
Journal of Scheduling 8: 537–542, 2005.
© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

A NOTE ON THE SCHEDULING WITH TWO FAMILIES
OF JOBS∗

J. J. YUAN†, W. P. SHANG AND Q. FENG

Department of Mathematics, Zhengzhou University, Zhengzhou, Henan 450052, China

ABSTRACT

Baker and Smith [J. Scheduling, 6, 7–16, 2003] introduced a new model of scheduling in which there are two or
more distinct families of jobs pursuing different objectives. Their contributions include two polynomial-time
dynamic programming recursions, respectively, for the single machine scheduling with two families of jobs to
minimize a positive combination of total weighted completion time, or maximum lateness, of the first family
of jobs and maximum lateness of the second family of jobs. Unfortunately, these dynamic programming
recursions are incorrect. In this paper, we solve the same problems by an O(n1n2(n1 + n2)) time algorithm.

1. PROBLEM FORMULATION AND DISCUSSIONS

The following scheduling problem was studied by Baker and Smith (2003). We are given two
families of jobs J (1) = {J(1)

1 , J(1)
2 , . . . , J(1)

n1
} and J (2) = {J(2)

1 , J(2)
2 , . . . , J(2)

n2
} to be processed in a

single machine. Let x ∈ {1, 2} be given. The processing time of a job J(x)
i ∈ J (x) is denoted by

p(x)
i . Suppose that each job J(x)

i ∈ J (x) has a due date d (x)
i and a nonnegative weight w

(x)
i . For a

given schedule π for the jobs in J (1) ∪J (2), we use C(x)
i (π) to denote the completion time of a job

J(x)
i ∈ J (x). The lateness of a job J(x)

i ∈ J (x) under π is denoted by L(x)
i (π). The maximum lateness

of the jobs in J (x) under π is denoted by L(x)
max(π). The maximum completion time of the jobs in

J (x) under π is denoted by C(x)
max(π). f (x)(π) is used to denote the objective of the jobs in J (x) under

π . In the paper, we assume

f (x) ∈
{

C(x)
max, L(x)

max,
∑

w
(x)
i C(x)

i

}
.

Let θ be a given positive number. For a given schedule π , we define

f (π) = f (1)(π) + θ f (2)(π).

The objective of the considered problem is to find a schedule π for the jobs in J (1) ∪ J (2) such
that f (π) is as small as possible. We will denote this problem by 1‖ f (1) + θ f (2).

The following three properties are established in [1].

Property 1. If, for some x ∈ {1, 2}, f (x) = C(x)
max, then there is an optimal schedule for the jobs in

J (1) ∪ J (2) such that all jobs belonging to J (x) are processed consecutively.

∗Project supported by NNSFC (Grant 10371112) and NSFHN (Grant 0411011200)
†Corresponding author: Jinjiang Yuan. E-mail: yuanjj@zzu.edu.cn

538 J. J. YUAN, W. P. SHANG, AND Q. FENG

Property 2. If, for some x ∈ {1, 2}, f (x) = L(x)
max, then there is an optimal schedule for the jobs in

J (1) ∪ J (2) such that all jobs belonging to J (x) are processed in nondecreasing order of d (x)
i , that is,

in EDD order.

Property 3. If, for some x ∈ {1, 2}, f (x) = �w
(x)
i C(x)

i , and p(x)
i ≤ p(x)

j whenever p(x)
i /w

(x)
i ≤

p(x)
j /w

(x)
j , then there is an optimal schedule for the jobs in J (1) ∪ J (2) such that all jobs belong-

ing to J (x) are processed in nondecreasing order of p(x)
i /w

(x)
i , that is, in SWPT order.

The properties 1 and 2 can be easily verified. But, Property 3 is incorrect. Consider the following
instance of 1‖ f (1) + θ f (2) with f (1) = �w

(1)
i C(1)

i and f (2) = L(2)
max:

n1 = 2, n2 = 1 and θ = 1000;

p(1)
1 = 10, p(1)

2 = 9, p(2)
1 = 10;

w
(1)
1 = 11, w

(1)
2 = 10, and d (2)

1 = 20.

One can easily verify that the only optimal schedule is (J(1)
1 , J(2)

1 , J(1)
2). Since p(1)

1 /w
(1)
1 > p(1)

2 /w
(1)
2

and p(1)
1 > p(1)

2 , this instance is indeed a counterexample for Property 3.
The following is a weakened version of Property 3.

