
Vol.: (0123456789)
1 3

https://doi.org/10.1007/s10950-023-10132-0

RESEARCH

A far‑field ground motion prediction model for interface 
earthquakes at the hill zone of Mexico City

M. Leonardo‑Suárez  · A. F. Hernández  · 
P. Quinde 

Received: 12 August 2022 / Accepted: 17 January 2023 
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract   This study presents an updated attenu-
ation model to predict the peak ground acceleration 
(PGA), peak ground velocity (PGV), 5% damped 
pseudo-spectral acceleration (SA), and the average 
spectral acceleration (AvgSA) at the hill zone of Mex-
ico City for interface earthquakes. The strong-motion 
dataset comprises 33 earthquakes recorded at CU 
station, covering a moment magnitude (Mw) range 
from 6.0 to 8.1 and a source-to-site distance (Rrup) 
range from 240 to 490 km. Given the small number of 
available observations, a Bayesian regression scheme 
is used to obtain the coefficients of the ground-motion 
prediction model (GMPM). In addition, the epis-
temic uncertainty in the estimation of the regression 
coefficients is evaluated, showing its impact on the 
framework of a probabilistic seismic hazard analysis 

(PSHA). The results are compared with models pre-
viously developed for the CU station, discussing the 
differences observed between the median predictions 
and their standard deviations. Likewise, seismic haz-
ard curves are computed and compared with empiri-
cal curves obtained by counting the number of times 
per year that a given value of ground-motion intensity 
is exceeded. The results show that the dispersion of 
the GMPM proposed is lower than the previous mod-
els for PGA and SA, which means better predictabil-
ity and more reliable estimates of the seismic hazard 
at the site.

Keywords Ground-motion prediction model · 
Single-station dataset · Bayesian regression · Average 
spectral acceleration · Intensity measures

1  Introduction 

Mexico City, located more than 280 km inland from 
Mexico’s Pacific Coast, has been affected by several 
interface earthquakes throughout its history, which 
have caused a considerable number of casualties and 
severe damage to the civil infrastructure. Some exam-
ples of these major events are (1) the 1957 San Mar-
cos earthquake (M 7.5) that damaged more than 1000 
buildings and claimed the life of 39 people (Orozco 
and Reinoso 2007); (2) the 1979 Petatlán earthquake 
(Mw 7.4) that damaged more than 50 structures and 
caused the collapse of three buildings (Alonso et al. 
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1979); and (3) the 1985 Michoacán earthquake (Mw 
8.1) that produced the collapse of 256 buildings and 
more than 10,000 deaths (Astiz et  al. 1987), being 
the latter the most destructive earthquake in Mexico 
City’s history whose economic losses amounted to 
US$ 4 billion (at 1985 value) according to Mexican 
Insurance Association. The damage pattern observed 
in these interface events was attributed to the well-
known local site effects in the Mexico City basin 
(MCB) (Meli and Miranda 1985). The ground motion 
amplification and duration at MCB are mainly attrib-
uted to the elastic behavior of the clayed soil deposits 
(Diaz-Rodriguez 1989; Díaz-Rodríguez 1992; Romo 
and Ovando-Shelley 1996; Taboada-Urtuzuástegui 
et  al. 1999; Díaz-Rodríguez and Santamarina 2001) 
whose parameters, shear modulus and damping ratio, 
do not show a significant reduction at high values of 
shear strain. This condition amplifies seismic waves 
in these deposits (Mayoral et al. 2008, 2016, 2019).

In the early 1960s, the Mexico City Acceleromet-
ric Network (MCAN) began operating to study the 
dynamic amplification of the seismic waves in the 
lakebed deposits. Nowadays, the MCAN has over 
149 strong-motion stations distributed throughout 
the city at three different geotechnical zones: zone I 
(hill), formed by volcanic tuffs and lava flows; zone 
II (transition), composed of 20  m sand and silt lay-
ers interbedded with lacustrine clay layers; and zone 
III (lakebed), consisting of 30–80-m clay deposit 
highly compressible interbedded with sand layers 
(Mayoral et  al. 2019). The station Ciudad Universi-
taria (herein, CU), located within the hill zone of the 
National Autonomous University of Mexico (UNAM, 
by its Spanish acronym), is one of the most impor-
tant and oldest stations of the MCAN. It has been in 
continuous operation since 1962 and has become the 
reference station to study the site effect at the lakebed 
zone (Ordaz et  al. 1988; Singh et  al. 1988a; Lermo 
and Chávez-García 1993; Reinoso and Ordaz 1999; 
Montalvo-Arrieta et al. 2002). Furthermore, its infor-
mation has helped develop and calibrate the early 
earthquake damage assessment system available for 
the management of seismic risk in the city (Iglesias 
et al. 2007; Ordaz et al. 2017).

Since the 1980s, several studies have been con-
ducted to predict the ground motion at the hill zone 
of Mexico City from interface earthquakes recorded 
at the station CU. For instance, Singh et  al. (1987) 
used a set of 16 earthquakes (5.6 ≤ Ms ≤ 8.1 and 

282 ≤ Rrup ≤ 466) recorded at this station to derive a 
ground-motion prediction model (GMPM) in terms 
of the peak ground acceleration (PGA) and velocity 
(PGV). Based on the same strong-motion dataset, 
Castro et  al. (1988) developed a further GMPM to 
estimate the Fourier amplitude spectra (FAS) of the 
ground acceleration for frequencies between 0.4 and 
5.0 Hz. This last model was improved by Ordaz et al. 
(1994) using more records and applying a Bayes-
ian regression approach instead of the multiple lin-
ear regression (MLR) method used in the previous 
works. Years later, Reyes (1999) employed 17 earth-
quakes (6.1 ≤ Mw ≤ 8.1 and 280 ≤ Rrup ≤ 466) to derive 
a new GMPM for PGA and the 5% damped pseudo-
spectral acceleration (SA) for 60 structural periods 
between 0.1 and 6.0 s applying the Bayesian regres-
sion approach proposed by Ordaz et al. (1994). This 
latest is updated by Jaimes et al. (2006) adding to the 
dataset 5 events that occurred between 1996 and 2004 
(6.0 ≤ Mw ≤ 7.5 and 301 ≤ Rrup ≤ 526) and deriving 
the GMPM in terms of the PGA and SA for 30 struc-
tural periods between 0.2 and 6.0 s. These latest two 
GMPMs have been used over time to perform site-
specific probabilistic seismic hazard analysis (PSHA).

In particular, the GMPMs proposed by Reyes 
(1999) and Jaimes et  al. (2006) (herein referred as 
to R99 and J06, respectively) have been used in the 
current Mexico City Standard for Seismic Design 
(NTC-DS 2017) to define the design spectrum at 
the hill zone based on the uniform hazard spectrum 
(UHS) obtained at CU for 250-year return period. 
This UHS has been used as a reference to estimate 
seismic hazard and design spectra at other city sites 
through the spectral amplification functions pre-
computed between soft sites and the reference station 
CU (Ordaz 2017). Despite the good performance of 
R99 and J06, in terms of their predictive capability 
of ground motion for Mexican interface earthquakes, 
it is essential to update the database to consider the 
moderate earthquakes (6.0 < Mw < 7.4) that have 
occurred during 2004–2021. Furthermore, it is neces-
sary to evaluate other intensity measures (IMs) that 
better represent the ground motion’s severity and be a 
good predictor of the structural response.

This study presents an updated GMPM for the 
hill zone in Mexico City, based on a dataset from 
interface earthquakes recorded at station CU with 
a moment magnitude range (Mw) from 6.0 to 8.1 
and a source-to-site distance range (Rrup) from 240 
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to 490  km. Four IMs are used to characterize the 
ground motion: peak ground acceleration (PGA), 
peak ground velocity (PGV), 5% damped pseudo-
spectral acceleration (SA), and the average spectral 
acceleration (AvgSA). The results are compared 
with previously derived GMPMs for SA, discuss-
ing the differences observed between the predicted 
median response spectra and their residual distribu-
tion. Finally, the GMPM derived is used to compute 
seismic hazard curves and compare the results with 
empirical curves obtained directly from counting 
the times a given IM value has been exceeded per 
year. The seismic hazard curve directly estimated 
from GMPM-AvgSA is compared with the exceed-
ance rate of AvgSA values derived indirectly from 
existing GMPM-SAs (R99 and J06) using a consist-
ent SA inter-period correlation model proposed by 
Rodríguez-Castellanos et al. (2021).

