
J Sched (2007) 10:87–95

DOI 10.1007/s10951-006-0005-5

A note on the two machine job shop with the weighted late
work criterion
Jacek Blazewicz · Erwin Pesch · Ma�lgorzata Sterna ·
Frank Werner

Published online: 1 February 2007
C© Springer Science + Business Media, LLC 2007

Abstract The paper presents a dynamic programming

approach for the two-machine nonpreemptive job-shop

scheduling problem with the total weighted late work

criterion and a common due date (J2 | ni ≤ 2, di = d | Yw),

which is known to be NP-hard. The late work perfor-

mance measure estimates the quality of an obtained solu-

tion with regard to the duration of late parts of tasks not

taking into account the quantity of this delay. Providing a

pseudopolynomial time method for the problem mentioned

we can classify it as binary NP-hard.

Keywords Dynamic programming . Job-shop scheduling

problem . Late work criterion . Scheduling

M. Sterna has been supported by a KBN grant.

F. Werner has been supported by INTAS (project 03-51-5501).

J. Blazewicz (�) . M. Sterna
Institute of Computing Science, Poznan University of Technology,
Piotrowo 2, 60-965 Poznan, Poland
e-mail: Jacek.Blazewicz@cs.put.poznan.pl

M. Sterna
e-mail: Malgorzata.Sterna@cs.put.poznan.pl

E. Pesch
Institute of Information Systems, FB 5-Faculty of Economics,
University of Siegen, Hoelderlinstr. 3, 57068 Siegen, Germany
e-mail: Erwin.Pesch@fb5.uni-siegen.de

F. Werner
Faculty of Mathematics, Otto-von-Guericke-University, PSF4120,
39016 Magdeburg, Germany
e-mail: Frank.Werner@mathematik.uni-magdeburg.de

1 Introduction

Due date involving criteria are performance measures often

used in practical applications. Generally, they represent the

customer point of view allowing to minimize the delay of

orders realized in a system. Classical objective functions of

this type, such as the maximum lateness or the total tardi-

ness (cf. Blazewicz et al., 2001; Brucker, 1998; Pinedo and

Chao, 1999) are calculated with regard to the quantity of the

delay, while the late work criterion allows for minimizing the

amount of work executed after given due dates. The late work

objective function has not been widely investigated (for a sur-

vey of results, see Leung, 2004 and Sterna, 2006), although

it finds many practical applications, e.g., in data collecting

in control systems (Blazewicz, 1984; Blazewicz and Finke,

1987), supporting agriculture technologies (Blazewicz et al.,

2004; Potts and van Wassenhove, 1991; Sterna, 2000), or

designing production plans within predefined time periods

in manufacturing systems (Sterna, 2000).

In this note, we consider the nonpreemptive scheduling

problem with the total weighted late work criterion and a

common due date in the two-machine job-shop environment

(cf. Blazewicz et al., 2001; Brucker, 1998; Pinedo and Chao,

1999), i.e. J2 | ni ≤ 2, di = d | Yw. We have to schedule a set

of jobs J = {J1, . . . , Ji , . . . , Jn} on two dedicated machines

M1, M2. Each job Ji ∈ J consists of at most two tasks Ti1 and

Ti2, described by the processing times pi1, pi2 and machine

requirements. Particular jobs have to be performed, without

preemptions, on machines M1, M2 in the predefined order.

Each job can be processed on at most one machine at the same

time and each machine can perform at most one task at the

same time. We have to minimize the total weighted late work

in the system. The late work Yi for job Ji ∈ J is determined

as the sum of late parts of tasks Ti1 and Ti2, executed after a

common due date d, on machines M1 and M2, respectively.

Springer

88 J Sched (2007) 10:87–95

Denoting as Ci1, Ci2 their completion times, the late work

for job Ji is given by:

Yi =
∑
j=1,2

min{max{0, Cij − d}, pij}.

To determine the total weighted late work, we sum up late

work for all jobs (where n = |J |) taking into account their

given weights wi , i.e.:

Yw =
n∑

i=1

wi Yi .

Within our earlier research, we have shown that analo-

gous problems in open-shop (Blazewicz et al., 2004) and

flow-shop systems (Blazewicz et al., 2005) are binary

NP-hard. With regard to the hardness of the flow-shop

problem, the job-shop one (being its generalization) is also

computationally hard (Garey and Johnson, 1979). Here, we

propose a pseudopolynomial time dynamic programming

method solving the problem considered. (This approach is

much more sophisticated than the simpler approach for the

flow-shop problem and the methods designed for a simi-

lar objective function—the weighted number of late jobs

(Jozefowska et al., 1994)). That allows us to classify this case

as binary NP-hard and to finish the research on two-machine

weighted shop scheduling problems with a common due date.

