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Abstract We study the problem of batching and scheduling
n jobs in a flow shop comprising m, m ≥ 2, machines. Each
job has to be processed on machines 1, . . . ,m in this order.
Batches are formed on each machine. A machine dependent
setup time precedes the processing of each batch. Jobs of
the same batch are processed on each machine sequentially
so that the processing time of a batch is equal to the sum
of the processing times of the jobs contained in it. Jobs of
the same batch formed on machine l become available for
a downstream operation on machine l + 1 at the same time
when the processing of the last job of the batch on machine
l has been finished. The objective is to minimize maximum
job completion time. We establish several properties of an
optimal schedule and develop polynomial time algorithms
for important special cases. They are improvements over the
existing methods with regard to their generality and time ef-
ficiency.
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1 Introduction

We consider the following problem of batching and schedul-
ing n non-preemptive independent jobs in a flow shop envi-
ronment. Each job is ready for processing at time zero and
it has to be processed on machines 1,2, . . . ,m in this order.
The processing time of job j on machine l, that is, the du-
ration of operation (j, l) is equal to pjl . Batches are formed
on each machine. They may include any number of jobs.
Jobs of the same batch are processed on each machine se-
quentially so that the processing time of a batch is equal to
the sum of the processing times of the jobs contained in it.
A batch of jobs formed on machine l can start its processing
only after all its jobs have been completed on machine l −1.
Furthermore, jobs of the same batch formed on machine l

complete on this machine and become available for a down-
stream operation on machine l + 1 at the same time when
the processing of the last job of this batch on machine l has
been finished. This type of processing corresponds to the
batch availability model in the literature on batch schedul-
ing. A traditional type of processing in which each job be-
comes available for a downstream operation immediately
when the current machine has finished its processing cor-
responds to the job (or item) availability model, see Web-
ster and Baker (1995), Tanaev et al. (1998), and Potts and
Kovalyov (2000) for more information on batch schedul-
ing models. A machine dependent setup time sl immedi-
ately precedes the processing of each batch on machine l,
l = 1, . . . ,m. No machine can process a job while perform-
ing a setup. In other words, all setups are performed on-line.
We distinguish the cases when all setups are anticipatory
and all of them are non-anticipatory. An anticipatory setup
can be performed before the batch arrives at the correspond-
ing machine. A non-anticipatory setup can start only after
the batch becomes available at the machine. All machine
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setup times and job processing times are assumed to be non-
negative integer numbers. A batch schedule is characterized
by the batch sequences on machines 1, . . . ,m. A batch se-
quence is an ordered collection of batches. Since the batch
availability model is applied, the order of jobs in each batch
does not affect job completion times. We distinguish permu-
tation and non-permutation schedules, and schedules with
consistent and inconsistent batches. A schedule is a permu-
tation schedule if job sequences are the same on all ma-
chines. The batches are consistent if batch partitions are the
same on all machines. Opposite statements define a non-
permutation schedule and inconsistent batches. Note that a
permutation schedule with consistent batches is totally de-
termined by the batch sequence on machine 1.

The problem is to find a feasible batch schedule that
minimizes the completion time of the last job on machine
m, that is, the makespan Cmax. We denote this problem as
Fm|sum–batch, ν, s

μ
l |Cmax, where ν = consi if the batches

are restricted to be consistent and ν is omitted otherwise,
and μ = A if setup times are anticipatory, μ = NA if they
are non-anticipatory and μ is omitted if setup times are of
any of the two types. A special case in which the sched-
ules are restricted to be permutation ones is denoted as
PFm|sum–batch, ν, s

μ
l |Cmax. Notations pjl = p and sl = s

in the second field mean that all job processing times are
equal to p and all setup times are equal to s, respectively.

Batch scheduling problems have been attracting much
attention of the scheduling community lately. Reviews of
the results in this area can be found in Potts and Van
Wassenhove (1992), Webster and Baker (1995), Tanaev
et al. (1998), and Potts and Kovalyov (2000). Problem
Fm|sum–batch, sl |Cmax with identical jobs is closely re-
lated to lot streaming and lot splitting models. An overview
of such basic models was given by Trietsch and Baker
(1993). Recent results in this area can be found in Kalir
and Sarin (2000), Bukchin et al. (2002), Bukchin and Masin
(2004), Huq et al. (2004), Li and Xiao (2004), and Chin and
Chang (2005).

Motivation for problem Fm|sum–batch, sl |Cmax comes
from batch production in a multi-stage flexible manufactur-
ing cell. The part-types to be produced are mounted on pal-
lets for machining. The capacity of a pallet is usually quite
large and it can be reasonably assumed to be unbounded.
The part-types mounted on the same pallet are processed to-
gether. Cheng et al. (2000) observed such a situation in a
manufacturer of pneumatic valves.

The studies on the considered problem are limited. Cheng
et al. (2000) proved that problem PF2|sum–batch, consi,
sNA
l = s|Cmax is NP-hard in the strong sense, derived sev-

eral properties of an optimal solution and developed O(n),
O(n2), and O(n3) time algorithms for the cases (1) pjl =
p, j = 1, . . . , n, l = 1,2, (2) pj1 = p, j = 1, . . . , n, or
pj2 = p, j = 1, . . . , n, and (3) p11 ≤ p21 ≤ · · · ≤ pn1 and

p12 ≥ p22 ≥ · · · ≥ pn2, respectively. They also suggested
several heuristics for the general case of their problem. Glass
et al. (2001) studied the problem F2|sum–batch, sA

l |Cmax.
They proved that the batches are consistent in an opti-
mal schedule, the problem is strongly NP-hard and derived
an heuristic with a tight worst-case performance bound of
4/3. The heuristic constructs a schedule with at most three
consistent batches. We became recently aware of the pa-
pers by Mosheiov and Oron (2004) and Mosheiov et al.
(2004) on m-machine flow shop batch scheduling with iden-
tical processing time jobs. Manuscript (Mosheiov and Oron
2004) generalizes the result of Cheng et al. (2000) for identi-
cal processing time jobs and common setup time to the case
of m machines. In Mosheiov et al. (2004), the total job com-
pletion time criterion is considered and formulas for calcu-
lating batch sizes are given for a relaxed problem, in which
batch sizes are allowed to be non-integer.

