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mine collapses can be achieved within approximately 
1 min of an event. As a test case, this study uses 6.4 k 
observations of actual local seismic events with mag-
nitudes ranging from ML 0.6 to ML 4.5 obtained from 
47 broadband seismic stations in the Henan Regional 
Network of the China Seismological Network Center; 
these observations include natural earthquakes, blast-
ing, and collapse events. The results indicate that our 
classifiers can reach a lower classification magni-
tude limit of ML 0.6 and that their recall and accu-
racy exceed 90%, outperforming manually performed 
routine classifications and similar approaches. These 
findings provide an important reference for the rapid 
classification of small and medium earthquakes.

Keywords  Induced earthquake · Blasting · 
Collapse · Machine learning · Deep learning

1  Introduction

The rapid classification of seismic events is an impor-
tant task for seismic networks. However, modern seis-
mic observations of artificially induced events can be 
misclassified in earthquake catalogs as natural earth-
quakes, which complicates analyses of seismic activ-
ity (Mousavi et  al. 2016). In general, larger seismic 
events have more seismic information recorded in 
their seismic waveforms and have waveform charac-
teristics that are more obvious and more distinguish-
able than those of smaller events. For larger seismic 
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events, the type of events can be correctly distin-
guished manually via the seismic phase characteris-
tics (Blandford 1982; Rodgers et al. 1997). Distinct P 
and S phases are difficult to detect for small seismic 
events on regional broadband sensors because of the 
attenuation of their high frequencies, their low signal-
to-noise ratios, and the sensor characteristics. This 
makes it difficult to quickly and accurately catego-
rize such events, regardless of the use of manual or 
algorithmic methods. Using limited seismic observa-
tion data to quickly and reliably distinguish between 
natural earthquakes and blasting, collapses, or other 
seismic events is challenging.

In recent years, the main methods used to automat-
ically classify induced and natural earthquakes using 
machine learning have been the first motion direction, 
seismic wave period, P/S-wave amplitude ratio, seis-
mic phase complexity, coda attenuation characteris-
tics, surface wave development, and frequency spec-
trum characteristics. The identification of induced 
earthquakes is primarily based on one or more of 
these characteristics. For example, Yang et al. (2005) 
used a spectral analysis to distinguish earthquakes 
and nuclear explosions and Koper et al. (2016) used 
the coda/duration magnitude difference of local earth-
quakes to distinguish between artificially created 
seismic events and naturally occurring tectonic earth-
quakes in Utah and its surrounding areas. Meanwhile, 
Tang et  al. (2019) used a support vector machine 
method to distinguish structural earthquakes, quarry 
blasting, and induced earthquakes that occurred in 
the Tianshan orogenic belt, using characteristics such 
as the spectral amplitude and daytime incidence. 
According to Cho 2014, based on earthquake, explo-
sion, and nuclear test data, there is a clear difference 
between blasting and seismic frequencies. Scarpetta 
et  al. (2005) proposed a method to distinguish local 
seismic signals and volcanic tectonic earthquakes by 
taking the spectral characteristics of signals and the 
parametric attributes of their waveforms as the input 
signals of a multilayer perceptron. They designed 
four types of neural networks and achieved good 
results. Bregman et  al. (2020) proposed the nonlin-
ear dimensionality reduction of P and S waves gen-
erated by seismic arrays to identify earthquakes and 
blasting, the main feature of their method being that 
the signal amplification of seismic arrays can be 
used to discriminate smaller seismic events in the far 
field. Yildinm et  al. (2011) used feedforward neural 

networks, adaptive neural fuzzy inference systems, 
and probabilistic neural networks to distinguish earth-
quakes and quarry blasts in Istanbul and nearby areas 
(Marmara) with a recognition rate of more than 97%. 
Saad et al. (2019) applied the support vector machine 
method to distinguish earthquakes and quarry blasts 
using a wavelet filter bank to extract unique features 
from data collected 5 s before and after the P wave. 
They tested 900 events and reached an accuracy rate 
of 98.5%. Shang et  al. (2017) tested 1600 seismic 
events using principal component analysis and neu-
ral network methods and showed that the classifica-
tion results of artificial neural network classifiers are 
superior to those of logistic regression and Bayes and 
Fisher classifiers.

