
Journal of Scheduling 8: 97–106, 2005.
© 2005 Springer Science + Business Media, Inc. Printed in the Netherlands.

SCHEDULING WEB ADVERTISEMENTS: A NOTE ON THE
MINSPACE PROBLEM

MILIND DAWANDE1, SUBODHA KUMAR2 AND CHELLIAH SRISKANDARAJAH1

1University of Texas at Dallas, Richardson, TX 75080, USA
2University of Washington, Business School, Seattle, WA 98195, USA

ABSTRACT

Free services to internet users are commonly available on many web sites e.g., Hotmail and Yahoo. For such
sites, revenue generated from advertisements (hereafter also called “ads”) placed on the web pages is critical
for survival. An effective way to schedule ads on web pages to optimize certain performance measures is an
important problem that these sites need to address.

In this note, we report improved approximation algorithms for the following problem: ads from a set of n
ads A = {Ai , . . . , An} are to be placed on a web page during a planning horizon that is divided into N time
intervals. In each time interval, ads are shown in a rectangular space called a slot. An ad Ai is specified by
its size si and frequency wi and is to be scheduled in exactly wi slots. We are required to find a schedule that
minimizes the maximum fullness among all the slots, where the fullness of a slot is the sum of the sizes of ads
scheduled in that slot. Our results include (i) the first online algorithm with a performance bound of 2 − 1

N ,
and (ii) two offline algorithms with performance guarantees of 1 + 1 1√

2
and 3

2 , respectively. These bounds
are significant improvements over those for previously known algorithms presented in Adler, Gibbons, and
Matias (2002) and Dawande, Kumar, and Sriskandarajah (2003).

KEY WORDS: web advertising, scheduling, approximation algorithms

1. INTRODUCTION

The popularity of the world wide web has increased dramatically in the last few years. At the
end of 1999, the number of web users was nearly 260 million worldwide, whereas this number is
estimated to be around 765 million by the end of 2005—thus tripling in six years (Puetz, 2000).
This increasing popularity of the web has made it an attractive medium for advertisers. To quote a
finding from a Millward Brown study (Hyland, 2000): “Single exposure to a web banner generated
greater awareness than a single exposure to a television or print ad”. Since the ultimate goal of
advertisers is to reach customers effectively, the market for web advertising is growing significantly.

The Interactive Advertising Bureau (http://www.iab.net) has reported significant web adver-
tising revenues in recent years: $4.6 billion in 1999, $8 billion in 2000, $7 billion in 2001 and $6
billion in 2002.

Many web sites (e.g., Hotmail and Yahoo) have adopted business models in which a considerable
fraction of the revenue is generated from advertisements displayed on web pages. For such sites, it is
very important to maximize the revenue from advertising without significantly sacrificing the non-
advertisement content. Although one factor considered in setting advertising charges is the number
of hits on the site, others that come into play are the size of the ad, and how often it is displayed

Correspondence to: Subodha Kumar. E-mail: subodha@u.washington.edu

98 M. DAWANDE, S. KUMAR, AND C. SRISKANDARAJAH

on a page. Two models for scheduling web advertisements, namely the MINSPACE problem and
MAXSPACE problem, have been recently proposed (Adler, Gibbons, and Matias, 2002). Both
problems are NP-hard in the strong sense (Adler, Gibbons, and Matias, 2002) and, therefore,
polynomial-time approximation algorithms for the problems have been reported in the literature.
For the MAXSPACE problem, studied in Adler, Gibbons, and Matias (2002), Dawande, Kumar,
and Sriskandarajah (2003) and Fruend and Naor (2003), the best known result is a 1

3 -approximation
reported in Fruend and Naor (2003). For the MINSPACE problem (Adler, Gibbons, and Matias,
2002; Dawande, Kumar, and Sriskandarajah, 2003), the best known result is a 2-approximation
reported in Adler, Gibbons, and Matias (2002) and Dawande, Kumar, and Sriskandarajah (2003).
The purpose of this note is to report three results for the MINSPACE problem: (a) an offline
(1 + 1√

2
)-approximation algorithm, (b) an offline 3

2 -approximation algorithm, and (c) an online

(2 − 1
N)-approximation algorithm.

This note is organized as follows. Section 2 defines the MINSPACE problem. In Section 3, we
describe the algorithms and analyze their performance. Conclusions are provided in Section 4.