2  Strong‑motion dataset

The strong-motion dataset used in this study cor-
responds to the Mexican interface earthquakes 
recorded at the station CU, located within the hill 
zone of Mexico City. The dataset includes 33 record 
pairs (two horizontal components) from 33 reverse-
faulting events with Mw > 6, which occurred between 
1965 and 2021 along Mexico’s Pacific Coast. The 
small events (Mw < 6) were excluded from the data-
set because their ground-motion intensity levels (e.g., 
PGA < 1  cm/s2) are not representative of most engi-
neering interests. Table  1 summarizes the seismic 
source parameters (i.e., location, magnitude, and focal 
mechanism) of the events analyzed. These parameters 
were taken from the recently published earthquake 
catalog by Sawires et  al. (2019), which includes an 
extensive and careful review of all Poissonian inde-
pendent earthquakes that occurred in Mexico during a 
period ranging from 1787 to 2018. The source param-
eters of the events that occurred after 2018 were 
obtained from the earthquake reports published by 
the Servicio Sismológico Nacional (SSN (Mexican 
National Seismological Service)) through its website 
(see SSN (2022)). Figure 1 shows the epicenters and 
focal mechanism of the dataset used, covering a mag-
nitude range from 6.0 to 8.1 and a source-to-site dis-
tance range from 240 to 490 km.

2.1  Local site conditions

According to the geotechnical zoning of the NTCDS 
(2017), the hill zone is formed by rocks and hard 
soils where sand deposits may be interbedded with 
volcanic flows. Based on this definition, it could be 
assumed that the local site conditions of CU corre-
spond to firm soil. However, several studies carried 
out at this site (Singh et al. 1988b, 1995; Ordaz and 
Singh 1992; Montalvo-Arrieta et al. 2002, 2003) have 
shown the existence of a large ground motion ampli-
fication in a range of frequencies between 0.2 and 
10 Hz. Montalvo-Arrieta et al. (2003) report that the 
spectral ratios of stations located in the southwest-
ern hill zone (including CU) exhibit relative amplifi-
cations up to 4 times larger than stations located in 
the northern for frequencies between 0.2 and 3  Hz. 
Ordaz and Singh 1992 suggest that this amplification 
can be related to the shallow (< 1 km) sediments that 
lie below the volcanic rocks that cover the hill zone 
of the Valley of Mexico. As regards, several studies 
have been conducted near station CU to determine 
the shear wave velocity profile (see Singh et al. 1995; 
Kagawa 1996; Flores Estrella and Aguirre González 
2003) through geophysical prospecting techniques, 
whose results indicate that the site can be classified as 
a soft rock with an average shear wave velocity in the 
upper 30 m (VS 30) of 450 to 760 m/s.

2.2  Source-to-site distance

The source-to-site distance selected to develop the 
GMPM was the closest to the rupture plane (Rrup). 
This distance was computed following the procedure 
presented by Chiou and Youngs (2008), simulating 
the rupture dimensions for each event through the 
scaling relationship derived by Ramírez-Gaytán et al. 
(2014) for Mexican subduction earthquakes. For eight 
of the most significant events (Mw > 7) in the dataset, 
the distance was inferred directly from the finite-fault 
geometry obtained by kinematic inversion, whose 
information was taken from the SRCMOD database 
compiled by Mai and Thingbaijam (2014).

Figure 2 shows the magnitude-distance (left panel) 
and magnitude-focal depth (right panel) distributions 
for the compiled dataset (hereafter, CU21). As can 
be seen, CU21 covers a magnitude range from 6.0 to 
8.1 and a source-to-site distance range from 240 to 
490 km. Something to highlight in this figure is the 
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low sample size of the dataset for magnitudes and 
distances beyond 7.5 and 350 km, respectively. This 
lack of information can be compensated through prior 
theoretical knowledge about certain seismological 
parameters related to the scaling of the ground motion 
intensity with the magnitude and distance, whose 
prior information can be formally integrated into the 
regression process using a Bayesian approach, obtain-
ing reasonable results as it is shown by Ordaz et  al. 
1994; Jaimes et  al. 2006; Wang and Takada 2009. 

Notably, the last-mentioned work indicates that using 
prior information in a Bayesian approach is particu-
larly effective when the dataset is small.

3  Ground‑motion intensity measures

The intensity measures (IMs) commonly used 
to derive a GMPM are peak ground acceleration 
(PGA), peak ground velocity (PGV), and spectral 

Table 1  Reverse-faulting 
interface events with Mw > 6 
recorded at CU station

a Earthquake ID. The 
symbols represent the 
data source from which 
the finite-fault geometry 
information was obtained 
(i.e., *Mai and Thingbaijam 
(2014); § National 
Seismological Service (SSN 
2022))
b The variables in the 
parentheses represent θ 
strike, δ dip, and λ rake

IDa Date Lat Lon Depth Mag Mo Focal mecha-
nism

Rrup

(yyyy/mm/dd) (°N) (°W) (km) (Mw) (dyne-cm) (θ, δ, λ)b (km)

1 1965/08/23 16.300 95.800 16.0 7.50 1.9953E + 27 268 14 54 432.13
2 1968/08/02 16.590 97.700 16.0 7.30 1.0000E + 27 287 12 76 293.62
3 1976/06/07 17.400 100.640 29.0 6.40 5.4000E + 25 289 18 83 249.15
4 1978/03/19 17.030 99.740 360 6.60 8.8700E + 25 279 10 102 247.83
5 1978/11/29 16.000 96.690 18.0 7.70 5.2700E + 27 274 7 57 382.75
6* 1979/03/14 17.460 101.460 20.0 7.40 1.3700E + 27 293 14 90 270.24
7* 1981/10/25 17.750 102.250 20.0 7.25 8.4900E + 26 300 14 90 323.96
8 1982/06/07 16.350 98.370 20.0 6.90 2.9000E + 26 268 10 48 315.88
9 1982/06/07 16.400 98.540 15.0 7.00 2.6600E + 26 286 12 76 298.72
10* 1985/09/19 18.140 102.710 16.0 8.10 1.1500E + 28 300 14 61 301.15
11* 1985/09/21 17.600 101.800 20.0 7.42 1.5300E + 27 300 14 100 287.80
12 1989/04/25 16.795 99.275 23.0 6.90 2.3900E + 26 276 10 66 259.94
13 1993/05/15 16.430 98.740 20.0 6.00 1.4100E + 25 242 35 30 314.99
14 1993/10/24 16.540 98.980 19.0 6.60 1.0100E + 26 276 17 67 291.99
15* 1995/09/14 16.752 98.667 21.0 7.30 8.9000E + 26 289 11 75 248.55
16 1996/07/15 17.293 101.241 18.7 6.60 9.9500E + 25 297 21 93 295.33
17 1998/02/03 15.690 96.370 24.0 6.30 3.7200E + 25 288 42 104 486.34
18 2000/08/09 17.990 102.660 16.0 6.50 7.1300E + 25 291 43 91 376.66
19* 2003/01/22 18.540 104.270 16.0 7.50 2.0200E + 27 300 22 93 484.81
20 2004/01/01 17.340 101.420 15.0 6.00 1.4600E + 25 299 13 92 311.88
21 2010/06/30 16.290 97.959 27.8 6.30 3.0600E + 25 286 12 72 344.05
22* 2012/03/20 16.246 98.457 18.0 7.42 1.7800E + 27 296 13 91 294.99
23 2012/04/11 17.921 103.068 20.0 6.70 1.2000E + 26 282 25 77 413.08
24 2013/04/22 17.856 102.280 26.6 6.10 1.6600E + 25 113 29 77 357.76
25 2013/08/21 16.857 99.519 18.9 6.20 2.1840E + 25 287 19 74 264.36
26 2014/04/18 17.370 101.050 18.0 7.25 9.9762E + 26 302 20 99 263.67
27 2014/05/08 16.986 100.916 10.0 6.50 4.4110E + 25 315 26 99 302.23
28 2014/05/10 17.036 100.893 10.0 6.10 1.2490E + 25 313 21 105 301.05
29 2016/05/08 16.323 97.877 22.0 6.00 7.0320E + 24 284 19 66 348.20
30* 2018/02/16 16.218 98.013 19.5 7.20 7.1465E + 26 297 12 91 322.84
31 2018/02/19 16.247 97.775 10.2 6.00 8.3290E + 24 285 23 84 359.61
32§ 2020/06/23 15.784 96.120 22.0 7.41 1.6400E + 27 266 17 60 456.84
33§ 2021/09/07 16.820 99.780 10.0 7.10 5.0119E + 26 288 13 89 261.02
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acceleration (SA). However, several studies (Giove-
nale et al. 2004; Luco and Cornell 2007; Eads et al. 
2015; Kohrangi et  al. 2016a, b) have demonstrated 
that these IMs used in performance-based assess-
ments can be inefficient and insufficient to predict the 
structural demand, especially for tall or long-period 
buildings whose higher modes contribute signifi-
cantly to the structural response. This condition has 
led to the development of new IMs better correlated 
with the structural response of nonlinear systems, 
such as the average spectral acceleration (AvgSA). 