2 Dynamic programming approach

Let the set of jobs J be partitioned into two subsets J 1 and

J 2 containing all jobs with the first (or only) task processed

on machine M1 and M2, respectively. We can assume that

early jobs are processed in Jackson’s order (1956), which is

optimal from the schedule length point of view. Jackson’s

rule states that jobs from J 1 proceed J 2 on M1 while on

M2 jobs from J 2 are executed before J 1 (for both sets, jobs

containing only one task are performed as the last ones). Sets

J 1, J 2 are scheduled according to Johnsons’s rule (1954), so

within sets J 1 and J 2 all jobs Ji with pi1 ≤ pi2 are sequenced

in nondecreasing order of pi1, while the rest, with pi1 >

pi2, are scheduled in nonincreasing order of pi2. Moreover,

we use the fact (Blazewicz et al., 2005) that maximizing

the total weighted early work is equivalent to minimizing

the total weighted late work, which is the criterion under

consideration.

Based on the above observations, for any subset of early

jobs J ′ ⊆ J 1 ∪ J 2 in an optimal solution, we can assume

that jobs from J 1 ∩ J ′ precede jobs from J 2 ∩ J ′ on M1,

and oppositely jobs from J 2 ∩ J ′ precede jobs from J 1 ∩ J ′

on M2. Moreover, we can assume that the first job of both sets

J 1 ∩ J ′ and J 2 ∩ J ′ starts at time zero on machines M1 and

M2, respectively. Consequently, there are only three possible

schemes of an optimal solution, which have to be compared.

Denoting with J P a set of jobs with partially late tasks, we

have to consider:

– J P ={Ja, Jb}, i.e., there are on both machines partially late

tasks belonging to two different jobs, where Ja denotes a

job partially late on M1 and Jb is a job partially late on M2,

– J P = {Jx }, i.e., there is one partially late task, either on

M1 or on M2, belonging to job Jx ,

– J P = Ø, i.e., there is no partially late task in a system.

For a particular set J P , we renumber the remaining

jobs J \ J P in Jackson’s order obtaining the sequence

Ĵ = (Ĵ1, . . . , Ĵu, Ĵu+1, . . . , Ĵñ), where Ĵ1, . . . , Ĵu ∈ J 1\
J P , Ĵu+1, . . . , Ĵñ ∈ J 2\ J P , u denotes the number of jobs

with the first (only) task on M1 and ñ denotes the number of

jobs to be scheduled (besides J P). Then, to find an optimal

sequence of the jobs subject to set J P , we have to choose

an optimal variant of scheduling particular jobs Ĵk ∈ J \ J P

(i.e., Ĵk ∈ Ĵ). Job Ĵk may be executed early, totally late, or

early on its first machine and totally late on the second one.

No task of job Ĵk ∈ J \ J P can be performed partially late,

because, in this case, Ĵk would have to be an element of J P .

Summing up, to construct an optimal solution of the

problem, we have to analyze all possible sets of jobs with

partially late tasks J P . For a particular set J P , we calculate

initial conditions (fñ+1) determining the amount of weighted

early work corresponding to this set. Then, we consider

remaining jobs Ĵk ∈ Ĵ calculating for them recurrence

relations (fk) denoting the amount of weighted early work

obtained for set {Jk, . . . Jñ} ∪ J P . First, we analyze all jobs

with the first (only) task executed on machine M2, i.e.,

k = ñ, . . . , u + 1, and then, using slightly different recur-

rence relations, all jobs with the first (only) task executed on

machine M1, i.e., k = u, . . . , 1. The last jobs in Jackson’s

order in both sets, i.e., Ĵñ and Ju , are treated in a special

way. The value obtained for the first job Ĵ1 (f1) denotes

the weighted early work for all jobs {J1, . . . , Jñ} ∪ J P

subject to set J P . After analyzing all possible sets J P , we

determine the optimal weighted early work for the problem

under consideration. Then, restoring decisions taken during

dynamic programming calculations for an optimal set J P ,

we schedule optimally particular tasks from J \ J P . All

early jobs have to be executed before a common due date

in Jackson’s order, while the remaining jobs are performed

between those early ones and J P in an arbitrary order.

2.1 Initial conditions

The weighted early work corresponding to the set of jobs with

partially late tasks, J P , is determined by initial conditions de-

fined as fñ+1(A, t1, L1, B, t2, L2), where ñ = |J \ J P |. Func-

tion fñ+1 denotes the maximum amount of the weighted early

work provided that the totally early tasks of jobs from J P (if

any) start exactly at time A on M1, and exactly at time B on

Springer

J Sched (2007) 10:87–95 89

L2

M1

M2

A

B, t2=0
d

t1= pb1

Jb

Jb

L1

Ja

Ja

(1)

t2= pa2 L2

M1

M2

A, t1=0

B

d

Jb

Jb

L1

Ja

Ja

(3)

L2

M1

M2

A, t1=0

d

Jb

Jb

L1

Ja

Ja

B, t2=0

(2)

t2= pa2 L2

M1

M2

A

B

d

t1= pb1

Jb

Jb

L1

Ja

Ja

(4)

Fig. 1 Initial conditions for
different sets J P = {Ja, Jb}

M2. Moreover, there are exactly t1, t2 units of early tasks and

exactly L1, L2 units of partially late tasks on machines M1

and M2, respectively. As already mentioned, there are three

possible cases, when set J P contains two, one, or none job.