2. PROBLEM DESCRIPTION

Consider a set of n ads A = {A1, . . . , An}. A planning horizon is divided into N equal time intervals.
In each time interval, the selected ads are displayed in a rectangular space called a slot. A slot
usually appears on the left, right, top or bottom of the web page and houses one or more ads. An
ad placed in a particular slot will be displayed (to users visiting the web site) for the time interval
corresponding to that slot. Each ad has two characteristics: size and frequency. The size of an ad Ai

is denoted by si and represents the amount of space Ai occupies in a slot. The frequency of an ad
Ai is denoted by wi and is the number of slots which should contain a copy of the ad. Advertisers
do not want to display more than one copy of an ad in the same slot and therefore an ad Ai can
be displayed at most once in a slot.

Definition. Ad Ai is said to be scheduled if a total of wi copies of Ai appear in the slots with at
most one copy in a slot.

Clearly, wi ≤ N, ∀i . We assume that the width of the ads placed in a slot is same as the width of
the slot. The fullness of a slot j is defined as f j = ∑

i :Ai ∈Bj
si , where Bj is a set of ads which have a

copy in slot j . The height of the schedule, f , is the maximum fullness of the slots, i.e., f = max j f j .
In the MINSPACE problem, all the ads are to be placed in N slots. The objective is to find

a schedule with minimum height, say f ∗. For example, consider the problem instance given in
Figure 1(a). A feasible schedule is shown in Figure 1(b). Here, the fullness of slot 2 is s1 + s3 = 9
and the height of the schedule is f = 10. Figure 1(c) shows an optimal schedule with f ∗ = 9. Note
that during any time interval only one of these five slots is shown to a user accessing the web page.
We assume that an ad can be scheduled in any slot and do not consider the problem of deciding
which slot to display in a particular time interval.

In the special case when wi = 1, ∀i , this problem is equivalent to the classical multiprocessor
scheduling problem (MSP): given n independent tasks, each of which requires processing on any
of m identical parallel processors, find a schedule that minimizes the total completion time of
all tasks (or the makespan of the schedule). Here, the number of slots, N, is equivalent to the m
identical parallel processors while the size si of an ad Ai corresponds to the processing time of a
task. The LPT (largest processing time first) algorithm, with a worst-case bound of 4

3 − 1
3m , is a

SCHEDULING WEB ADVERTISEMENTS 99

Figure 1. An example to illustrate the MINSPACE problem.

well-known algorithm for MSP (Graham, 1969). Other algorithms for MSP include (i) the multifit
algorithm (Coffman, Garey, and Johnson, 1978; Friesen, 1984) with a performance guarantee of
6
5 , (ii) an improved multifit algorithm (Friesen and Langston, 1986) with a guarantee of 72

61 and
(iii) a PTAS (Hochbaum and Shmoys, 1987). Several approximations algorithms for the online
version of the MSP are available in the literature (Graham, 1969; Galambos and Woeginger,
1993; Chandrasekaran et al., 1997; Bartal et al., 1995; Karger, Phillips, and Torng, 1996; Albers,
1999; Fleischer and Wahl, 2000).

3. THE MINSPACE PROBLEM

We first provide an integer programming formulation for the MINSPACE problem (corresponding
to an ad set A = {A1, . . . , An}).

min F

subject to F ≥
n∑

i=1

si xi j j = 1, 2, . . . , N (IPmin(A))

N∑

j=1

xi j = wi i = 1, 2, . . . , n

where

xi j = 1 if adAi is scheduled in slot j,

= 0 otherwise.

100 M. DAWANDE, S. KUMAR, AND C. SRISKANDARAJAH

Note: For simplicity of notation, we will use IPmin and LPmin to denote IPmin(A) and its linear
programming relaxation LPmin(A), respectively. However, if a MINSPACE problem corresponds
to a set of ads U ⊂ A, we will explicitly use IPmin(U) and LPmin(U).

The objective function and first set of constraints minimize the height of the schedule. The
feasibility is ensured by the second set of constraints, which guarantee that for an ad Ai , a total
of wi copies are scheduled in the slots. Since xi j ∈ {0, 1}, at most one copy of an ad Ai can be
scheduled in any slot j . Since the MINSPACE problem is NP-Hard (Adler, Gibbons, and Matias,
2002), our focus in this paper is on designing polynomial time heuristics which provide solutions
with a performance guarantee. In particular, we are interested in heuristics which provide a solution
within a constant factor of the optimum solution.