Note that feature extraction from the full wave-
form is prone to introducing errors and that most 
feature extraction processes are complicated and dif-
ficult to use in real-time systems. With the develop-
ment of machine-learning technology, the process-
ing of seismic signals using related technologies has 
shown great potential. Some seismic waveform clas-
sification methods developed in recent years do not 
require the extraction of prior features. For exam-
ple, Trani et al. (2021) designed two convolutional 
neural network (CNN) models that use time-series 
data and the spectrum diagram, respectively, as 
input to detect seismo-acoustic events and identify 
their sources in areas with high seismic noise and 
intense anthropogenic activity. Using their dataset, 
the application of spectral input was found to result 
in a better performance than the application of time-
series data input. He et  al. (2020) used machine 
learning to detect a slow slip event in seabed pres-
sure data. Their method uses a model combining a 
CNN and a recurrent neural network to train two 
types of data and has a high event detection rate. 
Johnson et  al. (2020) used an unsupervised algo-
rithm to cluster the seismic signal and the back-
ground noise to accurately identify seismic signals. 
Seydoux et  al. (2020) used a deep scattering net-
work and a Gaussian mixture model to cluster seis-
mic signal segments and detect new structures. This 
method was used to detect traditionally difficult to 
identify small seismic events preceding a landslide 
in Greenland in 2017. The semi-supervised learning 
method proposed by Linville (2022) explores the 
classification of earthquakes and blasts in a limited-
label seismic dataset and surpasses the performance 
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of supervised classification. Kuyuk et  al. (2011) 
used an unsupervised learning approach, i.e., a 
self-organizing map, to distinguish between micro-
seisms and quarry blasting near Istanbul, Turkey, 
using the self-organizing map as a neural classifier 
and a complementary reliability estimator to distin-
guish seismic events from the vertical components 
of seismic waves. This method directly extracts the 
features of the frequency-domain and time-domain 
data (e.g., complexity, spectral ratio, S/P-wave 
amplitude peak ratio) and achieves an accuracy rate 
of more than 94%. Meier et  al. (2018) conducted 
a detailed comparative analysis with respect to the 
performances of different types of classifiers in the 
classification and recognition of seismic signals and 
noise for early earthquake warning. Their compari-
son of a fully connected neural network, recurrent 
neural network, CNN, and a generator plus random 
forest classifier showed that the CNN-based clas-
sifier had the highest precision and recall, outper-
forming several other neural networks. Dong et  al. 
(2020) used the data from the microseismic moni-
toring system of a mine to establish a CNN-based 
microseismic event classifier to distinguish between 
microseismic events and blasting. Their classifier 
uses a four-layer convolution structure and a 2 × 2 
convolution kernel and achieved an accuracy of 
more than 98% on the verification set.

Using the full seismic waveform for classification 
based on a CNN network essentially involves handing 
over the process of extracting the waveform features 
to the CNN network, which may become sensitive 
to the patterns in the waveforms. This capacity can 
therefore improve the performance of automatic seis-
mic event classification.

The goal of this paper is to test the performance of 
different convolutional network structures on the clas-
sification of small and medium earthquakes and to 
provide a reference for similar research. In a seismic 
network, the volumes of different types of seismic 
event data are not balanced. In most cases, the vol-
ume of the natural earthquake data is far greater than 
that of other types of data and the volume of avail-
able actual non-natural earthquake data is limited. 
The experiment reported in this paper reveals that, 
restricted by the characteristics of the seismic wave-
form itself, the hierarchical structure of a network has 
a certain relationship with the number of data sam-
ples. This study investigates what type of convolution 

network structure performs best in the classification 
and recognition of events from a small volume of 
seismic waveform data.

We use 6.4 k actual local seismic events recorded 
by the Henan Regional Network of the China Seis-
mic Network Center; this dataset contains 126  k 
channel data of raw observations. After data aug-
mentation, there were approximately 150  k samples 
of raw seismic channel data. To reliably distinguish 
between earthquakes, blasting, and collapse events, 
we designed and optimized three seismic event classi-
fiers with reference to CNN structures such as VGG-
net, ResNet, and Inception. The three designed clas-
sifiers were tested and compared using three-channel 
seismic full-waveform time-series data and spectral 
data. To ensure a realistic comparison of the classi-
fier performance, we set the classifier parameters and 
number of training samples to the same order of mag-
nitude and use the same input–output structure and 
evaluation criteria.

Section 2 describes the datasets used in this study. 
Section 3 introduces the different classifiers and eval-
uation methods. Section 4 analyzes and compares the 
performances of the classifiers. Section 5 presents the 
potential uses of convolution-based seismic waveform 
classifiers.

2 � Data

The seismic waveform dataset used for the training 
was taken from actual records of the Henan Regional 
Seismic Network Center of the China Seismic Net-
works Center. The dataset includes records of three 
types of events recorded by the network from June 
2007 to March 2020, namely, records of natural 
earthquakes, artificial blasting events, and collapse 
events. The events were recorded by a network of 47 
broadband seismic observation stations (Fig.  1a). A 
total of 6.4 k events were used, with magnitudes rang-
ing from ML 0.6 to ML 4.5, with the minimum earth-
quake magnitude recorded by the regional network 
being ML 0.6. The epicentral distance has a range of 
0–400  km (Fig.  1b). Any peak ground velocity that 
lies outside six standard deviations of the velocity cal-
culated using the standard ground-motion prediction 
equation (Bora et al. 2014) was discarded as an out-
lier. Ultimately, 42  k seismic event waveforms were 
retained, each event having three channel records for 

899J Seismol (2022) 26:897–912



1 3
Vol:. (1234567890)

a total of 126 k channel samples. All of the seismic 
waveforms in the dataset were recorded using broad-
band feedback seismometers. The frequency range of 
these instruments is 60 s/40 Hz, the sampling rate is 
100 Hz, and the noise is lower than the new low-noise 
model, i.e., 30 s/4 Hz (Peterson, 1993). The seismic 
events were natural earthquakes, and the ratio of natu-
ral earthquakes to artificial blasting to collapses in the 
dataset is approximately 2:1.5:1.

