
J Sched (2007) 10: 311–326
DOI 10.1007/s10951-007-0031-y

The discrete time/cost trade-off problem: extensions and heuristic
procedures

Mario Vanhoucke · Dieter Debels

Published online: 7 August 2007
© Springer Science+Business Media, LLC 2007

Abstract Time/cost trade-offs in project networks have
been the subject of extensive research since the development
of the critical path method (CPM) in the late 50s. Time/cost
behaviour in a project activity basically describes the trade-
off between the duration of the activity and its amount of
non-renewable resources (e.g., money) committed to it. In
the discrete version of the problem (the discrete time/cost
trade-off problem), it is generally accepted that the trade-off
follows a discrete non-increasing pattern, i.e., expediting an
activity is possible by allocating more resources (i.e., at a
larger cost) to it. However, due to its complexity, the prob-
lem has been solved for relatively small instances.

In this paper we elaborate on three extensions of the
well-known discrete time/cost trade-off problem in order to
cope with more realistic settings: time/switch constraints,
work continuity constraints, and net present value maxi-
mization. We give an extensive literature overview of exist-
ing procedures for these problem types and discuss a new
meta-heuristic approach in order to provide near-optimal
heuristic solutions for the different problems. We present
computational results for the problems under study by
comparing the results for both exact and heuristic proce-

M. Vanhoucke (�) · D. Debels
Department of Management Information, Operations
Management and Technology Policy, Faculty of Economics and
Business Administration, Ghent University, Tweekerkenstraat 2,
9000 Gent, Belgium
e-mail: mario.vanhoucke@UGent.be

D. Debels
e-mail: dieter.debels@UGent.be

M. Vanhoucke
Operations and Technology Management Center, Vlerick Leuven
Gent Management School, Reep 1, 9000 Gent, Belgium
e-mail: mario.vanhoucke@vlerick.be

dures. We demonstrate that the heuristic algorithms produce
consistently good results for two versions of the discrete
time/cost trade-off problem.

Keywords Project scheduling · Time/cost tradeoff · Net
present value

1 Introduction

Since the development of the critical path method (CPM),
time/cost trade-offs have been the subject of extensive re-
search in project scheduling. The trade-off involves a non-
increasing pattern between the duration of an activity and its
amount of non-renewable resource use, i.e., expediting an
activity is possible by allocating more resources (i.e., at a
larger cost) to it. This well-known problem has been studied
under various assumptions.

The early endeavors to incorporate time/cost trade-offs in
project networks assumed that the direct activity cost func-
tions are linear non-increasing functions, i.e., the activity
costs are a linear function of the activity durations, which
are bounded from below (crash duration) and from above
(normal duration). The objective was to determine the ac-
tivity durations and to schedule the activities in order to
minimize the project costs, i.e., the sum of the direct ac-
tivity costs and the time-dependent indirect project costs,
within a specified project deadline. Solution procedures
for the linear case were proposed by Kelley and Walker
(1959), Fulkerson (1961), Kelley (1961), Ford and Fulker-
son (1962), Siemens (1971), Goyal (1975), and Elmaghraby
and Salem (1984). Several other forms of activity cost func-
tions have been studied, such as concave (Falk and Horowitz
1972), convex (Lamberson and Hocking 1970; Kapur 1973;
Siemens and Gooding 1975; Elmaghraby and Salem 1982),

312 J Sched (2007) 10: 311–326

or even general continuous activity cost functions (Moder et
al. 1983).

Due to its practical relevance, procedures have been
developed for solving the discrete version of the prob-
lem. This discrete time/cost trade-off problem (further ab-
breviated as the DTCTP) occurs, when the duration of
project activities is a discrete, non-increasing function of
the amount of a single non-renewable resource commit-
ted to them. It involves the selection of a set of execu-
tion modes (the time-cost tuples for each activity) in order
to achieve a certain objective. In the literature, the prob-
lem objective has been divided into three parts. The so-
called deadline problem (problem 1, T |cpm, δn,disc,mu|av
following the classification scheme of Herroelen et al. 1999)
aims at minimizing the total cost of the project while meet-
ing a given deadline, whereas the budget problem (problem
1, T |cpm,disc,mu|Cmax) involves minimizing the project
duration without exceeding a given budget. A third ob-
jective is to construct the complete and efficient time/cost
profile over the set of feasible project durations (prob-
lem 1, T |cpm,disc,mu|curve). This complete curve can be
found by means of a horizon-varying approach, which in-
volves the iterative solution of the deadline problem over
the feasible project durations. This problem type has been
investigated by numerous researchers, such as Crowston
and Thompson (1967), Crowston (1970), Robinson (1975),
Billstein and Radermacher (1977), Wiest and Levy (1977),
Hindelang and Muth (1979), Patterson and Harvey (1979),
Bianco and Speranza (1990), Vercellis (1990), Elmaghraby
and Kamburowski (1992), De et al. (1995, 1997), Demeule-
meester et al. (1996, 1998), Skutella (1998), and Akkan et
al. (2000a, 2000b). In the remainder of this paper, we focus
on the deadline version of the discrete time/cost trade-off
problem under different assumptions.

Despite the large amount of literature of the discrete
time/cost trade-off problem, little has been done in extend-
ing the problem to more realistic settings or solving large-
scaled problems with heuristic procedures. Skutella (1998)
presents approximation algorithms for the discrete time/cost
trade-off problem, while Deineko and Woeginger (2001)
discuss the hardness of finding approximations for that prob-
lem type. For an excellent review, we refer the reader to De
et al. (1995). In our paper, we review three extensions to
the classical discrete time/cost trade-off problem from litera-
ture in order to meet the requirements of real-life scheduling
problems, i.e., time-switch constraints, work continuity con-
straints, and net present value optimization. Since De et al.
(1997) have proven that the DTCTP is strongly NP-hard, we
present a new meta-heuristic approach for these extended
DTCTP versions. In the computational results section, we
test whether the heuristic solutions can offer a valuable al-
ternative for the exact algorithms.

Time-switch constraints have been introduced by Yang
and Chen (2000) as a logical extension of the analyses

and achievements of Chen et al. (1997) and have only
been incorporated in the discrete time/cost trade-off prob-
lem by Vanhoucke et al. (2002) and Vanhoucke (2005). In
these papers the deadline version of the discrete time/cost
trade-off problem with time-switch constraints (problem
1, T |tsc, cpm, δn,disc,mu|av) has been solved for a special
type of time-switch constraints in which each activity fol-
lows one of three possible work/rest patterns: Firstly, if an
activity follows a day-pattern it can only be executed during
day time, from Monday till Friday. Secondly, an activity fol-
lows a d&n-pattern if it can be executed during the day or
night, from Monday till Friday. Finally, a dnw-pattern means
that the corresponding activity can be in execution every day
or night, and also during the weekend. In the computational
results section of the current paper, we rely on the exact pro-
cedure of Vanhoucke (2005), since it has been proven that it
outperforms Vanhoucke et al. (2002).

Work continuity constraints have been defined by El-
Rayes and Moselhi (1998) in order to model the timely
movement of project resources and hence to maintain conti-
nuity of work. The importance of this feature has been high-
lighted by several authors, such as De Boer (1998) for spa-
tial resources, Gong (1997) for time dependent cost (TDC),
and Goto et al. (2000) for time dependent cost resources.
In the construction projects literature, several scheduling
methodologies have been proposed under different names,
such as the Line of Balance (LOB) method or the Lin-
ear Scheduling Method (LSM). Harris and Ioannou (1998)
give an excellent overview and integrate these methods into
the so-called repetitive scheduling method (RSM). A practi-
cal example of work continuity constraints in the repetitive
construction industry can be found in Vanhoucke (2006).
The discrete time/cost trade-off problem with work continu-
ity constraints (DTCTP-wc), to the best of our knowledge,
has only been studied by Reda (1990). The author presents
a linear programming formulation for a repetitive project-
scheduling problem where the duration of each activity can
be decreased by allocating more resources at additional di-
rect costs. The goal is to finish the project with a prespecified
target duration and at a minimum direct cost. The constraints
are to maintain production rates and continuity of work. Un-
fortunately, no computational results have been presented.

Net present value optimization in project scheduling has
been investigated under various project assumptions, and
has been discussed by Herroelen et al. (1997). In these
problems types, cash flows are associated with activities
or (milestone) events, and the objective is to maximize the
discounted value of these cash flows. Despite the growing
amount of research papers about net present value maxi-
mization, the only procedure for the discrete time/cost trade-
off problem with net present value maximization (DTCTP-

J Sched (2007) 10: 311–326 313

npv, or problem type 1, T |cpm, δn,disc,mu|npv1) is, to the
best of our knowledge, the procedure of Erengüç et al.
(1993). In this paper the authors show that the DTCTP-npv
is a mixture of the well-known time/cost trade-off problem
and the payment-scheduling problem. They have developed
a Benders decomposition approach to solve the problem to
optimality and have tested their procedure on 140 project
networks with up to 64 activities and 30 nodes.

The remainder of the paper is as follows: The next section
describes a general problem formulation for the DTCTP and
its three extensions to time-switch constraints (tsc), work
continuity constraints (wc), and net present value (npv) max-
imization. We show that the three extensions from litera-
ture do not change the problem fundamentally. Section 3
describes a meta-heuristic approach that is able to gener-
ate near-optimal solutions for the different problems under
study. In Sect. 4 we report on computational results. Sec-
tion 5 draws overall conclusions and suggestions for future
research.