Our results include:

1. An online (2 − 1
N)-approximation algorithm.

2. A (offline) (1 + 1√
2
)-approximation algorithm.

3. A (offline) 3
2 -approximation algorithm.

Recall that, for a given schedule, f denotes the maximum slot fullness among all the slots, i.e.,
f = max1≤ j≤N f j . The objective is to find a schedule with f ∗ = min f , where the minimum is
taken over all valid schedules. Clearly, f ∗ is the optimum solution value for IPmin.

3.1. An online algorithm

In an online algorithm, decisions are made without prior knowledge about the ads arriving in
future. We propose an online algorithm called First Come Least Full (FCLF). FCLF schedules a
new ad to the least full slots. The algorithm uses the following rule:

Algorithm FCLF

Schedule a new ad Ai with size si and frequency wi , to the wi least full slots.

Theorem 1. The performance bound of FCLF is f
f ∗ ≤ 2 − 1

N . This bound is tight.

Proof. After scheduling all the ads, let p and q be the slots with maximum and minimum fullness
respectively. Let the fullness of slots p and q be Fp and Fq respectively. Therefore, the heuristic
solution f = Fp. Without loss of generality, re-index the ads assigned in slot p as A1, A2, A3, . . .

such that ad A1 is the last assigned ad, A2 is the second last assigned ad and so on. If all ads in
slot p are also in slot q then Fp = Fq = �n

i=1si wi

N and the heuristic solution is optimal since �n
i=1si wi

N
is a lower bound on f ∗. Otherwise, let Ak be the first ad in slot p which is not in slot q. Let sk be
the size of ad Ak.

Let d = ∑k−1
i=1 si . Just prior to scheduling ad Ak, let the fullness of slot p be cp and the fullness

of slot q be cq . Since the ads are scheduled in the least full slots and Ak is assigned to slot
p but not to slot q, we have cq ≥ cp. Note that Fq ≥ d + cq and Fp = d + cp + sk. Therefore,
Fq ≥ Fp − sk − cp + cq and hence

Fq ≥ Fp − sk (1)

SCHEDULING WEB ADVERTISEMENTS 101

Table 1. An example to illustrate the tightness of the bound for algorithm FCLF

Ad Ai A1 A2 A3 A4 AN−1 AN AN+1

si K − K
N

K
N

K
N

K
N

K
N

K
N K

wi N − 1 1 1 1 1 1 1

We note two simple lower bounds on the optimal solution f ∗:

f ∗ ≥
∑n

i=1 siwi

N

≥ NFq + (Fp − Fq)
N

= Fq + Fp − Fq

N
(2)

and

f ∗ ≥ sk (3)

Combining (1) and (2), we get f ∗ ≥ Fp(1 − 1
N) − sk(1 − 1

N) + Fp(1
N). Combining this with (3)

gives f
f ∗ ≤ 2 − 1

N , because f = Fp.
To prove the tightness of the bound, consider an example with N + 1 ads Ai , i = 1, . . . , N + 1,

where N is the number of slots. The sizes and frequencies of the ads are given in Table 1 where K is
any positive number. The ads arrive in the order of their indices. Algorithm FCLF assigns N − 1
copies of ad A1 to slots 1, 2, . . . , N − 1. It then assigns ads Aj , j = 2, 3, . . . , N to slot N. Finally, it
assigns ad AN+1 to slot 1. Therefore, f = Fp = fullness of slot 1 = 2K − K

N . In an optimal solution,
ads A1 and Aj+1 are assigned to slot j, j = 1, 2, . . . , N − 1 and ad AN+1 is assigned to slot N.
Therefore, f ∗ = K and f

f ∗ = 2K− K
N

K , which gives the desired bound. �

3.2. Offline algorithms

In this section, we propose new polynomial time (offline) approximation algorithms and prove
the corresponding performance guarantees. Our results improve upon the bounds of Adler,
Gibbons, and Matias (2002) and Dawande, Kumar, and Sriskandarajah (2003). Our algorithms
make use of the 2-approximation Linear Programming Rounding (LPR) algorithm proposed ear-
lier by Dawande, Kumar, and Sriskandarajah (2003). Therefore, for completeness we first provide
a brief description of this algorithm.