Particularly, Eads et  al. (2015) define AvgSA as 
the geometric mean of SA ordinates in the range of 
0.2T1–3T1, where T1 is the fundamental period of 
vibration of the structure. In Eads et  al. (2015), the 
authors used almost 700 buildings of different heights 
(4 to 16 stories) and structural systems (moment-
resist frame and shear wall structures) to evaluate the 
efficiency and sufficiency of AvgSA as IM to predict 
the collapse intensities. Their results suggest that 
AvgSA is a better option than SA since it reduces the 
variability of the predicted structural demand and the 

Fig. 1  Location of the 
epicenters and focal 
mechanisms of earthquakes 
recorded at station CU 
(filled triangle) in Mexico 
City. The dashed line 
represents the boundary 
of the Trans-Mexican 
volcanic belt (TMBV). The 
epicentral data and source 
parameters are listed in 
Table 1

Fig. 2  Magnitude-distance 
and magnitude-depth distri-
butions of the dataset used 
in the regression analysis
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IM dependency with the ground-motion characteris-
tics, such as magnitude (M), source-to-site distance 
(R), and fault mechanism.

On the other hand, Kohrangi et al. (2017) mention 
that selecting the upper period limit (T*) to compute 
AvgSA is not a trivial matter since it depends on the 
objective of the analysis. In that study, the authors 
recommend a value of T* equal to 1.5 T1 or 2 T1 to 
predict the peak inter-story drift ratio (IDR) based 
on the results obtained in (Kohrangi et al. 2016a, b), 
in which the nonlinear response of three reinforced 
concrete buildings (3, 5, and 8 stories) subjected to 
both horizontal components of the ground motion 
are evaluated. Its results show that using T* = 1.5T1 
gets the lowest dispersion in response estimation of 
the IDR, which engineering demand parameter (EDP) 
correlates well with the collapse state. Likewise, they 
show the efficiency and sufficiency of predicting the 
IDR using AvgSA [0.2T1–1.5T1].

Based on the above, it was decided to include the 
AvgSA as an IM to derive the GMPM. The inten-
tion is not to replace SA as IM to define design loads 
in the standard for seismic design but rather to have 
an IM better correlated with the nonlinear structural 
behavior that allows for obtaining more accurate seis-
mic risk estimations. Therefore, it was decided to 
keep the typical IMs used in previous works to derive 
the GMPM such as PGV, PGA, and SA, which met-
rics have been used with different objectives over 
time (e.g., seismic risk assessment, calibration of the 
early warning system, obtaining the design spectrum, 
among others).

In this study, the AvgSA is estimated for 40 peri-
ods, T1, equally spaced between 0.1  s and 4  s, con-
sidering a period range of 0.1T1–1.5T1 and a uniform 
spacing (Δ) of 0.1 in the averaging process through 
the Eq.  (1). This period range corresponds to the 
one proposed in the NTCDS (2017) to evaluate the 
nonlinear response of tall buildings in Mexico City. 
Therefore, the GMPM-AvgSA derived here could be 
used to obtain the conditional mean spectrum (CMS) 
and select acceleration time histories that can be used 
in dynamic analysis.

(1)AvgSA
(

T
1

)

=

[

N
∏

i=1

SA
(

C
i
T
1

)

]
1∕ N

where SA stands the 5% damped spectral acceleration 
value, N is the number of periods used to compute 
AvgSA, in this case, N = 15; Ci is the ith coefficient 
of the period range used in the averaging process, 
Ci = iΔ and T1 is the fundamental period of vibration 
of the structure.

Likewise, three IMs were used to characterize the 
ground motion: PGV, PGA, and SA. For these IMs, 
the quadratic mean (QM) of the maximum response 
of both horizontal components was computed to 
derive the GMPM, that is,  SAQM = [(SAN

2 +  SAE
2) / 

 2]0.5. The QM was selected to be consistent with the 
definition adopted in other GMPMs developed for 
Mexico City (e.g., Reyes 1999; Jaimes et  al. 2015) 
and used in the PSHA. For SA, the 5% damped 
response spectra at 102 structural periods between 
0.05  s and 6  s were computed. The processing of 
the acceleration time histories used in the analysis is 
described as follows.

4  Data processing and analysis

4.1  Data processing

The records were processed applying a baseline cor-
rection and high-pass filter using two values of cor-
ner frequency (fhp) depending on the type and resolu-
tion of the recording instrument: (1) fhp = 0.30 for the 
events recorded at analog and digital accelerographs 
with low resolution (< 16 bit) and flat response in the 
range of 0.1 to 35 Hz and (2) fhp = 0.05 for the events 
recorded at modern digital accelerographs. The mini-
mum usable oscillator frequency (fo) to compute SA 
was determined for each record as 1.25 times the cor-
ner frequency of the high-pass filter (Abrahamson 
and Silva 1997; Ancheta et al. 2014; Bindi et al. 2014; 
Kohrangi et al. 2018). This condition implies that for 
AvgSA the lowest usable fo on the data selection is 
constrained by the upper limit of the period range 
0.1T1–1.5T1 selected, which corresponds to 1.875 fhp. 
Thus, the number of record pairs in the final dataset 
varies as a function of the oscillator period, T (where 
T = 1/fo), including a maximum of 33 strong-motion 
records to estimate SA and AvgSA for a T ≤ 2.7 s and 
T ≤ 1.8 s, respectively, and 24 to evaluate the response 
for both IMs at longer periods.

The PGA value was read directly from each record 
processed, and the 5% damped SA for 102 structural 
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Table 2  Coefficients obtained (see Eq. 2)

a The period-independent coefficient used in the regression analysis for all IMs: c3 =  − 0.5. Note that the median values obtained from these 
coefficients are expressed in acceleration units (cm/s2) for PGA, SA, and AvgSA. For PGV, the results are expressed in velocity units (cm/s).

T (s) SA (T)a AvgSA (T)a

c0 c1 c2 c4 σ c0 c1 c2 c4 σ

PGV 2.7281 1.4706  − 0.0434  − 0.0021 0.4286
PGA 5.1671 0.9599 0.0925  − 0.0043 0.3248
0.05 5.2099 0.9543 0.0944  − 0.0044 0.3225
0.10 5.4459 0.9146 0.0946  − 0.0048 0.3335 5.2567 1.2978  − 0.0800  − 0.0046 0.3170
0.20 6.1631 0.8212 0.0727  − 0.0057 0.3115 5.6687 1.2175  − 0.0706  − 0.0052 0.2892
0.30 6.1508 0.8243 0.1053  − 0.0055 0.2426 5.7540 1.2128  − 0.0639  − 0.0051 0.2793
0.40 6.0079 0.8925 0.0730  − 0.0050 0.2759 5.7877 1.1997  − 0.0590  − 0.0049 0.2806
0.50 6.0645 0.8560 0.0831  − 0.0046 0.3089 5.7642 1.1942  − 0.0429  − 0.0047 0.2806
0.60 5.8783 0.8368 0.1315  − 0.0041 0.3310 5.7265 1.1821  − 0.0204  − 0.0045 0.2763
0.70 5.8213 0.8693 0.1874  − 0.0040 0.3063 5.6818 1.1806  − 0.0093  − 0.0042 0.2781
0.80 5.7247 0.8557 0.1884  − 0.0035 0.2885 5.6589 1.1871  − 0.0070  − 0.0041 0.2771
0.90 5.6159 0.8464 0.2132  − 0.0031 0.2856 5.6316 1.1921  − 0.0020  − 0.0040 0.2864
1.00 5.5138 0.9118 0.1594  − 0.0028 0.3198 5.6186 1.2039  − 0.0050  − 0.0040 0.2869
1.10 5.5682 0.9517 0.1434  − 0.0032 0.3162 5.6002 1.2242  − 0.0068  − 0.0039 0.2933
1.20 5.6461 0.9630 0.1513  − 0.0036 0.3139 5.5799 1.2460  − 0.0070  − 0.0039 0.3033
1.30 5.5169 0.9728 0.1441  − 0.0033 0.3589 5.5510 1.2627  − 0.0126  − 0.0038 0.3092
1.40 5.5904 0.9919 0.1222  − 0.0034 0.3613 5.4831 1.2873  − 0.0142  − 0.0037 0.3171
1.50 5.6398 1.0678 0.1012  − 0.0036 0.3819 5.4274 1.3130  − 0.0173  − 0.0036 0.3255
1.60 5.5405 1.1104 0.0993 -0.0033 0.4162 5.3988 1.3365  − 0.0231  − 0.0036 0.3340
1.70 5.5055 1.1516 0.1010  − 0.0033 0.4340 5.3445 1.3629  − 0.0270  − 0.0036 0.3360
1.80 5.4324 1.1951 0.0851  − 0.0033 0.4481 5.3166 1.3812  − 0.0304  − 0.0036 0.3393
1.90 5.2698 1.2280 0.0707  − 0.0030 0.4566 5.1532 1.4037  − 0.0317  − 0.0033 0.3477
2.00 5.0881 1.2747 0.0629  − 0.0028 0.4676 5.1154 1.4284  − 0.0401  − 0.0033 0.3498
2.20 4.8606 1.3411 0.0635  − 0.0027 0.5058 5.0254 1.4749  − 0.0527  − 0.0032 0.3561
2.40 4.8331 1.4113  − 0.0015  − 0.0029 0.4919 4.9666 1.4991  − 0.0572  − 0.0032 0.3588
2.60 4.8047 1.4658 0.0149  − 0.0033 0.4726 4.9109 1.5246  − 0.0669  − 0.0031 0.3651
2.80 4.5538 1.5624  − 0.0117  − 0.0030 0.4802 4.8426 1.5496  − 0.0786  − 0.0031 0.3684
3.00 4.3871 1.6209  − 0.0452  − 0.0028 0.4840 4.7690 1.5684  − 0.0835  − 0.0030 0.3755
3.20 4.2437 1.6869  − 0.0850  − 0.0027 0.4641 4.3509 1.7058  − 0.1216  − 0.0026 0.3934
3.40 3.9932 1.7560  − 0.1353  − 0.0023 0.4927 4.2715 1.7273  − 0.1271  − 0.0025 0.3959
3.60 3.7148 1.8239  − 0.1515  − 0.0021 0.5414 4.1992 1.7507  − 0.1340  − 0.0024 0.3999
3.80 3.5121 1.8791  − 0.1664  − 0.0020 0.5350 4.1349 1.7721  − 0.1437  − 0.0024 0.3998
4.00 3.3245 1.9383  − 0.1759  − 0.0019 0.5326 4.0692 1.8000  − 0.1532  − 0.0023 0.4049
4.20 3.1290 1.9937  − 0.2012  − 0.0018 0.5110
4.40 2.9587 2.0580  − 0.2130  − 0.0017 0.4908
4.60 2.8559 2.1169  − 0.2451  − 0.0017 0.4852
4.80 2.7152 2.1657  − 0.2475  − 0.0016 0.4944
5.00 2.4967 2.2212  − 0.2546  − 0.0012 0.4964
5.20 2.3061 2.2762  − 0.2666  − 0.0009 0.4896
5.40 2.1444 2.3345  − 0.2942  − 0.0006 0.5040
5.60 2.0383 2.3891  − 0.3098  − 0.0006 0.5074
5.80 1.9543 2.4432  − 0.3053  − 0.0007 0.5182
6.00 1.8801 2.4877  − 0.2985  − 0.0008 0.5080
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periods between 0.05  s and 6  s was computed. The 
PGV values were obtained by integrating the accel-
eration-time histories after applying the baseline 
correction and high-pass filter. For these IMs, the 
quadratic mean of the maximum response of both 
horizontal components was computed to derive the 
GMPM. Finally, the AvgSA values were estimated for 
40 periods, T1, equally spaced between 0.1 s and 4 s 
using Eq. (1).