In Sect. 2, we prove that, for problems Fm|sum–batch,

sl |Cmax and Fm|sum–batch, consi, sl |Cmax there exists an
optimal schedule for which job sequences are the same
on machines 1 and 2, and they are the same on machines
m − 1 and m, m ≥ 2. Therefore, a permutation sched-
ule is optimal for problems F3|sum–batch, sl |Cmax and
F3|sum–batch, consi, sl |Cmax. This property is important
for applying local search techniques to solve the three-
machine problem. We give examples where all optimal
schedules are non-permutation ones for m ≥ 4. Then we
show that there exists an optimal schedule for the prob-
lem F2|sum–batch, sl |Cmax, which is a permutation one
with consistent batches. We give examples where all opti-
mal schedules have inconsistent batches for m ≥ 3. We also
demonstrate that the problem F2|sum–batch, consi, sl |Cmax

with k consistent and given batches can be solved in
O(k logk) time by known algorithms. In Sect. 3, we study
the problem PFm|sum–batch, sl |Cmax under the assump-
tion that the job sequence is given. Investigation of this prob-
lem is important because its solution algorithm can be used
to evaluate job sequences in a local search method for the
problem with the same job sequence on all machines. For
such a problem, an optimal batch partition has to be found on
each machine. In Sect. 3.1, we propose a dynamic program-
ming algorithm for this problem with O(n5m−7) running
time, if m ≥ 3 is a constant. For m = 2, it can be modified
to run in O(n3) time. In Sect. 3.2, we give an example of a
problem, in which an optimal job sequence, the same for all
machines, can easily be found. In this problem, job process-
ing times are the same on each machine l = 2, . . . ,m − 1
and they are oppositely ordered on machines 1 and m.
In Sect. 3.3, we develop an iterative O(n2 logn logL) time
algorithm for the problem PF2|sum–batch, sl |Cmax with a
given job sequence, where L = maxj {n, s1, s2,pj1,pj2}. In
Sect. 4, we assume that m is variable, job processing times
are all equal and setup times are all equal. For this case,
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Fm|sum–batch, sl = s,pj = p|Cmax, an O(
√

n) time algo-
rithm is presented, which is better than the O(n) algorithm
of Cheng, Lin and Toker suggested for a more restrictive
problem with m = 2 and non-anticipatory setups. This paper
concludes with a summary of the results, some observations
and suggestions for future research.

2 Properties of an optimal schedule

Theorem 1 There exists an optimal schedule for the prob-
lem Fm|sum–batch, sl |Cmax, in which job sequences are the
same on machines 1 and 2, and they are the same on ma-
chines m − 1 and m.

Proof Let S be an optimal schedule. In this schedule, let job
i precede job j on machine 1 and job j precede job i on
machine 2. If i and j are in the same batch on machine 1 or
machine 2, then they can be interchanged without changing
job completion times on any machine. Assume that the jobs
are in different batches on machines 1 and 2. On machine 1,
shift job i to the batch of job j . Only completion time of
job i on machine 1 can increase. The makespan value will
not increase. Repeat the described shifting operation a finite
number of times for all pairs of jobs that are not in the same
order on machines 1 and 2. The resulting schedule will be
optimal and it will have the same job sequences on machines
1 and 2. Thus, theorem is proved for m = 2. Note that we did
not change the batch sequence on machine 2.

Consider an optimal schedule with the same batch se-
quence on machines 1 and 2. Assume that job k precedes job
r on machine m− 1, job r precedes job k on machine m and
they are in different batches on machines m − 1 and m. On
machine m, shift job k to the batch of job r . Only start time
of job k on machine m can decrease. The makespan value
will not increase. Therefore, the schedule will remain opti-
mal. Repeat the described shifting operation a finite number
of times for all pairs of jobs that are not in the same order
on machines m − 1 and m. The resulting schedule will evi-
dently satisfy the statement of the theorem. �

Statement 1 There exists an optimal schedule for the prob-
lem F3|sum–batch, sl |Cmax, which is a permutation one.

This statement is a re-wording of the above theorem for
m = 3.

Statement 2 There exists an optimal schedule for the prob-
lem Fm|sum–batch, consi, sl |Cmax, in which job sequences
are the same on machines 1 and 2, and they are the same on
machines m − 1 and m.

Proof Since the batches are consistent, they can be con-
sidered as composite jobs and the result for classical m-
machine flow shop scheduling problem can be applied,

which states that there exists an optimal schedule, in which
the sequence of composite jobs is the same on machines 1
and 2, and it is the same on machines m − 1 and m. �

Theorem 2 There exists an optimal schedule for the prob-
lem F2|sum–batch, sl |Cmax, which is a permutation one
with consistent batches.

Proof Glass et al. (2001) proved this statement for the case
when setups are anticipatory. Based on Theorem 1, it can
easily be proved for both anticipatory or non-anticipatory
setups as follows. Let S be an optimal permutation sched-
ule. Assume that some jobs i and j are scheduled in the
same batch on one machine and they are scheduled in dif-
ferent batches on the other machine. On the other machine,
combine the batch of job i, the batch of job j and the batches
sequenced between these two batches to form a single batch.
The makespan will not increase. Repeat this operation a fi-
nite number of times for all pairs of jobs that are in the same
batch on one machine and they are in different batches on
the other machine. The resulting schedule will be optimal
and will have consistent batches on machines 1 and 2. �

Statement 3 There exist examples of problems (a)
F3|sum–batch, sl, pjl =1|Cmax and (b) F3|sum–batch, sl =
1|Cmax in which all optimal schedules have inconsistent
batches.

Proof Due to Theorem 1, we limit our considerations to per-
mutation schedules.

(a) Consider an example in which there are two jobs
with unit processing times on each machine. Setup times
are s1 = 2 and s2 = s3 = 0. Since setup times on machines
2 and 3 are equal to zero, all setups are anticipatory and
non-anticipatory at the same time. The only optimal batch
schedule with one batch on machine 1 and two batches on
machines 2 and 3 has value Cmax = 7. If two batches are
formed on machine 1 or only one batch is formed on ma-
chine 2 or machine 3, then Cmax ≥ 8.

(b) Consider an example in which there are three jobs
with processing times plj given in Table 1. The only op-
timal batch schedule has value Cmax = 10 for anticipatory
setups and Cmax = 12 for non-anticipatory setups. Optimal
batch sequence on machine 1 is (1,2), (3) and optimal batch
sequences on machines 2 and 3 are the same: (1), (2), (3).