3.2.1. A 2-approximation algorithm (Dawande, Kumar, and Sriskandarajah, 2003)
Denote the linear programming (LP) relaxation of IPmin by LPmin. The scheduling of ads in

slots can be viewed as assignments in a bipartite graph, G(V1 ∪ V2, E), where nodes V1 represent
the ads and the nodes V2 represent the slots. An edge (i, j) ∈ E represents the assignment of ad
Ai to slot j . Let x̄ be an optimum basic feasible solution to LPmin and let g denote the vector of
fractional variables of x̄. The residual graph, RG , which is the subgraph of G induced by the edges
of g is acyclic (see Lemma 4.1 in Dawande, Kumar, and Sriskandarajah, 2003). Each ad node in
RG has degree at least two since the ad frequency is an integer and the residual graph contains
only the edges corresponding to the fractional variables. Let f̄ j denote the fullness of slot j in x̄.

102 M. DAWANDE, S. KUMAR, AND C. SRISKANDARAJAH

Figure 2. Rounding step for a singleton slot

A slot node of degree 1 in RG is referred to as a singleton slot. A simple rounding step can be used
to remove a singleton slot from RG . Consider a singleton slot j and let edge (i, j), where node i
corresponds to ad Ai , be the single edge incident to slot j . Let gi j = x̄i j Let gi j1 , gi, j2 . . . , gi, jp be
the values corresponding to other edges in RG incident on node i (see Figure 2(a)).

Note that the quantity gi j + ∑p
k=1 gi jk is an integer, say z, since the frequency wi of ad Ai is an

integer. The rounding step sets gi j = 1 and gi jk = (z−1
z−gi j

)gi jk, k = 1, . . . , p (Figure 2(b)). Observe
that the frequency of ad Ai remains unchanged in the solution after this rounding step. Moreover,
the singleton slot j disappears from RG since there are no fractional edges incident on it. Thus, the
rounding step on a singleton slot node removes at least one edge from the residual graph at the
expense of increasing the fullness of slot j . The updated residual graph continues to be acyclic
and hence there exists at least one singleton slot. The rounding step thus ensures the existence
of a singleton slot as the algorithm proceeds (Dawande, Kumar, and Sriskandarajah, 2003). The
description of the LPR algorithm follows.

Algorithm LPR (Dawande, Kumar, and Sriskandarajah, 2003)

Step 1: Obtain a vertex solution x̄ to the LPmin. Construct the residual graph RG based on the
fractional variables.

Step 2: Find a singleton slot node in RG and perform the rounding step as shown in Figure 2.
Update RG . Repeat Step 2 until RG is empty (i.e. RG has no edges).

Let smax = max1≤i≤n si . Recall that f ∗ is the optimum solution value of IPmin. In Dawande,
Kumar, and Sriskandarajah (2003), it is shown that algorithm LPR provides a feasible solution
to the MINSPACE problem, with objective function value fLPR satisfying the following upper
bound:

fLPR < f ∗ + smax (4)

Since smax < f ∗, it follows that fLPR < 2 f ∗ and hence LPR is a 2-approximation for the
MINSPACE problem.

SCHEDULING WEB ADVERTISEMENTS 103

3.2.2. A (1 + 1√
2
)-approximation algorithm

In this subsection, we describe an improved algorithm, termed MIN1. The idea behind this
algorithm is as follows: it first constructs a solution H1 using the LPR algorithm. Then, the
algorithm decomposes the set of ads based on their sizes into two subsets: s = {Ai |Si ≥ Smax√

2
} and

s̄ = {Ai | Si < Smax√
2

}, where smax = max1≤i≤n si . It tries to schedule all the ads from set s in such
a way that none of the slots have more than one ad. If successful, then the algorithm fixes the
corresponding variables in IPmin and solves the remainder of the problem by the LPR algorithm
to obtain another solution H2. An appealing property of this decomposition is that at least one
of the two solutions is always within a factor of 1 + 1√

2
from the optimal solution. Detailed steps

and the analysis of the algorithm follow. We denote the objective function value of the solution of
the algorithm by f .

Algorithm MIN1

Step 1: Given si , wi , i = 1, 2, . . . , n and the number of slots N.
Step 2: Run the LPR algorithm on the optimum solution of LPmin. Denote the solution by H1

and its objective function value by h1. If
∑

i :Ai ∈s wi > N, then choose H1 as the solution of the
algorithm (i.e. f = h1) and terminate. Otherwise go to Step 3.