Taking into account the fact that all parameters of function

fñ+1(A, t1, L1, B, t2, L2) are bounded by O(d), the calcula-

tion of the initial conditions for any set J P takes O(d6) time.

Case I.1. J P = {Ja, Jb} (cf. Fig. 1)

Case I.1.1. Ja ∈ J 1, Jb ∈ J 1 (cf. Fig. 1(1))

if (0 ≤ A ≤ min{d − L1, d − L2} − pb1) ∧ (t1 = pb1)

∧ (0 < L1 < pa1) ∧ (0 ≤ B ≤ d − L2) ∧ (t2 = 0)

∧ (0 < L2 < pb2),

then fñ+1(A, t1, L1, B, t2, L2)=wa L1 + wb(pb1+L2) (1)

else fñ+1(A, t1, L1, B, t2, L2)=−∞ (2)

Case I.1.2. Ja ∈ J 1, Jb ∈ J 2 (cf. Fig. 1(2))

if (0 ≤ A ≤ d − L1) ∧ (t1 = 0) ∧ (0 < L1 < pa1)

∧ (0 ≤ B ≤ d − L2) ∧ (t2 = 0) ∧ (0 < L2 < pb2),

then fñ+1(A, t1, L1, B, t2, L2) = wa L1 + wb L2 (3)

else fñ+1(A, t1, L1, B, t2, L2) = −∞ (4)

Case I.1.3. Ja ∈ J 2, Jb ∈ J 2 (cf. Fig. 1(3))

if (0 ≤ A ≤ d − L1) ∧ (t1 = 0) ∧ (0 < L1 < pa1)

∧ (0 ≤ B ≤ min{d − L1, d − L2} − pa2)

∧ (t2 = pa2) ∧ (0 < L2 < pb2),

then fñ+1(A, t1, L1, B, t2, L2)=wa(pa2 + L1)+wb L2 (5)

else fñ+1(A, t1, L1, B, t2, L2)=−∞ (6)

Case I.1.4. Ja ∈ J 2, Jb ∈ J 1 (cf. Fig. 1(4))

if (0 ≤ A ≤ min{d − L1, d − L2} − pb1) ∧ (t1 = pb1)

∧ (0 < L1 < pa1) ∧ (0 ≤ B ≤ min{d − L1, d − L2}
− pa2) ∧ (t2 = pa2) ∧ (0 < L2 < pb2),

then fñ+1(A, t1, L1, B, t2, L2)

= wa(pa2 + L1) + wb(pb1 + L2) (7)

else fñ+1(A, t1, L1, B, t2, L2) = −∞ (8)

Determining the initial value of the weighted early work,

we count early parts of jobs Ja , Jb for feasible values of

parameters A, B, t1, t2, L1, and L2 (Terms 1, 3, 5, and 7).

Early tasks (if any) on M1, M2 must fit exactly intervals t1, t2,

respectively. Similarly, partially late tasks on M1, M2 have

to fit exactly intervals L1, L2. Finally, A and B have to be

properly chosen to ensure that jobs Ja , Jb are the jobs with

partially late tasks. Infeasible parameter values (Terms 2, 4,

6, and 8) lead to the initial criterion value equal to minus

infinity. That means that such solutions are rejected.

Case I.2. J P = {Jx } (cf. Fig. 2)

Case I.2.1. Jx ∈ J 1 (cf. Figs. 2(1) and (2))

if (0 ≤ A ≤ d − L2 − px1) ∧ (t1 = px1) ∧ (L1 = 0)

∧ (0 ≤ B ≤ d − L2) ∧ (t2 = 0) ∧ (0 < L2 < px2),

then fñ+1(A, t1, L1, B, t2, L2) = wx (px1 + L2) (9)

if (0 ≤ A ≤ d − L1) ∧ (t1 = 0) ∧ (0 < L1 < px1)

∧ (0 ≤ B ≤ d) ∧ (t2 = 0) ∧ (L2 = 0),

then fñ+1(A, t1, L1, B, t2, L2) = wx L1 (10)

if otherwise, then fñ+1(A, t1, L1, B, t2, L2) = −∞ (11)

Similarly as for a two-job set J P , we detect infeasible

parameter values (Term 11). For feasible parameter values,

we check two possible ways of scheduling job Jx : with a par-

tially late task on M2 (Term 9, Fig. 2(1)) and with a partially

late task on M1 (Term 10, Fig. 2(2)).