Observe that for any job sequence, if there is only one
batch on each machine, then Cmax is greater than the total

Table 1 Processing times plj
l\j 1 2 3

1 1 1 4

2 1 2 1

3 2 1 1
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Table 2 Cmax values for permutation schedules with two consistent
batches

Batch sequence (1), (2,3) (1,2), (3) (2), (1,3) (2,1), (3)

CA
max(C

NA
max) 13(15) 11(13) 13(15) 11(13)

job processing time, which is 14. If there are three consistent
batches, then machine 1 completes at time 9. After this time
instant the last job can start processing on machines 2 and 3,
thus adding its processing times on machines 2 and 3 to the
Cmax value. If setup times are non-anticipatory, then setup
times preceding this last job on machines 2 and 3 must be
added to the Cmax value as well. This observation implies
that Cmax ≥ 11 for anticipatory setups and Cmax ≥ 13 for
non-anticipatory setups if there are three consistent batches.

Assume that there are two consistent batches. Then ma-
chine 1 completes at time 8. Similarly to the previous case,
after this time instant the last job can start processing on
machines 2 and 3, thus adding its processing times on ma-
chines 2 and 3 to the Cmax value. If setup times are non-
anticipatory, then setup times preceding this last job on ma-
chines 2 and 3 must be added to the Cmax value as well.
We deduce that if there are two consistent batches, then
the total processing time of the last job on machines 2 and
3 should not exceed 2 in an optimal schedule. This con-
dition is satisfied only for the job sequences (1,2,3) and
(2,1,3).

Table 2 gives values Cmax = CA
max(C

NA
max) for feasible so-

lutions with job sequences (1,2,3) and (2,1,3) and two
consistent batches, where CA

max is the makespan value for
anticipatory setups and CNA

max is the makespan value for non-
anticipatory setups. All of them are not optimal. �

Statement 4 There exist examples of the problem
F4|sum–batch, sl |Cmax in which all optimal schedules are
non-permutation ones.

Proof The validity of this statement follows from the fact
that in the case when all setup times are equal to zero, it is
optimal that each batch includes a single job and the batch
scheduling problem is equivalent to the classical flow shop
problem for which this statement holds. �

Consider the case where there are k consistent and given
batches. Index them arbitrarily B1, . . . ,Bk . Consider batch
Bi as a composite job i with processing time Pil = sl +
∑

j∈Bi
pjl on machine l, l = 1, . . . ,m.

Statement 5 The problem F2|sum–batch, consi, sl |Cmax

with k consistent and given batches can be solved in
O(k logk) time.

Proof For non-anticipatory setups, the problem
Fm|sum–batch, consi, sl |Cmax with k consistent and given
batches is evidently equivalent to the classical m-machine
flow shop problem with k composite jobs. Therefore, for
m = 2 an optimal solution can be found by applying
Johnson’s algorithm (Johnson 1954) to the correspond-
ing composite jobs. For anticipatory setups, the problem
Fm|sum–batch, consi, sl |Cmax with k consistent and given
batches is equivalent to the m-machine flow shop problem
with k composite jobs such that an execution of a compos-
ite job on machine l + 1 can start sl+1 time units before its
completion on machine l, l = 1, . . . ,m − 1. For m = 2, this
problem can be solved in O(k logk) time by determining
the sequencing priorities for the composite jobs, see Tanaev
et al. (1994). �

3 Given job sequence

For the problem F2|sum–batch, sl |Cmax, there exists an op-
timal schedule that is a permutation one with consistent
batches. However, the problem is NP-hard in the strong
sense. Therefore, the indicated properties are not enough to
find an optimal schedule in a polynomial time and further
assumptions should be imposed in order to solve the prob-
lem in a polynomial time, unless P = NP .

In this section, we consider the problem PFm|sum–
batch, sl |Cmax, m ≥ 2, in which job sequence is the same
on all the machines and given. For such a problem, an op-
timal batching decision has to be made for each machine.
This problem is important for two reasons. First, it can be
applied in situations when the same optimal job sequence is
given. Second, it can be used to evaluate the quality of a trial
job sequence in the local search techniques for permutation
flow shops. Let the given job sequence be (1, . . . , n).

3.1 Dynamic programming algorithm

We first assume that setups are non-anticipatory and m ≥ 3.
In our dynamic programming algorithm, denoted as DP,
we construct partial feasible schedules forwards. For such
a schedule, we assume that the machines complete their
processing as early as possible.

Given a schedule, let Tl denote the completion time of
machine l, l = 1, . . . ,m. Consider partial feasible schedules
for jobs 1, . . . , j , in which the (m− 1)-tuple (T1, . . . , Tm−1)

is the same and the last batches on the machines 2,3, . . . ,m

start with the same jobs. If all such schedules are extended
in the same way by adding job j + 1 to the same batches
on all the machines, then the new machine completion times
T new

l , l = 1, . . . ,m − 1, will be the same for these sched-
ules and a schedule with the minimum value Tm will have
the minimum value T new

m . Therefore, a schedule with min-
imum completion time of machine m is dominant among
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these schedules such that it can be extended to a complete
feasible schedule with minimum makespan value among all
complete feasible schedules extended from any mentioned
partial schedule.

We associate a state (A1, . . . ,Am, j) with each partial
feasible schedule. Here j is the number of jobs assigned to
the schedule and A1, . . . ,Am are sets of parameters associ-
ated with machines 1, . . . ,m, respectively. We have

A1 = {a1, k1, j1},
Al = {al, kl, hl, jl, vl}, l = 2, . . . ,m − 2,

Am−1 = {dm−1, hm−1, vm−1}, Am = {vm},

where the parameters of the above sets are defined as fol-
lows. Set h1 = 1.

• jl is the last job of a batch on machine l where the crit-
ical path in the network corresponding to the considered
schedule, which determines Cmax value, switches from
machine l to machine l + 1 (definition of the critical path
see, for example, in Tanaev et al. 1995).

• hl , hl ≤ jl−1, is the first job in a batch on machine l where
the critical path switches to machine l from machine l−1.

• al is the number of batches on machine l created for the
jobs hl, hl + 1, . . . , jl .

• kl is the number of batches on machine l created for the
jobs jl + 1, jl + 2, . . . , j .

• vl , 2 ≤ l ≤ m, is the first job in the last batch on machine
l.

• dm−1 is the number of batches on machine m − 1 created
for the jobs hm−1, hm−1 + 1, . . . , j .

Denote P l
kr = ∑r

i=k pil . The values P l
kr , l = 1, . . . ,m,

1 ≤ k ≤ r ≤ n, can be calculated in O(mn2) time. For a
given partial schedule in the state (A1, . . . ,Am, j), we can
use the critical path method and calculate auxiliary values

H0 := 0,

Hl := Hl−1 + alsl + P l
hljl

, l = 1, . . . ,m − 2,

and machine completion times

Tl = Hl + klsl + P l
jl+1,j , l = 1, . . . ,m − 2,

Tm−1 = Hm−2 + dm−1sm−1 + P m−1
hm−1j

.