Property 3. If, for some x ∈ {1, 2}, f (x) = ∑
w

(x)
i C(x)

i , and p(x)
i ≤ p(x)

j whenever w
(x)
i > w

(x)
j , then

there is an optimal schedule for the jobs inJ (1) ∪J (2) such that all jobs belonging toJ (x) are processed
in nondecreasing order of p(x)

i , that is, in SPT order.

Proof. Suppose that there is an optimal schedule for the problem 1‖ f (1) + θ f (2) such that jobs
belonging to J (x) are not processed in SPT order. Then there must be two jobs J(x)

i , J(x)
j ∈ J (x)

such that p(x)
i < p(x)

j but J(x)
j is processed before J(x)

i . By exchanging the positions of J(x)
i and

J(x)
j in the schedule, we obtained a new schedule such that the completion time of every job other

than J(x)
i and J(x)

j is not increased. By noting the fact that p(x)
i < p(x)

j and w
(x)
i ≥ w

(x)
j ≥ 0, the new

schedule is still optimal. Continuing this procedure, we eventually obtain an optimal schedule with
the required property. �

As a consequence of Property 3∗, we have

Property 4. If, for some x ∈ {1, 2}, f (x) = ∑
C(x)

i , then there is an optimal schedule for the jobs
in J (1) ∪ J (2) such that all jobs belonging to J (x) are processed in nondecreasing order of p(x)

i , that
is, in SPT order.

A remark on 1‖L(1)
max+θ L(2)

max: The following dynamic programming recursion for 1‖L(1)
max+θ L(2)

max

is established in Baker and Smith (2003). Sorting the jobs in J (1) and the jobs in J (2) by EDD

A NOTE ON THE SCHEDULING WITH TWO FAMILIES OF JOBS 539

rule, respectively. Let (u, v) represent the partial schedule consisting of the first u jobs from J (1)

and the first v jobs from J (2). Write

J (u, v) = {
J(1)

1 , . . . , J(1)
u , J(2)

1 , . . . , J(2)
v

}
.

Let F(u, v) denote the minimum performance measure for the jobs in the setJ (u, v) correspond-
ing to (u, v). Define L(x)(u, v) to be the maximum lateness of the jobs in J (x) ∩ J (u, v), x = 1, 2.
Then the dynamic programming recursion is:

F(i, j) = min
{

F(i − 1, j) + max
{

t − d (1)
i , L(1)(i − 1, j)

} − L(1)(i − 1, j),

F(i, j − 1) + θ
(

max
{

t − d (2)
j , L(2)(i, j − 1)

} − L(2)(i, j − 1)
)
,

where t = ∑
1≤i≤u p(1)

i +∑
1≤i≤v p(2)

i . Furthermore, for each of these computations, if we set F(i, j)
according to the first term, we define

L(1)(i, j) = max
{

t − d (1)
i , L(1)(i − 1, j)

}
and L(2)(i, j) = L(2)(i − 1, j),

and otherwise, we define

L(1)(i, j) = L(1)(i, j − 1) and L(2)(i, j) = max
{

t − d (2)
j , L(2)(i, j − 1)

}
.

The initial condition can be naturally defined (see [1]). The optimal value of the scheduling
problem will be calculated by F(n1, n2).

Unfortunately, the above dynamic programming recursion for 1‖L(1)
max + θ L(2)

max is incorrect. In
fact, if the value of F(i, j) is minimized by the x-th term, it is possible to shift some processed jobs
to J (x) right and some processed jobs to J (3−x) left so that the objective value is further reduced.
For example, consider the following instance of 1‖L(1)

max + θ L(2)
max:

n1 = 1, n2 = 2 and θ = 1;

p(1)
1 = 20, p(2)

1 = 5, p(2)
2 = 30;

d (1)
1 = 0, d (2)

1 = 0, d (20)
2 = 2.

The above dynamic programming recursion returns F(1, 2) = 78 corresponding to the schedule
(J(2)

1 , J(1)
1 , J(2)

2). But, the objective value under the schedule (J(1)
1 , J(2)

1 , J(2)
2) is 73 < F(1, 2).

A remark on 1‖ ∑
C(1)

i + θ L(2)
max: The following dynamic programming recursion for 1‖ ∑

C(1)
i +

θ L(2)
max is established in [1]. Sorting the jobs in J (1) by SPT rule and the jobs in J (2) by EDD rule.