Case I.2.2. Jx ∈ J 2 (cf. Figs. 2(3) and (4))

if (0 ≤ A ≤ d − L1) ∧ (t1 = 0) ∧ (0 < L1 < px1)

∧ (0 ≤ B ≤ d − L1 − px2) ∧ (t2 = px2) ∧ (L2 = 0),

then fñ+1(A, t1, L1, B, t2, L2) = wx (px2 + L1) (12)

Springer

90 J Sched (2007) 10:87–95

L2

M1

M2

A

B, t2=0
d

t1= px1

Jx

Jx

L1=0

M1

M2

A, t1=0

d

L1

Jx

Jx

t2=0,
L2=0B

(1) (2)

t2= px2 L2=0

M1

M2

A, t1=0

B

d

L1

Jx

Jx

L2

M1

M2

A

d

Jx

Jx

t1= 0,
L1= 0

B, t2=0

(3) (4)

Fig. 2 Initial conditions for
Jx ∈ J 1, when Jx is partially late
on M2 (1) and on M1 (2) and for
Jx ∈ J 2, when Jx is partially
late on M1 (3) and on M2 (4)

if (0 ≤ A ≤ d) ∧ (t1 = 0) ∧ (L1 = 0) ∧ (0 ≤ B ≤ d − L2)

∧ (t2 = 0) ∧ (0 < L2 < px2),

then fñ+1(A, t1, L1, B, t2, L2) = wx L2 (13)

if otherwise, then fñ+1(A, t1, L1, B, t2, L2) = −∞ (14)

As in the previous case, we detect infeasible parameter values

(Term 14) and for feasible parameter values, we check two

possible ways of scheduling job Jx : with a partially late task

on M1 (Term 12, Fig. 2(3)) and on M2 (Term 13, Fig. 2(4)).

Case I.3. J P = Ø

Finally, we have to analyze the case when no partially late

task exists in the system, for which the initial conditions are

formulated as follows. Such a situation occurs, when on a

particular machine a task finishes/starts exactly at time d or

there is idle time around a common due date.

if (0 ≤ A ≤ d) ∧ (t1 = 0) ∧ (L1 = 0) ∧ (0 ≤ B ≤ d)

∧ (t2 = 0) ∧ (L2 = 0),

then fñ+1(A, t1, L1, B, t2, L2) = 0 (15)

else fñ+1(A, t1, L1, B, t2, L2) = −∞ (16)

2.2 Recurrence relations

After determining the initial conditions for a particular set

J P , we calculate the recurrence relations for the remain-

ing jobs Ĵk ∈ J\J P , numbered according to Jackson’s

rule as Ĵ1, . . . , Ĵu, Ĵu+1, . . . , J̃n̂ . As already mentioned,

first, we analyze jobs with the first (only) task on M2

(k = ñ, . . . , u + 1). Then, jobs with the first (only) task

on M1 are taken into account (k = u, . . . , 1). For job Ĵk ,

we determine the amount of the weighted early work for

jobs { Ĵk, . . . , Ĵñ} ∪ J P based on the recurrence relation

fk(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2). The meaning of

the parameters changes slightly depending on the job type,

whether Ĵk ∈ J 2\ J P or Ĵk ∈ J 1\ J P . Parameter F always

denotes the completion time of the last early job from

{ Ĵk, . . . , Ĵu}\ J P on M1. For jobs Ĵk ∈ J 2\ J P (analyzed

first), this value is not known yet and it has to be considered

as a variable. For jobs from Ĵk ∈ J 1\ J P , F is calculated

based on a current partial solution. Parameter F is necessary

to determine a proper initial condition value during the

construction of an optimal solution (F becomes A for set J P).

Case R.1. k = ñ, . . . , u + 1 (i.e. Ĵk ∈ J 2\ J P)

For job Ĵk ∈ J 2\ J P , processed first on M2 then on M1,

fk(A, t1, T1, r1, T1, F , B, t2, T2, r2, L2) denotes the maximum

amount of the weighted early work of jobs { Ĵk, . . . , Ĵñ} ∪ J P

provided that:

– the first job from this set starts processing exactly at time

B on M2 and not earlier than at time A on M1 (jobs from

J 1\ J P will be scheduled within time A in the following

DP stages),

– there are at least r2 time units in the interval [B, d] not

used for processing jobs from J 2\ J P on M2 (within this

time, second tasks of jobs from J 1 will be scheduled in the

following DP stages),

– there are exactly r1 time units in the interval [A, d] reserved

for processing jobs from J 2\ J P on M1 (all tasks of early

jobs from J 2\ J P have to be executed within this interval),

– the first tasks of tardy jobs from { Ĵk, . . . , Ĵñ} ∪ J P are

processed exactly t2 time units on M2 before d and exactly

T2 units are reserved on M2 before d for the first tasks of

tardy jobs Ĵi ∈ J 2\ J P (i < k),

– there are exactly L1 (L2) units of partially late tasks on M1,

M2 (they belong to jobs from J P).

Parameters t1, T1 are not important at this stage of the analy-

sis (those intervals are embedded within A from Ĵk’s point of

Springer

J Sched (2007) 10:87–95 91

view). They play analogous roles as t2, T2 for jobs from J 1 in

the following stages of DP. Parameter F denotes the assumed

completion time of the last early job from { Ĵ1, . . . , Ĵu}\ J P

on M1. Jobs Ĵk ∈ J 2\ J P are analyzed from k = ñ to u + 1.

Determining the recurrence relation fk for Ĵk , we use the

result obtained for Ĵk+1(fk+1). For this reason, the formula-

tion of the recurrence relations for the last job Ĵñ , requiring

the result of the initial condition calculation fñ+1, is slightly

different. It is calculated as the first one. However, for sake

of clarity, we will present it later.