4.2  Regression analysis

The regression of the dataset was performed using the 
Bayesian approach proposed by Ordaz et  al. (1994), 
which was considered adequate to obtain the GMPM 
given the small number of available observations. 
Besides, it is not possible to apply a two-step or ran-
dom-effect approach because the observation comes 
from a single station. The Bayesian approach makes 
it possible to incorporate theoretical knowledge about 
the phenomenon being studied to constrain the val-
ues of some seismological parameters that cannot be 
directly derived from the dataset. This prior informa-
tion, combined with the empirical data through the 
Bayes theorem, provides a rational and stable numeri-
cal solution, as shown by Ordaz et al. (1994), Jaimes 
et  al. (2006), and Wang and Takada (2009). The 
functional form adopted in the regression analysis to 
develop the GMPM is shown in Eq. (2).

where Y is the predicted median of a ground-motion 
parameter: PGA, PGV, SA, or AvgSA. The predicted 
values for acceleration and velocity are in cm/s2 and 
cm/s, respectively. Mw is the moment magnitude; Rrup is 
the closest distance to the rupture plane in kilometers; ci 
are the coefficients to be determined by the regression 
analysis, and � is the random error normally distributed 
with zero mean and variance σe

2. In this case, being a 
single-station analysis, σe

2 represents the variance of the 
interevent residuals (Atkinson 2006). Note that SA and 
AvgSA coefficients depend on the fundamental vibra-
tion period of the structure, T; however, for simplicity, 
this term has been removed from Eq. (2).

(2)lnY = c
0
+ c

1

(

M
W
− 6

)

+ c
2
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M
W
− 6

)2
+ c

3
lnR + c

4
R + �

The prior information is an intrinsic part of a 
Bayesian approach and reflects our state of knowl-
edge about the phenomenon analyzed prior to the 
observation and analysis of data. In this study, the 
prior probability distributions of the coefficients, ci, 
are obtained from the ground-motion intensity (GMI) 
values estimated theoretically at CU without using the 
strong-motion recordings. For that purpose, a far-field 
point source model proposed by Singh et  al. (1989) 
and the random vibration theory (RVT) was used to 
compute the Fourier amplitude spectrum (FAS) and 
predict the GMI in terms of PGA, PGV, and SA. The 
AvgSAs were obtained from the SAs using Eq.  (1). 
The frequency-dependent attenuation parameters 
required to compute the FAS were taken from Ordaz 
and Singh (1992). Likewise, the strong-motion dura-
tion parameter used in the RVT method (Liu and Pez-
eshk 1999) was computed through the relationship 
proposed by López-Castañeda and Reinoso (2021). 
The expected values, E′ [ci], and standard deviations, 
σ′ [ci], of prior coefficients, were established follow-
ing the procedure suggested by Reyes (1999), whose 
steps are briefly described below.

1. The prior expected values of c0, c1, and c2 were 
estimated by applying a least squared fit to GMIs 
predicted for a specific source-to-site distance 
(Rrup = 290  km) and a magnitude (Mw) range 
between 6.0 and 8.2. This procedure is consid-
ered adequate since, as shown in Eq.  (2), these 
coefficients are independent of the distance; c0 
represents the site-effects amplifications, while c1 
and c2 control the magnitude scaling. The stand-
ard deviation of c1 and c2 was assigned according 
by Ordaz et al. (1994), adopting σ′ [ci] = E′ [ci] / 
1.7.

2. The prior expected value of c3 was fixed at -0.5 
for all periods. This value is consistent with 
the geometrical attenuation of surface waves 
at source-to-site distances greater than 100  km 
(Ordaz et  al. 1992). A low standard deviation 
was assigned (σ′ [c3] ∝ 0) to ensure that the value 
remained constant after incorporating the obser-
vations.

3. The prior expected value of c4, related to the 
quality factor Q (anelastic attenuation), was 
obtained as follows: (1) a magnitude value was 
set, Mw = 7.0; (2) for this value, the GMI was 

Fig. 3  Regression coefficients of the GMPM for a SA and b 
AvgSA. The solid and dashed lines represent the posterior and 
prior coefficients, respectively, used in this study

◂
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Table 3  Covariance matrixes obtained (see Eq. 5)

SA (T) AvgSA (T)

PGV c0 c1 c2 c3 c4
c0 556.488  − 4.220 2.006  − 114.572 0.325
c1  − 4.220 0.277  − 0.145 0.848  − 0.002
c2 2.006  − 0.145 0.083  − 0.403 0.001
c3  − 114.572 0.848  − 0.403 23.599  − 0.067
c4 0.325  − 0.002 0.001  − 0.067 0.00019
PGA c0 c1 c2 c3 c4 T = 0.1 c0 c1 c2 c3 c4

c0 319.506  − 2.423 1.152  − 65.781 0.186 c0 305.722  − 2.318 1.102  − 62.943 0.178
c1  − 2.423 0.159  − 0.083 0.487  − 0.001 c1  − 2.318 0.152  − 0.080 0.466  − 0.001
c2 1.152  − 0.083 0.048  − 0.231 0.001 c2 1.102  − 0.080 0.046  − 0.221 0.001
c3  − 65.781 0.487  − 0.231 13.549  − 0.038 c3  − 62.943 0.466  − 0.221 12.965  − 0.037
c4 0.186  − 0.001 0.001  − 0.038 0.00011 c4 0.178  − 0.001 0.001  − 0.037 0.00011
T = 0.2 c0 c1 c2 c3 c4 T = 0.2 c0 c1 c2 c3 c4

c0 293.782  − 2.228 1.059  − 60.485 0.171 c0 253.350  − 1.921 0.913  − 52.161 0.148
c1  − 2.228 0.146  − 0.077 0.448  − 0.001 c1  − 1.921 0.126  − 0.066 0.386  − 0.001
c2 1.059  − 0.077 0.044  − 0.213 0.001 c2 0.913  − 0.066 0.038  − 0.183 0.00049
c3  − 60.485 0.448  − 0.213 12.458  − 0.035 c3  − 52.161 0.386  − 0.183 10.744  − 0.031
c4 0.171  − 0.001 0.001  − 0.035 0.00010 c4 0.148  − 0.001 0.00049  − 0.031 0.00009
T = 0.5 c0 c1 c2 c3 c4 T = 0.5 c0 c1 c2 c3 c4