2 The problem formulation

In the remainder of this paper, we assume that a project is
represented by an activity-on-the-arc network G = (N,A)

where the set of nodes, N , represents network events and
the set of arcs, A, represents the activities of the project.
The nodes of the network are numbered from the single
start node 1 to the single end node n. Each activity has
Mij modes, represented by a tuple (dij (k), cij (k)) with k =
1, . . . ,Mij . The duration dij (k) of an activity (i, j) ∈ A is
a discrete, non-increasing function of the amount of a sin-
gle non-renewable resource (money, cij (k)) allocated to it,
i.e., dij (1) < dij (2) < · · · < dij (Mij) and cij (1) > cij (2) >

· · · > cij (Mij). Other characteristics depend on the problem
type under study and are the topic of the following sub-
sections. A solution can be represented by a selected set
of modes mij = (dij (k), cij (k)) (with k ∈ {1, . . . ,Mij }) for
each activity (i, j) such that the total cost

∑
(i,j)∈A cij (k) is

minimized. In the remainder of this section, we show that the
general model description can easily be extended to the three
aforementioned extensions: time-switch constraints, work
continuity constraints and net present value optimization.

Time switch constraints: In the original DTCTP, it is as-
sumed that an activity can start at any time after the finishing

1Note that we refer to the DTCTP-npv as problem
1, T |cpm, δn,disc,mu|npv. This is in contrast to the time-switch
constraints (tsc), which can be considered as a variant of preemption
(work periods alternated by rest periods). Therefore, we have placed
the abbreviation tsc in the second field (the so-called β-field). This
is not the case for the DTCTP-npv where the objective (the so-called
γ -field) is to maximize the net present value. Hence, we placed the
abbreviation npv in the last field of the problem description.

of all its predecessors. The DTCTP-tsc assumes that activ-
ities are forced to start in a specific time interval and are
down in some specified rest interval. Without loss of gen-
erality, we have incorporated a special type of time-switch
constraints in which each activity follows one of three pos-
sible work/rest patterns (day, d&n and dnw, see Vanhoucke
2005).

Work continuity constraints: The DTCTP-wc minimizes
the total cost of the schedule, that consists of the sum of
both the direct activity costs (resulting from the selection of
a mode for each activity) and work continuity cost for each
activity group A′ ⊂ A. The latter cost can be minimized by
minimizing the time-span between the first and last activity
of the activity group A′. Indeed, the resources are needed
from the start of the first activity and will only be released
at the completion of the last activity of the activity group.
Consequently, the starting times of all intermediate activi-
ties have no influence on the idle time of this resource and,
therefore, do not influence the total work continuity cost.
We show that the DTCTP-wc can easily, and efficiently, be
solved by any algorithm for the DTCTP by the incorporation
of two extra arcs per activity group. For the sake of clarity,
we introduce the following symbols:

A′ Set of activities (activity group A′ ⊂ A) that require
a common set of resources subject to work continu-
ity constraints;

cw Work continuity cost, i.e. the cost per time unit for
the set of resources of the activity group;

esti Earliest possible realization time of event i (i ∈
N) based on forward calculations with all activity
modes on their crash duration;

lsti Latest possible realization time of event i (i ∈ N)

based on backward calculations (given a project
deadline δn) with all activity modes on their crash
duration.

The DTCTP-wc involves a trade-off between the direct
cost of an activity and the total work continuity cost (i.e.,
the work continuity unit cost cw times the total timespan of
activity group A′). Indeed, increasing the duration of an ac-
tivity of A′ immediately results in a decrease of the activity’s
direct cost, but might lead to an increase in the total duration
of the activity group and, consequently, to an increase in the
total work continuity cost. This trade-off can be embedded
in the network by adding two extra arcs for each activity
group (referred to as arc x and arc y) with each a linear
time/cost profile as shown in Fig. 1.

In Fig. 1 we refer to node i as the event denoting the start
of the first activity of A′, i.e., the realization time of node i

equals the starting time of the first activity of A′. Node j

is used to refer to the event denoting the finish of the last
activity of A′. Consequently, the activities (immediate arcs)

314 J Sched (2007) 10: 311–326

Fig. 1 Two additional arcs for
solving the DTCTP-wc

emanating from node i are all part of A′, while all incom-
ing arcs of node j also belong to A′. This is always possible
due to the introduction of two extra nodes and some dummy
arcs in the network. The minimal total duration of the activ-
ity group A′ equals estj − esti = lstj − lsti , while the maxi-
mal total duration of the activity group A′ equals lstj − esti .
Consequently, the minimal total work continuity cost of the
project equals cmin = (estj − esti) ∗ cw = (lstj − lsti) ∗ cw ,
and the maximal total work continuity cost of the project
with a given deadline δn equals cmax = (lstj − esti) ∗ cw .
All intermediate points between these two extremes follow
a linear behaviour and lie between cmin and cmax.

The duration of arc x can vary between the crash dura-
tion lx = esti and the normal duration ux = lsti , with the
corresponding costs of cx(lx) = cmax

2 and cx(ux) = cmax
2 −

(lsti − esti) ∗ cw . Arc y can vary between ly = δn − lstj
and uy = δn − estj with similar costs cy(ly) = cmax

2 and
cy(uy) = cmax

2 − (lstj − estj) ∗ cw . In doing so, we assure
that the total work continuity cost will always2 lie between
cmin and cmax, and follows a linear behaviour with slope
cw . Since the introduction of these arcs implicitly takes the
trade-off between total activity cost and work continuity into
account, this problem can be solved by any algorithm for the
DTCTP.

Net present value optimization: The deadline version of
the discrete time/cost trade-off problem with net present
value maximization involves the scheduling of project ac-
tivities in order to maximize the net present value of the
project subject to precedence relations. To that purpose, pos-
itive cash flows are associated to the project events (nodes),
while costs are associated to the different activities (arcs)
by means of their discrete time/cost profile. We use C+

j ≥ 0
to denote the positive payment received at the realization
of event j . The cash outflow cij (k) of each activity (i, j)

depends on the selected mode k. We assume that, without
loss of generality, this cash outflow occurs at the comple-
tion of each activity. This is a reasonable assumption, since

2As an example: cx(lx) + cy(uy) = cmax
2 + cmax

2 − (lstj − estj) ∗ cw =
cmax − (lstj − estj) ∗ cw = (lstj − esti) ∗ cw − (lstj − estj) ∗ cw =
(estj − esti) ∗ cw = cmin.

it is always possible to calculate a terminal value of each
activity’s cash flow upon completion by compounding the
associated cash flow to the end of the activity as follows:

cij (k) = ∑dij (k)

t=1 ct
ij (k)eα(dij (k)−t), where α represents the

discount rate, dij (k) the duration of activity (i, j) at mode k

and ct
ij (k) the value of the known and deterministic cash out-

flow (i.e., the cost) of activity (i, j) at mode k in period t of
its execution. Consequently, the net cash flow of each event

j equals cfj (k) = C+
j −∑

(i,j)∈Aj
cij (k), with Aj the set of

all incoming arcs of event j .

3 A meta-heuristic procedure

The heuristic search procedure boils down to the consecutive
and controlled selection of a mode mij = (dij (k), cij (k))

(with k ∈ {1, . . . ,Mij }) for each activity (i, j) in the net-
work. Consequently, each iteration of the heuristic search
consists of the discrete time/cost problem under study with
a given set of activity durations and reduces to a much sim-
pler problem.

The DTCTP with a given fixed set of activity durations
reduces to the basic CPM problem (problem cpm|Cmax),
which can be efficiently solved by determining the earliest
completion time of each activity, using the traditional for-
ward pass critical path calculations. This is also true for the
DTCTP-wc, since this problem type is similar to the DTCTP,
apart for the two extra arcs per activity group. A slight adap-
tation is necessary for the DTCTP-tsc for which the tra-
ditional forward pass calculations need to take the time-
switch constraints into account (problem cpm, tsc|Cmax).
The DTCTP-npv with a given fixed activity duration reduces
to the well-known max-npv problem (problem cpm|npv),
which can be efficiently solved by the recursive search pro-
cedure of Vanhoucke et al. (2001). In order to use this
activity-on-the-node procedure, the AoA project network
needs to be considered as an AoN network: each event j

is then an activity with zero duration and a cash flow cfj (k)

and the arcs represent the precedence relations with time-
lags lij = dij (k).

J Sched (2007) 10: 311–326 315

3.1 The meta-heuristic search

The meta-heuristic search procedure basically consists of
three steps: an initialization step, a neighborhood search and
a diversification step. Both the second and third step will be
repeated until a specified stop criterion is met, as shown in
the pseudo-code below.

Procedure Heuristic_search
Step 1: Initialization
While (stop criterion not met)

Step 2: Neighborhood search
Step 3: Diversification

End while
Return

In the following sections we focus on the different steps
of the heuristic search procedure in detail. In order to under-
stand the pseudo-code, we use the following definitions:

mij Current mode of arc (i, j) in the search process,
with mij = 1, . . . ,Mij ;

tabuijk Tabu list of arc (i, j) in mode k;
fijk Number of times a solution has been found with

arc (i, j) in mode k (frequency);
LB Local best solution found (within one neighbor-

hood search iteration);
CB Current (global) best solution found.

Remark that we use the following auxiliary variables
(e.g., a counter, a Boolean variable, a parameter, etc.): we
use count = (count1) to denote auxiliary variables that can
have arbitrary values, bool = (bool1,bool2,bool3) to de-
note Boolean auxiliary variables (true/false), and par =
(par1,par2,par2,par4) to denote parameters that might af-
fect the efficiency of the algorithm. The auxiliary variables
are as follows:

count1 Count the number of consecutive non-improving
moves;

bool1 A move has been found that is better than the cur-
rent best solution (true/false) after the execution of
the neighborhood search (step 2) (true/false);

bool2 A move has been found that is better than the cur-
rent best solution (true/false);

bool3 A move has been found that is better than the local
best solution (true/false);

par1 Stop criterion for neighborhood search (number of
iterations);

par2 Length of tabu list;
par3 Threshold for the diversification part;
par4 Stop criterion for dynamic programming (number

of backtracking steps).