Therefore, partial schedules in the same state (A1, . . . ,

Am, j) have the same completion times of machines 1, . . . ,

m − 1, and a dominant schedule with the minimum make-
span value can be chosen among them for further extension.

Denote by C(A1, . . . ,Am, j) the minimum makespan
value for all partial feasible schedules in the same state
(A1, . . . ,Am, j). In Algorithm DP, we recursively compute
values C(A1, . . . ,Am, j). In iteration j , we assign job j

to the last batch on machine l or start a new batch for
l = 1, . . . ,m. Such an assignment can be described by a
0-1 vector (x1, . . . , xm), where xl = 0 if j is added to the
last batch and xl = 1 if it starts a new batch on machine l.
The number of different assignments is 2m. In the beginning,
we set C(A1, . . . ,Am, j) = 0 if A1 = · · · = Am = {0, . . . ,0}
and j = 0, and C(A1, . . . ,Am, j) = ∞ for the remaining
tuples (A1, . . . ,Am, j).

Let us describe iteration j + 1, 0 ≤ j ≤ n − 1, of
Algorithm DP. Assume that we are given a state A =
(A1, . . . ,Am, j) with the associated minimum makespan
value C(A) and an assignment vector x = (x1, . . . , xm) for
job j + 1. We show how to calculate a new state A′ =
(A′

1, . . . ,A
′
m, j + 1) corresponding to the schedule obtained

from a schedule in the state A by assigning job j +1 accord-
ing to x. We denote the makespan value of the new schedule
by C(A,x). Note that C(A,x) may not be equal to the min-
imum makespan value C(A′) corresponding to A′ because
there may be several ways of obtaining A′ from a “previous”
state. Consider a diagram of a partial schedule correspond-
ing to the state A. An example is given Fig. 1, which is also
used for further discussion.

Construct a network that can be used to calculate the ear-
liest possible machine completion times in a schedule corre-
sponding to (A′

1, . . . ,A
′
m, j + 1). For these purposes, intro-

duce the following (aggregate) operations Oil with process-
ing times til :

Fig. 1 A diagram of a partial
schedule
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− operations Oil , i = 1,2,3, if xl = 0, and i = 1,2,3,4,
if xl = 1, for l = 2, . . . ,m − 2

− operations Oil , i = 1,2, if xl = 0, and i = 1,2,3, if
xl = 1, for l ∈ {1,m − 1}.
Calculate operation processing times.
For l = 2, . . . ,m − 2:

t1l = alsl + P l
hljl

,

t2l = (kl − 1)sl + P l
jl+1,vl−1,

t3l =
{

sl + P l
vl,j+1, if xl = 0,

sl + P l
vlj

, if xl = 1,

t4l = sl + pj+1,l , if xl = 1.

For l = 1:

t11 = a1s1 + P 1
1j1

,

t21 =
{

k1s1 + P 1
j1+1,j+1, if x1 = 0,

k1s1 + P 1
j1+1,j , if x1 = 1,

t31 = s1 + pj+1,1, if x1 = 1.

For l = m − 1:

t1,m−1 = (dm−1 − 1)sm−1 + P m−1
hm−1,vm−1−1,

t2,m−1 =
{

sm−1 + P m−1
vm−1,j+1, if xm−1 = 0,

sm−1 + P m−1
vm−1j

, if xm−1 = 1,

t3,m−1 = sm−1 + pj+1,m−1, if xm−1 = 1.

In the network, there is a chain (O1l ,O2l ,O3l ) if xl = 0
and a chain (O1l ,O2l ,O3l ,O4l ) if xl = 1 for l = 2, . . . ,

m − 2. There are chains (O1l ,O2l ) if xl = 0 and (O1l ,O2l ,

O3l ) if xl = 1 for l ∈ {1,m − 1}. Furthermore, there are two
chains (O11,O12, . . . ,O1,m−1) and (O21,O32,O33, . . . ,

O3,m−2,O2,m−1). For l = 2, . . . ,m−3, if xl = 1 and xl+1 =
0, then there is an arc (O4l ,O3,l+1). If xl = 1 and xl+1 = 1,
then there is an arc (O4l ,O4,l+1). If x1 = 1 and x2 = 0, then
there is an arc (O31,O32). If x1 = 1 and x2 = 1, then there
is an arc (O31,O42). If xm−2 = 1 and xm−1 = 0, then there
is an arc (O4,m−2,O2,m−1). If xm−2 = 1 and xm−1 = 1, then
there is an arc (O4,m−2,O3,m−1).

Define the length of an oriented path in the constructed
network as a summation of the processing times of the op-
erations in this path. It is easy to see that the longest path
connecting operations O11 and O3l if xl = 0, or operations
O11 and O4l if xl = 1, determines the earliest possible com-
pletion time T ′

l of machine l = 2, . . . ,m−2, and the longest
path connecting operations O11 and O2l if xl = 0 or oper-
ations O11 and O3l if xl = 1 determines the earliest pos-
sible completion time T ′

l of machine l ∈ {1,m − 1}, in a
schedule corresponding to (A′

1, . . . ,A
′
m, j + 1). Parameters

to be included in the sets A′
l , l = 1, . . . ,m − 1, can easily be

found from these pathes. Parameter v′
m = vm if xm = 0, and

v′
m = j + 1 if xm = 1.

Furthermore, calculate makespan value of the constructed
schedule:

C(A,x) = max
{
C(A) + pj+1,m + smxm,T ′

m−1 + δ
}
,

where

δ =

⎧
⎪⎪⎨

⎪⎪⎩

P m
vm,j+1 + sm + smxm,

if xm−1 = 0, or xm−1 = 1 and xm = 0,

sm + pj+1,m,

if xm−1 = 1 and xm = 1.

Perform the above computations for all combinations
(A,x) of a state A = (A1, . . . ,Am, j) and an assignment
vector x = (x1, . . . , xm) for job j + 1.

Let Y(A′) denote the set of pairs (A,x) that lead to the
same state A′ = (A′

1, . . . ,A
′
m, j + 1). Using the principle

of optimality, we determine the minimum makespan value
C(A′) corresponding to the state A′ as

C(A′) = min
{
C(A,x) | (A,x) ∈ Y(A′)

}
.

An optimal schedule for the problem PFm|sum–batch,

sl |Cmax, m ≥ 3, in which job sequence (1, . . . , n) is the same
for all the machines, corresponds to a state (A1, . . . ,Am,n)

with minimal value C(A1, . . . ,Am,n) and can be found by
backtracking.