2.1 � Data sample

We scaled the data range to (− 1, 1) by normaliz-
ing the samples. The pure seismic waveforms were 
obtained by processing and removing the instrumen-
tal responses of the different stations. We corrected 
the waveform shift caused by the superposition of 
long-period seismic waves in the sample data. In this 
way, all of the seismic waveforms can be compared 
under a unified offset. Figure  2 shows typical data 
records for the three categories of events.

To construct the dataset, we set the length of the 
training sample such that we used the data from 1 s 
prior to the first P-wave arrival to 59 s after the first 
arrival for a total waveform fragment of 60  s. An 
analysis of the nearby seismic events shows that, for 
local seismic events below a magnitude of 4 within a 
distance of 400 km, the 60-s length covers the com-
plete waveform of the vast majority of seismic events. 

A 60-s input signal has 100 sampling points per sec-
ond; therefore, there are 6000 values per training 
sample.

Our classifiers use the 60-s full-waveform seis-
mic data and the first wave arrival time and does not 
need to distinguish other seismic phases. This design 
makes the seismic event classifiers easy to use.

A broadband seismograph has at least three chan-
nels, which correspond to the vertical, east–west, and 
north–south directions. We formed a single sample 
for training according to the parallel arrangement 
of the vertical, east–west, and north–south channels 
recorded by each seismic station. The study by Krieg-
erowski et  al. (2019) highlighted that high accuracy 
can be achieved when using this waveform arrange-
ment for the earthquake location; even though this 
results in fewer training samples, their experiments 
show that this method increases the training accuracy. 
We used two types of input data: the time-series seis-
mic waveform and the seismic waveform spectrum 
calculated by taking the absolute value after a fast 
Fourier transform.

We did not filter the seismic waveform prior to 
training and there were no artificial extractions of any 
prior seismic waveform features provided to the algo-
rithm model.

We evaluated the routine local manual classifica-
tion of the seismic events; multiple catalogers par-
ticipated in the manual classification of the seismic 

Fig. 1   Distribution of a seismic stations and b seismic events
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events in our dataset at different times for the period 
covered by our dataset. These catalogers manu-
ally performed routine classifications of the seismic 
events according to the seismic wave features (e.g., 
the amplitude ratio, spectrum, and period). Via con-
sistency analyses, field validations, random test-
ing, and other means, we evaluated the accuracy of 

the manually performed routine classification in the 
microseismic dataset (ML < 2.5) as being between 80 
and 90%. We manually checked all data samples and 
discarded misclassified samples.

We used data augmentation methods to effectively 
increase the training set by 20%. Specifically, we ran-
domly rotated the original wave train by ± 5° to make 

Fig. 2   Time series (upper 
panels) and spectral series 
(lower panels) for a a typi-
cal natural earthquake, b a 
typical blasting event, and c 
a typical collapse event
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the waveform look like a new dataset and we offset 
the P-wave position of the original wave train to gen-
erate new samples. In addition, the Gaussian method 
was used to randomly add ± 0.3 vertical interference 
noise to the original wave train, causing the original 
wave train to move horizontally back and forth to 
generate new samples. Data augmentation operations 
on datasets have been shown to improve machine-
learning performance (Van Dyk et al. 2001).

2.2 � Training set/validation set split

We divided the dataset into independent training 
(70%) and validation (30%) datasets to evaluate the 
performances of the classifiers (Fig. 3). In our data-
set, there are a large number of natural earthquake 
data samples and a far fewer number of data records 
of induced earthquakes (blasting and collapses). 
Therefore, we randomly discarded part of the natural 
earthquake dataset.

The three types of data samples maintain the same 
ratio when split into training and validation sets. Each 
seismic event in the training and validation sets exists 
independently, and there is no crossover. The size 
of the overall sample dataset used in the calculation 
was 150  k. The sizes of the datasets for the natural 
earthquakes, blasting events, and collapse events were 
57 k, 51 k, and 42 k, respectively. We randomly shuf-
fled the datasets together and then split the overall 
dataset into a 105  k dataset for training and a 45  k 
dataset for testing. The seismic stations we used are 

evenly distributed throughout the training and test 
datasets. Each dataset entry contains three data chan-
nels, and every three channels form a training sample.

