the depot. With respect to the ve-
hicle arc costs, note that the number of vehicles required to
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deliver �itwit units in period t is at least ��itwit /Q� . Re-
moving the integer requirement and multiplying by c0 gives
the desired result. �

A slightly improved lower bound can be obtained when
the holding costs are small and production setup costs are
large with respect to the vehicle cost, which is the case here.

Lemma 1 Assume that the minimum production setup cost
f P ≡ min{ft : t = 0,1, . . . , τ − 1} is much larger than
the cost c0 of using a vehicle in any period, and that
the customer holding costs are negligibly small, i.e., hC

i ≈
0,∀i ∈ N . Let R(t) = �∑i wit /Q� − ∑

i wit /Q and r(t) =
∑

i wit /Q − �∑i wit /Q� be the fraction of a vehicle cor-
responding to the difference between the rounded up and
rounded down number of vehicles in a solution in period
t , respectively. Under the stated conditions, if

c0r(t) + (
t ′ − t

)
hP r(t)Q − (

t ′P − tP
)
hP r(t)Q − c0

− c0R
(
t ′
) ≥ 0, ∀t ′ > t, (2)

c0r(t) − (
t − t ′

)
hP r(t)Q + (

tP − t ′P
)
hP r(t)Q − c0

− c0R
(
t ′
) ≥ 0, ∀t ′ < t, (3)

then the lower bound φLB can be increased by rounding up
the number of vehicles used in period t and multiplying the
corresponding fraction R(t) by c0. Summing over all peri-
ods gives the following adjusted lower bound

φLB ← φLB +
τ∑

t=1

c0

(⌈∑

i

wit /Q

⌉

−
∑

i

wit /Q

)

. (4)

Proof The assumption that f P � c0 implies that it is never
advantageous to set up for production in order to avoid us-
ing an additional vehicle in any period. Therefore, the result
follows if this is the only feasible option for eliminating a
vehicle in some period t .

Rounding up number of vehicles used in each period will
not change the optimality of the solution if the increase
in cost, c0 · R(t), in period t does not exceed the cost of
rescheduling the delivery quantity Q · r(t) to another pe-
riod t ′.

Case 1: t ′ > t

Given φLB, the objective function value when rounding up
the number of vehicles used without rescheduling in both
periods t and t ′ is

Cost1 = c0R(t) + c0R
(
t ′
) + φLB. (5.1)

Now, let tP and t ′P be the periods where production of Q ·
r(t) takes place before and after rescheduling, respectively.

The objective function value after rescheduling is bounded
below by

Cost2 = φLB − c0r(t) + (
t ′ − t

)
hP r(t)Q

− (
t ′P − tP

)
hP r(t)Q

− (
t ′ − t

)
max

{
hC

i , i ∈ N
}
r(t)Q

+ c0

((∑

i

wit ′ + r(t)Q

)

/Q −
∑

i

wit ′/Q

)

.

(5.2)

Thus, if Cost2 ≥ Cost1 for all t ′ > t , then rounding up the
number of vehicles used in period t does not change the op-
timality of the solution.

Case 2: t ′ < t

Using the same logic, the objective function value when
rounding up the number of vehicles used after rescheduling
is bounded below by

Cost3 = φLB − c0r(t) − (
t − t ′

)
hP r(t)Q

+ (
tP − t ′P

)
hP r(t)Q

+ (
t − t ′

)
min

{
hC

i , i ∈ N
}
r(t)Q

+ c0

((∑

i

wit ′ + r(t)Q

)

/Q −
∑

i

wit ′/Q

)

.

(5.3)

The implication of (5.1) and (5.3) is that rounding up the
number of vehicles used in period t does not change the op-
timality of the solution if Cost3 ≥ Cost1 for all t ′ < t .

Now, when hC
i ≈ 0, ∀i ∈ N , (5.1), (5.2), and (5.3) give

Case 1: t ′ > t

c0r(t) + (
t ′ − t

)
hP r(t)Q − (

t ′P − tP
)
hP r(t)Q − c0

− c0R
(
t ′
) ≥ 0.

Case 2: t ′ < t

c0r(t) − (
t − t ′

)
hP r(t)Q + (

tP − t ′P
)
hP r(t)Q − c0

− c0R
(
t ′
) ≥ 0. �

A second and third improvement in the lower bound can
be obtained by taking into account the fact that exactly
��itwit /Q� vehicles must return to the depot in any solution
to the full model. A fourth improvement can be obtained by
recognizing that some minimum number of vehicles must be
used in each period in order to meet demand. The proofs of
Lemmas 2 and 3 similar to the proof of Lemma 1 and can be
found in Nananukul (2008).
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Lemma 2 Let yt = �∑it wit /Q� be the minimum number
of vehicles used in period t and let ci = min{cij : j ∈ N}
be the least cost transition for customer i to another cus-
tomer. Also, let N∗(t) = {i : zC

it = 1, f C
it = ci0} be the set

of customers who receive a delivery in period t and whose
corresponding cost is ci0, and let 	ci = ci − ci0 be the op-
portunity cost of not using the minimum cost arc in a so-
lution. Now, order the n∗(t) = |N∗(t)| customers such that
	ci1 ≤ 	ci2 ≤ · · · ≤ 	cin∗(t)

and let l(t) = n∗(t) − yt be the
excess number of customers whose delivery cost is ci0. As-
sume that the minimum production setup cost f P = min{ft :
t = 0,1, . . . , τ − 1} is much larger than the cost c0 of using
a vehicle in any period. If

(i) 	ci ≤ (t ′− t)with
P −(t ′P − tP )with

P −(t ′ − t)with
C
i −

f C
it , ∀t ′ > t , and

(ii) 	ci ≤ −(t − t ′)with
P +(tP − t ′P )with

P +(t − t ′)with
C
i

− f C
it , ∀t ′ < t ,

then the lower bound φLB can be adjusted as follows

φLB ← φLB +
τ∑

t=1

l(t)∑

k=1

	cik . (6)

When the holding cost at customer i is negligibly small,
that is, hC

i ≈ 0 for all i ∈ N (the case for our data), then
conditions (i) and (ii) in Lemma 2 become