Algorithm DP can be represented as an algorithm of
finding a shortest path in the n + 1-layer network, denoted
as LN , where states (A1, . . . ,Am, j) represent the vertices
of the layer j and there is an arc connecting vertices A

and A′ of layers j and j + 1, respectively, if state A′ is
obtained from the state A by a certain assignment of job
j +1. Since every single parameter (state variable) in a state
(A1, . . . ,Am, j) can take one of the values 0,1, . . . , n and
the total number of parameters is equal to 5m − 7, the num-
ber of vertices in the network LN is at most O(n5m−7).
Since the number of different assignments of job j is 2m,
the number of arcs in LN is at most O(2mn5m−7), which is
the time complexity of Algorithm DP. For given m, this time
complexity reduces to O(n5m−7).

If the batches are restricted to be consistent, then para-
meters v2, v3, . . . , vm that determine the batch sizes can be
substituted by a single parameter v. In this case, Algorithm
DP will run in O(n4m−5) time.

Recall that Algorithm DP is designed for m ≥ 3. If
m = 2, then only the number of batches d on machine 1,
job v that starts the last batch on machine 2 and the num-
ber of jobs j assigned to the schedule so far can be taken as
state variables. Algorithm DP can be modified to solve the
problem F2|sum–batch, sl |Cmax with a given job sequence
in O(n3) time.
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Algorithm DP was described for the case of non-anti-
cipatory setups. It can easily be modified for the case of
anticipatory setups. Its time complexity estimation will not
change. An open question is the computational complexity
of the problem with a given job sequence, when the number
of machines m is variable.

3.2 An example of a problem with easy to find optimal job
sequence

Consider the case when job processing times satisfy the
following two assumptions: (a) they are the same on the
same machine l, 2 ≤ l ≤ m − 1: pjl = pl , j = 1, . . . , n,
l = 2, . . . ,m − 1, and (b) the jobs can be ordered such that
p11 ≤ · · · ≤ pn1 and p1m ≥ · · · ≥ pnm.

Statement 6 There exists an optimal schedule for the prob-
lem Fm|sum–batch, sl |Cmax under assumptions (a) and (b),
in which job sequence is the same on all the machines and it
is (1, . . . , n).

Proof Consider an optimal schedule that does not satisfy the
statement of the theorem. Then there exist two jobs i and j

such that job i precedes job j on some machines and i > j ,
that is, pi1 ≥ pj1, pim ≤ pjm. Interchange jobs i and j on
all machines where i precedes j . The resulting schedule will
be optimal. Repeat this interchange a finite number of times
for all pairs of jobs that violate the statement of the theo-
rem. �

It follows that the corresponding problem Fm|sum–
batch, sl |Cmax, m ≥ 3, can be solved in O(n5m−7) time by
Algorithm DP in the previous section.

Statement 7 For the problem PFm|sum–batch, consi,
sl |Cmax under assumptions (a) and (b), (1, . . . , n) is an op-
timal job sequence.

Proof The same interchange argument as in the proof of the
previous statement can be applied to prove this statement. �

It follows from the above statement that a modifica-
tion of Algorithm DP can be used to solve the problem
PFm|sum–batch, consi, sl |Cmax under assumptions (a) and
(b) in O(n4m−5) time if m ≥ 3. For m = 2, a modifica-
tion of Algorithm DP will run in O(n3) time for this prob-
lem, which coincides with the running time of the algorithm
of Cheng et al. (2000) derived for non-anticipatory setups
sl = s, l = 1,2.

3.3 An iterative algorithm for m = 2

We now describe another polynomial time algorithm to
solve the problem PF2|sum–batch, sl |Cmax with a given job

sequence. For this problem, there exists an optimal sched-
ule with consistent batches, see Theorem 2. Our algorithm
constructs such a schedule. We first assume that setups are
non-anticipatory. Let S∗ and C∗

max denote an optimal so-
lution and its value for this problem, respectively. We can
find lower and upper bounds such that LB ≤ C∗

max ≤ UB,
where LB = max1≤i≤n{s1 + ∑i

j=1 pj1 + s2 + ∑n
j=i pj2}

and UB = s1 + s2 + ∑n
j=1(pj1 + pj2).

At the upper level of our algorithm, a bisection search
procedure over the range [LB,UB] is performed. In the be-
ginning, the question “Is there a batch sequence S such that
Cmax(S) ≤ C?” is answered for C = LB. If the answer is
“yes”, then we find S, set S∗ = S and the procedure termi-
nates. Otherwise, we set V = LB, U = UB and conduct a
general iteration of the bisection search by answering the
above question for C = 	(V + U)/2
, where 	y
 denotes
the integral part of y. If the answer is “yes”, then we find
and keep the corresponding batch sequence, reset U = C,
retain V unchanged and go to the next iteration of the bi-
section search. If the answer is “no”, then we reset V = C,
retain U unchanged and go to the next iteration of the bi-
section search. The procedure terminates when the length of
the current interval [V,U ] to be partitioned is equal to zero.
In this case, S∗ is the last found batch sequence. It remains
to provide an algorithm for solving the problem of finding
a batch sequence S such that Cmax(S) ≤ C, C ∈ [LB,UB].
Let S be a batch sequence with minimum number of batches
k among batch sequences satisfying the above inequality.
It can be found by enumerating k = 1, . . . , n. Let it be
S = (B1,B2, . . . ,Bk). Denote by bi the size of the batch Bi :
|Bi | = bi , i = 1, . . . , k.

The following algorithm ANSWER either finds the above
batch sizes and, hence, the corresponding batch sequence
S with k batches or determines that such a sequence does
not exist. The main idea of this algorithm is to construct a
feasible batch sequence by assigning as many jobs to the
current batch Bi , i = 1, . . . , k, as permitted by its latest pos-
sible completion time on machine 1. Completing batch Bi

after this time on machine 1 implies completing the last job
n after the threshold value C.

Assume that the batches B1, . . . ,Bi−1 have been formed.
Furthermore, assume without loss of generality that the first
setup on machine 1 starts at time zero and that jobs and se-
tups are performed with no idle time between them on ma-
chines 1 and 2. It is convenient to introduce the following
notations.

• ai−1 is the number of jobs in the batches B1, . . . ,Bi−1.
• T (i−1) is the completion time of job ai−1 on machine 1,

i.e., T (i−1) = (i − 1)s1 + ∑ai−1
j=1 pj1.

• b is the unknown number of jobs in batch Bi .
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• f (b) is the total setup and processing time of the batch Bi

on machine 1, i.e., f (b) = s1 + ∑ai−1+b

j=ai−1+1 pj1.