3 � Method

3.1 � Model definition

To define the classifiers, we referred to typical convo-
lutional network structures, such as the LeNet-5 net-
work (Lecun et al. 1998), AlexNet architecture (Kriz-
hevsky et al. 2012), VGGnet architecture (Simonyan 
et al. 2014), GoogLeNet (Szegedy et al. 2014, 2017), 
ResNet architecture (He et al. 2016a), and DenseNet 
(Huang et al. 2016). Three classifiers of CNN struc-
tures were then refined and designed. We designed 
classifier 1 based on the VGGnet model with ase-
rial CNN structure, classifier 2 with reference to the 
Inception model with a parallel structure, and clas-
sifier 3 with reference to the ResNet model with 
shortcut connections (Fig.  4). The correspondence 
between the parameter size and the sample size is 
an important issue in machine-learning research 
(Kaplan et  al.  2020; Halevy, 2009). In our study of 
the classification of seismic waveforms, the data size 
of the seismic waveforms is certain; however, an 
excessive parameter size risks overfitting the model 
(Goodfellow et  al. 2016). Therefore, we optimized 
the network structure based on our training sample 
data to highlight the characteristics of the network 

Fig. 3   Comparison of 
the cumulative distribu-
tion functions (CDFs) of 
the training and validation 
datasets for a the seis-
mic magnitude and b the 
epicentral distance. The dis-
tributions of the magnitude 
and epicentral distance in 
the training and test sets are 
basically coincident. Most 
samples have a magnitude 
below 2.5 and an epicentral 
distance within 250 km
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structure. To evaluate the performances of the differ-
ent classifiers, we kept the number of training param-
eters of the different optimized network structures 

within the same order of magnitude and set the ratio 
of the network training parameters to the training 
samples to be less than 1.

Fig. 4   Three types of classifiers are defined in the figure. 
Classifier 1 is a serial classifier based on the VGGnet network 
structure. Classifier 2 is a classifier based on the residual net-
work, in which layers 6–15 are convolutional networks with 
shortcut connections that are cycled four times. The table in 

the figure details the parameters of each cycle. Classifier 3 is 
based on the Inception network structure and uses three groups 
of convolution modules. All the classifiers output the qualita-
tive probabilities of the three types of seismic events
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Our goal was to test the impact of different net-
work structures on the classifier performance; accord-
ingly, we used commonly employed loss and activa-
tion functions. We used the categorical cross entropy 
function (Zhang and Sabuncu 2018) as the loss func-
tion. This function uses the cross entropy of the actual 
value and the predicted value to evaluate the differ-
ence between the current training probability distribu-
tion and the actual distribution. A small cross entropy 
value indicates that two probability distributions are 
similar.

We used the Adam function (Kingma & Ba, 2014; 
Keskar & Socher, 2017) as the optimization function 
for the classifiers. This algorithm is suitable for non-
stationary targets and problems with very noisy or 
sparse gradients. No special optimization is required 
to use this function for seismic waveform data.

We used a nonlinear modified rectified linear ele-
ment as the activation function (Glorot et  al.  2011), 
and we specified that all classifiers use the normal-
ized exponential function or softmax function. There 
are j node output values, Si is the probability value of 
the ith element in the sequence, and ei is the output 
value of the ith element. Using Eq.  (1), the output 
of the neurons is mapped between (0, 1). The output 
value represents the qualitative probability of each 
classification.

When setting the hyperparameters, we adopted the 
early stopping technique (Raskutti et al. 2013) and set 
the maximum number of iterations to 800. To achieve 
optimal accuracy, classifier 3 used 300 iterations, 
classifier 2 used 150 iterations, and classifier 1 used 
180 iterations. In the selection of the batch and learn-
ing rate, the alternative batch was set to [30, 50, 100, 
200, 500, 800] and the alternative learning rate was 
set to [0.1, 0.01, 0.001, 0.0001]. Using the grid search 
method, the batch setting was determined to be 100 
and the learning rate was determined to be 0.01.

Classifier 1 was designed based on the VGGnet 
model. The VGGnet network structure is a deep CNN 
that was jointly developed by Oxford University and 
Deep Mind Technologies (Simonyan et  al.  2014). 
This network builds a serial deep network structure by 
repeatedly stacking a combination of small convolu-
tion cores and maximum pooling. To match our data 

(1)Si =
ei

∑

j e
j

volume, we simplified the VGGnet network structure 
to 16 layers, including 4 convolution layers, such that 
there were fewer calculation parameters than training 
samples. We set the dropout layer probability to 20% 
to ensure the generalization ability of the model. The 
fully connected layer has 55 neurons. Finally, a flat-
tening layer transforms the multi-dimensional input 
of the front node of the neuron into a single dimen-
sion and the convolution layer combination is passed 
to the fully connected layer. A three-layer fully con-
nected layer is used for further feature extraction. 
Finally, the softmax function is used for the three-
class classification output.

Classifier 2 was designed based on the ResNet 
model. The residual network is a CNN that was 
proposed by Microsoft Research in 2016 (He 
et  al.  2016b). Its main feature is the use of skipped 
connection residual blocks to directly map the shal-
low and deep layers, maximizing the resolution. 
When the numbers of parameters are the same, the 
residual network has a greater depth than those of the 
other classifiers.