c0 288.499  − 2.188 1.040  − 59.397 0.168 c0 236.724  − 1.795 0.853  − 48.738 0.138
c1  − 2.188 0.144  − 0.075 0.440  − 0.001 c1  − 1.795 0.118  − 0.062 0.361  − 0.001
c2 1.040  − 0.075 0.043  − 0.209 0.001 c2 0.853  − 0.062 0.035  − 0.171 0.00046
c3  − 59.397 0.440  − 0.209 12.234  − 0.035 c3  − 48.738 0.361  − 0.171 10.039  − 0.029
c4 0.168  − 0.001 0.001  − 0.035 0.00010 c4 0.138  − 0.001 0.00046  − 0.029 0.00008
T = 1.0 c0 c1 c2 c3 c4 T = 1.0 c0 c1 c2 c3 c4

c0 309.823  − 2.350 1.117  − 63.788 0.181 c0 247.918  − 1.880 0.894  − 51.043 0.145
c1  − 2.350 0.154  − 0.081 0.472  − 0.001 c1  − 1.880 0.123  − 0.065 0.378  − 0.001
c2 1.117  − 0.081 0.046  − 0.224 0.001 c2 0.894  − 0.065 0.037  − 0.180 0.00048
c3  − 63.788 0.472  − 0.224 13.139  − 0.037 c3  − 51.043 0.378  − 0.180 10.513  − 0.030
c4 0.181  − 0.001 0.001  − 0.037 0.00011 c4 0.145  − 0.001 0.00048  − 0.030 0.00009
T = 1.5 c0 c1 c2 c3 c4 T = 1.5 c0 c1 c2 c3 c4

c0 443.511  − 3.363 1.599  − 91.312 0.259 c0 319.290  − 2.421 1.151  − 65.737 0.186
c1  − 3.363 0.221  − 0.116 0.676  − 0.002 c1  − 2.421 0.159  − 0.083 0.487  − 0.001
c2 1.599  − 0.116 0.066  − 0.321 0.001 c2 1.151  − 0.083 0.048  − 0.231 0.001
c3  − 91.312 0.676  − 0.321 18.808  − 0.053 c3  − 65.737 0.487  − 0.231 13.540  − 0.038
c4 0.259  − 0.002 0.001  − 0.053 0.00015 c4 0.186  − 0.001 0.001  − 0.038 0.00011
T = 2.0 c0 c1 c2 c3 c4 T = 2.0 c0 c1 c2 c3 c4

c0 666.811  − 5.057 2.404  − 137.286 0.389 c0 727.929  − 6.446 2.582  − 149.233 0.416
c1  − 5.057 0.332  − 0.174 1.016  − 0.003 c1  − 6.446 0.271  − 0.136 1.308  − 0.004
c2 2.404  − 0.174 0.099  − 0.483 0.001 c2 2.582  − 0.136 0.075  − 0.524 0.001
c3  − 137.286 1.016  − 0.483 28.277  − 0.080 c3  − 149.233 1.308  − 0.524 30.604  − 0.085
c4 0.389  − 0.003 0.001  − 0.080 0.00023 c4 0.416  − 0.004 0.001  − 0.085 0.00024
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computed for two different source-to-site dis-
tances, R1 = 260 km and R2 = 480 km; at last (3) 
the ratio between GMIS estimated, which allows 
combining the effect of the geometrical spreading 
and the anelastic attenuation (Castro et al. 1990), 
was determined by the following equation. A suf-
ficiently large variance was adopted for this coef-
ficient to obtain the best value from the regres-
sion, σ′ [c4] = E′ [c4] / 1.7.

4. Finally, the prior expected value of the σe model 
was assigned based on the results reported in 
several studies (e.g., Joyner and Boore 1988; 
Ordaz et  al. 1994; Jaimes et  al. 2006), adopting 
E′ [σe] = 0.7 and σ′ [σe] = E′ [σe] / 1.7.

The posterior expected values of E″ [ci] and E″ [σ] 
were obtained through a Bayesian linear regression 
using the optimization algorithm provided by Salva-
tier et al. (2016).

4.3  Uncertainty in the regression coefficients

As mentioned earlier, the dataset used in the regres-
sion analysis presents magnitude-distance regions 
poorly sampled, particularly for Mw > 7.5 and 
Rrup > 350  km (see Fig.  2). This lack of data raises 
concerns regarding the reliability of GMPM when 
used to predict the GMI value for events whose 
parameters magnitude and distance are beyond the 
well-sampled region of the dataset. Therefore, in this 
study, it was decided to use the method proposed by 
Arroyo and Ordaz (2011) to quantify how the uncer-
tainty associated with GMPM is affected due to the 
quality of the dataset. This method evaluated the 
epistemic uncertainty using the predictive variance, 
σp

2, which depends on the sample, on the regres-
sion technique, and on the adopted functional form. 
Equation (4) shows that the σp

2 of a forecasted value 
depends on two factors: (1) the earthquake-to-earth-
quake variability, σe

2, contained in the database and 
(2) the uncertainty in the regression coefficients given 
by Z COV

(

ĉ
)

Z
T.

(3)E
�[

c4
]

=
ln
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Y1∕Y2
)

− E
�[

c3
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ln
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where σp
2 is the total forecasted variance considering 

the extra uncertainty due to the quality of the data-
set, σe

2 the variance of the interevent residuals, Z is a 
np row vector with the GMPM parameters (see Eq. 2) 
for which a specific value, Y, is being forecasted and 
COV

(

ĉ
)

 is the covariance matrix of the coefficients 
given by,

where X is a no × np matrix with no observations and 
np parameters considered in the model, Y is a no × 1 
matrix with the predicted values for the parameter 
given by X, ĉ is a np × 1 matrix with the coefficients 
estimated from the regression analysis, and Φ , in this 
case, is an identity matrix of size ne due to only the 
interevent variability being analyzed (see Arroyo and 
Ordaz 2011). Finally, ne is the number of earthquakes 
in the dataset.

Through Eq.  (5) was possible to quantify the 
uncertainty in the regression coefficients for the 
GMPM derived. As will be seen later, the total fore-
casted variability obtained was larger for the cases 
where the dataset is poorly sampled and smaller 
enough for the opposite cases.

5  Results and discussion

5.1  Regression coefficients

Table  2 lists the attenuation coefficients and the 
standard deviation values obtained from the regres-
sion for PGA, PGV, SA, and AvgSA. For simplicity, 
Table 2 shows the coefficients for 41 and 30 structural 
periods for SA and AvgSA, respectively. The com-
plete table of the regression coefficients is provided 
as an electronic supplement. Figures  3a  and b com-
pare the prior and posterior period-dependent coeffi-
cients estimated for SA and AvgSA, respectively. In 
these figures, it is noted that the prior and posterior 
coefficients follow a similar shape with significant 
differences in their amplitude, especially in the coef-
ficients c0, c2, and c4, where the updated values are so 
far from those computed theoretically, which means 
that our prior knowledge of these coefficients is 
vague and wrong. Regarding the total standard devia-
tion, it can be noted that the dispersion (σ) calculated 
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for AvgSA is lower than that from SA at the period 
range between 0.1 s and 4.0 s. Therefore, AvgSA has 
a better predictive capacity than SA, which has an 
important impact on PSHA as it contributes to a more 
accurate estimation of the hazard curves at small rates 
of exceedance.

5.2  Covariance matrixes and comparison of 
variances

The covariance matrixes needed to compute the fore-
casted variability, see Eq. (5), are shown in Table 3 for 
some IMs such as PGA, PGV, SA (0.2, 0.5, 1.0, 1.5, 
2.0), and AvgSA (0.1, 0.2, 0.5, 1.0, 1.5, 2.0). As stated 
before, with these matrixes and the parameters to be 
forecasted, the epistemic uncertainty due to the sam-
pling of the dataset could be considered in the estima-
tion of the hazard. The supplementary material shows 
an extended version of Table 3 for all IMs reported in 
Table 2.

Moreover, to see the impact of adding the epistemic 
uncertainty due to the dataset sampling, a ratio between 
the standard deviation from the total forecasted and the 
one coming from the regression analysis, s = �p∕�e , 
is computed for some intensity measures of SA and 
AvgSA, and it is shown in Fig. 4a, b, respectively. The 
dash lines correspond to the contour of s values, while 
the dots are the observations of the dataset (see Table 1). 
As it can be seen, s values close to 1 occur in the vicinity 
of the well-sampled region of the dataset, while higher 
s values (which means higher values of total forecasted 
variability) occur when there is a lack of data. As will be 
seen later, this uncertainty increase directly impacts the 
hazard assessment estimated for the site.

5.3  Residual analysis

The residuals as a function of magnitude (Mw) and 
distance (Rrup) are shown in Fig.  5a, b, respectively, 
for PGA, PGV, SA, and AvgSA. For the last two IMs, 
the residuals are shown for four different periods of 
vibration that correspond to 0.5 s, 1 s, 1.5 s, and 2 s. 