(i) 	ci ≤ (t ′ − t)with
P − (t ′P − tP )with

P − f C
it , ∀t ′ > t ,

(ii) 	ci ≤ −(t − t ′)with
P + (tP − t ′P )with

P − f C
it , ∀t ′ < t

Lemma 3 Expanding on the notation introduced in
Lemma 2, let L∗(t) = {i : zC

it = 1, f C
it �= ci0} be the set of

customers who receive a delivery in period t and whose cor-
responding cost is not ci0. For i ∈ L∗(t), let 	ci = ci0 − ci

be the increase in cost that would result if customer i was
assigned the arc connected to the depot in a solution in-
stead of ci . Assume that yt > n∗(t) and let l(t) = yt − n∗(t)
be the number of customers whose delivery cost should
be set to ci0. Now identify the l(t) smallest values of 	ci

for i ∈ L∗(t); that is, 	ci1 ≤ 	ci2 ≤ · · · ≤ 	cil(t) , where
i1, . . . , il(t) ∈ L∗(t). Assuming that the minimum production
setup cost f P = min{ft : t = 0,1, . . . , τ − 1} is much larger
than the cost c0 of using a vehicle in any period, if

(i) 	ci ≤ (t ′− t)with
P −(t ′P − tP )with

P −(t ′ − t)with
C
i −

f C
it , ∀t ′ > t , and

(ii) 	ci ≤ −(t − t ′)with
P +(tP − t ′P )with

P +(t − t ′)with
C
i

− f C
it , ∀t ′ < t ,

then the lower bound φLB can be adjusted as follows

φLB ← φLB +
τ∑

t=1

l(t)∑

k=1

	cik . (7)

Lemma 4 Define v(t) as the minimum number of vehi-
cles needed in period t . Let i∗ = arg min{ci0, i ∈ N} and
let 	cit = c0i − c0 be the incremental cost for customer
i ∈ N\{i∗} in period t for not using the minimum cost arc
(with cost c0) from the depot in a solution. For period t ,
identify the v(t) − 1 smallest values of 	cit and the corre-
sponding customers. The following adjusted lower bound is
valid for the modified allocation model

φLB ← φLB +
τ∑

t=1

v(t)−1∑

k=1

	cikt . (8)

Proof The number of outbound arcs from the depot to cus-
tomers in each period must be at least v(t) in any feasible
solution to the full model. Because each customer can be
visited only once in each period, this implies that the out-
bound arcs from the depot cannot be the same for all ve-
hicles. By selecting the v(t) − 1 smallest incremental costs
associated with the arcs leaving the depot in period t , we in-
crease φLB by

∑v(t)−1
k=1 cikt while simultaneously reducing it

by c0(v(t) − 1). Summing over the planning horizon gives
a valid lower bound on the total vehicle costs because we
are only adjusting the cost for one less than the minimum
number of vehicles required in each period. �

The bound improvement in (8) can be calculated in a
preprocessing step. The other improvements given in (4),
(6), and (7) can be obtained directly by solving the alloca-
tion model after several additional modifications are made.
For (4), it would be necessary to replace �itwit /Q in the
objective function with a nonnegative integer variable yt

(t ∈ T ), and set the right-hand side of (1h) to Qyt . For (6),
it would be necessary to introduce n× τ binary variables ξit

(i ∈ N, t ∈ T ), to identify whether cost coefficient ci0 or ci

is to be used for customer i in period t , and n×τ constraints
of the form xi +ξit ≤ 1 to ensure that at most one coefficient
is selected. A similar modification would be required for (7).
Testing has shown that these additions can measurably ex-
tend computation times so we have relied on Lemmas 1–4
to improve the initial bound.

6 Computational results

All computations were performed on a 2.53 GHz processor
with 512 MB of RAM. The optimization models and the
tabu search code were implemented in Java Netbean 4.1 and
linked to the CPLEX 8.1 libraries. CPU times were obtained
through both CPLEX and the time function in Java. For test-
ing purposes, we used the three data sets provided by Boudia
et al. (2007) containing 30 instances of 50, 100, and 200 cus-
tomer problems, all with a 20-period planning horizon and
holding costs hP = 1, hC

i = 0 for all i ∈ N . These instances
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were randomly generated on a 100 × 100 Euclidean grid.
For each customer i, demand was uniformly distributed be-
tween 0 and the storage capacity IC

max,i , and for each period
t was positive with a probability that varied from 0.5 to 1.
The value of IC

max,i depended on i and the number of cus-
tomers in the specific data set. The vehicle capacities were
Q50 = 8000,Q100 = 8000,Q200 = 12,000, and the number
of vehicles were θ50 = 5, θ100 = 9, θ200 = 13. The first set of
experiments was designed to gauge CPLEX’s performance
on the full problem and did not make use of the Boudia et al.
data sets.

6.1 Preliminary testing

To determine the limits of CPLEX to solve the PIDRP di-
rectly, we randomly generated 10 instances on a 100 ×
100 grid. The first step was to fix the number of cus-
tomers n ∈ {5,10,15,20} and the number of time periods
τ ∈ {2,4,6,8} by selecting a range of values from these sets.
The remaining parameter values and the output can be found
in Nananukul (2008).

To summarize, the results indicated that when either the
number of customers or the number of periods is increased,
the runtime increased dramatically in almost all cases. This
was to be expected because the PIDRP requires the solu-
tion of a CVRP in each period. When the number of cus-
tomers was increased, the number of binary variables and
constraints in each CVRP increased by O(n2) in the worst
case, implying a significant increase in both the number of
binary variables and the number of constraints in the PIDRP
model. In all instances, the LP solution was obtained in less
than a second but CPLEX’s MIP solver required anywhere
from 4 to > 7200 s, the runtime limit imposed. The instances
that could not be solved by CPLEX were the ones that had
nτ ≥ 40.

To test the performance of the VRP subroutine (Carl-
ton and Barnes 1996) we created eight single-period prob-
lem instances in which the numbers of customers ranged
from 5 to 150. The same generating procedure used for the
PIDRP instances were used here but the inputs were limited
to customer locations, customer demand, vehicle capacity,
and number of vehicles.