In the design of the residual network, we used the 
convolution layer of the two-layer 2 × 2 convolution 
kernel, which is different from traditional convolution 
kernels that have an odd number of dimensions. He 
and Jian (2015) conducted experiments using 5 × 5 
and 3 × 3 convolution kernels and noted that chang-
ing a two-layer 3 × 3 convolution kernel into a four-
layer 2 × 2 convolution kernel did not increase the 
number of parameters but did improve the accuracy. 
We adopted this approach in our study. In addition, 
we used multiple convolution layers of the 1 × 1 con-
volution kernel. For one-dimensional seismic wave-
form data, the use of the 1 × 1 convolution kernel 
greatly increases the nonlinear characteristics without 
decreasing the network resolution, deepens the net-
work, and further reduces the number of parameters.

In the design of a residual network classifier, some 
scholars believe that using the batch normalization 
(BN) algorithm (Ioffe & Szegedy, 2015) effectively 
improves the convergence speed of the network and 
prevents overfitting. We used the BN algorithm to 
solve the problem of gradient saturation. In general, 
a network using the BN algorithm does not require 
L2 regularization or a dropout operation (Srivastava 
et  al.  2014). Our experiment demonstrates that the 
BN algorithm is only suitable for preventing gradient 
saturation after the data samples are overfitted in the 
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network structure. The excessive use of the BN algo-
rithm leads to periodic oscillations of the training loss 
curve. Therefore, we used L2 norm regularization to 
suppress overfitting when we designed the classifier 
based on the residual network.

Classifier 3 was designed based on the Inception 
model. The Inception network structure, also known 
as GoogLeNet, is a deep-learning network structure 
that was proposed by Szegedy et al. (2015). This net-
work structure is characterized by the parallel execu-
tion of multiple convolution operations or pooling 
operations and the splicing of all output results in a 
deeper feature map. We took the popular Inception 
V3 model as an example (Szegedy et al. 2016) when 
considering the effect of the network structure on the 
model accuracy as a whole.

The basis of Inception is to improve the network 
performance by increasing the width of the network. 
In each Inception module, the introduction of large-
scale filter convolution has a high calculation cost. 
In our experiments, we found that it is feasible to 
use multiple small convolution cores instead of a few 
large convolution operation modules. In addition, the 
Inception network uses auxiliary decision branches to 
remarkably improve the network performance (Sze-
gedy et al. 2016). Accordingly, when we designed the 
classifier based on the Inception network structure, 
we introduced a maximum pooling branch as an aux-
iliary decision branch to accelerate the convergence 
of the network. In each branch, we use a dropout 
layer to improve the generalization ability and prevent 
overfitting. After merging multiple network branches, 
we add a global maximum pooling layer in front of 
the network output instead of the BN algorithm, 
which was used in the original network; this improves 
not only the convergence speed of the network but 
also the overall accuracy of the classifier.

3.2 � Evaluation method

We evaluated the classifiers using three evaluation 
methods, namely, numerical evaluation metrics, 
receiver operating characteristic curves (ROCs), and 
confusion matrixes. We consider the category with 
the highest probability given by the classifier as being 
the classification result predicted by that classifier. 
We record the classification result as a true positive if 
the predicted result and the actual result belong to that 
class. If the predicted result belongs to the class and 

the actual result does not, we record the classification 
result as a false positive. If the classifier prediction 
does not belong to the class and the actual result does, 
we record a false negative. If the classifier prediction 
does not belong to the class and actual result does not 
belong to the class, we record a true negative. Our 
classifiers are all three-class classification models, 
and each class has instances of true positives, false 
positives, false negatives, and true negatives.

We use the accuracy, precision, recall, and F1 val-
ues as evaluation indexes. In general, the calculation 
of these four indicators is only applicable to two cat-
egories. However, in our study, we need to evaluate 
the classifiers for three categories. Here, we introduce 
the macro-average to obtain multicategory indicators, 
that is, when calculating the accuracy and recall rate, 
we first calculate the values for each category, then 
average the values across all categories, and finally 
use the average values as the final accuracy and recall 
of the classifier.

Here, TP, FP, TN, and FN denote the numbers of 
true positives, false positives, true negatives, and false 
negatives, respectively.