Step 3: Starting with the complete set of ads, we construct a new solution. Schedule all the ads in
set s, in such a way that none of the slots has more than one ad. Since

∑
i :Ai ∈s wi ≤ N, such a

schedule is trivially obtained. Solve LPmin with xi j variables for ads Ai ∈ s already fixed using
this schedule. Run algorithm LPR on the optimum solution of LPmin and denote the resulting
solution by H2. Let h2 be the objective function value of H2. Choose the better of H1 and H2 as
the solution of the algorithm. That is, f = min{h1, h2}.

Both Step 2 and Step 3 require time O(n3 N3L) where L is the length of the binary encoding of
LPmin (Dawande, Kumar, and Sriskandarajah, 2003; Martin, 1999).

Theorem 2. The performance bound of MIN1 is f
f ∗ ≤ 1 + 1√

2
and this bound is tight.

Proof. Either f ∗ ≥ √
2smax or f ∗ <

√
2smax. We consider the following two cases.

Case 1: f ∗ ≥ √
2smax

From (4), the solution of the LPR algorithm satisfies fLPR < f ∗ + smax. Since f ∗ ≥ √
2smax, we

have f ≤ h1 = fLPR < f ∗(1 + 1√
2
).

Case 2: f ∗ <
√

2smax

If
∑

Ai ∈s wi > N, then any optimal solution has at least one slot with more than one ad from
s and consequently f ∗ ≥ √

2smax which is a contradiction. Therefore,
∑

Ai ∈s wi ≤ N and in any
optimal solution, each slot has at most one ad from s. Thus, the algorithm executes Step 3. Without
loss of generality, we assume that in the solution H2 all the ads from s are scheduled in a similar
way as in the optimal solution and hence the solution flp to the linear programming relaxation
in Step 3 satisfies flp ≤ f ∗. Algorithm LPR then provides a feasible solution with objective value
at most f ∗ + maxi :Ai ∈s̄ si . Since the maximum size of ads in s̄ is always less than smax√

2
, we have

h2 < f ∗ + smax√
2

. Using f ∗ ≥ smax, we have f ≤ h2 < f ∗(1 + 1√
2
). �

104 M. DAWANDE, S. KUMAR, AND C. SRISKANDARAJAH

Table 2. An example to illustrate the tightness of
the bound for algorithm MIN1

Ad Ai A1 A2 A3

si 1 + ε 1 1√
2

wi 1 1 1

In order to show that the bound is tight, consider the example given in Table 2. We have 3 ads
Ai , i = 1, . . . , 3 and N = 3. We have smax = 1 + ε, s, = {A1, A2}, s̄ = {A3}. An optimal solution
of the LP relaxation at Step 2 has objective function value 1+2

√
2+√

2ε

3
√

2
. The values of the variables

are: x̄11 = 1+2
√

2+√
2ε

3
√

2(1+ε)
, x̄12 = 0, x̄13 =

√
2−1+2

√
2ε

3
√

2(1+ε)
, x̄21 = 0, x̄22 = 1+2

√
2+√

2ε

3
√

2
, x̄23 =

√
2−1−√

2ε

3
√

2
, x̄31 =

0, x̄32 = 0, x̄33 = 1. The residual graph. RG , then has four edges: (1, 1), (1, 3), (2, 2) and (2, 3). If
algorithm LPR chooses to round variable x̄11 corresponding to edge (1, 1) to 1 and variable x̄23

corresponding to edge (2, 3) to 1, the value of the feasible solution is h1 = 1 + 1√
2
. An optimal

solution of LP relaxation in Step 3 is x̄11 = 1, x̄12 = 0, x̄13 = 0, x̄21 = 0, x̄22 = 1, x̄23 = 0, x̄31 =
0, x̄32 = √

2ε, x̄33 = 1 − √
2ε. The residual graph, RG , then has two edges: (3, 2) and (3, 3). If

algorithm LPR chooses to round variable x̄32 corresponding to edge (3, 2) to 1, the value of the
feasible solution is h2 = 1+ 1√

2
. Therefore, f = min1≤i≤2hi = 1+ 1√

2
. The optimum solution value

is f ∗ = 1 + ε by placing ad A1 in slot 1, ad A2 in slot 2 and ad A3 in slot 3. Then, f
f ∗ = 1+ 1√

2
1+ε

. Thus,
f
f ∗ → 1 + 1√

2
as ε → 0. �

3.2.3. A 3
2 -approximation algorithm

The main idea behind our next algorithm, MIN2, is easy to explain: After sorting the ads in non-
increasing order of their size, it considers a subset of ads {A1, . . . , Ak} ⊆ Awith w̄ = ∑k

i=1 wi ≤ N
and w̄ + wk+1 > N. Then, k solutions Hi , i = 1, . . . , k are constructed as follows: in Hi , ads
Aq , q = 1, . . . , i are scheduled with one ad per slot to any w1 + w2 + · · · wi slots. The variables
corresponding to this schedule are fixed in the LP relaxation LPmin and the remainder of the
problem is solved by running the LPR algorithm on the solution of LPmin. The interesting property
of this procedure is that at least one of these k solutions is within a factor of 3

2 from the optimum.
The description and the analysis of this algorithm follows.