The plotted residuals represent the difference between 
the natural logarithms of the observed data and the 
predicted SA (circles) and AvgSA (triangles) values. 
The solid and dotted lines correspond to the linear fit 
between the residuals computed and the Mw and Rrup 
values, respectively. As can be seen, the mean resid-
uals obtained for Mw and Rrup are almost negligible 
for PGA, PGV, and SA, which means that the esti-
mated coefficients of the GMPMs are adequate and 
provide a reasonable estimation of the GMI. Similar 
trends are obtained for the rest of the periods of vibra-
tion considered in this study for SA. For the case of 
AvgSA, the slope decreases slightly as Mw increases, 
especially for T > 1 s. This behavior may be related to 
the number of events used in the regression process to 
obtain the coefficients for long periods since, as men-
tioned earlier, the number of events in the dataset is 
reduced by approximately 23% to estimate AvgSA at 
T ≥ 1.8 s.

5.4  Median predictions

Figure  6 compares the observations against the 
predicted values of PGV, PGA, SA, and AvgSA for 
two different magnitudes (Mw) as a function of the 
source-to-site distance (Rrup). For SA and AvgSA, 
the comparison is carried out for four different 
periods of vibration that correspond to 0.5  s, 1  s, 
1.5 s, and 2 s. In this figure, the black and red solid 
lines represent the median prediction (50th per-
centile) for a magnitude value (Mw) of 6.5 and 7.5, 
respectively, and the dashed lines correspond to 
the 16th and 84th percentiles. Likewise, the filled 
circles correspond to the 6.3 ≤ Mw < 6.7 observa-
tions and the filled triangles for 7.3 ≤ Mw < 7.7. 
Significant data variability for the evaluated mag-
nitude ranges can be observed, especially for 
6.3 ≤ Mw < 6.7, whose dispersion increases as the 
period increases. This dispersion is also observed 
in PGV, whose intensity measure is more sensi-
tive to the low-frequency amplitudes of the ground 
motion. Likewise, it is noted that the dispersion 
between the observations and predicted values for 
AvgSA is lower than the one from SA, which leads 
a better predictive capacity of the GMPM-AvgSA. 
This dispersion increase over long periods is likely 
related to the characteristics of the seismic record-
ing equipment operated at the station CU since 
most have been short-period accelerometers with 

Fig. 4  Contours of s values, the ratio between the standard 
deviation of the total forecasted variability and the variability 
of the regression ( s = σ

p
∕�

e
 ). a Intensity measures PGV, PGA, 

and SA (0.2, 0.5, 1.0, 1.5, 2.0). b Intensity measures AvgSA 
(0.1, 0.2, 0.5, 1.0, 1.5, 2.0). The dashed lines represent, s con-
tours, and the dots are the observed values used in the regres-
sion analysis

◂
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low sensitivity at frequencies below 1 Hz. Despite 
this, it is observed that the empirical data is rela-
tively well represented by the GMPM proposed.

Figure  7 compares the response spectra observed 
(solid black line) with the median estimated (dotted 
red line) at the station CU for SA and AvgSA from the 
GMPM derived. Only 12 of the most intense earth-
quakes in the dataset are compared. As expected, the 
suitability of the fit varies from event to event, showing 
a good agreement for most of them. In the case of the 
events: 5 (Mw 7.7), 12 (Mw 6.9), 15 (Mw 7.3), and 26 
(Mw 7.25), there is a significant difference between the 
observed and predicted values for both SA and AvgSA; 
however, the fitting is reasonable given the uncertainty 
of the GMPM. On the other hand, it can be noted that 
the spectral shape of SA is strongly influenced by the 
site effects present at station CU, which yield a large 
spectral amplification at the period range from 1 to 3 s 
and, consequently, widen the spectral shape of AvgSA 
to long periods. This condition is particularly atypical at 
sites classified as firm soils, where it is expected that the 
peak amplitude has a place at short periods below 1 s. 
However, in the firm zone of Mexico City, this ampli-
fication is caused by the rather shallow (< 1 km) sedi-
ments that lie below the volcanic rocks that cover the hill 
zone of the Valley of Mexico (Ordaz et al. 1992).

5.5  Comparison of standard deviations

Figure  8a compares the total standard deviation of 
PGA and SA (σlnIM) obtained from the GMPM pro-
posed with those obtained from two previously devel-
oped models for the station CU, corresponding to 
R99 and J06. This figure shows that the σlnSA com-
puted in this study is less than estimated by R99 and 
J06 models at all periods of vibration. Note that the 
PGA value is associated with T = 0  s. On the other 
hand, Fig. 8b clearly shows the percentage reduction 
achieved for σlnIM regarding the values reported at the 
two GMPMs evaluated. This percentage varies from 5 
to 60% for R99 and from 0.3 to 58% for J06. For both 
models, the lowest value occurs in the period range 

from 1 to 3 s. In general, a greater reduction of the dis-
persion of PGA and SA is obtained for the R99 model 
compared to that of J06. These differences are related 
to the number of earthquakes used in the regression 
approach since CU21 contains 18 more events than 
R99 and 13 more than J06. These results indicate a 
more significant predictive capacity of the proposed 
GMPM than previous models.

5.6  Comparison with previous models

To evaluate the performance of the proposed GMPM 
concerning previous models developed for the sta-
tion CU, Fig.  9 presents the differences in natural 
logarithm between the predictions of GMPM-SA 
proposed and the R99-SA model. Similarly, Fig.  10 
shows the differences regarding the J06-SA model. 
In both figures, the results are presented through sur-
face plots that allow to quickly evaluate the behavior 
of the residuals obtained for a wide range of magni-
tude values (6.0 ≤ Mw ≤ 8.5) and periods of vibra-
tion (0 ≤ T ≤ 6), associated with a set of four different 
distances. These distances correspond to 250, 300, 
350, and 450 km. Likewise, a color scheme ranging 
from blue to red facilitates interpreting the results; 
the blue tones indicate that the predicted values are 
lower regarding the evaluated model, and the red 
tones indicate the opposite. In both figures, it can be 
observed that for T < 3  s, the GMPM proposed pre-
dicts intensities below R99 and J06 for the magnitude 
range of 6 to 8 and distances less than 350 km. In this 
zone, the differences are less than 0.2 log units. For 
T > 3 s, the model predicts intensities above R99 and 
J06 for the entire range of magnitude and distance. 
The differences are greater than 1 log unit in this 
area, especially at T > 5  s. In general, a smaller dif-
ference is obtained regarding the J06 model than that 
of J06. These differences are mainly attributed to the 
dataset size since CU21 includes thirteen earthquakes 
not considered in J06 and eighteen more than R99, 
which provide essential information about the GMI 
for events with magnitudes (Mw) between 6.0 and 7.4, 
and distances (Rrup) between 260 and 400 km.

Another point that was evaluated of the GMPM 
was its performance in estimating the ground motion 
in other sites of the hill zone of Mexico City. For that 
purpose, a dataset of 24 events recorded at nine sta-
tions located southwest of Mexico City was used. 
These stations present a similar condition of the 

Fig. 5  Residuals in natural logarithm of PGV, PGA, SA (cir-
cles), and AvgSA (triangles) as a function of a Mw and b Rrup. 
The solid black line represents the linear fit for PGV, PGA, and 
SA residuals. Similarly, the dotted red line represents the linear 
fit for AvgSA

◂
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ground motion amplification that agrees with the 
reported by Montalvo-Arrieta et  al. (2002, 2003). 
Table  4 lists the stations and earthquakes employed 
in the analysis. In total, 105 pairs of records (two 
horizontal components) were obtained from these 
stations.

The maximum likelihood methods LH and LHH 
proposed by Scherbaum et al. (2004, 2009) were cho-
sen for testing the GMPMs against the data observed. 
These methods allow quantifying in statistical terms 
the similarity between the observed and predicted 
ground-motion data and have been used in several 
studies to identify suitable models for specific seismic 
regions (Beauval et  al. 2012; Delavaud et  al. 2012). 
These methods were used to evaluate the GMPM 
performance for PGA and SA at nineteen periods 
between 0.1 and 6.0 s.

To apply the LH method is necessary to obtain the 
normalized residual for the set of observed and pre-
dicted values and compute the likelihood of an obser-
vation to be equal to or larger than a z value through 
the equations,

where z represents the normalized residual, x is the 
observed data, and μ and σ are the mean and the 
standard deviation of the GMPM, respectively. Erf(.) 
is the error function while integrating both tails of 
the standard normal distribution. LH can take values 
between 0 and 1. An LH value of 0.5 means that the 
observed and predicted data match their mean and 
standard deviation perfectly. Likewise, Scherbaum 
et  al. (2004) provide a ranking criterion to quan-
tify the overall model capability for predicting the 
observed data, assigning a category A, B, C, or D as a 
function of the LH obtained (refer to Scherbaum et al. 
(2004) for more details).

(6)LH = Erf

�

�z�
√

2

,∞

�

(7)z =
x − �

�

For its part, the LLH method is based on the 
log-likelihood approach to measuring the distance 
between two continuous probability density func-
tions f and g, log-normally distributed, where f 
represents the distribution of the observed values 
and g the distribution of the GMPM evaluated. 
This approach computes the average log-likeli-
hood of the considered GMPM using the observed 
dataset through the equation,

where N represents the total number of observations, 
x and g is the probability density function predicted 
by the model. A small LLH value indicates a good fit 
between the observed and predicted data.