The ROC curve is used to evaluate the results (Bach-
mann et  al.  2006; Zhou et  al.  2008). The ROC curve 
combines the sensitivity and specificity in a graphical 
method, accurately reflects the relationship between the 
specificity and sensitivity of a classifier, and is a com-
prehensive index with which to evaluate the classifica-
tion performance of a classifier. In this specific applica-
tion, the ROC curve directly provides the recognition 
ability of the classifier at any boundary value. The best 
diagnosis boundary value point (i.e., the threshold point 
with the lowest total number of false positives and false 
negatives) is directly selected using the Youden index 

(2)Precision =
TP

TP + FP
=

∑n

i=1
TPi

∑n

i=1
TPi +

∑n

i=1
FPi

(3)Recall =
TP

TP + FN
=

∑n

i=1
TPi

∑n

i=1
TPi +

∑n

i=1
FNi

(4)Accuracy =
TP + TN

TP + TN + FP + FN

(5)F1 = 2 ×
Precision × Recall

Precision + Recall
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(Fluss et al. 2005). The ROC curve can be used to com-
pare the performances of two or more classification algo-
rithms. We also calculated the area under the ROC curve 
for each classifier. The classifier that has the largest area 
under the ROC curve has the best performance.

The true positive rate (TPR) is the proportion of all 
positive instances in the positive class predicted by the 
classifier, whereas the false positive rate (FPR) is the pro-
portion of actual negative instances among all the nega-
tive instances in the positive classes predicted by the clas-
sifier as follows:

To calculate the ROC curves, we first map the multi-
class classification problem into a two-class classification 
problem and set a probability threshold for each category. 
If the threshold is exceeded, the sample belongs to the 
category and the classification is recorded as a positive. If 
the threshold is not exceeded, the sample does not belong 
to the category and the classification is recorded as a neg-
ative. We then calculate TPR and FPR. On this basis, we 
transform the probability threshold into an ROC curve. 
The classification performance of the classifier is bet-
ter when the ROC curve is closer to the point (0, 1) and 
deviates from a line along the 45° diagonal.

A confusion matrix is a standard format for accuracy 
evaluation and is expressed in matrix form with n rows 
and n columns. The confusion matrix is a visual tool 
that is suitable for supervising the evaluation of learn-
ing results (Sammut et  al.  2017). In the application of 
a confusion matrix, we used rows to represent the truth 

(6)TPR =
TP

TP + FN

(7)FPR =
FP

FP + TN

number of classes and columns to represent the predic-
tion number of the classifiers. Higher values from top 
left to bottom right are associated with a better classifier 
performance.

4 � Results and discussion

4.1 �   Results

We evaluated the performances of the different classifiers 
and analyzed the classification results in detail. We used 
the same data and output for all classifiers. We tested the 
classifiers using 15 k of sample data that were not used 
in the training. Each classifier except the baseline had 
the same order of magnitude parameters and the same 
test data. The test data were input into the classifier via 
the time series and frequency spectrum for evaluation. 
For each of the sample data, the classifiers give the prob-
ability of the event being a natural earthquake, a blasting 
event, or a collapse. For comparison, we introduced the 
two-class classifier designed by Dong et al. (2020) as the 
test baseline. To match our data, we modified the input 
part of this classifier into a three-channel seismic wave-
form input and modified the output classification func-
tion to have three classes.

The accuracy, precision, recall, and F1 value were 
used to evaluate the performances of the classifiers. The 
results are given in Table 1.

The ROC curves of the three classifiers are shown 
in Fig. 5.

The baseline belongs to the same structure clas-
sifier as the VGGnet-based classifier 1 and therefore 
basically coincides with the ROC curve of the latter. 

Table 1   Accuracy, 
precision, recall, and 
F1 values of the final 
classification results are 
slightly higher for classifier 
1 than for the other 
classifiers. The baseline 
uses more parameters than 
the other classifiers

No Input Accuracy(%) Precision (%) Recall (%) F1 (%) Number of 
parameters

Baseline Time series 90.802 90.816 91.948 91.297 80 k
Spectrum 86.840 87.677 88.309 87.961

1 Time series 92.181 92.102 92.665 92.371 21 k
Spectrum 88.592 89.096 89.354 89.175

2 Time series 91.096 90.879 92.176 91.381 17 K
Spectrum 89.461 90.132 89.740 89.916

3 Time series 91.632 92.651 91.286 91.822 35 k
Spectrum 88.043 90.596 86.745 88.227
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All of the classifiers have the highest classification 
performance for collapse events (blue line in Fig. 5) 
and the worst classification performance for blasting 
events (green line). However, the worst classification 
performance of the classifiers using the time-series 
data input was still greater than 0.9 and the perfor-
mance of the classifier using the spectral input was 
lower than that of the classifier using the time-series 
input. In the classification of natural seismic events, 
classifier 1 had a higher classification performance 
than the other two classifiers. In the classification of 
blasting events, classifier 2 had the best classification 
performance and the ROC curve of classifier 2 was 
on average between those of the other two classifiers. 
The baseline had the largest ROC curve area when 
using time-series data. Classifiers 2 and 3 had the best 
performance for classifying collapse events. However, 
the optimal threshold of the CNN automatic classifi-
ers designed in this paper is greater than 90% (black 
dotted line in Fig. 5).

The results obtained using a confusion matrix to 
evaluate the classifiers are shown in Fig. 6.