Algorithm MIN2

Step 1: Given si , wi , i = 1, 2, . . . , n and the number of slots N, sort the ads in the non-increasing
order of their size. Re-index the ads in the sorted order so that si ≥ s2 · · · ≥ sn .

Step 2: Let Ak be the ad for which
∑k

i=1 wi ≤ N and
∑k+1

i=1 wi > N. Construct k different solutions
Hi , i = 1, 2, . . . , k as follows: For solution Hi , schedule the ads Aq , q = 1, . . . , i with one ad per
slot to any w1 + w2 + · · · wi slots. Since w1 + w2 + · · · + wi < N, such a schedule is trivially
obtained. Solve the LP relaxation LPmin with the variables xqj, q = 1, . . . , i ; j = 1, . . . , N fixed
using the schedule above. Let f i

lp denote the objective function value of this LP relaxation. Run
the LPR algorithm on the solution corresponding to f i

lp and store its solution as Hi . Let hi

denote the objective function value of Hi .
Step 3: Compare all the stored solutions Hi , i = 1, 2, . . . , k and select the best solution as the

heuristic solution f , i.e., f = min1≤i≤khi .

SCHEDULING WEB ADVERTISEMENTS 105

Table 3. An example to illustrate the tightness of the
bound for algorithm MIN2

Ad Ai A1 A2 A3 A4

si 1 1 − ε 1
2

1
2

wi 1 1 1 1

The running time of the algorithm is dominated by that of Step 2 and is O(n4 N3L) where L is
the length of the binary encoding of LPmin (Dawande, Kumar, and Sriskandarajah, 2003; Martin,
1999).

Theorem 3. The performance bound of algorithm MIN2 is f
f ∗ ≤ 3

2 and this bound is tight.

Proof. Without loss of generality, we can assume that ad A1 is scheduled in the first w1 slots.
Then, f 1

lp = flp. Using (4), h1 ≤ f 1
lp + s2 = flp + s2 ≤ f ∗ + s2. If f ∗ ≥ 2s2, we have the required

bound for H1. Otherwise, copies of ads A1 and A2 cannot share a common slot in the optimal
solution. Thus, w1 +w2 ≤ N and consequently f 2

lp = flp with h2 ≤ f ∗ + s3. Again, if f ∗ ≥ 2s3, we
have the required result for H2. Otherwise, we continue the argument using solution H3. Finally,
solution Hk satisfies hk ≤ f ∗ + sk+1. If f ∗ < 2sk+1, no pair of ads Ai , i = 1, . . . , k + 1 can share a
common slot in the optimal solution. It follows that

∑k+1
i=1 wi ≤ N which is a contradiction. Hence,

f ∗ ≥ 2sk+1 and we have the required bound.
To prove the tightness of this bound, consider the example given in Table 3. We have 4 ads Ai , i =

1, . . . , 4 and N = 3. An optimal solution to the LP relaxation in Step 2 is x̄11 = 1, x̄12 = 0, x̄13 =
0, x̄21 = 0, x̄22 = 1, x̄23 = 0, x̄31 = 0, x̄32 = 0, x̄33 = 1, x̄41 = 0, x̄42 = 2ε, x̄43 = 1 − 2ε. The resid-
ual graph, RG , has two edges: (4,2) and (4,3). If algorithm LPR chooses to round variable x̄42

corresponding to edge (4, 2) to 1, the value of the feasible solution is h1 = 3
2 − ε. Similarly,

h2 = 3
2 − ε and h3 = 3

2 − ε. Therefore, f = min1≤i≤3hi = 3
2 − ε. The optimum solution value is

f ∗ = 1 by placing ad A1 in slot 1, ad A2 in slot 2, ads A3 and A4 in slot 3. Then, f
f ∗ = 3

2 − ε. �

Although Algorithm MIN1 has an inferior performance guarantee (compared to that of MIN2),
it is a basic algorithm that demonstrates the advantage of decomposing the set of ads into two
subsets: a set with large-size ads (easy to schedule) and a set with small-size ads (difficult to sched-
ule). Exploiting this idea further may lead to better approximation algorithms for the MINSPACE
problem.