• T (i)(b) is the completion time of job ai−1 + b on ma-
chine 1, i.e., T (i)(b) = T (i−1) + f (b).

• Δi is the latest possible completion time of batch Bi on
machine 1 provided that job n completes at time C, i.e.,
Δi = C − (k − i + 1)s2 − ∑n

j=ai−1+1 pj2.

Note that 1 ≤ b ≤ n − (ai−1 + k − i) must be satisfied
in order to ensure that each of the batches Bi, . . . ,Bk in-
cludes at least one job. Given B1, . . . ,Bi−1, the maximum
possible size of the current batch Bi can be calculated from
bi = max{b | T (i)(b) ≤ Δi}. Algorithm ANSWER calcu-
lates values b1, . . . , bk . Its formal description is given below.

Algorithm ANSWER
(for given job sequence (1, . . . , n), k consistent batches and
non-anticipatory setups)

Step 1. (Initialization) Set T (0) = 0, a0 = 0.
Step 2. (Recursive computation of batch sizes) For i = 1,

. . . , k, compute the following.
For b = 1, . . . , n − (ai−1 + k − i), calculate f (b) =
s1 + ∑ai−1+b

j=ai−1+1 pj1 and T (i)(b) = T (i−1) + f (b).

Find b∗ = max{b | T (i)(b) ≤ Δi, b = 1, . . . , n − (ai−1

+ k − i)}.
It is easy to see that function T (i)(b) is increasing in b.
Therefore, we can apply a bisection search in the range
1, . . . , n − (ai−1 + k − i) of b to find b∗ or determine
that it does not exist in O(logn) time.
If b∗ does not exist, then stop: the required batch se-
quence S with k batches such that Cmax(S) ≤ C does
not exist.
Otherwise, set a = ai−1 + b∗. Note that a ≤ n

− (k − i).
If i < k and a < n − (k − i), then set bi = b∗, ai = a

and repeat Step 2 for i = i + 1.
If i ≤ k and a = n − (k − i), then stop: the re-
quired batch sequence is determined by the batch
sizes (b1, . . . , bi−1, b

∗,1, . . . ,1), where br = 1, r =
i + 1, . . . , k.
If i = k and a < n − (k − i) = n, then stop: the
required batch sequence S with k batches such that
Cmax(S) ≤ C does not exist.

Theorem 3 Algorithm ANSWER either finds a batch se-
quence S with k batches such that Cmax(S) ≤ C or estab-
lishes that such a sequence does not exist.

Proof In each iteration i of algorithm ANSWER, a partial
batch schedule (B1, . . . ,Bi), |Br | = br , r = 1, . . . , i, for the
jobs 1, . . . , ai is constructed such that the completion time
of batch Bi on machine 2 does not exceed C minus the mini-
mal time needed to process the remaining jobs ai + 1, . . . , n

in the remaining k − i batches on machine 2 so that each

of the remaining batches contains at least one job. There-

fore, if algorithm ANSWER finds a batch sequence S, then

Cmax(S) ≤ C.

Let us now consider an arbitrary batch sequence S′ with

minimum number of batches k such that Cmax(S
′) ≤ C.

We show that S′ can be transformed into the batch se-

quence S constructed by the algorithm ANSWER. Let

S′ = (G1, . . . ,Gk), where |Gi | = gi , i = 1, . . . , k.

Introduce empty batches B0 = G0 = φ, which are sched-

uled at time zero on all the machines. Assume that Gr = Br ,

r = 0,1, . . . , i, for some 0 ≤ i ≤ k − 2. If Gr = Br for

r = 0,1, . . . , k − 1, then S = S′.
Observe that gi+1 ≤ bi+1 because bi+1 is the maximum

possible size for the batch sequenced (i + 1)th in any batch

sequence with k batches and batches B1, . . . ,Bi sequenced

first. Assume that gi+1 < bi+1. Let ai be the number of

jobs scheduled in the batches B1, . . . ,Bi . In batch sequence

S′, move jobs ai + gi+1 + 1, ai + gi+1 + 2, . . . ,min{ai +
bi+1, ai + gi+1 + gi+2} from batch Gi+2 to batch Gi+1.

The new batch sequence will be feasible because bi+1 is

the maximum size for the batch sequenced (i + 1)th in any

batch sequence with k batches and batches B1, . . . ,Bi se-

quenced first. Observe that bi+1 < gi+1 + gi+2 because oth-

erwise the new batch sequence will contain k − 1 batches

and S′ will not be a feasible batch sequence with minimum

number of batches. Therefore, there exists a feasible batch

sequence with k batches such that Gr = Br , r = 1, . . . , i+1.

Repeating this argument for i = 0,1, . . . , k − 2 completes

the proof. �

It is easy to see that algorithm ANSWER runs in

O(k logn) time. Application of this algorithm for k = 1,

. . . , n, will answer the question “Is there a batch sequence

S such that Cmax(S) ≤ C?” in O(n2 logn) time. Since

this question will be asked by the bisection search pro-

cedure O(log(UB − LB)) times and UB is bounded by a

polynomial in L = maxj {n, s1, s2,pj1,pj2}, the problem

PF2|sum–batch, sNA
l |Cmax with a given job sequence can

be solved in O(n2 logn logL) time.

For problem with anticipatory setups, a similar solution

algorithm with the same time complexity estimation can be

applied. The differences are the following. The lower bound

is LB = max1≤i≤n{max{s1 + ∑i
j=1 pj1, s2} + ∑n

j=i pj2}
and the upper bound is UB = max{s1 + ∑n

j=1 pj1, s2} +
∑n

j=1 pj2. In algorithm ANSWER, value b∗ should be

found from the equation
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b∗ = max

{

b

∣
∣
∣
∣T

(i)(b) ≤ max

{

C − (k − i)s2

−
n∑

j=ai−1+1

pj2, s2

}

, b = 1, . . . , n − (ai−1 + k − i)

}

.

4 Consistent batches, equal processing times and equal
setup times

In this section, we consider a problem in which sched-
ules are restricted to have consistent batches, job processing
times are the same: pjl = p, j = 1, . . . , n, l = 1, . . . ,m, and
setup times are the same: sl = s, l = 1, . . . ,m. This problem
is important as itself. Let us denote it as P.

Theorem 4 There exists an optimal schedule for the prob-
lem P that is a permutation one.