The four classifiers (including the baseline) were 
found to more frequently misjudge natural earthquake 
and blasting events than collapse events for both the 
time-series data input and the spectral input. For incor-
rect classifications, classifier 1 had nearly identical error 
rates for natural earthquakes and blasting, classifier 2 
was more likely to mistake natural earthquakes for blast-
ing, and classifier 3 was more likely to mistake blasting 
for natural earthquakes. The four classifiers had a low 
probability of misidentifying collapse as blasting or 
blasting as collapse. Overall, the spectral input resulted 
in higher errors than the time-series data input (Fig. 6).

We analyzed the misclassified samples. There were 
231 samples with a common classification error for the 
four classifiers. The vast majority of these misclassified 
events are located at the edge of the seismic observation 
network or in large coal mines in the study area (Fig. 7). 
The baseline and classifier 1 belong to similar classi-
fier types and are not discussed separately here. There 
were 166 samples correctly classified by only classifier 1, 
184 samples correctly classified by only classifier 2, and 
308 samples correctly classified by only classifier 3. The 
performance of classifier 3 was relatively balanced and 
showed an advantage in classifying earthquakes of differ-
ent magnitudes and distances. This may be related to clas-
sifier 3 setting up multiple parallel convolutional layers in 
the initial layer, which may enable the classifier to simul-
taneously recognize multiple waveform features. Most of 
the samples correctly classified by classifiers 1 or 2 alone 
were concentrated below ML 3.0, with epicenters within 
300 km (Fig. 8). From a waveform viewpoint, we believe 
that classifier 1 has a better classification effect for events 
with relatively large amplitude of P and S waves; such 
classifiers may be more sensitive to S/P-wave amplitude 
ratio features (Bennett et al. 1989; Baumgardt et al. 1990). 
Classifiers 2 and 3 had better classification effects for small 
events with less prominent seismic phases.

Some physical insights are as follows.

1.	 All classifiers have poor performance for iden-
tifying earthquakes that deviate from the study 
area. This is a main reason for the investigated 
classifiers reaching a maximum accuracy of only 
92%. This is because the station records of devi-
ating earthquakes have two characteristics: (1) 
There are fewer stations recording seismic wave-
forms and the epicenter is far away, and (2) the 

Fig. 5   Receiver operating 
characteristic (ROC) curves 
of the three classifiers. The 
abscissa gives the false pos-
itive rate and the ordinate 
gives the true positive rate. 
a Time-series data input 
results, b spectral input 
results. Each classifier has 
three curves representing its 
classification performance 
for the three different types 
of seismic events. The red 
stars in the figure show the 
best threshold points
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Fig. 6   Confusion matrix 
evaluation of different 
classifiers: a time-series 
data input and b spectral 
input, where 1, 2, 3, and 4 
of both panels correspond 
to classifiers 1, 2, 3, and 
the baseline, respectively. 
The ordinate corresponds 
to the real label result, the 
abscissa corresponds to 
the predicted value of the 
classifier, including natural 
earthquake (EQ), blasting 
(BL), collapse (COLL), 
and the grid values from 
the upper left to lower 
right reflect the number of 
samples correctly judged by 
the classifier
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P and S waves are relatively separated, making 
all such events similar to natural earthquakes in 
terms of their waveform characteristics.

2.	 Seismic waveforms in large coal mining areas 
are more likely to be miscategorized. This is 
because a large number of goafs (“holes” created 
by human excavation or natural geological move-
ment under the surface) form underground after 
years of mining in coal mining areas. Many of 
these seismic events occur in goafs and their epi-

centers are relatively shallow; therefore, seismic 
waveforms originating from goafs are easily con-
fused with shallow blasting.

3.	 All of the classifiers classify collapse events 
well. This is likely because collapse events have 
larger periods than the other two types of events 
and visually differ from those of blasting and 
natural earthquakes. This is consistent with our 
typical perception of analyzing artificial earth-
quakes because the collapse period in the Henan 
region is larger than the periods of the other two 
event types and is easier to distinguish with the 
naked eye. Blasting and natural earthquakes are 
also easily confused in manual analyses of some 
smaller seismic events in both the frequency 
domain and the spectral domain.

4.2 � Discussion

The baseline and classifier 1 are both serial convolu-
tional network classifiers. Our experiments show that 
their performances are very similar; the accuracy of 
the baseline reaches 90.8%, and the accuracy of clas-
sifier 1 reaches 92.18%. The higher accuracy of clas-
sifier 1 may be because our network is deeper, learns 
more features during training, and therefore performs 
better. Note that, compared with the other classifiers, 
the baseline uses several times the number of param-
eters. We conjecture that models with fewer param-
eters may have better generalization ability; however, 
further research with additional data is required.

The performances of our classifiers are lower using 
spectral input than using direct input time-series 
data. This finding is seemingly inconsistent with the 
study of Trani et al. (2021); we attribute this to two 
causes. (1) Our classifier structures are different from 
the classifier structure used in their study, and subtle 
structural differences may lead to changes in the clas-
sification performance. (2) Converting time-series 
data into a spectrum involves many details; we used a 
relatively simple fast Fourier transform method. Dif-
ferent conversion methods may lead to differences in 
the classifier performance; however, this also requires 
further study.