Step 1 initializes the different variables and constructs a
start solution. The start solution consists of a network with

each activity on its crash mode (denoted by mij = 1) always
resulting in a feasible schedule, i.e., a schedule with Cmax ≤
δn and a total corresponding cost R. This can be obtained
by means of the procedures mentioned above (the sched-
ule (mij)-step can be cpm|Cmax, cpm, tsc|Cmax or cpm|npv).
Since the procedure can possibly be improved by increasing
some activity durations, the mode-set serves as an input for
the procedure “truncated dynamic programming”. The pro-
cedure performs a truncated dynamic programming step in
order to improve the schedule found. In doing so, the exist-
ing mode set mij will be transformed into the set m′

ij ≥ mij ,
resulting in a total cost R′ ≤ R and Cmax ≤ C′

max ≤ δn.
The truncated dynamic programming step is explained in
Sect. 3.3. The solution (i.e., mode set mij = m′

ij) serves as a
start input for the second and third step. In the pseudo-code
below, both Steps 1 and 3 are displayed in detail.

Procedure Heuristic_Search
∀(i, j) ∈ A and ∀k ∈ Mij set fijk = tabuijk = 0
Set CB = ∞, bool1 = true and ∀(i, j) ∈ A set mij = 1
Schedule(mij) + Truncated Dynamic Programming() →
(m′

ij ,R
′)

Set mij = m′
ij

While (bool1)
Step 2: Neighborhood search
∀(i, j) ∈ A and ∀k ∈ Mij |k < mij

If (fijk > par3) then tabuijk = par2
mij = rand(1, . . . ,mij)

End while
Return

Step 2 performs an extensive neighborhood search and
selects in each iteration the best adjacent solution of the cur-
rent solution. We use bool1 as a Boolean variable, which
initially is set to the value false in the neighborhood search
procedure. From the moment the neighborhood search has
found a solution with a smaller total cost than the current
best solution (an improvement move), the variable is set to
true. After the neighborhood search, the algorithm performs
a diversification step (Step 3) and repeats the while-loop if
bool1 is true. The algorithm stops if no improvement move
has been found during Step 2. A detailed explanation of this
neighborhood step is given in Sect. 3.2.

The third step—the diversification—consists of two
steps. First, the diversification is based on frequency counts
fijk of Step 2 such that all activity-mode combinations that
have been evaluated frequently (more than par3 times) are
set tabu during a part of the next neighborhood search (pa-
rameter par2). Secondly, a new solution will be generated,
starting from the last solution found, such that the new mode
selection mij is randomly selected between the crash mode
and the current mode. In doing so, we assure that the new
solution is feasible, i.e., Cmax ≤ δn.

316 J Sched (2007) 10: 311–326

3.2 The neighborhood search

The second step scans the whole neighborhood and selects
the best adjacent solution of the current solution mij . More-
over, each move is the subject to a local improvement step
by means of a truncated dynamic programming procedure.
In line with the tabu-search meta-heuristic, each time a move
is selected, this move is classified as tabu for a number
of iterations (parameter par2) to incorporate the short-term
frequency-based memory. As mentioned in the previous sec-
tion, the search also incorporates long-term frequency-based
memory by counting the distribution of selected moves
throughout the search process. These counts will be used
to diversify the search in two ways. Firstly, these counts will
be used in the diversification step in order to set the status of
a number of possible moves tabu (see Step 3 of Sect. 3.1).
Next, an implicit diversification has been incorporated in the
evaluation process of the moves by assigning a penalty func-
tion in the evaluation function (R′ + fijk). Consequently, a
move that has already been selected a lot of times is heavily
penalized and loses its attractiveness.

The neighborhood of a mode selection mij is defined as
all mode assignments k for each arc (i, j) such that k < mij .
In doing so, we evaluate all possible so-called crashing al-
ternatives and guarantee that a new mode selection does not
lead to an infeasible schedule, since dij (k) < dij (mij) if
k < mij . Each iteration of the neighborhood search evalu-
ates all possible moves from mij to k, and consequently, the
maximum number of possible moves equals

∑A
(i,j)(Mij −1)

and occurs if all activities have been assigned their normal
duration. Each move is also subject to the truncated dynamic
programming improvement step, since crashing an activity
possibly provides room for other activities to increase their
duration (see Sect. 3.3). The result is a set of new mode
assignments m′

ij and a corresponding cost R′. The com-
plete neighborhood will be scanned until par1 consecutive
iterations without any improvement have been made. The
pseudo-code of the neighborhood search step is written be-
low.

Procedure Neighborhood_Search
Set bool1 = false
While (count1 < par1)

∀(i, j, k)|(i, j) ∈ A and k ∈ Mij : set tabui∗j∗k∗ =
max(0, tabui∗j∗k∗ − 1)

LB = ∞, bool2 = bool3 = false
∀(i, j) ∈ A

∀k ∈ Mij |k < mij {neighborhood}
Schedule(k) + Truncated Dynamic Programming()
→ (m′

ij ,R
′)

If (R′ ≤ CB) then {aspiration by objective}
Set LB = CB = R′, bool1 = bool2 = true,
count1 = 0,

i∗ = i, j∗ = j , k∗ = k and ∀(i, j) ∈ A: m′′
ij

= m′
ij

and save the mode-set as current best solution
Else if (tabuijk = 0 and
R′ + fijk < LB and bool2 = false) then

Set LB = R′, bool3 = true, i∗ = i, j∗ = j ,
k∗ = k and ∀(i, j) ∈ A : m′′

ij = m′
ij

If (bool2 or bool3) then
Set tabui∗j∗k∗ = par2, and
∀(i, j) ∈ A: mij = m′′

ij and fijm′′
ij

= fijm′′
ij

+ 1

Set count1 = count1 + 1
End while

Return

The approach taken by our heuristic procedure relies on a
number of basic principles of the tabu-search meta-heuristic
(Glover 1986). The tabu principle is the cornerstone of the
tabu-search meta-heuristic and is implemented in our heuris-
tic search procedure as a short-term memory to prevent cy-
cling. The tabu restrictions can be overridden by means of
two aspiration criteria: aspiration by default and aspiration
by objective. The aspiration by default criterion is not ex-
plicitly mentioned in the pseudo-code and selects the least
deteriorating move, when all available moves are classified
tabu. The aspiration by objective criterion overrides the tabu
restrictions if a move has been evaluated which leads to the
current best solution, i.e., if (R′ ≤ CB). In the next sec-
tion, the truncated dynamic programming procedure, which
serves as a local search each time a move has been per-
formed, will be explained into detail. Note that we also have
incorporated a frequency-based long-term memory fijk in
order to diversify the search in two ways as mentioned ear-
lier.

3.3 Truncated dynamic programming as local search

Since the neighborhood space consists of evaluating all
crashing possibilities of the current solution, it is likely that,
after each move, one or more activities can be increased in
duration without violating the project deadline δn. This step
aims at improving the current mode set mij (with a result-
ing project duration Cmax and a total cost R) to m′

ij (with
R′ ≤ R and Cmax ≤ C′

max ≤ δn) and can, therefore be con-
sidered as a local search procedure applied to the current
solution, as follows:

Procedure Truncated Dynamic Programming
Step 1: random sequence of activities and modes (list L)

Step 2: Dynamic programming (par4)

J Sched (2007) 10: 311–326 317

It is tempting to improve the current mode set mij by
evaluating all possible combinations to increase activity du-
rations by means of a dynamic programming procedure.
This would lead to the best possible solution given the
start solution mij , but time-restrictions render this method
inapplicable. We, however, opt for a truncated version of
a dynamic programming that will be stopped after a pre-
specified number of backtracking steps. In doing so, we
evaluate only a subset of possible improvement scenarios
in a very fast and efficient way. In order to prevent that the
truncated DP ends with similar solutions, regardless of the
starting solution, we vary the sequence in which activities
are increased in duration by creating a list L with a ran-
dom order of activity/mode combinations. This list L con-
tains, in a random order, all activity/mode combinations,
except those for the current move (i′, j ′) in the neighbor-
hood search, as follows: L = {(i, j, k)|(i, j) ∈ A\{(i′, j ′)}
and k = mij ,mij + 1, . . . ,Mij and ∀k′ > k: (i, j, k) →
(i, j, k′)}, where “a → b” is used to denote that a comes
before b in the list L. We exclude activity (i′, j ′) from the
DP, since otherwise the move that is subject to the DP can be
canceled out, leading to cycles in the neighborhood search.

This list is then used as an input for the truncated DP,
which increases the durations of the activities according
to the order in the list. The dynamic programming proce-
dure is truncated after a finite number of backtracking steps
(more precisely, after par4 backtracking steps) and an im-
proved solution m′

ij is reported with a total cost R′ ≤ R and
Cmax ≤ C′

max ≤ δn. In our computational experience section,
we show that the heuristic search procedure performs very
well, even with a small value for par4.

4 Computational results

In order to test the performance of our meta-heuristic pro-
cedure for the DTCTP under the different assumptions, we
have coded both the exact and heuristic procedures in Visual
C++ version 6.0 and run on a Toshiba personal computer
with a Pentium IV 2 GHz processor under Windows XP.
In order to evaluate the quality of the heuristic solutions,
we compare them with exact solutions for all four prob-
lem types. The DTCTP and the DTCTP-wc instances will be
solved to optimality by the procedure of Demeulemeester
et al. (1998). The DTCTP-tsc instances will be solved by
the exact procedure of Vanhoucke (2005). The exact pro-
cedure for the DTCTP-npv has been linked with the indus-
trial LINDO optimization library version 5.3 (Schrage 1995)
in order to rely on the procedure of Erengüç et al. (1993).
However, this procedure does only lead to optimal solutions
when the project deadline δn is larger than or equal to the
maximal project deadline (i.e., when all activities are sched-
uled at their normal duration). In this case, a deadline is re-
quired when net cash flows are negative, to prevent the total

project duration that is equal to infinity. However, problem
instances with a lower deadline could not be solved to opti-
mality. To overcome this shortcoming, we have added an ex-
tra dummy end node n + 1 connected to the last event node
n of the project by means of a dummy activity (n,n + 1).
Moreover, we have added an extra arc from the start event 1
to the new end dummy event n+ 1 with a single activity du-
ration d1,n+1(1) = δn with a corresponding c1,n+1(1) = 0.
A large positive cash flow C+

n+1 = ∞ is used for the end
dummy node to force this event node to finish as soon as
possible. The activity (1, n + 1) guarantees that this event
node, and consequently the total project, cannot finish ear-
lier than the project deadline δn. Both the extra cash flow
and the extra arc (1, n + 1) force the project to finish ex-
actly on the project deadline. In doing so, project deadlines
smaller than the maximal project deadline are possible—by
modifying the duration of activity (1, n + 1)—without los-
ing optimality.