The results indicated that the VRP subroutine gives high
quality solutions, denoted by φVRP, within a much smaller
amount of time compared to CPLEX, and is especially ef-
fective for the larger instances with 30 or more customers.
For the small size problems (n = 5,10), the VRP subroutine
provided the same solution as CPLEX within about the same
runtime. The gap between φVRP and φcplex was less than or
equal to zero in all but one case. Also, the VRP runtimes
were substantially less than those of CPLEX, with the dif-
ference increasing dramatically as the number of customers
increased.

We also compared the phase 1 solutions obtained from
the allocation model (1) with route optimization in each pe-
riod with the solutions from CPLEX. It was seen that phase
1 reliably provided high quality solutions in a negligible
amount of time compared to CPLEX. In several instances
the optimal solution was found by the allocation model and
in the other cases it was at most 6% off; however, for some
instances, it provided better results than CPLEX. Also, the
phase 1 runtimes were no more than a few seconds, not in-
creasing much with either n or τ .

6.2 Small instances

Table 1 summarizes the results for the 50-customer, 20-time
period instances. Columns 2 and 3 give the best GRASP
solutions (φgrasp) from Boudia et al. and the corresponding
runtimes (tgrasp) for 500 iterations. Their computations were
performed on a 2.8 GHz computer with 512 MB of RAM
running Windows XP. As a word of caution, it is always
problematic to make comparisons across different platforms
and different algorithms. There is also some arbitrariness in
establishing the termination criteria for metaheuristics like
GRASP or tabu search because it is rarely evident when ad-
ditional iterations will not lead to improvement. Therefore,
all runtimes and other performance measures presented be-
low should be interpreted with this in mind.

Columns 4, 5, and 6 are phase 1 solutions (φPh1), run-
times (tPh1), and percent deviation from the best GRASP
solutions, respectively. Column 7 gives the time to solve the
allocation model with CPLEX. An optimality gap of 0% was
used in all cases. Columns 8, 9, and 10 report the phase 2
results. In those computations, tabu search was allowed to
run for a maximum of 50 iterations but was terminated ear-
lier when no improving solution was found in 5 consecutive
iterations. The 50-iteration limit was reached in only two
instances. Column 9 gives the iteration on which the best
phase 2 solution was found.

From Table 1, we see that the phase 1 solutions are
10.7% better, on average, than the best known solutions,
and were obtained with significantly smaller runtimes. In
fact, tPh1 was 81% less than tgrasp, on average, whereas
φPh1 was better than φgrasp in all cases. The gap between
φPh1 and φgrasp ranged from 4 to 17%. As to be expected,
φPh2 was smaller than φPh1 in all cases as well, provid-
ing an average improvement of 5.8%, as reported in the
last column. For the GRASP, runtimes averaged 97.7 s
compared to 18.4 s for phase 1 and 433.4 s for phase
2. About 75% of tPh2 resulted from calling CPLEX’s LP
solver to determine the optimal updated production quanti-
ties for each candidate move. If this option is omitted and
only the Production_Level_Adjustment_Algorithm is used
for this purpose, the GRASP is about 1% faster than our
two-phase approach. The 5.8% improvement between phase
1 and phase 2, however, drops to approximately 4%.
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Table 1 Comparison of solutions for problem instances with 50 customers and 20 periods

Prob. no. (φgrasp) (tgrasp) (φPh1) (tPh1) [(φPh1− (tALLOC) (φPh2) Iteration (tPh2) [(φPh2−
Best Runtime Phase 1 Runtime φgrasp)/ Alloc Phase 2 φPh2 Runtime (s) φPh1)/

GRASP (s) solution (s) φgrasp] 100% time (s) solution found φPh1]100%

solution

1 440,505 102.36 418,570 9.18 −5 5.6 399,125 25 226.45 −5

2 448,695 138.17 391,366 16.65 −13 13.0 373,581 29 385.55 −5

3 419,730 95.35 385,897 20.18 −8 16.25 353,058 22 234.16 −9

4 456,398 68.42 401,851 18.17 −12 17.0 361,309 19 216.41 −10

5 434,466 99.37 396,977 20.29 −8 13.89 365,035 16 725.57 −8

6 452,564 98.07 382,417 16.68 −15 14.6 368,082 50 467.14 −4

7 436,812 98.90 388,935 20.21 −11 14.97 369,963 30 404.73 −5

8 420,935 87.32 383,705 18.07 −9 15.91 370,822 30 329.34 −3

9 434,789 142.54 391,442 13.85 −10 15.25 379,401 26 392.90 −3

10 436,221 158.40 388,957 15.30 −11 15.37 370,805 25 408.05 −5

11 433,890 81.77 384,722 20.84 −11 17.83 357,107 30 316.56 −7

12 452,705 85.83 382,746 19.90 −15 16.78 355,199 45 585.90 −7

13 440,771 99.85 381,645 17.74 −13 14.58 366,547 20 340.97 −4

14 419,412 84.45 399,040 20.14 −5 17.23 364,115 35 335.42 −9

15 453,875 86.67 403,862 18.41 −11 14.43 367,659 30 555.09 −9

16 457,310 91.70 377,530 19.16 −17 15.68 360,534 25 493.80 −5

17 455,663 91.08 405,292 16.84 −11 13.33 398,442 20 153.88 −2

18 441,685 88.53 404,254 19.25 −8 16.0 368,600 39 574.6 −9

19 418,896 104.27 394,187 17.52 −6 14.07 377,073 32 488.67 −4

20 452,183 94.12 403,547 16.37 −11 13.43 372,141 39 635.94 −8

21 409,677 78.27 393,013 16.75 −4 13.61 374,743 16 160.18 −5

22 429,116 108.26 380,357 20.61 −11 17.61 347,449 50 1031.96 −9

23 443,184 106.99 387,351 16.52 −13 12.76 362,619 31 794.67 −6

24 426,113 101.40 388,221 20.34 −9 16.37 375,022 23 232.29 −3

25 462,245 86.99 386,524 19.45 −16 16.01 374,926 19 273.34 −3

26 442,029 82.15 397,620 20.29 −10 16.65 366,733 36 811.39 −8

27 444,695 85.69 385,085 20.30 −13 16.70 375,261 12 156.74 −3

28 449,894 187.46 388,354 22.84 −14 19.31 373,155 26 230.68 −4

29 461,555 93.93 400,043 19.09 −13 15.62 379,320 25 543.83 −5

30 434,006 93.73 397,217 20.00 −8 16.55 369,223 33 495.71 −7

The final steps of our methodology involved path relink-
ing and solving the modified version of the allocation model
(1) to obtain a lower bound φLB. The results for the 30-
customer instances are reported in Table 2. Path relinking is
a procedure used to explore the opportunity to improve the
solution obtained from any methodology that provides mul-
tiple candidate solutions. It is based on the fact that paths be-
tween solutions give rise to neighborhoods that contain new
solutions with attributes similar to those of the endpoints.
Our algorithm explores paths between all pairs of elite solu-
tions that were uncovered during tabu search. An elite solu-
tion is defined as the first improved solution following any
unimproved solution.