4. CONCLUSIONS

In this paper, we improve upon existing approximation algorithms for the MINSPACE problem
(Adler, Gibbons, and Matias, 2002; Dawande, Kumar, and Sriskandarajah, 2003). Our results
include (i) an online algorithm with a performance guarantee of 2 − 1

N , where N is the number of
slots, and (ii) two (offline) algorithms with performance guarantees of 1 + 1√

2
and 3

2 , respectively.
These bounds improve over the current best bound of 2 (Adler, Gibbons, and Matias, 2002;
Dawande, Kumar, and Sriskandarajah, 2003).

106 M. DAWANDE, S. KUMAR, AND C. SRISKANDARAJAH

Since our analysis for all the algorithms is tight, improving the bounds will require the design
of new algorithms. We feel that this is a challenging and promising direction for future work. As is
generally the case, we believe that the performance of these algorithms on real-world data might
be significantly better than their worst case guarantees. Therefore, a possible direction for future
research is a study of their average case performance under appropriate assumptions on the type
of ads that need to be placed on a web page.

REFERENCES

Adler, M., P. B. Gibbons, and Y. Matias, “Scheduling space-sharing for internet advertising,” Journal of Scheduling, 5(2),
103–119 (2002).

Albers, S., “Better bounds for online scheduling,” SIAM Journal on Computing, 29(2), 459–473 (1999).
Bartal, Y., A. Fiat, H. Karloff, and R. Vohra, “New algorithms for an ancient scheduling problem,” Journal of Computer

and System Sciences, 51, 359–366 (1995).
Chandrasekaran, R., B. Chen, G. Galambos, P. R. Narayanan, A. van Vilet, and G. J. Woeginger, “A note on’ and on-line

scheduling heuristic with better worst case ratio than Graham’s list scheduling,” SIAM Journal on Computing, 26(3),
870–872 (1997).

Coffman, Jr., E. G., M. R. Garey, and D. S. Johnson, “An application of bin-packing to multiprocessor scheduling,” SIAM
Journal of Computing, 7(1), 1–17 (1978).

Dawande, M., S. Kumar, and C. Sriskandarajah, “Performance bounds of algorithms for scheduling advertisements on a
web page,” Journal of Scheduling, 6, 373–393 (2003).

Fleischer, R. and M. Wahl, “On-line scheduling revisited,” Journal of Scheduling, 3(6), 343–353 (2000).
Friesen, D. K., “Tighter bounds for multifit processor scheduling algorithm,” SIAM Journal of Computing, 13, 170–181

(1984).
Friesen, D. K. and M. A. Langston, “Evaluation of a multifit-based scheduling algorithm,” Journal of Algorithms, 7, 35–59

(1986).
Fruend, A. and J. Naor, “Approximating the advertisement placement problem,” Journal of Scheduling, 7, 365–374 (2004).
Galambos, G. and G. J. Woeginger, “An on-line scheduling heuristic with better worst case ratio than Graham’s list

scheduling,” SIAM Journal on Computing, 22(2), 349–355 (1993).
Graham, R. L., “Bounds on multiprocessing timing anomalies,” SIAM Journal of Applied Mathematics, 17, 416–429 (1969).
Hochbaum, D. S. and D. B. Shmoys, “Using dual approximation algorithms for scheduling problems: Theoretical and

practical results,” Journal of the Association for Computing Machinery, 34, 144–162 (1987).
Hyland, T. “Why Internet advertising?” in Webvertising: The Ultimate Internet Advertising Guide, SCN Education B. V.,

Friedrich Viewag & Sohn, 2000, pp. 13–18.
Interactive Advertising Bureau, http://www.iab.net.
Karger, D. R., S. J. Phillips, and E. Torng, “A better algorithm for an ancient scheduling problem,” Journal of Algorithms,

20(2), 400–430 (1996).
Martin, R. K., Large Scale Linear and Integer Optimization, Kluwer, Massachusetts, 1999.
Puetz, J., “A revolution in our midst,” Satellite Communications, Atlanta, 24, 38 (2000).