4.1 Test settings

The subset of our computational results section is the test
set of Demeulemeester et al. (1998) and is used to compare
the solutions obtained by our meta-heuristic algorithm with
exact solutions for all four problem types. Table 1 displays
the parameter settings for the different problem instances of
our test set.

This problem set consists of activity-on-the-node net-
works with different values for the number of activities and
the coefficient of network complexity CNC and has been
generated with the problem generator ProGen (Kolisch et
al. 1995). Afterwards, these problem instances have been
extended with modes for each activity and transformed
from activity-on-the-node networks to activity-on-the-arc
networks using the algorithm of Kamburowski et al. (1992).
Since we study the time/cost trade-off problem under the
deadline version, we have extended each problem instance
with a project deadline. The project deadline δn has been
generated as follows. Firstly, we calculate the largest crit-
ical path length with every activity at its normal duration.
Secondly, we compute the smallest critical path length with
every activity at its crash duration. Finally, we set the project
deadline δn equal to the smallest critical path length ex-
ceeded with k1 times the difference between the largest and
the smallest critical path lengths (with k1 given in Table 1).
Consequently, instances with k1 = 1 have a deadline equal to
the largest critical path length, while instances with k1 = 0
have a project deadline equal to the smallest critical path
length. The details of the instances we have used are dis-
played in Table 1. The instances as mentioned above can
be used to solve the DTCTP and results in 4,500 problem
instances (using 10 problem instances for each setting). In
order to use these instances for solving the DTCTP-tsc, the

318 J Sched (2007) 10: 311–326

Table 1 Parameter settings used to generate the test instances

Activity-on-the-Arc Project Scheduling Problems

DTCTP, DTCTP-tsc, DTCTP-wc, DTCTP-npv

Number of activities (non-dummy arcs) 10, 20, 30, 40 or 50

Number of modes Fixed at 2, 4 or 6 or randomly chosen from the interval [1,3], [1,7] or [1,11]

Coefficient of network complexity CNC 1.5; 1.8 or 2.1

Constant k1 for the deadline setting of the project 0, 0.25, 0.50, 0.75 or 1

DTCTP-tsc

Pattern [0,0,100], [0,33,66], [0,66,33], [0,100,0], [33,0,66], [33,33,33], [33,66,0], [66,0,33],

[%day-pattern, %d&n-pattern,%dnw-pattern] [66,33, 0], [100,0,0],

DTCTP-wc

%act 0.25, 0.50, 0.75

%cost 0.75, 1, 1.25

DTCTP-npv

Constant k2 for cash-inflows of events 0, 0.25, 0.5, 0.75, 1

DTCTP-wc and the DTCTP-npv, we have generated extra
data for each problem instance as shown in Table 1.

In order to solve the DTCTP-tsc, each non-dummy ac-
tivity needs to follow one of its possible patterns. The set-
tings for the pattern, either day, d&n or dnw, of each activity
varies as follows: [% of activities following the day-pattern,
% of activities following the d&n-pattern, % of activities fol-
lowing the dnw-pattern]. This is exactly the same approach
taken by Vanhoucke et al. (2002) and Vanhoucke (2005) to
solve the problem to optimality. We rely on the latter proce-
dure to solve this problem type to optimality and to compare
it with the meta-heuristic algorithm. Using 10 settings for
the time-switch pattern, we have 45,000 problem instances
for the DTCTP-tsc.

In order to solve the DTCTP-wc, the problem instances
need to be extended with information about the size of each
activity group and its corresponding work continuity cost.
The row (of Table 1) labeled “%act” denotes the percent-
age of activities that belongs to the activity group A′ ex-
pressed as a fraction of the total number of activities in the
network, i.e., |A′| = %act∗|A|. The row labeled “%cost” is
used to determine the work continuity cost wc, i.e., wc =
%cost∗avg_cost. The average cost avg_cost has been calcu-
lated as the average cost slope of all the modes of the activ-
ities in A′. In doing so, we can vary %cost to influence the
relative importance of work continuity versus activity crash-
ing. More precisely, when %cost is larger than 1, the idle
time cost wc tends to be more important than the cost of
activity crashing, and vice versa. Given our test setting, we
have 40,500 problem instances for the DTCTP-wc.

The DTCTP-npv involves the generation of positive cash
flows for the project events. The cash flows C+

j ≥ 0 for each
event j have been generated as follows. First, we calculate
the minimal cost Cmin

j of each event j as the sum of the

costs of all incoming arcs of event j with each arc scheduled
at its normal duration. Then, we compute the maximal cost
Cmax

j of each event j as the sum of the costs of all incoming
arcs of event j with each arc scheduled at its crash dura-
tion. At last, we set the positive cash flow C+

j somewhere
between the minimal and maximal cost of the event, i.e.,
C+

j = Cmin
j + k2 ∗ (Cmax

j − Cmin
j). Consequently, instances

with k2 = 0 will only have events with a zero or negative
net cash flow cfj (k), while instances with k2 = 1 will only
have events with a zero or positive net cash flow. Interme-
diate values of k2 will result in project network events with
both positive and negative net cash flows. Given the settings
of k2 as given in Table 1, we have 22,500 problem instances
for the DTCTP-npv.

4.2 Experimental results

4.2.1 Interpretation of the tables

In the following tables, we display the results of our experi-
mental tests for the different problem types under study. The
columns labeled with “opt” are used to refer to the results of
an exact procedure, while the label “heur” is used to refer
to the meta-heuristic search procedure results. The column
labeled “Avg CPU” contains the average CPU time needed
to solve the problem instances. The three columns are fur-
ther subdivided in order to compare the heuristic and exact
solution, as follows:

The results for the exact solution procedure are obtained
by allowing a maximal time limit of 1 minute. After that,
the procedure stops and the solution is reported. In doing
so, the obtained solution can be classified in one of the fol-
lowing categories: optimal solution, feasible (but not nec-
essarily optimal) solution or infeasible solution (i.e., no so-
lution found). The columns with label “% opt” are used to

J Sched (2007) 10: 311–326 319

denote the percentage of problem instances for which an op-
timal solution has been found. The columns labeled with “%
limit” display the percentage of problem instances for which
a feasible (but not guaranteed to be optimal) solution has
been found within the pre-specified time limit of 1 minute.
This means that the procedure already has found one or more
feasible solutions, but it is truncated after the pre-specified
time. The columns with “% infeas” show the percentage of
problem instances for which no feasible solution has been
found within the pre-specified time limit of 1 minute. Each
problem instance belongs to one of these three categories,
which are used for comparison purposes with the heuristic
procedures.

The results found by the heuristic procedure are com-
pared with the results of one of the three categories. The in-
stances for which an exact solution has been found (i.e., “%
opt”) are used to compare them with the heuristic solutions
as follows. The column labeled with “% opt=” displays the
percentage of problem instances for which the heuristic so-
lution has found the optimal solution (only for the problem
instances of column “% opt”). The column indicated with
“avg opt” gives the average percentage of deviation from
the optimal solution (only for the problem instances of col-
umn “% opt”). The problem instances with a feasible though
not necessarily an optimal solution (i.e., “% limit”) are ana-
lyzed as follows. On the one hand, the column labeled with
“% limit↓” displays the percentage of problem instances for
which the heuristic solution is better than the feasible solu-
tion found by the exact procedure (only for the problem in-
stances of column “% limit”). On the other hand, the column
labeled with “% limit↑” indicates the percentage of prob-
lem instances for which the heuristic solution is worse than
the feasible solution found by the exact procedure (only for
the problem instances of column “% limit”). The remaining
fraction is then the percentage of problem instances with a
solution equal to the feasible solution found. Furthermore,
the columns labeled with “avg limit↓” display the average
percentage of deviation (improvement) of the heuristic solu-
tion (only for the problem instances of column “% limit”),
while the columns with label “avg limit↑” refer to the av-
erage percentage of deviation (deterioration) of the heuris-
tic solution (only for the problem instances of column “%
limit”).

The two symbols, solH and solO , are used to denote the
solution found by, respectively, the meta-heuristic procedure
and the exact procedure for the problem type under study.
Deviations between the solutions found by the exact algo-
rithm and the meta-heuristic approach are calculated as fol-
lows:

1. The average deviation from the optimal solution is
calculated as avg opt = |solH −solO |

solO
∗ 100 and is only cal-

culated for the instances for which an optimal solution has
been found (i.e., column “% opt”).

2. The average improvement from the truncated solu-
tion from the exact algorithm is calculated as avg limit↓=
|solO−solH |

solO
∗ 100 and is only calculated for the instances of

column “% limit”. Note that the symbol ↓ is used to refer
to improved solutions, and not a lower objective function
value. Consequently, an improved solution for the DTCTP,
DTCTP-wc, and DTCTP-tsc is a solution with a lower cost,
while an improved solution for the DTCTP-npv is a solution
with a higher net present value.

3. Average deterioration from the truncated solution
from the exact algorithm is calculated as avg limit↑=
|solH −solO |

solO
∗ 100 and is only calculated for the instances of

column “% limit”.

The columns labeled “Created nodes” have a different in-
terpretation depending on the problem type. The number of
created nodes is used to refer to the number of nodes in the
branch-and-bound tree for the optimal solution procedures
of the DTCTP, DTCTP-tsc, and DTCTP-wc, while it equals
the number of iterations between main- and sub-problem
for the benders decomposition approach of the DTCTP-npv.
The number of created nodes is equal to the number of vis-
ited solutions in the meta-heuristic search for all problem
types. For this reason, the values for these columns serve
only to describe the hardness of the problem instances, but
cannot be compared with each other.