The method we used only requires 60  s of the 
seismic waveform and the first-arrival time for align-
ment; the labeling of additional seismic phases or fea-
ture extraction is not required. We therefore believe 

Fig. 7   Spatial distribution of misclassifications near the min-
ing areas of large coal mines (blue ovals). Most misclassified 
events occur in coal mining areas and areas with weak seismic 
monitoring capabilities

Fig. 8   Classifier advantage classification distribution. The cir-
cles represent samples only correctly classified by classifier 1 
(blue), classifier 2 (red), or classifier 3 (green)

909J Seismol (2022) 26:897–912



1 3
Vol:. (1234567890)

that a classifier based on CNN may recognize more 
features, have fewer data processing links, and have 
stronger adaptability compared with a method that 
directly uses feature extraction or other machine-
learning classification methods, such as a support 
vector machine or an ordinary multilayer neural net-
work that does not use the convolution operation.

Our experiment shows that the classification ability 
of classifier 1 based on the VGGnet network structure 
is slightly better than those of the other two classifiers. 
Classifier 2 based on ResNet achieves similar accuracy 
using minimal computational parameters. However, 
the calculation accuracy does not differ greatly across 
the different classifiers. This may be related to the 
training sample size and the group characteristics of 
the samples. The advantages of the ResNet and Incep-
tion networks involve their greater number of convo-
lution operations relating to the characteristics of the 
network structure and their fewer parameters; these 
advantages are not obvious when the training sample is 
not large. The false negative and false positive samples 
do not completely coincide for the different classifiers, 
indicating that the waveform features recognized by 
different classifiers are not completely consistent.

We also randomly selected several seismic events to 
observe the same seismic event with different epicentral 
distances. We found that the epicentral distance does not 
have a significant impact on the classifier performance. 
For most events, the classification results of the far and 
near stations were the same; we attribute this to two 
causes. (1) The seismic waveforms of the remote and 
near stations of the same event were included during the 
training. (2) The magnitude of the dataset was relatively 
small, and most of the seismic stations that recorded 
waveforms were not far away.

It is undeniable that there are still small errors in 
the classification of seismic events by the machine-
learning-based classifiers examined in this paper. 
These classification errors generally occur for seismic 
events with magnitudes below ML 2.0. The classifiers 
studied in this paper can be directly applied to data 
in regions with similar crustal structure; however, 
for regions with large differences in crustal structure, 
the introduced classifiers should be used for training 
with local seismic data to generate a localized model 
prior to application. Therefore, we suggest that, when 
using the classifiers designed in this study in differ-
ent regions, the VGGnet network based on the serial 
structure be tried first. Then, if the loss curve or 

another indicator suggests the possibility of overfit-
ting, the other two classifiers can be tried to achieve 
better results. When a classifier is used in sensitive 
regions, multiple classifiers should be combined in 
an integrated approach and a manual audit should be 
conducted to ensure accuracy.

For online operation, the classifiers only require that 
a single station receive the seismic event waveform to 
provide an accurate classification. After a seismic event 
occurs, generally more than one seismic station receives 
the seismic waveform. We assign a higher weight to 
seismic stations within 100  km of the event according 
to the seismic network layout. This is clearly marked on 
the output results for events with a consistency of more 
than 80% of the seismic stations; otherwise, the average 
probability after weighting by the near stations is output. 
According to the actual operation, the high-noise condi-
tions of individual stations have little effect on the classi-
fier performance.

Each classifier requires approximately 40  min 
using a single RTX2080 GPU to train using our 
method. Seismic waveform detection using the 
trained model on a common CPU machine requires 
1 s of processing time and 60 s of the seismic wave-
form. According to actual work experience with the 
Henan seismic network in China, the current seismic 
waveform length used for accurate seismic position-
ing plus the positioning time itself takes at minimum 
approximately 1 min. Adding our classification proce-
dure does not significantly increase the total time and 
is acceptable for practical application in a regional 
seismic network.

5 � Conclusions

We referred to CNN structures, i.e., VGGnet, ResNet, 
and Inception, to design and optimize three types of 
seismic event classifiers. Three-channel seismic full-
waveform time-series data and spectral data were used 
to test and evaluate the three designed classifiers and 
to describe the advantages, disadvantages, application 
scope, and suggestions for classifier use. Our classifi-
ers use 60 s of full-waveform seismic data to achieve 
a recall rate and accuracy rate of more than 90% 
under the condition that the lower limit of the recogni-
tion magnitude reaches ML 0.6; this method does not 
require the advance extraction of the waveform features 
or marking of the seismic phases. The research results 
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surpass those of manually performed routine classifica-
tions and similar approaches, and our method can eas-
ily be used in actual seismic observation environments, 
thus providing a valuable reference for similar research.
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