For jobs Ĵk ∈ J 2\ J P , where k = ñ − 1, . . . , u + 1, re-

currence relations are as follows:

if (B + t2 + T2 + r2 + L2 ≤ d) ∧ (A + r1 + L1 ≤ d)

∧ (t1 +T1 ≤ A) ∧ (F ≤ A − (t1 + T1)), then

if (B+ pk2+t2+T2+r2+L2 ≤ d) ∧ (max{A, B + pk2}
+ pk1 + L1 ≤ d) ∧ (pk1 ≤ r1), then

fk(A, t1,T1,r1,L1,F,B, t2,T2, r2,L2)

= max{wk(pk1 + pk2) + fk+1(max{A, B + pk2}
+pk1, t1, T1, r1− pk1, L1, F, B + pk2,

t2, T2, r2, L2), (17)

wk pk2 + fk+1(A, t1, T1, r1, L1, F, B, t2 − pk2,

T2 + pk2, r2, L2) if pk2 ≤ t2, (18)

fk+1(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2)} (19)

else fk(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2)

= max{wk pk2 + fk+1(A, t1, T1, r1, L1, F, B, t2− pk2,

T2 + pk2, r2, L2) if pk2 ≤ t2, (20)

fk+1(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2)} (21)

else fk(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2) = −∞ (22)

If parameter values are infeasible (i.e., gaps between A, B
and d are not long enough to contain intervals r1, L1 and

t2, T2, r2, L2, respectively, or A is too small to contain t1,

T1, or the assumed completion time F of last early job from

J 1\ J P on M1 is too big), then the function takes the value

minus infinity (Term 22). Otherwise, we have to check all

possible ways of scheduling job Ĵk and select the best one

(ensuring the maximum weighted early work). If job Ĵk can

be scheduled early (Terms 17–19, Fig. 3), then we compare

three possible subschedules, when this job is early (Term 17,

Fig. 3(1)), only its first task is early (Term 18, Fig. 3(2)), and

the job is totally late (Term 19, Fig. 3(3)). The case when Ĵk is

early only on M2 is under consideration only, if interval t2 is

long enough to contain the whole task of Ĵk . If job Ĵk cannot

be scheduled early (Terms 20, 21), then only two cases are

possible when only its first task is early (assuming that t2 is

long enough, Term 20) or it is totally late (Term 21).

As mentioned, recurrence relations for the last job from

set J 2\ J P (Ĵñ) are formulated differently:

T1

t2

t1

M1

M2

pk1

B

A

d
pk2

Jk

(1)

T2

r1

L2

L1

r2

Jk

T1

t2

t1

M1

M2

B

A

d

pk2

(2)

T2

r1

L2

L1

r2

T1

t2

t1

M1

M2

B

A

d

(3)

T2

r1

L2

L1

r2

Jk

Jk

Jk

Jk

Fig. 3 Recurrence relations for
Ĵk ∈ J 2\ J P executed early (1),
early only on M2 (2), or totally
late (3)

Springer

92 J Sched (2007) 10:87–95

if (B + t2 + T2 + r2 + L2 ≤ d) ∧ (A + r1 + L1 ≤ d)

∧ (t1 +T1 ≤ A) ∧ (F ≤ A − (t1 + T1)), then

if (B+ pñ2+t2+T2+r2+L2 ≤ d) ∧ (max{A, B + pñ2}
+ pñ1 + L1 ≤ d) ∧ (pñ1 ≤ r1), then

fñ(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2)

= max{wñ(pñ1 + pñ2) + fñ+1(F, t1, L1, B + pñ2,

t2, L2), (23)

wñ pñ2+ fñ+1(F, t1, L1, B, t2 − pñ2, L2) if pñ2 ≤ t2,

(24)

fñ+1(F, t1, L1, B, t2, L2)} (25)

else fñ(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2)

= max{wñ pñ2 + fñ+1(F, t1, L1, B, t2 − pñ2, L2)

if pñ2 ≤ t2 (26)

fñ+1(F, t1, L1, B, t2, L2)} (27)

else fñ(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2) = −∞ (28)

The case study for Ĵñ is identical to that for other jobs

Ĵk ∈ J 2\ J P . The only difference is that while calculating

fñ , we determine the weighted early work for jobs { Ĵñ} ∪ J P

and we have to use the criterion value fñ+1 calculated for

J P (not fk+1 calculated for another job Ĵk+1 ∈ J 2\ J P).

Function fñ+1 is defined for a different parameter set than

the recurrence relation fk . Parameters representing reserved

intervals T1, r1, T2, r2 are not important for J P . Parameter

F is used for determining the possible starting time on M1

for J P , i.e., for determining the value of parameter A for

J P . The possible starting time on M2 for J P results from

a current partial schedule, i.e., the value of parameter B for

J P results from the value of B for Ĵñ increased by pñ2, if Ĵñ

is early on M2. Similarly as for Ĵñ , we have to change the

formulation of the recurrence relations for jobs Ĵk ∈ J 2\ J P

that contain only one task, requiring machine M2 (pk1 = 0).

In those cases, precedence constraints do not exist and we

remove Term 17 from the definition of fk (and Term 23, if

Ĵñ contains only one task).