The second column of Table 2 lists the number of elite
solutions found, which averaged 4.4. Columns 3–5 give the
path relinking solution, the corresponding runtime, and the
gap with the phase 2 solution, respectively. In most cases,
the latter is either negative or negligibly small calling into
question the effort required to apply this procedure. The
lower bound, φLB, obtained from the modified version of
the allocation model is reported in column 6. The adjusted
lower bound, φALB, is presented in column 7 and was ob-
tained by applying (4), (6)–(8). On average, it showed an
improvement over the lower bound, φLB, of 0.5% with a
standard deviation of 1.23. The gap between the best so-
lution and the adjusted lower bound averaged 12.8% and is
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Table 2 Path relinking and lower bound results for instances with 50 customers and 20 periods

Prob. no. No. (φPR) (tPR) [(φPR− (φLB) (φALB) [(φBest− (φLP) (tLP) [(φALB−
elites Solution Time φPh2)/ from LB Adjusted φALB)/ LP soln LP time φLP)/

solns from path (s) φPh2] 100% modela LB φALB]100% (s) φLP]100%

relinking

1 8 398,795 180 −0.08 324,463 326,630 22 218,243 4.72 50

2 2 373,374 71 −0.06 325,469 326,324 14 219,206 4.69 49

3 6 353,058 460 0 326,365 329,607 7 217,697 5.56 51

4 6 361,176 300 −0.04 328,090 328,467 10 220,366 5.84 49

5 5 364,819 290 −0.06 324,451 325,044 12 220,178 3.8 48

6 3 368,082 222 0 329,875b 332,449 11 221,852 5.3 50

7 9 369,963 720 0 326,712b 328,176 13 218,911 4.08 50

8 1 370,822 * 0 324,958 325,893 14 216,969 6.92 50

9 2 379,379 36 −0.01 325,737 326,277 16 218,951 7.38 49

10 5 370,655 260 −0.04 325,846b 326,483 14 217,392 4.92 50

11 7 354,025 540 −0.86 329,208 330,539 7 217,596 10.45 52

12 5 354,981 180 −0.06 320,151b 326,316 9 215,297 6.33 52

13 3 365,432 208 −0.30 326,512 327,017 12 217,946 6.38 50

14 3 363,404 184 −0.20 321,141 323,498 12 216,514 4.74 49

15 4 367,659 56 0 325,857 326,339 13 219,531 5.69 49

16 1 360,534 * 0 326,324 328,384 10 216,828 5.33 51

17 5 398,442 120 0 328,513 329,996 21 221,842 5.94 49

18 5 368,533 189 −0.02 323,263 324,394 14 219,581 4.08 48

19 6 377,255 480 0.05 326,077 327,712 15 216,825 5.66 51

20 9 372,361 670 0.06 325,181 326,112 14 218,650 4.31 49

21 2 375,228 30 0.13 326,764 327,367 14 218,483 9.36 50

22 7 347,329 810 −0.03 322,818 324,015 7 214,260 6.61 51

23 4 362,619 220 0 326,345b 327,824 11 219,942 5.44 49

24 2 375,609 100 0.16 320,055b 321,520 17 214,406 4.98 50

25 3 374,682 163 −0.07 330,338b 331,818 13 220,062 5.66 51

26 4 366,167 129 −0.15 331,722 334,062 10 220,034 5.16 52

27 1 375,261 * 0 321,615 322,816 16 216,087 5.14 49

28 3 373,464 120 0.08 323,233 324,047 15 215,604 4.12 50

29 5 379,320 255 0 334,784b 336,159 13 223,175 5.11 51

30 6 370,012 420 0.21 331,837 335,212 10 218,849 6.33 53

*Only one elite solution
aStop at 500 s
bLower bound model includes integer variables y(t) (Lemma 1 not satisfied)

shown in column 8. With respect to size, the lower bounding
MIP contained 2083 constraints and 3183 variables of which
1021 were binary. In all cases, a 500 s limit was placed on
CPLEX for these runs, which terminated with an optimality
gap that averaged 2.2%.

The last three columns of Table 2 give the LP lower
bound (φLP) for the full model (with the routing constraints),
the corresponding solution times, and the gaps between the
LP solution and the adjusted lower bound (φALB) obtained
from the modified allocation problem in 500 s. The size

of this gap, which was about 50%, implies that the solu-
tion to the LP relaxation by itself is not very useful. As
discussed by Laporte (1992) and others, poor performance
like this is due primarily to the weak relaxation associated
with the subtour elimination constraints of the form yjt ≤
yit − wit + Dmax

t (1 − xijt ),∀i ∈ N,j ∈ N0, t ∈ T , where
yit is the load on the vehicle just after departing from cus-
tomer i in period t and Dmax

t = min{Q,
∑

i∈N

∑τ
l=t dil} is

an upper bound on the load on any vehicle in period t . These
constraints require the load on a vehicle to be monotoni-
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Table 3 Comparison of solutions for problem instances with 100 customers and 20 periods

Prob. no. (φgrasp) (tgrasp) (φPh1) (tPh1) [(φPh1− (tALLOC) (φPh2) Iteration (tPh2) [(φPh2−
Best Runtime Phase 1 Runtime φgrasp)/ Alloc Phase 2 φPh2 Runtime (s) φPh1)/