Figure 11 shows the general performance of the 
GMPMs evaluated at the selected period range, 
and Table  5 lists the corresponding LH and LHH 
ranking indices. From this figure, the R99 GMPM 
reflects the best fit between the observed and pre-
dicted data, followed by J06 and the model pro-
posed in this study. The largest differences can 
be observed at short periods, below 1  s, where 
the model derived has the lower values of LH and 
highest values of LLH, which means a lower capa-
bility to predict the ground motion intensity at the 
entire hill zone of Mexico City. Table 5 shows that 
the models proposed for the period range between 
0.3 and 0.7  s have a low low predictive capacity. 
The difference between the GMPMs is less evident 
at long periods and shows a more stable ranking 
result.

The low predictive capacity of the proposed 
model, obtained from the LH and LLH methods, 
is likely related to the sigma of the model since its 
value is lower than that reported by the R99 and 
J06 models (see Fig.  8). Kale and Akkar (2013) 
point out that two GMPMs with a similar median 
estimation evaluated with the LH and LLH meth-
ods would benefit the one with the highest sigma. 
However, in terms of a PSHA, the models with 
larger sigma lead to a large seismic hazard at long 
periods.

Goodness-fit measures: median likelihood value 
( ̃LH ), and the median, mean and standard deviation 
of the normalized residual ( ÑR , 

−

NR , and σNR). L̃HH 
represent the median log-likelihood value and RK the 

(8)LLH = −
1

N

N
∑

i=1

log2
(

g
(

xi
))

Fig. 6  Regression data compared with attenuation curves 
computed for two different magnitudes: Mw = 6.5 (black lines) 
and Mw = 7.5 (red lines). Solid and dashed lines represent the 
median and the 16th–84th percentiles. The circles and tri-
angles filled correspond to the data observed in the range of 
6.3 ≤ Mw < 6.7 and 7.3 ≤ Mw < 7.7, respectively
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ranking assigned. The capital letters A, B, C and D 
stands the predictive capability of the GMPM: high, 
medium, low, and unacceptable in that order.

5.7  Comparison of hazard curves and uniform 
hazard spectra

Figure  12 compares the empirical and theoretical 
hazard curves computed from a probabilistic seismic 
hazard analysis (PSHA) for PGA and SA at five struc-
tural periods that correspond to 0.2 s, 0.5 s, 1 s, 1.5 s, 
and 2 s. The empirical curve is obtained by counting 
the number of times per year a given IM value has 
been exceeded, dividing by the observation period 
that, in this case, corresponds to 57  years for PGA, 
SA (T ≤ 2.7), and AvgSA (T ≤ 1.8), and 37 years for 
PGV, SA (T > 2.7) and AvgSA (T > 1.8). For these 
IMs, the observation period decreases because only 
24 events recorded from 1985 to 2021 were used to 
derive the GMPM. The PSHA analysis is performed 
just for interface earthquakes along the Mexican 
Pacific Coast. The characteristics of the seismogenic 
zones (i.e., geometry and seismicity) are taken from 
the current version of Mexico’s Seismic Design Code 
of the Federal Electricity Commission (MDOC CFE 
2015). The attenuation models used correspond to 
R99, J06, and the one proposed in this study. The 
computations were made using R-CRISIS (Ordaz 
et  al. 2021), based on the classic Esteva–Cornell 
approach (McGuire 2008).

The empirical curves were computed for 30 inten-
sity values logarithmically separated by equal inter-
vals between the limits 1 to 1000  cm/s2 for the SA 
curve (Fig.  11) and 1 to 100  cm/s2 for the AvgSA 
curve (Fig.  12). Therefore, their ordinates are the 
same in the six figures associated with a specific 
IM. In these figures, most of the empirical hazard 
curves, compared with the theoretical hazard curves 
computed from PSHA, tend to saturate at intensities 
below 5 cm/s2, which may be related to the fact that 
earthquakes with low ground-motion intensities were 
dismissed from the dataset. The same behavior occurs 

at intensities above 30 cm/s2 because there is only one 
event in the dataset that generates intensities above 
this threshold, so its exceedance rate corresponds 
to the maximum observation period, equivalent to 
v(a) = 0.0175 for PGA, SA (T ≤ 2.7) and AvgSA 
(T ≤ 1.8), and v(a) = 0.027 for PGV, SA (T > 2.7) and 
AvgSA (T > 1.8). For moderate intensities, the differ-
ences between both hazard curves are not so large and 
seem fit for the observed data. Similar observations 
were made by Ordaz and Reyes (1999).

Figure 12 shows that the shape of the hazard curves 
estimated with the proposed model disregarding the 
uncertainty in the regression coefficients (herein, 
HDU, dotted black line) follows a similar shape to the 
estimated with the R99 (continuous gray line) and J06 
(dotted red line) models. The three GMPMs compute 
similar exceedance rates, v(a), for low intensities. 
However, their differences increase as the intensity 
increases. Compared to the proposed model, the R99 
model estimates higher exceedance rates for PGA and 
SA for all periods evaluated, except for T = 2 s. On the 
other hand, the J06 model estimates lower exceedance 
rates for PGA and SA at T = 0.2 s and T = 0.5 s, the 
opposite case occurs for T = 1.0 s and T = 1.5 s. Like 
R99, the forecasts of J06 at T = 2  s are the same as 
those of the proposed model.

Likewise, in Fig.  12, the hazard curves are also 
compared with the proposed model, considering the 
uncertainty in the regression coefficients (herein, 
HCU, continuous black line). As expected, for small 
and large intensities, the hazard level of HDU is 
larger than HCU. This increment at small intensi-
ties, with v(a) ≥ 0.1, is produced by the additional 
epistemic uncertainty for small magnitude events 
(Mw < 6) at short distances (Rrup < 240  km) whose 
predictive standard deviation, σp, is between 20 and 
100% more than the obtain directly from the Bayesian 
regression, σe (see Fig. 4). The same behavior occurs 
for large intensities, with v(a) ≤ 0.01, since the hazard 
level is controlled by large events with Mw > 7.5 and 
Rrup > 280  km, in which σp is between 10 and 80% 
more than σe. The differences become less evident 
at moderate intensities, with 0.1 ≥ v(a) ≥ 0.01, whose 
hazard level is controlled by earthquakes with mag-
nitudes (Mw) between 6.0 and 7.5 and distances (Rrup) 
between 250 and 350 km. These parameters fall in the 
range where σe

2 and σp
2 are similar (see Fig. 4) and 

correspond to the well-sampled region of the data-
set. The same effect is observed in the hazard curves 

Fig. 7  Comparison between observed and computed response 
spectra at the station CU for a SA and b AvgSA, using the 
GMPM derived. The solid black line represents the response 
spectrum observed, and the dotted red line the response spec-
trum estimated

◂
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Fig. 8  Comparison 
between standard deviation 
values from R99, J06, and 
the GMPM proposed for 
PGA and SA

Fig. 9  Differences in 
terms of natural logarithm 
between predictions of 
GMPM-SA proposed and 
R99-SA model. The differ-
ences are presented for a set 
of four distances (Rrup) as 
a function of the period of 
vibration (T) and magnitude 
(Mw)
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Fig. 10  Differences in 
terms of natural logarithm 
between predictions of 
GMPM-SA proposed and 
J06-SA model. The differ-
ences are presented for a set 
of four distances (Rrup) as 
a function of the period of 
vibration (T) and magnitude 
(Mw)

Table 4  Stations and earthquakes used in the analysis

* The seismic source parameters of the events are listed in Table 1

Station Latitude Longitude Altitude Event  recorded*

(°N) (°W) (m)

TACY 19.4045 99.1952 2240 10, 11, 12, 15, 16, 18, 19, 20, 22, 29, 30, 32, 33
PA34 19.2016 99.0491 2240 12, 14, 15, 16, 18, 20, 22, 26, 27, 30, 31, 32, 33
IM40 19.3428 99.2032 2365 16, 18, 19, 22, 23, 30
MT50 19.4253 99.1900 2234 12, 14, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27, 20, 21, 22 23, 24
UI21 19.3700 99.2642 2540 15, 18, 21, 22, 23, 24, 26, 27, 28, 21, 22, 23, 24
FJ74 19.2990 99.2100 2240 12, 13, 14, 15, 16, 18, 22, 24, 25, 27, 28, 32, 33,
TE07 19.4269 99.2217 2290 15, 18
TP13 19.2922 99.1708 2265 12, 15, 16, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33
CS78 19.3656 99.2262 2430 14, 15, 19, 21, 22, 25, 30, 31, 32, 33
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computed for AvgSA (see Fig. 12), although less evi-
dent at low intensities than in SA curves.