Proof We first assume that setups are non-anticipatory. Con-
sider an arbitrary schedule S for the problem P. Assume that
{B1, . . . ,Bk} is the set of consistent batches in this schedule.
Let bi = |Bi |, i = 1, . . . , k, and bi∗ = max{bi | i = 1, . . . , k}.
Assume without loss of generality that the batch sequence
on machine 1 is (B1, . . . ,Bk). We first show that

Cmax(S) ≥
k∑

i=1

(s + pbi) + (m − 1)(s + pbi∗) := L. (1)

Since for a schedule, in which the batches are sequenced in
the order (B1, . . . ,Bk) on each machine we have Cmax = L,
the correctness of inequality (1) is sufficient for the proof.

Let us represent schedule S as a network, in which
a vertex (i, l) corresponds to the processing of batch Bi

on machine l. With vertex (i, l), we associate its process-
ing time s + bip. In the network, there are l-machine
chains ((j l

1, l), (j
l
2, l), . . . , (j

l
k, l)), l = 1, . . . ,m, where Bjl

i

is the batch sequenced ith on machine l, and i-batch
chains ((i,1), (i,2), . . . , (i,m)), i = 1, . . . , k. Similarly to
Sect. 3.1, we define the length of an oriented path in the
constructed network as a summation of the processing times
of the vertices in this path. The value of Cmax(S) is deter-
mined by the length of a longest path connecting vertices
(1,1) and (jm

k ,m) in the described network.
Consider a path that goes from vertex (1,1) to vertex

(jm
k ,m) and includes all vertices of the i∗-batch chain. We

call such a path an i∗-path. Note that any such path in-
cludes vertices (1,1), (2,1), . . . , (i∗ − 1,1). In this path,
contribution of the i∗-batch chain to the Cmax value is
equal to x := m(s + pbi∗). Contribution of the vertices
(1,1), (2,1), . . . , (i∗ − 1,1) to the Cmax value is equal to
y := ∑i∗−1

i=1 (s + pbi). We will show that there exists an
i∗-path that includes a vertex of every i-batch chain for

i = i∗ + 1, . . . , k. Since contribution of these vertices to
the Cmax value is equal to z := ∑k

i=i∗+1(s + pbi) and
x + y + z = L, it is sufficient for the proof. Introduce the
set of batch indices Z = {i | i = i∗ + 1, . . . , k}.

Let l0 be the smallest machine index such that at least
one vertex (i, l0), i ∈ Z, precedes vertex (i∗, l0) in the
l0-machine chain. If this index does not exist, then vertices
(i,m), i ∈ Z, follow vertex (i∗,m) in the m-machine chain
and we are done.

Let (i0, l0), i0 ∈ Z, be a vertex which precedes vertex
(i∗, l0) and all other vertices (i, l0), i ∈ Z, in the l0-machine
chain. Construct a partial i∗-path, denoted as P0, that in-
cludes vertices (i0, l0 − 1) and (i0, l0), all vertices between
(i∗, l0 −1) and (i0, l0 −1) in the (l0 −1)-machine chain and
all vertices between (i0, l0) and (i∗, l0) in the l0-machine
chain. Remove from the set Z all batch indices i such that
(i, l′) ∈ P0 for some l′ ∈ {1, . . . , l0}. If Z = φ, then the path
P0 can evidently be extended to the required i∗-path.

If Z �= φ, then extend the path P0 as follows. Let l1 be the
smallest machine index such that at least one vertex (i, l1),
i ∈ Z, precedes vertex (i∗, l1) in the l1-machine chain, l1 ≥
l0 + 1. If this index does not exists, then vertices (i,m),
i ∈ Z, follow vertex (i∗,m) in the m-machine chain and we
are done.

Let (i1, l1) ∈ Z, i1 ∈ Z, be a vertex which precedes vertex
(i∗, l1) and all other vertices (i, l1), i ∈ Z, in the l1-machine
chain. Construct a partial i∗-path, denoted as P1, that in-
cludes vertices of the path P0, vertices (i1, l1 − 1) and
(i1, l1), all vertices between (i∗, l1 − 1) and (i1, l1 − 1) in
the (l1 − 1)-machine chain and all vertices between (i1, l1)

and (i∗, l1) in the l1-machine chain. Remove from the set
Z all batch indices i such that (i, l′) ∈ P1 for some l′ ∈
{l0 + 1, . . . , l1}. If Z = φ, then path P1 can evidently be ex-
tended to the required i∗-path.

The described procedure of a i∗-path construction can be
repeated until a machine index lk , k = 0,1, . . . , exists and
Z �= φ. After at most m iterations one of these two condi-
tions will be violated and the required i∗-path will be con-
structed. A similar proof can be provided for the case of an-
ticipatory setups. �

Since the jobs are identical, it follows from the above the-
orem that an arbitrary job sequence is optimal for the prob-
lem P. Let it be (1, . . . , n). Consider an arbitrary schedule
S with job sequence (1, . . . , n) on each machine. Since the
batches are consistent, this schedule is completely character-
ized by the number of batches k and batch sizes b1, . . . , bk ,
where bi is the size of the batch sequenced ith. Using the
critical path method, calculate the makespan value of this
schedule:
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Cmax(S) = max
1≤i1≤i2≤···≤im−1≤k

{
i1∑

i=1

(s + pbi) +
i2∑

i=i1

(s + pbi)

+ · · · +
k∑

i=im−1

(s + pbi)

}

= max
1≤i1≤i2≤···≤im−1≤k

{
(k + m − 1)s + pn

+ p(bi1 + bi2 + · · · + bim−1)
}

for non-anticipatory setups and

Cmax(S) = max
1≤i1≤i2≤···≤im−1≤k

{
i1∑

i=1

(s + pbi) + pbi1

+
i2∑

i=i1+1

(s + pbi) + · · · + pbim−1

+
k∑

i=im−1+1

(s + pbi)

}

= max
1≤i1≤i2≤···≤im−1≤k

{
ks + pn

+ p(bi1 + bi2 + · · · + bim−1)
}

for anticipatory setups. Thus, for either non-anticipatory
or anticipatory setups, the problem reduces to finding the
number of batches k and corresponding batch sizes bi , i =
1, . . . , k, such that

max
1≤i1≤i2≤···≤im−1≤k

{
ks + p(bi1 + bi2 + · · · + bim−1)

}

= ks + p max
1≤i1≤i2≤···≤im−1≤k

{bi1 + bi2 + · · · + bim−1} (2)

is minimized.
Let bi∗ = bmax := max{bi |i = 1, . . . , k}. It is easy to

see that the maximum in (2) is achieved when ij = i∗,
j = 1, . . . ,m − 1. Since

∑k
i=1 bi = n, value bmax is min-

imized when it reaches its lower bound �n/k. Therefore,
a schedule with k batches is optimal if its batch sizes b∗

i ,
i = 1, . . . , k, satisfy the following conditions.