GRASP (s) solution (s) φgrasp]100% time (s) solution found φPh1]100%

solution

1 790,972 413.42 737,241 118.44 −7 96.50 711,671 21 1079 −3

2 782,906 506.19 734,043 143.27 −6 124.6 698,512 40 1035 −5

3 787,830 346.76 721,767 117.25 −8 95.43 683,270 40 1299 −5

4 779,847 486.51 741,904 119.51 −5 95.31 718,252 21 672 −3

5 796,176 439.06 748,370 118.33 −6 94.87 731,260 14 335 −2

6 793,216 349.02 758,969 141.54 −4 112.68 744,927 15 1143 −2

7 781,317 298.64 729,426 126.22 −7 105.39 695,728 36 1250 −5

8 780,884 499.19 729,542 149.80 −7 119.44 706,058 30 1008 −3

9 784,646 442.30 742,733 130.16 −5 108.22 705,035 39 1125 −5

10 790,156 378.54 727,431 143.40 −8 121.22 696,521 31 985 −4

11 787,596 393.90 734,881 126.43 −7 100.71 711,895 37 835 −3

12 785,170 369.25 730,530 134.65 −7 113.85 703,162 32 1129 −4

13 777,705 505.97 742,061 136.13 −5 111.88 721,066 22 599 −3

14 789,802 467.69 730,899 116.89 −7 95.30 698,548 35 1065 −4

15 790,132 527.02 732,911 157.43 −7 136.64 711,506 23 1139 −3

16 797,322 418.19 753,956 115.16 −5 91.20 714,873 37 1226 −5

17 799,843 520.11 729,914 125.23 −9 106.11 702,314 33 1218 −4

18 787,371 419.09 752,665 152.07 −4 126.81 720,238 32 720 −4

19 806,592 353.69 773,547 113.63 −4 85.87 748,734 36 1349 −3

20 809,340 403.09 748,000 123.80 −8 101.75 729,099 20 1131 −3

21 788,736 477.35 754,214 127.12 −4 102.28 738,746 14 544 −2

22 804,538 412.97 735,752 144.92 −9 123.60 702,849 36 998 −4

23 781,558 429.12 741,379 126.09 −5 101.82 712,717 23 1037 −4

24 798,428 416.88 758,063 142.42 −5 113.80 727,741 37 1380 −4

25 796,591 368.14 745,669 125.21 −6 102.85 725,869 30 1240 −3

26 791,514 403.69 724,380 124.91 −8 104.94 700,719 37 585 −3

27 773,662 495.51 709,640 118.37 −8 98.77 686,382 36 454 −3

28 780,492 416.89 724,556 143.13 −7 117.52 700,980 30 1190 −3

29 799,417 457.51 754,116 135.21 −6 110.31 725,030 32 993 −4

30 785,906 398.11 734,725 154.12 −7 134.15 698,942 32 1300 −5

cally decreasing during the delivery sequence and are rarely
if ever binding in the LP solution. The corresponding MIP
for the full model contained 54,063 constraints and 54,183
variables of which 51,021 were binary.

6.3 Medium and large instances

The results for the 100-customer instances with 20 time pe-
riods each are presented in Tables 3 and 4. The column head-
ings are identical to those of Tables 1 and 2, respectively. On
average, the GRASP took 42.1 s while tabu search took a to-
tal of 1133.8 s or 174% longer. The gap between the GRASP
solution and the phase 1 solution obtained from the alloca-
tion model after running the VRP subroutine is identified

in column 5 and represents roughly a 6.4% improvement.
An additional 3.6% is realized in phase 2, giving a total im-
provement of 10%.

As seen in Table 4, path relinking takes about 465 s and
in only for problem no. 2 was an improvement realized. On
average, the path relinking solutions were 1.2% worse than
the phase 2 solutions. The modified allocation model had
4083 constraints and 6283 variables of which 2021 were bi-
nary. A total of 850 s was allotted for the computations. At
termination, CPLEX exhibited an optimality gap of roughly
3.5%. The gap between the best feasible solution and the
adjusted lower bound is shown in column 8 and averaged
22.9%. The data in the last three columns are as expected.
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Table 4 Path relinking and lower bound results for instances with 100 customers and 20 periods

Prob. No. (φPR) (tPR) [(φPR− (φLB) (φALB) [(φBest− (φLP) (tLP) [(φALB−
no. elites Solution Time (s) φPh2)/ from LB Adjusted φALB)/ LP soln LP time φLP)/