The columns labeled “DP” are used to display the num-
ber of improvement scenarios evaluated per dynamic pro-
gramming step. Indeed, the dynamic programming proce-
dure is stopped after a pre-specified number of backtracking
steps (parameter par4) and consequently, only a subset (i.e.,
DP) of the possible improvement scenarios is evaluated.

We have fine-tuned the settings for the different parame-
ters, and have finally selected the following values: par1 =
25, par2 = 7, par3 = 0, and par4 = 10.

4.2.2 General experimental results for all problem types

The overall results are very encouraging, as displayed in the
different tables of the four problem types. The DTCTP and
the DTCTP-wc can be solved very efficiently to optimality
and, therefore, there is no need to rely on heuristic proce-
dures. These meta-heuristics, however, are able to find an
optimal solution in almost all the cases (92.13% for DTCTP
and 83.38% for the DTCTP-wc), with a small deviation from
the optimal solutions when this is not the case. However,
the CPU-time is larger than the one for the optimal proce-
dures and, therefore, one does not need to rely on meta-
heuristic procedures for these problem types. However, the
meta-heuristic procedure has its merits when solving the
DTCTP-tsc and the DTCTP-npv, as described in Sects. 4.2.4
and 4.2.5. In the sequel of this section, we describe some
computational results in more detail. In the next section, we

320 J Sched (2007) 10: 311–326

elaborate on problem-type specific characteristics of both
the optimal and heuristic procedures.

For the rows labeled ‘number of activities’, ‘number
of modes’, ‘CNC’, and ‘pattern’, the results mainly corre-
spond to the results found by Demeulemeester et al. (1998)
and confirmed by Vanhoucke et al. (2002), and Vanhoucke
(2005). The negative effect of both the ‘number of activi-
ties’ and the ‘number of modes’ on the problem complexity
is straightforward and can be seen in all tables, as follows:

• Computational effort: increasing “Avg CPU” for all opti-
mal and heuristic procedures.

• Percentage of instances solved to optimality: decreasing
“% opt” (for the optimal procedures) and “% opt =” (for
the heuristic procedures). This positive effect is not so
clear for the heuristic procedure for the DTCTP-npv, since
the column “% opt =” reveals that the number of in-
stances solved to optimality with the meta-heuristic pro-
cedure shows some counterintuitive results for 40 activi-
ties and 6 or [1,11] modes.

• Average deviation from the optimal solution: Increasing
values for the “avg opt” columns for all but one meta-
heuristic procedure. Indeed, only the DTCTP-npv shows
some counterintuitive results. However, only a small sub-
part of the problem set can be solved to optimality, when
the problem size (both in terms of activities and number
of modes) increases. The percentage of problems solved
to optimality even drops to 19.92% for instances with
6 modes. Therefore, the percentage deviation could only
be measured for a small part of the subset and might lead
to biased results.

• Created nodes: Increasing number of nodes for all opti-
mal and heuristic procedures. As mentioned earlier, these
values are only used to describe the hardness of the prob-
lem instances, but cannot be compared with each other.

In line with literature, we observe however that problem in-
stances with a fixed number of modes (2 or 4) are more
difficult to solve than the instances where the number of
modes is randomly selected (between [1,3] or [1,7]). Al-
though the average number of modes per activity remains
the same (e.g., [1,3] corresponds to—on the average—
2 modes), variation in the number of modes between dif-
ferent activities has a positive effect on the problem com-
plexity.

The effect of the CNC is not so clear for both the opti-
mal and heuristic procedures. The average CPU time seems
to increase with larger values for the CNC, except for the
DTCTP-npv. The number of created nodes shows similar
results for most optimal procedures (except for the DTCTP-
tsc), but shows an opposite result for the meta-heuristic pro-
cedures (or no relation for the DTCTP-wc). However, it has
already been shown extensively in the literature that the
CNC is not a good measure to predict the difficulty of project

scheduling problems (see, e.g., Elmaghraby and Herroelen
1980; De Reyck and Herroelen 1996, and Herroelen and
De Reyck 1999) and, therefore, the results needs to be in-
terpreted with care.

The results in the row labeled ‘deadline’ indicate the ef-
fect of the project deadline on the problem complexity and
is in line with the results found in the literature. All ta-
bles reveal a negative relation between the project deadline
and problem complexity, i.e., the larger the project dead-
line (larger k1 values), the easier the problem, which can
be seen in “Avg CPU”, “Created nodes”, and “% opt =”.
Only project instances with a deadline equal to the smallest
critical path length (i.e., with k = 0) are often easy to solve.
However, these results from the literature could not be con-
firmed for the DTCTP-npv.

4.2.3 Experimental results for the DTCTP and the
DTCTP-wc

Tables 2 and 3 summarize the computational results for the
DTCTP and the DTCTP-wc, respectively. Since there is no
major difference between the optimal procedures for both
problem types (apart from two extra arcs), we discuss the
results together. Both tables reveal that the exact algorithm
is very efficient for the problem types and outperforms our
meta-heuristic, both in terms of solution quality and com-
putational effort. Indeed, although the meta-heuristic pro-
cedure is able to solve 92.13% (83.38%) of the problem
instances to optimality for the DTCTP (DTCTP-wc), the
computational effort is much larger than for the exact al-
gorithm. Therefore, we conclude that it is not beneficial to
rely on this meta-heuristic procedure to solve instances of
this size.

Remark that all problem instances could be solved to
optimality with the exact algorithm, and, therefore, no
values have been reported for the columns “% limit”
and “% infeas”. Consequently, for obvious reasons, the
columns “% limit↓” and “% limit↑”, and their corre-
sponding columns “avg limit↓“ and “avg limit↑” are also
empty.

It is tempting to conclude that the meta-heuristic might
outperform the exact algorithm, when the problem instances
increase in size and pass a certain threshold. Therefore, we
have generated a second dataset. More precisely, we have
generated project networks with 100, 150, and 200 non-
dummy activities and with the number of modes generated
randomly from the interval [1,10] and [1,50]. All other set-
tings are similar than in Table 1. Using 10 instances for
each setting, we obtain 2,700 instances for the DTCTP and
24,300 instances for the DTCTP-wc. We compared the re-
sults of the meta-heuristic procedure with a truncated ver-
sion of the branch-and-bound procedure (truncated after
60 seconds). The results revealed that the truncated exact

J Sched (2007) 10: 311–326 321

Table 2 Computational results for the DTCTP

DTCTP Opt Heur Avg CPU Created nodes DP

% opt % limit % infeas % opt = avg opt % limit↓ avg limit↓ % limit↑ avg limit↑ opt heur opt heur heur

overall 100% 0% 0% 92.13% 0.068% – – – – 0.081 0.571 352 5,508 17

act

10 100% 0% 0% 99.00% 0.037% – – – – 0.000 0.008 15 1,123 8

20 100% 0% 0% 96.67% 0.050% – – – – 0.002 0.096 59 3,008 11

30 100% 0% 0% 94.78% 0.044% – – – – 0.011 0.337 144 5,387 14

40 100% 0% 0% 86.78% 0.098% – – – – 0.058 0.811 349 7,892 17

50 100% 0% 0% 83.44% 0.114% – – – – 0.333 1.605 1,195 10,130 20

mod

2 100% 0% 0% 95.47% 0.040% – – – – 0.002 0.102 30 1,543 10

4 100% 0% 0% 90.13% 0.102% – – – – 0.057 0.554 318 5,539 16

6 100% 0% 0% 85.47% 0.133% – – – – 0.273 1.138 1,034 9,335 20

[1,3] 100% 0% 0% 98.80% 0.006% – – – – 0.001 0.084 18 1,501 8

[1,7] 100% 0% 0% 93.87% 0.047% – – – – 0.022 0.478 153 5,374 14

[1,11] 100% 0% 0% 89.07% 0.082% – – – – 0.129 1.072 561 9,759 18

CNC

1.5 100% 0% 0% 92.33% 0.060% – – – – 0.035 0.425 258 5,640 17

1.8 100% 0% 0% 92.73% 0.062% – – – – 0.077 0.568 322 5,495 16

2.1 100% 0% 0% 91.33% 0.083% – – – – 0.131 0.721 478 5,389 17

k1

0 100% 0% 0% 94.22% 2.900% – – – – 0.163 0.676 505 2,377 47

0.25 100% 0% 0% 81.44% 17.800% – – – – 0.221 0.977 1,011 5,507 29

0.5 100% 0% 0% 88.11% 10.200% – – – – 0.018 0.692 198 6,497 17

0.75 100% 0% 0% 96.89% 3.300% – – – – 0.002 0.384 47 6,642 9

1 100% 0% 0% 100% 0.000% – – – – 0.000 0.128 1 6,519 2

algorithm still outperforms the meta-heuristic procedures.
The reason is that the specific approach used for the ex-
act branch-and-bound algorithm of Demeulemeester et al.
(1998) results very quickly in truncated (heuristic) solutions
that are very close to the optimal solution. Moreover, thanks
to the use of an efficient lower bound calculation of Ford
and Fulkerson (1962), many nodes can be evaluated in the
branch-and-bound tree within a limited amount of CPU-
time, and hence, the meta-heuristic procedure has no com-
putational advantage on that aspect. Therefore, we conclude
that, due to the efficient character of the exact algorithm of
Demeulemeester et al. (1998), the meta-heuristic solutions
can not compete with a truncated solutions found by the ex-
act algorithm.