In the presented recurrence relations, all parameters of

function fk(A, t1, T1, r1, L1, F , B, t2, T2, r2, L2) are bounded

by O(d). Thus, determining the recurrence relations for jobs

Ĵk ∈ J 2\ J P takes O(d11) time. The analysis of J 2\ J P is

followed by an analysis of jobs with the first (only) task on

machine M1. As mentioned earlier, recurrence relations have

to be adjusted to a different type of precedence constraints

between tasks.

Case R.2. k = u, . . . , 1 (i.e. Ĵk ∈ J 1\ J P)

For job Ĵk ∈ J 1\ J P , processed first on M1 then on M2, fk(A,

t1, T1, r1, L1, F , B, t2, T2, r2, L2) denotes the maximum

amount of the weighted early work of jobs { Ĵk, . . . , Ĵñ} ∪ J P

provided that:

– the first job from this set starts processing exactly at time

A on M1 and not earlier than at time B on M2 (jobs from

J 2\ J P have been scheduled within interval B in DP stages

described earlier),

– there are at least r1 time units in the interval [A, d] not

used for processing jobs from J 1\ J P on M1 (within this

interval, second tasks of jobs from J 2 have been sched-

uled),

– there are exactly r2 time units in interval [B, d] reserved

for processing jobs Ĵi ∈ J 1\ J P on M2 (i < k),

– the first tasks of tardy jobs from { Ĵk, . . . , Ĵñ} ∪ J P are

processed exactly t1 time units on M1 before d and exactly

T1 units are reserved on M1 before d for the first tasks of

tardy jobs Ĵi ∈ J 1\ J P (i < k),

– there are exactly L1 (L2) units of partially late tasks on

M1, M2 (they belong to jobs from J P).

Similarly as in Case R.1, parameters t2, T2 are not important

at this stage of analysis (those intervals are embedded within

B from Ĵk point of view). Parameter F denotes the com-

pletion time of the last early job from { Ĵk, . . . , Ĵu} ∪ J P on

M1. Jobs Ĵk ∈ J 1\ J P are analyzed from k = u to 1. Again,

determining the recurrence relation fk for Ĵk , we use the re-

sult obtained for Ĵk+1 (fk+1). For this reason, the recurrence

relation formulation for the last job Ĵu , requiring value fu+1,

is slightly different, because Ĵu+1 belongs to J 2\ J P not to

J 1\ J P . The value of fu is calculated as the first one. How-

ever, for the sake of clarity, we will present it later, as in

Case R.1.

For jobs Ĵk ∈ J 1\ J P , where k = u − 1, . . . , 1, recurrence

relations are as follows:

if (A + t1 + T1 + r1 + L1 ≤ d) ∧ (B + r2 + L2 ≤ d)

∧ (t2 ≤ B) ∧ (T2 = 0), then

if (A + pk1 + t1 + T1 + r1 + L1 ≤ d)

∧ (max{A + pk1, B} +pk2 + r2 + L2 ≤ d), then

fk(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2)

= max{wk(pk1+ pk2)+ fk+1(A + pk1, t1, T1, r1, L1,

A+ pk1, max{A+ pk1, B}+ pk2, t2, T2, r2 + pk2, L2),

(29)

wk pk1 + fk+1(A, t1 − pk1, T1 + pk1, r1, L1, A, B, t2,

T2,r2,L2) if pk1 ≤ t1, (30)

fk+1(A, t1, T1, r1, L1, A, B, t2, T2, r2, L2)} (31)

else fk(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2, F)

= max{wk pk1+ fk+1(A, t1− pk1,T1+ pk1, r1,L1,

A,B, t2,T2, r2,L2) if pk1 ≤ t1, (32)

fk+1(A, t1, T1, r1, L1, A, B, t2, T2, r2, L2)} (33)

else fk(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2) = −∞ (34)

Springer

J Sched (2007) 10:87–95 93

t1

t2

M1

M2

pk2

A

B d

pk1

Jk

(1)
T1

r2

L1

L2

r1

t1

t2

M1

M2

A

B d

pk1
(2)

T1

r2

L1

Jk

L2

r1

Jk

Jk

t1

t2

M1

M2

A

B d

(3)
T1

r2

L1

Jk

L2

r1

Jk

Fig. 4 Recurrence relations for
Ĵk ∈ J 1\ J P executed early (1),
early only on M1 (2), or totally
late (3)

If parameter values are infeasible (i.e., gaps between A, B,

and d are not long enough to contain intervals t1, T1, r1, L1,

and r2, L2 respectively, or B is too small to contain t2, or T2

is different from 0, i.e., there is a reserved interval for jobs

from J 2, although all jobs from this set have been already

considered), then the function takes the minus infinity value

(Term 34). Otherwise, we have to analyze all possible ways

of executing job Ĵk and choose the best one subject to the

weighted early work. If job Ĵk can be scheduled early (Terms

29–31, Fig. 4) then we compare three possible solutions,

namely, when this job is early (Term 29, Fig. 4(1)), only its

first task is early (Term 30, Fig. 4(2)), and the job is totally

late (Term 31, Fig. 4(3)). The case when Ĵk is early only on

M1 is under consideration only, if interval t1 is long enough

to contain the whole task of Ĵk . If job Ĵk cannot be scheduled

early (Terms 32, 33), then two cases are possible: when only

its first task is early (assuming that t1 is long enough, Term

32) or it is totally late (Term 33).