Let (u, v) represent the partial schedule consisting of the first u jobs from J (1) and the first u jobs
from J (2). Write

J (u, v) = {
J(1)

1 , . . . , J(1)
u , J(2)

1 , . . . , J(2)
v

}
.

Let F(u, v) denote the minimum performance measure for the jobs in the set J (u, v) corre-
sponding to (u,v). Define L(2)(u, v) to be the maximum lateness of the jobs in J (2) ∩ J (u, v) =
{J(2)

1 , . . . , J(2)
v }. Then the dynamic programming recursion is:

F(u, v) = min{F(u − 1, v) + t, F(u, v − 1) + θ
(

max
{

t − d (2)
v , L(u, v − 1)

} − L(u, v − 1)
)}

,

540 J. J. YUAN, W. P. SHANG, AND Q. FENG

where t = ∑
1≤i≤u p(1)

i + ∑
1≤i≤v p(2)

i . Furthermore, L(u, v) = max{t − d (2)
v , L(u, v − 1)} if F(u, v)

is minimized by the second term, and L(u, v) = L(u − 1, v)} otherwise. The initial condition is
F(0, 0) = 0. The optimal value of the scheduling problem will be calculated by F(n1, n2).

Unfortunately, the above dynamic programming recursion for 1‖ ∑
Ci + θ L(2)

max is incorrect.
In fact, if the value of F(u, v) is minimized by the second term, it is possible to shift some jobs
Ji ∈ J (1)(i ≤ u) to left and some jobs J(2)

j ∈ J (2)(j ≤ v − 1) to right so that the objective value is

further reduced. For example, consider the following instance of 1‖ ∑
Ci + θ L(2)

max;

n1 = 1, n2 = 2 and θ = 1;

p(1)
1 = 20, p(2)

1 = 5, p(2)
2 = 30;

d (2)
1 = 0, d (2)

2 = 2.

The above dynamic programming recursion returns F(1, 2) = 78 corresponding to the schedule
(J(2)

1 , J(1)
1 , J(2)

2). But, the objective value under the schedule (J(1)
1 , J(2)

1 , J(2)
2) is 73 < F(1, 2).

In the next section, we will give a polynomial-time algorithm for the above two problems.

2. ALGORITHMS

Consider the general problem 1‖ f (1) +θ f (2). If, for some x ∈ {1, 2}, f (x) = L(x)
max, then, by Property

2, there is an optimal schedule for the jobs in J (1) ∪ J (2) such that all jobs belonging to J (x)

are processed in EDD order. An easy observation is that, for two jobs J(x)
i and J(x)

j in J (x) with

d (x)
i = d (x)

j , there must be an optimal schedule π for 1‖ f (1) + θ f (2) such that J(x)
i and J(x)

j are

processed consecutively. Such two jobs J(x)
i and J(x)

j can be merged into a big job J(x)
i j with processing

time p(x)
i + p(x)

j and due date d (x)
i . Hence, we suppose in the following that the jobs in J (x) have

distinct due dates when f (x) = L(x)
max.

We say a schedule π for 1‖L(1)
max + θ

(2)
max is regular if π sequence jobs in J (x) in EDD order for

any x ∈ {1, 2}. By property 2, there is an optimal schedule for the problem 1‖L(1)
max + θ

(2)
max such that

π is regular.
We say a schedule π for 1‖ ∑

C(1)
i +θ L(2)

max is regular if π sequences jobs in J (1) in SPT order and
the jobs in J (2) in EDD order. By property 2 and 4, there is an optimal schedule for the problem
1‖ ∑

Ci + θ L(2)
max such that π is regular.

In the following we consider the problem 1‖ f (1) + θ L(2)
max, where f (1) ∈ {L(1)

max,
∑

C(1)
i }. We re-

label the jobs in J (2) such that d (2)
1 < d (2)

2 < · · · < d (2)
n2

. Furthermore, if f (1) = L(1)
max, we re-label

the jobs in J (1) such that d (1)
1 < d (2)

2 < · · · < d (1)
n1

, and if f (1) = ∑
C(1)

i , we re-label the jobs in J (1)

such that p(1)
1 ≤ p(1)

2 ≤ · · · ≤ p(1)
n1

. The remaining question is how to interleave the two sequences
optimally.