4.2.4 Experimental results for the DTCTP-tsc

Table 4 displays the results for the DTCTP-tsc and shows
that the meta-heuristic algorithm is a good alternative to the
exact algorithm of Vanhoucke (2005). 89.76% of the prob-
lem instances could be solved to optimality with the exact
procedure, from which 96.36% were found to be optimal by

the meta-heuristic approach within a much lower computa-
tional effort. The remaining 10.24% could not be solved to
optimality with the exact procedure (in 2.16% of the cases,
the exact algorithm was even not able to find a feasible so-
lution within the 60 seconds time limit). In 56.74% of the
cases, the meta-heuristic approach was able to improve the
truncated solutions by—on the average—1.303%. The over-
all CPU time is—on the average—only a fraction (about
12%) of the CPU time for the exact algorithm. Therefore, we
claim that the meta-heuristic procedure outperforms the ex-
act algorithm, since it is able to find near-optimal solutions
(or even improved solutions) in a reasonable time limit. The
detailed results for the different parameters are in line with
literature and are displayed, without any further discussion,
in Table 4.

4.2.5 Experimental results for the DTCTP-npv

Table 5 displays the results for the DTCTP-npv and re-
veals that a meta-heuristic algorithm is necessary to find
near-optimal solutions. The algorithm of Erengüç et al.
(1993) relies on the Benders Decomposition approach and

322 J Sched (2007) 10: 311–326

Table 3 Computational results for the DTCTP-wc

DTCTP-wc Opt Heur Avg CPU Created nodes DP

% opt % limit % infeas % opt = avg opt % limit↓ avg limit↓ % limit↑ avg limit↑ opt heur opt heur heur

overall 100% 0% 0% 83.38% 0.165% – – – – 0.105 1.220 343 8,514 24

act

10 100% 0% 0% 97.58% 0.065% – – – – 0.020 0.028 14 2,345 13

20 100% 0% 0% 90.23% 0.135% – – – – 0.022 0.289 56 5,457 19

30 100% 0% 0% 83.11% 0.189% – – – – 0.034 0.845 152 8,543 22

40 100% 0% 0% 75.95% 0.188% – – – – 0.090 1.801 377 11,738 26

50 100% 0% 0% 70.01% 0.247% – – – – 0.362 3.135 1,117 14,487 28

mod

2 100% 0% 0% 92.80% 0.065% – – – – 0.022 0.438 28 3,652 20

4 100% 0% 0% 78.77% 0.222% – – – – 0.090 1.311 337 8,850 26

6 100% 0% 0% 71.72% 0.296% – – – – 0.312 2.229 1,016 13,474 28

[1,3] 100% 0% 0% 96.77% 0.026% – – – – 0.021 0.324 17 3,412 16

[1,7] 100% 0% 0% 83.79% 0.122% – – – – 0.047 1.091 172 8,392 22

[1,11] 100% 0% 0% 76.41% 0.259% – – – – 0.141 1.924 491 13,304 25

CNC

1.5 100% 0% 0% 83.48% 0.170% – – – – 0.059 0.850 260 8,411 24

1.8 100% 0% 0% 83.69% 0.153% – – – – 0.093 1.279 296 8,662 25

2.1 100% 0% 0% 82.96% 0.172% – – – – 0.165 1.530 474 8,469 25

k1

0 100% 0% 0% 93.16% 0.040% – – – – 0.183 0.757 485 2,718 46

0.25 100% 0% 0% 73.72% 0.314% – – – – 0.251 1.453 943 7,364 33

0.5 100% 0% 0% 80.74% 0.181% – – – – 0.049 1.399 224 9,674 24

0.75 100% 0% 0% 86.80% 0.096% – – – – 0.023 1.223 48 10,881 19

1 100% 0% 0% 82.47% 0.194% – – – – 0.021 1.266 17 11,932 19

%act

0.25 100% 0% 0% 86.33% 0.143% – – – – 0.101 1.295 320 9,201 24

0.5 100% 0% 0% 83.59% 0.164% – – – – 0.106 1.226 348 8,543 25

0.75 100% 0% 0% 80.21% 0.189% – – – – 0.109 1.138 362 7,797 25

%cost

0.75 100% 0% 0% 86.38% 0.140% – – – – 0.105 1.103 341 8,189 23

1 100% 0% 0% 83.43% 0.160% – – – – 0.106 1.220 342 8,528 24

1.25 100% 0% 0% 80.33% 0.195% – – – – 0.106 1.335 347 8,824 26

is only able to solve small problem instances. 49.70% of
the problem instances could be solved to optimality with
the exact procedure, from which 90.04% were found to
be optimal by the meta-heuristic approach within a much
lower computational effort (32 seconds versus 3 seconds).
Project instances with up to 50 activities can only be solved
to optimality in 33.93% of the cases. 50.30% of all in-
stances could not be solved to optimality with the exact
procedure. In 86.59% of the cases, the meta-heuristic ap-
proach was able to improve the truncated solutions by—
on the average—137.221%. This large improvement is due
to the fact that the BD approach often needs more than
60 seconds to solve the time-consuming LP model in the

first iteration, and, therefore, no good solutions can be
found.

The overall CPU time is—on the average—only a small
fraction (about 10%) of the CPU time for the exact algo-
rithm. Therefore, we claim that the meta-heuristic proce-
dure outperforms the exact algorithm, since it is able to
find near-optimal solutions and, in many cases, strongly im-
proved solutions in a reasonable time limit. The detailed
results for the different parameters are in line with litera-
ture and are displayed, without any further discussion, in
Table 5.

The solution found for the DTCTP-npv depends on the
deadline (k1) and the cost (k2) of the project instance, and

J Sched (2007) 10: 311–326 323

Table 4 Computational results for the DTCTP-tsc

DTCTP-tsc Opt Heur Avg CPU Created nodes DP

% opt % limit % infeas % opt = avg opt % limit↓ avg limit↓ % limit↑ avg limit↑ opt heur opt heur heur

overall 89.76% 8.08% 2.16% 96.36% 0.039% 56.74% 1.303% 9.74% 0.808% 7.906 0.926 290 5,562 16

act

10 100.00% 0.00% 0.00% 99.49% 0.023% – – – – 0.004 0.019 4 1,171 7

20 99.78% 0.22% 0.00% 97.35% 0.045% 40.00% 1.440% 10.00% 1.349% 0.537 0.169 64 3,092 10

30 95.11% 4.73% 0.16% 95.81% 0.038% 47.18% 1.298% 7.51% 0.825% 5.064 0.562 250 5,460 13

40 82.34% 15.31% 2.34% 93.79% 0.049% 58.13% 1.296% 9.14% 0.820% 13.549 1.33 471 7,927 16

50 71.56% 20.13% 8.31% 94.29% 0.043% 58.14% 1.308% 10.71% 0.791% 20.379 2.548 660 10,160 19

mod

2 99.28% 0.71% 0.01% 96.82% 0.033% 35.85% 1.508% 5.66% 1.296% 1.134 0.167 174 1,560 9

4 87.91% 10.31% 1.79% 94.75% 0.065% 57.83% 1.246% 8.80% 0.780% 9.676 0.895 313 5,589 15

6 78.19% 14.81% 7.00% 94.00% 0.071% 56.53% 1.393% 11.16% 0.934% 15.498 1.866 315 9,434 19

[1,3] 99.25% 0.64% 0.11% 99.30% 0.007% 31.25% 1.072% 0.00% – 1.012 0.138 186 1,518 7

[1,7] 90.93% 8.21% 0.85% 97.16% 0.022% 57.47% 1.297% 5.84% 0.708% 7.422 0.776 344 5,445 13

[1,11] 82.99% 13.80% 3.21% 95.34% 0.047% 57.97% 1.254% 11.88% 0.713% 12.697 1.711 407 9,826 17

CNC

1.5 90.82% 7.63% 1.55% 96.38% 0.037% 57.90% 1.307% 10.13% 0.820% 7.059 0.739 297 5,682 15

1.8 89.88% 8.25% 1.87% 96.51% 0.035% 56.35% 1.275% 9.46% 0.701% 7.884 0.923 317 5,546 15

2.1 88.57% 8.36% 3.07% 96.18% 0.045% 56.06% 1.326% 9.65% 0.899% 8.776 1.115 255 5,458 16

k1

0 81.18% 11.61% 7.21% 97.86% 0.013% 50.53% 0.947% 3.25% 0.498% 13.909 1.115 210 2,584 45

0.25 78.77% 17.77% 3.47% 91.75% 0.100% 62.04% 1.409% 12.63% 0.826% 15.569 1.583 426 5,673 27

0.5 90.39% 9.48% 0.13% 93.28% 0.072% 54.87% 1.453% 13.01% 0.879% 8.139 1.095 492 6,466 15

0.75 98.46% 1.54% 0.00% 97.93% 0.023% 53.96% 1.466% 5.04% 0.643% 1.910 0.620 320 6,569 8

1 100.00% 0.00% 0.00% 100.00% 0.000% – – – – 0.004 0.216 1 6,519 2

pattern

[0,0,100] 95.58% 3.29% 1.13% 95.70% 0.046% 40.54% 20.95% %0.827% 0.827% 4.074 0.903 52 5,636 15

[0,33,66] 96.84% 2.51% 0.64% 94.40% 0.062% 35.40% 0.756% 20.35% 0.894% 3.225 0.935 27 5,515 16

[0,66,33] 86.80% 10.71% 2.49% 96.70% 0.036% 64.52% 1.462% 7.68% 0.842% 9.837 0.94 325 5,500 16

[0,100,0] 81.69% 14.47% 3.84% 96.98% 0.035% 62.83% 1.588% 5.38% 0.709% 13.387 0.953 752 5,525 17

[33,0,66] 98.42% 1.22% 0.36% 94.97% 0.053% 32.73% 0.677% 23.64% 0.848% 1.898 0.857 14 5,605 14

[33,33,33] 91.60% 6.73% 1.67% 97.67% 0.020% 54.79% 1.114% 12.21% 0.888% 6.597 0.901 163 5,617 15

[33,66,0] 85.00% 12.18% 2.82% 97.41% 0.031% 57.12% 1.383% 8.21% 0.867% 11.163 0.929 545 5,576 15

[66,0,33] 90.29% 7.71% 2.00% 96.80% 0.033% 51.30% 1.086% 8.36% 0.811% 7.532 0.91 191 5,561 15

[66,33,0] 84.73% 12.02% 3.24% 97.25% 0.032% 58.96% 1.189% 9.80% 0.780% 11.195 0.955 491 5,562 16

[100,0,0] 86.62% 9.96% 3.42% 96.38% 0.039% 55.58% 1.178% 11.38% 0.706% 10.157 0.973 337 5,523 17

has been displayed in Table 6. This table gives the heuristic
solution found by the meta-heuristic procedure for different
values for k1 and k2. The row with k2 = 0 displays only neg-
ative values for the npv, apart from the k1 = 1 column. When
k2 = 0, C+

j = Cmin
j and, hence, the best possible solution

that can be obtained is with normal durations for each activ-
ity (then the cash flow of each event equals exactly the cost
of all incoming arcs). This is only possible with a project
deadline equal to its maximal value (i.e., k1 = 1). Decreas-
ing that project deadline results in activity costs exceeding

the cash inflow of each event, and eventually, a negative net
present value. Larger values for k2 result in larger values for
the cash inflow C+

j of each event j and can possibly lead to
positive net present values, depending on the project dead-
line.