As we have announced, recurrence relations for the

last job from set J 1\ J P , i.e. job Ĵu , are formulated

differently:

if (A + t1 + T1 + r1 + L1 ≤ d) ∧ (B + r2 + L2 ≤ d)

∧ (t2 ≤ B) ∧ (T2 = 0), then

if (A + pu1 + t1 + T1 + r1 + L1 ≤ d)∧(max{A+ pu1, B}
+ pu2 + r2 + L2 ≤ d), then

fu(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2, F)

= max{wu(pu1 + pu2) + fu+1(A + pu1 + t1 + T1,

t1, T1, d − (A + pu1 + t1 + T1 + L1), L1, A + pu1,

0, t2, T2, r2 + pu2, L2) (35)

wu pu1 + fu+1(A + t1 + T1, t1 − pu1, T1 + pu1, d −
(A+ pu1+t1+T1+L1), L1, A+ pu1, 0, t2, T2, r2,L2)

if pu1 ≤ t1 (36)

fu+1(A + t1 + T1, t1, T1, d − (A + t1 + T1 + L1),

L1, A, 0, t2, T2, r2, L2)} (37)

else fu(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2)

= max{wu pu1+ fu+1(A+t1+T1, t1− pu1, T1 + pu1,

d − (A + pu1 + t1 + T1+L1), L1, A + pu1, 0,

t2, T2, r2, L2) if pu1 ≤ t1 (38)

fu+1(A + t1 + T1, t1, T1, d − (A + t1 + T1 + L1),

L1, A, 0, t2, T2, r2, L2)} (39)

else fu(A, t1, T1, r1, L1, F, B, t2, T2, r2, L2) = −∞ (40)

We consider for Ĵu , the same cases as for other jobs Ĵk

∈ J 1\ J P , but determining the weighted early work for jobs

Springer

94 J Sched (2007) 10:87–95

ΠA(JL(1))

M2

d

ΠJO(JE(1))

ΠJO(JE(2))

ΠJO(JE(2))

ΠJO(JE(1))ΠA(JL(2))

ΠA(JL∪JL(2))

ΠA(JL∪JL(1))

M1

tasks of JP*Fig. 5 The structure of an
optimal solution

{ Ĵu, Ĵu+1, . . . , Ĵñ} ∪ J P , we have to use the criterion value

fu+1 calculated for a job from set J 2\ J P . Switching from set

J 1\ J P to J 2\ J P , i.e., calling function fu+1, we assume that

B equals 0, because early jobs from J 2\ J P start at time 0 on

M2. Then, A is extended with intervals t1 and T1 (parameter

A takes the value A + t1 + T1 or A + t1 + T1 + pu1 for job

Ĵu+1, depending on the way Ĵu is scheduled). From the point

of view of job Ĵu+1, all jobs from J 1\ J P have to be executed

before A, despite the fact whether they are early or partially

late. The completion time of the last early job from Ĵk ∈
J 1\ J P is stored as value F for Ju+1, equal to A or A + pu1

depending on the way Ju is scheduled. Finally, we determine

interval r1, not used by jobs from J 1\ J P , as d − (A + pu1 +
t1 + T1 + L1) or d − (A + t1 + T1 + L1), depending on the

way Ĵu is executed. For Ĵu+1, we have to know exactly the

length of the interval not used by jobs from J 1\ J P .

As for Ĵk ∈ J 2\ J P , in the case of Ĵk ∈ J 1\ J P having

only one task, requiring machine M1 (pk2 = 0), we remove

Term 29 from the definition of fk (and Term 35, if job Ju

contains only one task). Similarly, calculating recurrence

relations fk(A, t1, T1, r1, L1, F , B, t2, T2, r2, L2) for jobs

from set J 1\ J P takes O(d10) time (F is not a variable as for

Ĵk ∈ J 2\ J P).

To determine the maximum weighted late work subject

to a given set J P , one has to select the maximum value

of f1(0, t1, 0, r1, L1, 0, B, t2, 0, 0, L2) for 0 ≤ t1, r1,

L1, B, t2, L2 ≤ d. Function f1 denotes the weighted early

work for all jobs { Ĵ1, . . . , Ĵñ} ∪ J P subject to J P . Chang-

ing parameters t1, L1, t2, L2, we check solutions obtained

for all possible amounts of early tasks of late jobs, while

changing r1 and B, we reserve different amounts of time on

M1 and M2 for jobs from J 2\ J P . Determining the maximal

total weighted early work for a particular set J P takes O(d6)

time.