Let π1 = (J(1)
1 , J(1)

2 , . . . , J(1)
n1

, J(2)
1 , J(2)

2 , . . . , J(2)
n2

) and π2 = (J(2)
1 , J(2)

2 , . . . , J(2)
n2

, J(1)
1 , J(1)

2 , . . . ,

J(1)
n1

). Define U B = L(2)
max(π1) and LB = L(2)

max(π2). Then, for any regular schedule π for 1‖ f (1) +
θ L(2)

max, we must have

LB ≤ L(2)
max(π) ≤ U B.

A NOTE ON THE SCHEDULING WITH TWO FAMILIES OF JOBS 541

For 0 ≤ u ≤ ni and 1 ≤ v ≤ n2, write

t(u, v) =
∑

t≤i≤u

p(1)
i +

∑
1≤i≤v

p(2)
i

and define

y(u, v) = t(u, v) − d (2)
v .

By noting that, in any regular schedule π for 1‖ f (1) + θ L(2)
max, the completion time of each job

J(2)
v must be of the form t(u, v) for some u with 0 ≤ u ≤ n1, we must have

L(2)
max(π) ∈ {y(u, v) : 0 ≤ u ≤ n1, 1 ≤ v ≤ n2}.

For each y ∈ {y(u, v) : 0 ≤ u ≤ n1, 1 ≤ v ≤ n2} with LB ≤ y ≤ U B, we consider the problem
1‖ f (1) + θ L(2)

max under the restriction that L(2)
max = y. The restricted version will be denoted by

1|L(2)
max = y| f (1). There may be some y such that the problem 1 | L(2)

max = y | f (1) is infeasible. Hence,
we prefer to consider the relaxed version 1 | L(2)

max ≤ y | f (1).
In an optimal regular schedule for 1 | L(2)

max ≤ y | f (1), suppose (by the regular property) that the
set of the first u + v jobs is {J(1), J(1)

2 , . . . , J(1)
u , J(2)

2 , . . . , J(2)
v }, where 1 ≤ u ≤ n1 and 1 ≤ v ≤ n2.

If t(u, v) − d (2)
v > y, then the u + v-th job under a certain optimal regular schedule π is the job

J(1)
u . If t(u, v) − d (2)

v ≤ y, then the u + v-th job under a certain optimal regular schedule π is J(2)
v .

Consequently, the problem 1 | L(2)
max ≤ y| f (1) can be solved by the following linear-time algorithm.

Linear-time algorithm for 1|L(2)
max ≤ y| f (1)

Step 1. Set u := n1, v := n2 and

F :=
{−∞ if f (1) = L(1)

max

0, if f (1) = ∑
C(1)

i .

Step 2. If u = 0, then define π (i) = J(2)
i , 1 ≤ i ≤ v, and stop. Otherwise, turn to Step 4.

Step 3. If v = 0, then define π (i) = J(1)
i , 1 ≤ i ≤ u, set

F :=

max
{

F, max
{

t(i, 0) − d (1)
i : 1 ≤ i ≤ u

}}
, if f (1) = L(1)

max,

F +
∑

1≤i≤u

t(i, 0), if f (1) = ∑
C(1)

i

and stop. Otherwise, turn to Step 4.
Step 4. If t(u, v) − d (2)

v > y, then define π (u + v) = J(1)
u and set

F :=
{

max
{

F,
{

t(u, v) − d (1)
u

}
, if f (1) = L(1)

max,

F + t(u, v), if f (1) = ∑
C(1)

i

and u := u − 1; return to Step 2.
If t(u, v) − d (2)

v ≤ y, then define π (u + v) = J(2)
v and set v := v − 1; return to Step 3.

Denote by Fy the F-value returned by the above algorithm for a given y. Our final observation
is that the optimal objective value of the problem 1‖ f (1) + θ L(2)

max must be

min{Fy + θy : LB ≤ y ≤ U B, y ∈ {y(u, v) : 0 ≤ u ≤ n1, 1 ≤ v ≤ n2}}.

542 J. J. YUAN, W. P. SHANG, AND Q. FENG

Since the complexity of the algorithm for 1|L(2)
max ≤ y| f (1) is O(n1 + n2) and we have at most

n1n2 choices for y, we conclude that the problem 1‖ f (1) + θ L(2)
max can be solved in O(n1n2(n1 + n2))

time.

REFERENCES

Baker, K. R. and J. C. Smith, “A multiple-criterion model for machine scheduling,” Journal of Scheduling, 6, 7–16, (2003).