5 Conclusions and suggestions for future research

In this paper we have presented a detailed description
of the well-known discrete time/cost trade-off problem

324 J Sched (2007) 10: 311–326

Table 5 Computational results for the DTCTP-npv

DTCTP-npv Opt Heur Avg CPU Created nodes DP

% opt % limit % infeas % opt = avg opt % limit↓ avg limit↓ % limit↑ avg limit↑ opt heur opt heur heur

overall 49.70% 50.30% – 90.04% 0.248% 86.59% 137.221% 6.82% 6.676% 32.948 3.160 17 6,437 36

act

10 79.13% 20.87% – 95.62% 0.117% 78.27% 196.900% 6.50% 15.095% 14.798 0.046 12 1,113 12

20 53.96% 46.04% – 89.74% 0.109% 86.25% 239.477% 7.67% 13.626% 30.942 0.465 18 3,205 21

30 42.40% 57.60% – 87.84% 0.413% 87.42% 117.355% 7.45% 4.492% 37.140 1.750 19 6,005 29

40 39.07% 60.93% – 88.00% 0.466% 87.89% 116.382% 6.56% 3.836% 39.232 4.402 18 9,257 37

50 33.93% 66.07% – 82.58% 0.320% 87.52% 86.737% 6.02% 2.844% 42.629 9.136 19 12,604 46

mod

2 87.23% 12.77% – 87.83% 0.188% 71.40% 38.184% 5.64% 71.688% 12.263 0.445 18 1,509 17

4 33.17% 66.83% – 84.08% 0.326% 83.56% 112.738% 9.06% 5.353% 43.234 2.881 21 6,138 35

6 19.92% 80.08% – 90.90% 0.156% 89.91% 170.485% 5.63% 2.836% 49.838 6.483 16 11,625 43

[1,3] 91.95% 8.05% – 94.17% 0.396% 76.82% 88.321% 2.65% 53.650% 6.922 0.408 11 1,464 14

[1,7] 44.59% 55.41% – 88.88% 0.133% 84.31% 133.446% 9.48% 3.142% 36.280 2.655 19 6,017 31

[1,11] 21.33% 78.67% – 92.13% 0.066% 90.85% 142.177% 4.88% 3.304% 49.152 6.087 17 11,868 38

CNC

1.5 48.48% 51.52% – 89.71% 0.212% 85.66% 102.104% 6.55% 3.740% 33.341 2.310 16 6,607 36

1.8 49.45% 50.55% – 88.86% 0.292% 86.55% 149.283% 7.36% 9.300% 33.102 3.205 17 6,430 36

2.1 51.16% 48.84% – 91.48% 0.241% 87.61% 161.111% 6.55% 6.720% 32.402 3.965 18 6,274 37

k1

0 46.93% 53.07% – 94.03% 0.062% 94.03% 86.818% 0.04% 57.256% 34.459 1.964 11 2,421 73

0.25 30.98% 69.02% – 84.72% 0.140% 94.59% 218.424% 1.38% 32.298% 43.677 4.339 19 6,056 61

0.5 40.98% 59.02% – 75.98% 0.169% 92.55% 177.359% 3.16% 26.095% 39.343 3.805 25 7,363 41

0.75 53.98% 46.02% – 78.76% 0.851% 70.88% 43.312% 13.33% 3.637% 31.555 2.934 23 7,925 25

1 75.62% 24.38% – 85.81% 0.021% 56.43% 3.793% 33.55% 1.391% 15.707 2.757 9 8,419 15

k2

0 53.47% 46.53% – 97.96% 0.911% 88.20% 56.366% 0.72% 53.419% 30.723 3.237 17 5,527 34

0.25 54.78% 45.22% – 96.59% 0.161% 91.60% 170.155% 1.23% 92.597% 30.274 2.683 18 5,697 31

0.5 51.11% 48.89% – 90.78% 0.046% 86.36% 237.051% 5.36% 4.531% 32.228 2.740 17 6,121 34

0.75 45.58% 54.42% – 84.89% 0.028% 83.79% 186.455% 11.31% 3.047% 35.262 3.184 17 6,877 38

1 43.56% 56.44% – 76.58% 0.011% 84.13% 42.343% 13.27% 1.955% 36.254 3.955 16 7,962 42

Table 6 The impact of k1 and
k2 on the net present value for
the DTCTP-npv

k2 k1

0 0.25 0.5 0.75 1

0 −6878.82 −1122.62 −198.81 −39.05 0.00

0.25 −4700.87 −177.58 497.67 603.64 629.29

0.5 −2122.80 1069.15 1458.05 1510.32 1523.34

0.75 322.43 2430.74 2612.63 2627.15 2631.09

1 3254.43 4440.14 4481.88 4471.63 4462.44

(DTCTP) as follows: the basic DTCTP, the DTCTP with

time-switch constraints (tsc), the DTCTP with work con-

tinuity constraints (wc), and the DTCTP with net present

value maximization (npv). We gave an extensive litera-

ture overview of existing procedures for these four prob-

lem types and computed exact solutions for the four ver-

sions of the discrete time/cost trade-off problem. More-

over, we developed a new meta-heuristic approach in or-

der to provide near-optimal heuristic solutions for the dif-

ferent problems under study. Finally, we presented com-

J Sched (2007) 10: 311–326 325

putational results for the problems under study by com-
paring the results for both exact and heuristic procedures.
The results can be summarized per problem type as fol-
lows.

The literature for the DTCTP is rich and many proce-
dures are able to produce exact results in an efficient way.
In this paper we relied on the procedure developed by De-
meulemeester et al. (1998), since this is—to the best of our
knowledge—the best performing algorithm in the literature.
Although the meta-heuristic procedure is able to produce
consistently good results, it cannot outperform the exact pro-
cedure and, therefore, it is not a good alternative to the exact
approaches for the DTCTP.

The literature for the DTCTP-wc is virtually void. Reda
(1990) has discussed a slightly different version of this prob-
lem type, but did not report any computational results. Al-
though the importance of work continuity constraints has
been recognized in the literature for several decades, no ef-
ficient algorithm has been presented to solve the DTCTP-
wc to optimality. In this paper we have extended the basic
DTCTP to the DTCTP-wc by adding two extra arcs per work
continuity constraint. In doing so, we recognized the trade-
off between idle minimization of resources (work continu-
ity) and direct activity cost (time/cost behaviour). As for the
DTCTP, the meta-heuristic procedure is not able to outper-
form the exact algorithms, due to the efficient character of
the latter procedures.

The literature on exact algorithms for the DTCTP-tsc
is restricted to Vanhoucke et al. (2002) and Vanhoucke
(2005). Both procedures consist of a double branch-and-
bound to solve the problem instances to optimality. The
meta-heuristic procedure can generate near-optimal solu-
tions within a reasonable time, and is an excellent alter-
native to the exact algorithms. More precisely, the meta-
heuristic algorithm can solve almost all instances (96.36%)
to optimality within a very small computational time. The
instances that cannot be solved to optimality with exact pro-
cedures can be improved by the meta-heuristic procedure in
56.74% of the cases. The time is only a fraction of the time
needed by the exact algorithms.

The DTCTP-npv literature is restricted to Erengüç et al.
(1993). Due to the inefficient character of this solution ap-
proach, meta-heuristics are able to outperform these solu-
tions dramatically. More precisely, only 49.70% of the prob-
lem instances could be solved to optimality with the ex-
act procedure, from which 90.04% of the solutions were
found by the meta-heuristic procedure. 86.59% of all other
instances that could not be solved to optimality by the exact
procedure could be improved by our meta-heuristic search
procedure (with an average improvement of 137.221%).

Our future search efforts will focus on two extensions.
First, we will focus on the development of new and bet-
ter meta-heuristic procedures for the DTCTP-tsc and the

DTCTP-npv. Our results revealed that the exact algorithm
for the DTCTP and the DTCTP-wc performs excellent, and,
therefore, we believe that truncated versions of these proce-
dures will produce consistently good results for larger prob-
lem instances. However, our results also revealed that the
meta-heuristic procedures can outperform the existing ex-
act algorithms for the DTCTP-tsc and the DTCTP-npv, and,
therefore, further research should focus on improving these
meta-heuristic search procedures.

A second extension could lie in the adjustment of the
DTCTP to other realistic settings. We believe that the ex-
tension from the well-known DTCTP to work continuity,
time/switch constraints, and net present value was only the
first step in this process. Depending on the needs of compa-
nies and project schedulers, further extensions might seem
interesting and worth investigating. A straightforward exten-
sion could be that the DTCTP-tsc is changed, so that each ac-
tivity can follow an activity pattern (day, day–night or day–
night–weekend) but without predefining the activity pattern
in advance. In such, each pattern should have a different
cost, and the objective is then to assign a pattern to each ac-
tivity, such that the total cost (i.e., direct activity cost plus the
cost of the pattern assigned) is minimized. This straightfor-
ward extension of the basic version of the DTCTP-tsc would
meet the demand of project managers and would require fur-
ther research, both to exact and (meta-) heuristic procedures.