solns from path φPh2]100% modela LB φALB]100% (s) φLP]100%

relinking

1 1 711,671 * 0.00 577,137b 582,090 22 281,684 24.18 107

2 4 694,694 240 −0.55 581,028b 584,847 19 284,882 22.02 105

3 2 693,600 80 1.51 578,440 581,317 18 283,960 36.05 105

4 1 718,252 * 0.00 571,459b 574,748 25 283,138 28.75 103

5 1 731,260 * 0.00 579,452 583,117 25 287,534 21.46 103

6 1 744,927 * 0.00 581,760 586,735 27 286,161 43.87 105

7 3 708,958 540 1.90 571,178 573,184 21 283,575 27.28 102

8 3 713,267 720 1.02 561,926b 564,981 25 278,847 34.79 103

9 2 713,779 360 1.24 580,835 583,295 21 286,051 24.54 104

10 2 710,427 270 2.00 573,489b 577,928 21 284,019 32.82 103

11 3 729,324 700 2.45 574,951b 580,831 23 284,048 20.95 104

12 6 712,832 550 1.38 577,810 581,643 21 285,148 20.62 104

13 5 728,004 650 0.96 568,636 572,655 26 281,696 23.24 103

14 2 705,304 500 0.97 578,958b 586,741 19 282,791 21.75 107

15 3 720,050 560 1.20 577,760 580,764 23 286,629 22.73 103

16 3 719,974 627 0.71 576,178 581,498 23 283,683 30.38 105

17 2 725,757 160 3.34 587,829b 591,956 19 289,069 11.40 105

18 2 731,189 140 1.52 577,616b 580,835 24 285,723 22.17 103

19 3 759,505 780 1.44 573,342 576,318 30 283,849 23.52 103

20 3 737,988 610 1.22 589,667b 593,649 23 290,279 33.05 105

21 1 738,746 * 0.00 584,901 590,280 25 289,479 94.78 104

22 2 719,634 400 2.39 574,965 577,327 22 285,958 25.14 102

23 1 712,717 * 0.00 567,679 569,334 25 281,909 23.82 102

24 3 738,178 720 1.43 574,446 577,506 26 285,820 20.57 102

25 6 739,029 590 1.81 573,169 576,299 26 284,631 21.70 102

26 3 707,568 520 0.98 567,682b 571,351 23 280,753 23.37 104

27 2 695,961 200 1.40 569,319 572,684 20 283,016 25.37 102

28 2 710,866 400 1.41 564,894 569,282 23 280,900 41.95 103

29 2 740,172 520 2.09 585,442 588,796 23 288,490 63.83 104

30 2 712,385 320 1.92 577,862b 582,331 20 286,316 47.36 103
*Only one elite solution
aStop at 850 s
bLower bound model includes integer variables y(t) (Lemma 1 not satisfied)

The LP relaxation of the full model solves quickly with
CPLEX but the gap between the solution, φLP, and the ad-
justed lower bound, φALB, averaged 104%.

The results for the 200-customer instance with 20 time
periods each exhibited the same patterns as the 100-customer
instances.

Table 5 presents the comparisons with GRASP, and Ta-
ble 6 presents the path relinking and allocation model re-
sults. The average improvement of tabu search over GRASP
was 3% but average runtimes increased from 1903 to 2879 s,

or 51%. However, as the number of customers increases so
do the objective function values, so small percentage reduc-
tions in cost often translate into be large reductions in ab-
solute terms.

From Table 6, we see that path relinking solutions are on
average 0.5% worse than the phase 2 solutions so it is doubt-
ful whether the procedure is worthwhile, especially with
runtimes averaging 2230 s. To compute the lower bound
from the modified allocation model, CPLEX was allowed
1450 s. At the time, the average optimality gap was 3.6%,
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Table 5 Comparison of solutions for problem instances with 200 customers and 20 periods

Prob. (φgrasp) (tgrasp) (φPh1) (tPh1) [(φPh1− (tALLOC) (φPh2) Iteration (tPh2) [(φPh2−
no. Best Runtime Phase 1 Runtime φgrasp)/ Alloc Phase 2 φPh2 Runtime (s) φPh1)/

GRASP (s) solution (s) φgrasp]100% time (s) solution found φPh1]100%

solution

1 1,075,528 2078.39 1,051,861 280 −2 179 1,030,684 20 2965 −2

2 1,070,340 1785.75 1,038,017 320 −3 233 1,024,558 11 1737 −1

3 1,070,505 1688.52 1,036,408 265 −3 131 1,036,282 4 1528 0

4 1,068,959 2194.75 1,067,202 289 0 174 1,057,654 14 2190 −1

5 1,060,220 1678.19 1,046,100 266 −1 189 1,031,422 18 2573 −1

6 1,065,700 1948.55 1,052,150 360 −1 204 1,033,233 19 1016 −2

7 1,091,538 1796.72 1,061,457 393 −3 206 1,043,536 35 1942 −2

8 1,060,164 2237.27 1,072,610 349 1 222 1,066,068 10 2978 −1

9 1,055,447 1554.42 1,047,509 321 −1 190 1,036,179 16 2454 −1

10 1,069,590 2090.38 1,057,926 377 −1 214 1,038,559 38 1855 −2

11 1,069,280 2464.75 1,054,845 388 −1 197 1,037,705 21 3428 −2

12 1,057,631 1909.58 1,052,501 397 −1 221 1,040,220 29 2288 −1

13 1,074,180 2087.02 1,075,537 483 0 233 1,063,024 13 2719 −1

14 1,076,460 2264.77 1,054,986 397 −2 216 1,041,786 21 3544 −1

15 1,065,340 1776.81 1,045,066 376 −2 155 1,029,908 25 2554 −2

16 1,067,550 2022.39 1,052,812 410 −1 231 1,033,656 27 3200 −2

17 1,067,007 1826.45 1,053,600 382 −1 187 1,027,433 31 2800 −3

18 1,095,350 1716.27 1,089,858 377 −1 172 1,063,306 29 4740 −2

19 1,063,445 1920.98 1,079,858 372 2 166 1,065,705 23 2797 −1

20 1,049,854 1910.66 1,057,882 360 1 148 1,034,195 37 2600 −2

21 1,055,436 2506.95 1,065,159 477 1 205 1,044,771 32 3900 −2

22 1,066,185 1781.39 1,059,796 369 −1 152 1,045,790 13 2822 −1

23 1,073,265 2201.73 1,033,344 459 −4 214 1,027,042 15 1797 −1

24 1,063,585 1999.14 1,078,993 381 1 151 1,051,610 37 3510 −3

25 1,054,230 1902.87 1,055,464 410 0 202 1,027,772 36 3000 −3

26 1,057,443 1685.31 1,059,502 335 0 129 1,044,315 26 2720 −1

27 1,076,798 1484 1,060,084 409 −2 213 1,047,267 12 2498 −1

28 1,054,225 1508.17 1,052,961 417 0 184 1,042,891 16 4200 −1

29 1,088,853 1463.53 1,040,105 409 −5 239 1,030,156 24 1947 −1

30 1,051,195 1613.92 1,051,980 325 0 155 1,035,703 21 2351 −2

indicating the increased difficulty in solving the correspond-
ing IP. The lower bound lemmas improved the results by
0.61% on average (not shown in table). The gap between
the best solution found and the adjusted lower bound was ap-
proximately 20.5%, slightly better than for the 100-customer
problems. For problem instances of this magnitude, these
gaps are within an acceptable range.