1 ≤ b∗
i ≤ �n/k, i = 1, . . . , k, (3)

k∑

i=1

b∗
i = n. (4)

If n/k is integer, then trivially b∗
i = n/k, i = 1, . . . , k.

Otherwise, there exists an optimal schedule in which x,
x ∈ {1, . . . , k − 1}, batches have the same size 	n/k
 := a

and k − x batches have the same size �n/k = a + 1. For
this schedule, condition (3) is evidently satisfied. Condition
(4) can be written as ax + (k − x)(a + 1) = n, from where

we obtain x = k(a + 1) − n. Since n/k is not integer, we
have x = k�n/k − n ≥ 1 and x ≤ k − 1. The latter inequal-
ity is equivalent to (�n/k − 1)k = 	n/k
k ≤ n − 1 which
is correct. Thus, we have proved

Theorem 5 An arbitrary permutation schedule in which
there are x = k�n/k−n batches with size 	n/k
 and k −x

batches with size �n/k is optimal for the problem P with
given number k of consistent batches.

Mosheiov and Oron (2004) independently obtained a
similar result for a special case of problem P, in which all
setups are non-anticipatory and schedules are restricted to
be permutation ones with consistent batches. However, they
did not give the formula for calculating x.

To solve problem P, it remains to find an optimal num-
ber of batches k. It is an optimal solution to the following
problem, denoted as P1:

Minimize f (k) = ks + p(m − 1)�n/k,
subject to k ∈ {1, . . . , n}.
Let k∗ be an optimal solution to this problem and y∗ =
�n/k∗. Observe that (k∗, y∗) is one of the pairs (ky, y) such
that y ∈ M0 := {�n/k | k = 1, . . . , n} and ky = min{k |
�n/k = y}. We have M0 = M1 ∪ M2 where M1 = {y | y ∈
M0, y ≥ √

n} and M2 = {y | y ∈ M0, y <
√

n}. Since y is
an integer, M1 = {y | y ∈ M0, y ≥ �√n} and M2 = {y | y ∈
M0, y ≤ �√n − 1}.

Consider pairs (ky, y) for y ∈ M2. Calculate k1 = n and

ky = min
{
k | �n/k = y

} = min
{
k | n/y ≤ k < n/(y − 1)

}
,

y = 2, . . . , �√n − 1.

Note that value ky may not exist for some y ∈ {2, . . . ,

�√n − 1}. However, if it exists, then ky = �n/y, which
follows from the above equation. Therefore,

(ky, y) ∈ {(�n/y, y) | y = 1, . . . , �√n − 1
}

for y ∈ M2.

Similarly,

(ky, y) ∈
{
(
k, �n/k)

∣
∣
∣
∣k = 1, . . . ,

⌈
n

�√n − 1

⌉

− 1

}

for y ∈ M1,

because inequalities �n/k ≥ �√n, n/k > �n/k − 1 and
the integrality of k imply k ≤ � n

�√n−1
− 1. From the above

discussion, we deduce that

(
k∗, y∗) ∈ M :=

{(

k,

⌈
n

k

⌉)∣
∣
∣
∣ k = 1, . . . ,

⌈
n

�√n − 1

⌉

−1

}

∪
{(⌈

n

y

⌉

, y

)∣
∣
∣
∣y = 1, . . . , �√n − 1

}

.
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The problem P1 can be solved by enumerating all pairs
in the set M . The cardinality |M| of this set is at most
� n

�√n−1
 + �√n − 2. Since

⌈
n

�√n − 1

⌉

≤
⌈

n√
n − 1

⌉

≤
⌈

n − 1√
n − 1

+ 1√
n − 1

⌉

=
⌈√

n + 1 + 1√
n − 1

⌉

≤ �√n  + 2,

we obtain |M| ≤ 2�√n.
We have shown that the problem Fm|sum–batch, consi,

sl = s,pjl = p|Cmax can be solved in O(
√

n) time. It is
an improvement over the result of Cheng et al. (2000) who
derived an O(n) time algorithm for the case m = 2 and
non-anticipatory setups. Note that both algorithms are not
polynomial for the considered problem because its input in-
cludes only four parameters n, m, s, and p. Finding an al-
gorithm polynomial in log(max{n,m, s,p}) appears to be a
non-trivial task because the function f (k) may have several
local minima.

5 Conclusions

We have proved that for the problem Fm|sum–batch,

sl |Cmax with anticipatory or non-anticipatory setups there
exists an optimal schedule for which job sequences are the
same on machines 1 and 2 and they are the same on ma-
chines m − 1 and m, m ≥ 3, irrespectively of whether the
batches are restricted to be consistent or not. It follows that a
permutation schedule is optimal for this problem when m =
3. For m ≥ 4, there are examples where all optimal sched-
ules are non-permutation ones. We have shown that there
exists an optimal schedule for the problem F2|sum–batch,

sl |Cmax, which is a permutation one with consistent batches.
Examples have been derived where all optimal sched-
ules have inconsistent batches for m ≥ 3. The problem
F2|sum–batch, consi, sl |Cmax with k consistent and given
batches has been shown to be solvable in O(k logk) time by
known algorithms. A dynamic programming algorithm with
O(n5m−7) running time has been developed for the problem
PFm|sum–batch, sl |Cmax, in which the same job sequence
is given for all the machines and m ≥ 3. For m = 2, it can
be modified to run in O(n3) time. The algorithm can be ap-
plied to solve a special case when job processing times are
the same on each machine l = 2, . . . ,m − 1 and they are
oppositely ordered on machines 1 and m. An iterative algo-
rithm with O(n2 logn logL) running time, where L is the
maximum numerical parameter, has been developed for the
problem PF2|sum–batch, sl |Cmax with the same given job
sequence on both machines. An O(

√
n) time algorithm has

been presented to solve the problem with arbitrary number
of machines and consistent batches, when job processing

times are all equal and setup times are all equal. Our al-
gorithms improve the existing algorithms of Cheng et al.
(2000) suggested for more restrictive cases.

Below we pose three open questions that are interesting
for future research.

(1) Is there an optimal schedule which is the one with con-
sistent batches for the problem with m machines, equal
setup times and equal job processing times? In Sect. 2,
we gave a positive answer to this question for the case
m = 2.

(2) What is the computational complexity of the prob-
lem F |sum–batch, consi, sl = s,pjl = p|Cmax? Recall
that our O(

√
n) algorithm is pseudopolynomial for this

problem.
(3) What is the computational complexity of the problem

with the same given job sequence for variable m ≥ 3?
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