References

Akkan, C., Drexl, A., & Kimms, A. (2000a). Network decomposition
for the discrete time/cost trade-off problem, part 1: models and
bounding methods. In Proceedings of the seventh international
workshop on project management and scheduling (pp. 29–31),
Osnabrück, Germany, 17–19 April 2000.

Akkan, C., Drexl, A., & Kimms, A. (2000b). Network decomposition
for the discrete time/cost trade-off problem, part 2: network de-
composition and computational results. In Proceedings of the sev-
enth international workshop on project management and schedul-
ing (pp. 32–34), Osnabrück, Germany, 17–19 April 2000.

Bianco, L., & Speranza, M. G. (1990). Resource management in
project scheduling. In Proceedings of the second international
workshop on project management and scheduling, Compiègne,
France, 20–22 June 1990.

Billstein, N., & Radermacher, F. J. (1977). Time-cost optimization.
Methods of Operations Research, 27, 274–294.

Chen, Y. L., Rinks, D., & Tang, K. (1997). Critical path in an activity
network with time constraints. European Journal of Operational
Research, 100, 122–133.

Crowston, W. (1970). Network reduction and solution. Operations Re-
search Quarterly, 21, 435–450.

Crowston, W., & Thompson, G. L. (1967). Decision CPM: a method
for simultaneous planning, scheduling and control of projects.
Operations Research, 15, 407–426.

De, P., Dunne, E. J., Ghosh, J. B., & Wells, C. E. (1995). The discrete
time/cost trade-off problem revisited. European Journal of Oper-
ational Research, 81, 225–238.

De, P., Dunne, E. J., Ghosh, J. B., & Wells, C. E. (1997). Complexity
of the discrete time/cost trade-off problem for project networks.
Operations Research, 45, 302–306.

326 J Sched (2007) 10: 311–326

De Boer, R. (1998). Resource-constrained multi-project manage-
ment—a hierarchical decision support system. PhD dissertation,
Institute for Business Engineering and Technology Application,
The Netherlands.

De Reyck, B., & Herroelen, W. (1996). On the use of the complexity
index as a measure of complexity in activity networks. European
Journal of Operational Research, 91, 347–366.

Deineko, V. G., & Woeginger, G. J. (2001). Hardness of approximation
of the discrete time/cost trade-off problem. Operations Research
Letters, 29, 207–210.

Demeulemeester, E., Elmaghraby, S. E., & Herroelen, W. (1996). Op-
timal procedures for the discrete time/cost trade-off problem in
project networks. European Journal of Operational Research, 88,
50–68.

Demeulemeester, E., De Reyck, B., Foubert, B., Herroelen, W., & Van-
houcke, M. (1998). New computational results for the discrete
time/cost trade-off problem in project networks. Journal of the
Operational Research Society, 49, 1153–1163.

El-Rayes, K., & Moselhi, O. (1998). Resource-driven scheduling of
repetitive activities. Construction Management and Economics,
16, 433–446.

Elmaghraby, S.E., & Herroelen, W. (1980). On the measurement of
complexity in activity networks. European Journal of Operational
Research, 5, 223–234.

Elmaghraby, S. E., & Kamburowski, J. (1992). The analysis of ac-
tivity networks under generalized precedence relations. Manage-
ment Science, 38, 1245–1263.

Elmaghraby, S. E., & Salem, A. (1982). Optimal project compression
under quadratic cost functions. Applications of Management Sci-
ence, 2, 1–39.

Elmaghraby, S. E., & Salem, A. (1984). Optimal linear approximation
in project compression. IIE Transactions, 16(4), 339–347.

Erengüç, S. S., Tufekci, S., & Zappe, C. J. (1993). Solving time/cost
trade-off problems with discounted cash flows using generalized
Benders decomposition. Naval Research Logistics, 40, 25–50.

Falk, J. E., & Horowitz, J. L. (1972). Critical path problems with con-
cave cost-time curves. Management Science, 19, 446–455.

Ford, L. R., & Fulkerson, D. R. (1962). Flows in networks. New Jersey:
Princeton University Press.

Fulkerson, D. R. (1961). A network flow computation for project cost
curves. Management Science, 7, 167–178.

Glover, F. (1986). Future paths for integer programming and links to ar-
tificial intelligence. Computers and Operations Research, 5, 533–
549.

Gong, D. (1997). Optimization of float use in risk analysis-based net-
work scheduling. International Journal of Project Management,
15(3), 187–192.

Goto, E., Joko, T., Fujisawa, K., Katoh, N., & Furusaka, S. (2000).
Maximizing net present value for generalized resource con-
strained project scheduling problem. Working paper Nomura Re-
search Institute, Japan.

Goyal, S. K. (1975). A note on the paper: a simple CPM time/cost
trade-off algorithm. Management Science, 21, 718–722.

Harris, R. B., & Ioannou, P. G. (1998). Scheduling projects with re-
peating activities. Journal of Construction Engineering and Man-
agement, 124(4), 269–278.

Herroelen, W., & De Reyck, B. (1999). Phase transitions in project
scheduling. Journal of Operational Research Society, 50, 148–
156.

Herroelen, W., Demeulemeester, E., & Van Dommelen, P. (1997).
Project network models with discounted cash flows: A guided tour
through recent developments. European Journal of Operational
Research, 100, 97–121.

Herroelen, W., Demeulemeester, E., & De Reyck, B. (1999). A classi-
fication scheme for project scheduling problems. In J. Weglarz

(Ed.), Handbook on recent advances in project scheduling
(Chap. 1, pp. 1–26). Amsterdam: Kluwer Academic.

Hindelang, T. J., & Muth, J. F. (1979). A dynamic programming al-
gorithm for decision CPM networks. Operations Research, 27,
225–241.

Kamburowski, J., Michael, D. J., & Stallmann, M. F. M. (1992). Op-
timal construction of project activity networks. In Proceedings
of the 1992 annual meeting of the Decision Sciences Institute
(pp. 1424–1426), San Francisco, USA.

Kapur, K. C. (1973). An algorithm for the project cost/duration analy-
sis problem with quadratic and convex cost functions. IIE Trans-
actions, 5, 314–322.

Kelley, J. E. (1961). Critical path planning and scheduling: Mathemat-
ical basis. Operations Research, 9, 296–320.

Kelley, J. E., & Walker, M. R. (1959). Critical path planning and
scheduling: an introduction. Ambler: Mauchly Associates.

Kolisch, R., Sprecher, A., & Drexl, A. (1995). Characterization and
generation of a general class of resource-constrained project
scheduling problems. Management Science, 41, 1693–1703.

Lamberson, L. R., & Hocking, R. R. (1970). Optimum time compres-
sion in project scheduling. Management Science, 16, B-597–B-
606.

Moder, J. J., Phillips, C. R., & Davis, E. W. (1983). Project manage-
ment with CPM, PERT and precedence diagramming (3rd ed.).
New York: Van Nostrand Reinhold Company.

Patterson, J. H., & Harvey, R. T. (1979). An implicit enumeration algo-
rithm for the time/cost trade-off problem in project network analy-
sis. Foundations of Control Engineering, 6, 107–117.

Reda, R. M. (1990). RPM: repetitive project modelling. Journal of
Construction Engineering and Management, 116(2), 316–330.

Robinson, D. R. (1975). A dynamic programming solution to cost/time
trade-off for CPM. Management Science, 22, 158–166.

Schrage, L. (1995). LINDO: Optimization software for linear program-
ming. Chicago: LINDO Systems.

Siemens, N. (1971). A simple CPM time/cost trade-off algorithm.
Management Science, 17, B-354–B-363.

Siemens, N., & Gooding, C. (1975). Reducing project duration at min-
imum cost: a time/cost trade-off algorithm. OMEGA, 3, 569–581.

Skutella, M. (1998). Approximation algorithms for the discrete time-
cost trade-off problem. Mathematics of Operations Research, 23,
909–929.

Vanhoucke, M. (2005). New computational results for the discrete
time/cost trade-off problem with time-switch constraints. Euro-
pean Journal of Operational Research, 165, 359–374.

Vanhoucke, M. (2006). Work continuity constraints in project schedul-
ing. Journal of Construction Engineering and Management, 132,
14–25.

Vanhoucke, M., Demeulemeester, E., & Herroelen, W. (2001). On
maximizing the net present value of a project under renewable
resource constraints. Management Science, 47, 1113–1121.

Vanhoucke, M., Demeulemeester, E., & Herroelen, W. (2002). Discrete
time/cost trade-offs in project scheduling with time-switch con-
straints. Journal of the Operational Research Society, 53, 741–
751.

Vercellis, C. (1990). Multi-project scheduling with time-resource-cost
trade-offs: a tactical model. In Proceedings of the second inter-
national workshop on project management and scheduling, Com-
piègne, France, 20–22 June 1990.

Wiest, J. D., & Levy, F. K. (1977). A management guide to
PERT/CPM: with GERT/PDM/DCPM and other networks. New
Jersey: Prentice-Hall.

Yang, H. H., & Chen, Y. L. (2000). Finding the critical path in an ac-
tivity network with time-switch constraints. European Journal of
Operational Research, 120, 603–613.

	The discrete time/cost trade-off problem: extensions and heuristic procedures
	Abstract
	Introduction
	The problem formulation
	A meta-heuristic procedure
	The meta-heuristic search
	The neighborhood search
	Truncated dynamic programming as local search

	Computational results
	Test settings
	Experimental results
	Interpretation of the tables
	General experimental results for all problem types
	Experimental results for the DTCTP and the DTCTP-wc
	Experimental results for the DTCTP-tsc
	Experimental results for the DTCTP-npv

	Conclusions and suggestions for future research
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