7 Discussion and future directions

Good solutions to the PIDRP can yield substantial benefits
throughout the supply chain as manufacturers and customers

become more integrated. A decade ago, the primary chal-
lenges facing manufacturers were establishing online com-
munications and delivery channels. Keeping too much in-
ventory was discouraged and warehouses equaled waste.
Today, there is a shift in attitude that allows for increased
inventory levels where necessary. Lean inventory is a lux-
ury many companies can no longer afford because timely
deliveries depend on a far wider range of factors than can
be predicted or controlled. If your supply chain is global,
those factors include international transportation providers,
as well as infrastructure with varying degrees of quality and
import/export regulations. If your supply chain is domestic,
you are still affected because certain transportation lanes are



J Sched (2009) 12: 257–280 277

Table 6 Path relinking and lower bound results for instances with 200 customers and 20 periods

Prob. No. (φPR) (tPR) [(φPR− (φLB) (φALB) [(φBest− (φLP) (tLP) [(φALB−
no. elites Solution Time (s) φPh2)/ from LB Adjusted φALB)/ LP soln LP time φLP)/

solns from path φPh2]100% modela LB φALB]100% (s) φLP]100%

relinking

1 1 1,030,684 * 0 853,521 859,151 20 442,266 120.61 94

2 2 1,010,158 1250 −1.41 851,442b 856,489 18 440,625 121.81 94

3 2 1,016,681 1200 −1.89 843,605 847,677 20 438,910 123.88 93

4 4 1,042,854 2141 −1.40 852,993 858,620 21 440,440 132.46 95

5 3 1,023,680 2423 −0.75 853,415 858,986 19 440,789 78.34 95

6 2 1,025,262 2205 −0.77 859,458 863,514 19 443,041 75 95

7 3 1,038,746 2610 −0.46 855,652 859,755 21 442,400 111.27 94

8 1 1,066,068 * 0 856,121b 862,333 24 442,292 78.40 95

9 2 1,018,420 1250 −1.71 838,995 845,013 21 434,188 83.01 95

10 8 1,035,240 2625 −0.32 851,118 854,605 21 441,476 76.88 94

11 2 1,037,767 2730 0.01 861,136 866,478 20 444,524 104.01 95

12 5 1,035,350 2242 −0.47 856,766 861,683 20 443,012 105.69 95

13 1 1,063,024 * 0 851,622 855,760 24 442,760 78.43 93

14 2 1,024,491 1920 −1.66 856,951 860,535 19 443,699 103.96 94

15 6 1,026,787 2408 −0.30 848,998 855,899 20 440,104 75.98 94

16 2 1,043,917 1957 0.99 855,689 859,910 20 442,252 101.19 94

17 5 1,022,250 2018 −0.50 853,635 859,039 19 440,699 89.85 95

18 5 1,065,250 2242 0.18 854,938b 860,527 24 441,318 90.58 95

19 1 1,065,705 * 0 859,526 867,188 23 442,439 82.06 96

20 4 1,027,134 2425 −0.68 847,312 852,918 20 437,861 73.92 95

21 3 1,049,028 3003 0.41 849,209 853,126 22 440,479 80.13 94

22 1 1,045,790 * 0 848,907 854,260 22 439,190 67.17 95

23 4 1,034,198 2403 0.70 855,591 862,561 19 441,020 73.51 96

24 6 1,045,014 2908 −0.63 854,029 858,675 22 439,128 94.47 96

25 3 1,024,239 2601 −0.34 859,551 864,960 18 442,202 102.96 96

26 4 1,043,128 1673 −0.11 848,613b 855,543 22 438,277 93.42 95

27 2 1,030,753 2037 −1.58 863,295b 869,693 19 445,644 79.68 95

28 3 1,032,478 2909 −1.00 854,208 859,167 20 440,210 93.27 95

29 5 1,019,371 2179 −1.05 862,445 866,925 18 444,642 99.06 95

30 6 1,027,915 2400 −0.75 859,578 865,404 19 441,228 88.31 96

*Only one elite solution
aStop at 1450 s
bLower bound model includes integer variables y(t) (Lemma 1 not satisfied)

more crowded than ever, and the competition for transporta-
tion services has become even more intense.

In this paper, we have provided an efficient reactive tabu
search algorithm for finding high quality solutions to the
PIDRP as measured by the optimality gap for small in-
stances and by the solution to our lower bounding model
otherwise. Although we included a path relinking feature
and several theoretical ways of improving the lower bound,
none was very effective. If there is room for improvement
in the methodology, the place to begin is with the alloca-

tion model (1) and its modified version that was used to ob-
tain lower bounds. Adapting the cut generation procedures
of Pochet and Wolsey (2006) for the capacitated lot-sizing
problem offers several opportunities for tightening the LP
relaxation of (1a)–(1j). A second option that is now under-
way is to apply branch and price to the full PIDRP using a
time period decomposition. Because a VRP must be solved
for each period, there are some inherent limitations to this
approach. A third option is to cluster the customers first
and then solve the PIDP and routing components separately.
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Each of these ideas offers computational challenges that the
research community has yet to address.

Appendix: Adjustment of production levels

As mentioned in Sect. 4.5, it may be possible to improve
the tabu search results when evaluating candidate moves by
adjusting the production levels. In the implementation, a lin-
ear program is solved every 5 iterations to find the optimal
values of p̄t . In the remaining cases, we adjust production
levels by calling Production_Level_Adjustment_Algorithm.
The inputs to this algorithm are the production levels p̄t as-
sociated with the most recent tabu search solution and the
output generated by Find_Adjustment_Period_Algorithm,
which is called when checking the feasibility of a solution.

For a move that involves customer i1 in period t1 and
customer i2 in period t2, t1 < t2, let η̄i1t1 be the number of
items that were originally scheduled to be delivered to cus-
tomer i1 in period t1 that have been rescheduled for delivery
in period t2, and let w̄i2t2 be the number of items to be de-
livered to customer i2 in period t1 after the move. The logic
included in the primary algorithms called in the adjustment
of production levels is given below. The first step is to check
feasibility of a candidate move. Only the inputs and outputs
are stated for this algorithm; more detail can be found in
Nananukul (2008).

Feasibility_Check_Algorithm, complexity O(τ + n).

Input: Tabu search solution p̄t at current iteration, periods
t1 and t2(t1 < t2), customer i1 and i2, demand of
customer i1 for all t ≤ t1, demand of customer i2
from all t ≤ t2, delivery amounts w̄i1t , t ≤ t1 and
w̄i2t , t ≤ t2, and swap amounts η̄i1t1 and w̄i2t2 .