Finally, Fig. 13 compares the empirical and theo-
retical hazard curve computed from PSHA for AvgSA 
at six periods corresponding to 0.1  s, 0.2  s, 0.5  s, 
1 s, 1.5 s, and 2 s. In this case, the hazard curves are 

estimated directly from GMPM-AvgSA proposed, 
disregarding the uncertainty in the regression coef-
ficient (HDU), and compared with those obtained 
indirectly using the existing GMPM-SAs (i.e., R99 
and J06) and a SA inter-period correlation model pro-
posed by Rodríguez-Castellanos et  al. (2021). The 

Fig. 11  Performance of the 
GMPMs evaluated at the 
selected period range. a LH 
values vs period and b LLH 
values vs period

Table 5  Ranking of the GMPM evaluated

IMT Reyes (1999) Jaimes et al. (2006) This study

RK L̃H ÑR
−

NR
σNR L̃HH RK L̃H ÑR

−

NR
σNR L̃HH RK L̃H ÑR

−

NR
σNR L̃HH

PGA A 0.52  − 0.18  − 0.06 0.97 2.00 C 0.46 0.10 0.17 1.27 2.49 A 0.50 0.08 0.23 1.12 2.26
0.1 A 0.54  − 0.19  − 0.12 0.92 1.95 C 0.47  − 0.06 0.03 1.27 2.47 A 0.51 0.07 0.21 1.08 2.20
0.2 A 0.54  − 0.21  − 0.19 0.92 1.96 C 0.44 0.07 0.06 1.32 2.58 B 0.47 0.15 0.16 1.16 2.30
0.3 A 0.51 0.14 0.23 1.07 2.19 C 0.42 0.44 0.51 1.31 2.75 D 0.34 0.79 0.90 1.58 3.70
0.4 B 0.47 0.48 0.46 1.03 2.23 D 0.39 0.67 0.79 1.18 2.77 D 0.30 1.03 1.26 1.54 4.17
0.5 C 0.43 0.57 0.68 1.20 2.69 D 0.38 0.61 0.84 1.38 3.20 D 0.36 0.82 0.93 1.43 3.42
0.6 D 0.44 0.69 0.81 1.17 2.78 C 0.43 0.58 0.71 1.36 3.02 D 0.37 0.84 0.94 1.39 3.35
0.7 C 0.46 0.62 0.69 1.11 2.54 C 0.44 0.33 0.54 1.36 2.87 D 0.42 0.64 0.81 1.34 3.08
0.8 C 0.46 0.57 0.53 1.02 2.28 B 0.42 0.39 0.34 1.25 2.53 B 0.42 0.43 0.46 1.24 2.58
0.9 B 0.46 0.37 0.43 1.05 2.24 B 0.41 0.13 0.21 1.25 2.48 C 0.38 0.31 0.32 1.33 2.66
1.0 B 0.47 0.21 0.27 1.09 2.22 A 0.48 0.08 0.19 1.07 2.18 A 0.44 0.17 0.15 1.23 2.43
1.5 B 0.50  − 0.27  − 0.22 0.97 2.03 A 0.51  − 0.22  − 0.23 0.95 2.00 B 0.50  − 0.34  − 0.36 1.04 2.20
2.0 C 0.47  − 0.50  − 0.41 1.01 2.18 B 0.46  − 0.33  − 0.27 1.11 2.27 C 0.44  − 0.54  − 0.42 1.07 2.27
2.5 A 0.49  − 0.13  − 0.16 1.09 2.20 B 0.46  − 0.13  − 0.09 1.19 2.35 B 0.48  − 0.13  − 0.11 1.19 2.35
3.0 A 0.49 0.16 0.10 0.99 2.03 A 0.51 0.08 0.05 0.97 2.00 A 0.48  − 0.09  − 0.02 1.08 2.17
3.5 A 0.48 0.06 0.09 1.03 2.09 A 0.49 0.03 0.02 1.00 2.05 A 0.49  − 0.21  − 0.17 1.05 2.14
4.0 A 0.50 0.18 0.20 0.95 2.00 A 0.49 0.11 0.15 0.99 2.04 A 0.49  − 0.18  − 0.12 1.02 2.08
4.5 A 0.52 0.19 0.19 0.88 1.91 A 0.50 0.02 0.17 0.97 2.02 B 0.44  − 0.36  − 0.13 1.08 2.18
5.0 B 0.52 0.30 0.39 0.91 2.03 A 0.53 0.03 0.19 0.93 1.97 B 0.44  − 0.40  − 0.22 1.04 2.13
6.0 C 0.47 0.58 0.63 0.96 2.28 A 0.54 0.15 0.27 0.90 1.95 B 0.42  − 0.31  − 0.20 1.08 2.20
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stepped shape of the empirical curve is due to the lack 
of events in the database that generate large intensi-
ties. Therefore, the exceedance rates computed for 
large accelerations are less reliable for comparison 
purposes. Despite this, it is noted that the shapes of 
the calculated hazard curves match reasonably well 
with the observed data at intensities below 20 cm/s2. 
The three GMPMs compute similar exceedance rates, 
v(a), for low intensities. However, as observed for SA, 
their differences increase as intensity increases. Addi-
tionally, the better predictive capacity of AvgSA with 
respect to SA has an important impact on PSHA since 
it contributes to a more precise estimation of the haz-
ard curve at low rates of exceedances. The R99 model 
estimates higher exceedance rates for all periods than 
the proposed mode. Likewise, the J06 model also 
estimates higher exceedance rates for most periods, 

except for T = 0.1  s and T = 0.2  s. There are no sig-
nificant differences in the seismic hazard estimations 
computed from the proposed model compared to pre-
vious models. However, according to the available 
data, the suggested GMPM estimates the seismic haz-
ard more adequately than the other models.

6  Conclusions

This article presents an updated GMPM to estimate 
the peak ground acceleration (PGA), peak ground 
velocity (PGV), 5% damped pseudo-spectral accel-
eration (SA), and the average spectral acceleration 
(AvgSA) at the hill zone of Mexico City for inter-
face earthquakes that occur along the Pacific coast 
of Mexico. The model is built as a function of the 

Fig. 12  Comparison between empirical and computed haz-
ard curves for SA(T). The circles denote the empirical curve 
obtained from observed data. The continuous black line repre-
sents the hazard curve computed considering the uncertainty 
in the regression coefficients (HCU). T and the dotted black 
line correspond to the hazard curve computed, disregard-

ing this uncertainty (HDU). Both curves were obtained with 
the GMPM proposed in this study. Likewise, the dotted red 
line and the continuous gray line represent the hazard curve 
obtained with the GMPM proposed by J06 and R99, respec-
tively
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magnitude (Mw) and the closest distance to the rup-
ture plane (Rrup), using thirty-three reverse-faulting 
events recorded at the station CU from 1965 to 2021.

The new strong-motion dataset (CU21) includes 
thirteen more earthquakes than the one used in J06 
and eighteen more than in R99, providing valuable 
information on the GMI for events with a magnitude 
range (Mw) between 6.0 and 7.4 and a distance (Rrup) 
between 260 and 400  km. Furthermore, the results 
showed that the dispersion of the GMPM proposed 
is lower than the previous models for PGA and SA, 
which means better predictability and more reliable 
estimates of the seismic hazard at the CU site. How-
ever, when quantifying its predictive capability to 
estimate the ground motion at the entire hill zone of 
Mexico City, the lowest ranking is obtained compared 
to the other tested models. It is thought that the low 

predictive capacity of the proposed model, obtained 
from the LH and LLH methods, is related to the stand-
ard deviation (σe) of the model since its value is lower 
than that reported by the R99 and J06 models. The 
standard deviation obtained for GMPM-AvgSA shows 
that the dispersion is lower than that from GMPM-SA 
at the period range between 0.1 s and 4.0 s, except in 
the range of 0.22–0.38 s where GMPM-SA presents 
a lower dispersion than the GMPM-AvgSA. Despite 
this, it is thought that the GMPM-AvgSA model has a 
better predictive capacity.

The analysis carried out of the uncertainties due 
to the sampling of the dataset showed that there is a 
variability that is not always taken into account in the 
GMPMs, and then an underestimation of the hazard 
levels is presented for lower and higher annual rates. 
This behavior explains that the source model used to 

Fig. 13  Comparison between empirical and computed hazard 
curves for AvgSA(T). The dotted denotes the empirical curve 
obtained from observed data. The continuous black line repre-
sents the hazard curve computed considering the uncertainty 
in the regression coefficients (HCU), and the dotted black line 
corresponds to the hazard curve computed disregarding this 

uncertainty (HDU). Both curves were obtained directly with 
the GMPM proposed in this study. Likewise, the dotted red 
line and the continuous gray line represent the hazard curve 
obtained with the GMPM proposed by J06 and R99, respec-
tively
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estimate the hazard curves considers events below 
or above the magnitude range in the dataset used to 
obtain the regression coefficients. Therefore, it is 
important to highlight these uncertainties and include 
them in the seismic hazard assessment.
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