2.3 Solution construction and complexity of the algorithm

To find an optimal solution of problem J2 | ni ≤ 2, di =
d | Yw, we have to analyze all possible sets J P of jobs

with partially late tasks on machines M1, M2. Consequently,

dynamic programming calculations have to be repeated for

all O(n2) two-job sets, all O(n) one-job sets, and for an empty

set J P . In each case, DP calculations require first the initial

conditions determination in O(d6) time. Fixing recurrence

relations for all O(n) jobs from J \ J P takes O(d11) time and

then determining the maximum criterion value for a certain

set J P can be done in O(d6) time. The overall complexity

of this stage of the dynamic programming method is

O(n3d11).

After determining the set J P∗
, which results in a schedule

with the maximum (optimal) weighted early work, we have

to construct an optimal solution based on the decisions taken

during the DP calculations for J P∗
. They divided J \ J P∗

into

five subsets (cf. Fig. 5):

– J E(1), J E(2) with early jobs from J 1, J 2, respectively,

– J L(1), J L(2) with jobs from J 1\ J P∗
, J 2\ J P∗

whose first

task is early and the second one is totally late,

– J L with totally late jobs.

To build a schedule on machine M1, denoted as �1, first

we execute early jobs from J E(1) in Jackson’s order obtaining

subschedule �JO(J E(1)). It is followed by the early task of

a job from J P∗
and, then, by tasks from J L(1) executed in

arbitrary order (subschedule �A(J L(1))). After those tasks

of partially late jobs, we perform the second tasks of early

jobs from J E(2) in Jackson’s order obtaining subschedule

�JO(J E(2)). Then, the partially late task of a job from J P∗

has to be scheduled followed by arbitrarily ordered late

tasks of jobs from J L ∪ J L(2) (subschedule �A(J L ∪ J L(2))).

Schedule �2 on machine M2 is constructed in a similar way.

Depending on a problem instance, some subschedules men-

tioned earlier may be empty. The construction of an optimal

schedule does not increase the overall complexity of the

dynamic programming approach.

3 Conclusions

The paper presents a dynamic programming approach for

the job-shop scheduling problem with the total weighted

late work criterion and a common due date J2 | ni ≤ 2, di =
d | Yw. The NP-hardness of the flow-shop problem, F2 | di =
d | Yw, being a special case of J2 | ni ≤ 2, di = d | Yw, re-

sulted in the NP-hardness of the job-shop case. But, it was

not settled, whether the latter problem is binary or unary

NP-hard. Proposing a dynamic programming method with

pseudopolynomial time complexity, we have proven the bi-

nary NP-hardness of the problem considered.

Springer

J Sched (2007) 10:87–95 95

References

Blazewicz, J., “Scheduling preemptible tasks on parallel processors with
information loss,” Recherche Technique et Science Informatiques,
3(6), 415–420 (1984).

Blazewicz, J., K. Ecker, E. Pesch, G. Schmidt, and J. Weglarz, Schedul-
ing Computer and Manufacturing Processes. 2nd edn. Springer,
Berlin, Heidelberg, New York, 2001.

Blazewicz. J. and G. Finke, “Minimizing mean weighted execution time
loss on identical and uniform processors,” Information Processing
Letters, 24, 259–263 (1987).

Blazewicz, J., E. Pesch, M. Sterna, and F. Werner, “Open shop schedul-
ing problems with late work criteria,” Discrete Applied Mathemat-
ics, 134, 1–24 (2004).

Blazewicz, J., E. Pesch, M. Sterna, and F. Werner, “The two-machine
flow-shop problem with weighted late work criterion and common
due date,” European Journal of Operational Research, 165(2),
408–415 (2005).

Brucker, P., Scheduling Algorithms. 2nd edn. Springer, Berlin, Heidel-
berg, New York, 1998.

Garey, M. R. and D. S. Johnson, Computers and Intractability. W.H.
Freeman and Co., San Francisco (1979).

Jackson, J. R., “An extension of Johnson’s results on job shop schedul-
ing,” Naval Research Logistics Quarterly, 3, 201–203 (1956).

Johnson, S. M., “Optimal two- and three-stage production schedules
with setup times included,” Naval Research Logistics Quarterly,
1, 61–68 (1954).

Jozefowska, J., B. Jurisch, and W. Kubiak, “Scheduling shops to mini-
mize the weighted number of late jobs,” Operation Research Let-
ters, 16(5), 277–283 (1994).

Leung, J. Y. T., “Minimizing total weighted error for imprecise computa-
tion tasks and related problems,” in: J. Y. T. Leung (ed.), Handbook
of Scheduling: Algorithms, Models, and Performance Analysis.
CRC Press, Boca Raton, 2004; Chapter 34:1–16.

Pinedo, M. and X. Chao, Operation Scheduling with Applications in
Manufacturing and Services. Irwin/McGraw-Hill, Boston (1999).

Potts, C. N. and L. N. van Wassenhove, “Single machine scheduling to
minimize total late work,” Operations Research, 40(3), 586–595
(1991).

Sterna, M., Problems and Algorithms in Non-Classical Shop Schedul-
ing. Scientific Publishers of the Polish Academy of Sciences,
Poznan (2000).

Sterna, M., Late Work Scheduling in Shop Systems. Publishing House
of Poznan University of Technology, Poznan (2006).

Springer