Output: Output flag: 〈true〉 = feasible or 〈false〉 = not fea-
sible
If output flag = 〈true〉, then return number of de-
crease adjustment periods, decrease adjustment pe-
riods, decrease adjustment amounts, number of in-
crease adjustment periods, increase adjustment pe-
riods, and increase adjustment amounts
\\ comment: The return values are the output from
Find_Adjustment_Period_Algorithm.

Find_Adjustment_Period_Algorithm, complexity O(τ).

Input: Period t∗, search type (1 = search for period(s)
t < t∗ such that production level needs to be de-
creased, 2 = search for period(s) t < t∗ such that
the production level needs to be increased), adjust-
ment quantity AQ, and tabu search solution output
(p̄t ) at current tabu search iteration

\\ comment: t∗ = t1 or t2 : AQ = η̄i1t1 −w̄i2t2 . Only
positive value of adjustment quantity AQ is used in
the algorithm.

Output: Feasible flag (if feasible period(s) is found, then re-
turn “1”; otherwise return “−1”)
If search type = 1, then return number of de-
crease adjustment periods, decrease adjustment pe-
riods, and decrease adjustment amounts; otherwise
return number of increase adjustment periods, in-
crease adjustment periods, and increase adjustment
amounts.

NumAdjPeriods = 1
For t = t∗ − 1, . . . ,0
{

If (p̄t > 0)

\\ comment: Only period(s) t with p̄t > 0 are considered
in the adjustment.

If (Search type = 1)
TAQ = AQ − p̄t

else
TAQ = AQ − (IP

max − p̄t )\\ TAQ stores remaining
adjustment quantity after considering adjustment
in period t .

end if
If (TAQ ≤ 0)\\ In this case it means period t is the last
period that needs to be considered.

AdjPeriods[NumAdjPeriods] = t

AdjAmount[NumAdjPeriods] = AQ
NumAdjPeriods = NumAdjPeriods + 1
Set feasible flag = 1
If (search type = 1)

Store results in NumDecAdjPeriods,
DecAdjPeriods[n];
n = 1, . . . , NumDecAdjPeriods,
DecAdjAmount[n];
n = 1, . . . , NumDecAdjPeriods

else
Store results in NumIncAdjPeriods,
IncAdjPeriods[n];
n = 1, . . . , NumIncAdjPeriods, IncAdjAmount[n];
n = 1, . . . , NumIncAdjPeriods

end if
return
else
AdjPeriods[NumAdjPeriods] = t

If (Search type = 1)
AdjAmount[NumAdjPeriods] = p̄t

else
AdjAmount[NumAdjPeriods] = IP

max − p̄t

end if
NumAdjPeriods = NumAdjPeriods + 1

end if
end if
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AQ = TAQ
}
If (TAQ > 0)\\ In this case it means that the adjustment is
not feasible.

Set feasible flag = −1 and return
end if

After the feasibility check is done, the move_value for
each feasible candidate is calculated by calling
Move_Value_Algorithm. Because the logic is straightfor-
ward, we only give the inputs and outputs.

Move_Value_Algorithm, complexity O(n3)

Input: Periods t1 and t2(t1 < t2), costs of current VRP so-
lutions in period t1 and t2 (CVRP

t1
,CVRP

t2
), customer

i1 and i2, and swap amount η̄i1t1 (i.e., number of
items rescheduled from period t1 to period t2 for
customer i1), number of items that were to be de-
livered to customer i2 in period t2 but have been
rescheduled for delivery in period t1 (w̄i2t2), adjust-
ment quantity AQ, number of decrease adjustment
periods, decrease adjustment periods, decrease ad-
justment amounts, number of increase adjustment
periods, increase adjustment periods, and increase
adjustment amounts.

Output: move_value

Once all candidate moves are evaluated, the one with the
best move_value is selected. Finally, the Production_Level_
Adjustment_Algorithm is called.

Production_Level_Adjustment_Algorithm

Input: Tabu search solution output (p̄t ) at current tabu
search iteration, Number of decrease adjustment
periods, decrease adjustment periods, decrease ad-
justment amounts, number of increase adjustment
periods, increase adjustment periods, and increase
adjustment amounts.

Output: Updated values of p̄t .

Step 1. Update production levels p̄t in each period t where
the new (tabu search) solution indicates a decrease
in production level.
For n = 1, . . . , NumDecAdjPeriods
p̄DecAdjPeriods[n] ← p̄DecAdjPeriods[n]

− DecAdjAmount[n]
Step 2. Update production levels p̄t in each period t where

the new solution indicates an increase in production
level.
For n = 1, . . . , NumIncAdjPeriods
p̄IncAdjPeriods[n] ← p̄IncAdjPeriods[n]

− IncAdjAmount[n]

Example (Continued) Considering the example in Fig. 3,
assume that the current solution from the allocation model
gives p̄1 = 66, p̄2 = 0, and p̄3 = 0. Base on a swap move
in Fig. 3, i1 = 3, i2 = 1, t1 = 2, and t2 = 3, respectively.
Following Step 1 of the above algorithm, NumDecAdjPe-
riods = 1, DecAdjPeriods[0] = 1, DecAdjAmount[0] = 4,
NumIncAdjPeriods = 1, IncAdjPeriods[0] = 1, IncAd-
jAmount[0] = 4. Continuing, p̄1 is updated to 66 − 4 = 62.
In Step 2, p̄1 is updated to 62 + 4 = 66. As a result the swap
move does not change the production level in period 1.

For the example in Fig. 4, assume that the current so-
lution from the allocation model gives p̄1 = 64, p̄2 = 2,
and p̄3 = 0. Based on the transfer move in Fig. 4, i1 =
0, i2 = 2, t1 = 2, and t2 = 3, respectively. Following Step 1
of Feasibility_Check_Algorithm, NumDecAdjPeriods = 2,
DecAdjPeriods[0] = 2, DecAdjAmount[0] = 2, DecAdjPe-
riods[1] = 1, DecAdjAmount[1] = 2, NumIncAdjPeriods
= 1, IncAdjPeriods[0] = 1, IncAdjAmount[0] = 4. Fol-
lowing Step 1 of Production_Level_Adjustment_Algorithm,
p̄2 is updated to 2 − 2 = 0. In Step 2, p̄1 is updated to
64 − 2 + 4 = 66.
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