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Abstract Earthquake acceleration time chronicles
records are important sources of information in the
field of tremor engineering and engineering seismol-
ogy. High frequency noise could considerably reduce
P phase picking accuracy and the time. Accurate
detection of P phase and onset time arrival picking
is very important for the earthquake signal analy-
sis and prediction problem. Large number of those
records are defiled with noise so appropriate denois-
ing method is impulse for the exact investigation of
the information. Polish off of non-stationary and high
energy noise from the recorded signal is challenging
with preservation of original features. In this paper, we
propose a method to denoise the signal based on vari-
ational mode decomposition and continuous wavelet
transform. Noisy signal is disintegrated into intrin-
sic mode function by variational mode decomposition.
The probability density function of noisy signal and
each intrinsic mode functions is calculated using Ker-
nel density estimation and then Manhattan distance.
The probability density function helps us to identify
the relevant mode and high frequency noisy intrinsic
mode functions, so the continuous wavelet transform
is applied to the selected mode. We observed the
effect of noise and denoising method on parameters
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like acceleration and displacement response spectra.
The experiments on synthetic and real earthquake
accelerograms validate ameliorate result of the pro-
posed method.
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1 Introduction

Earthquake is an often happening characteristic seis-
mic peril. Generally, the effect of noise in seismic flag
is more regrettable at low under 1 Hz and high more
than 5 Hz frequencies and signal to noise ratio (SNR)
is patently low. Seismic noise can be characterized
short and long period caused by natural and artifi-
cial sources. Short-term noise by natural sources is
broadband, ranging from about 0.5 Hz up to about 15–
60 Hz (Young et al. 1996) but the dominant sources of
high frequency noises are artificial termed as cultural
noise. Natural short period noise couples mostly into
surface wave modes, cultural seismic noise, however,
couples at least partly into body waves that can prop-
agate also to great depth (Carter et al. 1991). Ground
noise at long period 0.2 to 50 mHz are usually asso-
ciated with pressure and temperature fluctuation and
vertical component seismometers react to changes in
gravity (Murphy and Savino 1975; Zurn and Wielandt
2007). The information specifically recorded in the
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station are mostly sullied with irregular noise which
exasperate the seismologist for better and precise
count and examination of peak ground acceleration,
velocity, displacement, P wave and S wave, etc. Effect
of denoising can be realized for accurate detection of P
phase and onset time arrival picking, besides this high
resolution of the image exposing the hidden impor-
tant features, detecting small events with preservation,
improving signal to noise ratio etc.

Basic architects are relied upon to give more accen-
tuation on outlining structures in light of plan and
reaction spectra created from accelerograms which are
relied upon to be seismic tremor safe. This is con-
ceivable by the utilization of accelerograms as it gives
basic data about the seismic tremor source and is an
advantage for the advance in quake what’s more, seis-
mological designing. Preparing of the accelerograms
is frequently expected to draw out this important data
and is regularly not direct because of the nearness of
complex attributes like non-stationary and non-linear
parts of ground shaking. Also, because of the impact
of numerous arbitrary and indeterminate characteris-
tic factors, the watched time arrangement accelero-
gram information dependably incorporate numerous
high recurrence commotions which taint the gen-
uine arrangement information. This causes many dif-
ficulties in period identification, parameter estima-
tion, modeling, and system identification. It resem-
bles aphoristic that seismic information are constantly
debased by random noise (Chen et al. 2015) in field
obtaining which demonstrates the negative effect on
the investigation for oil status and other numerous
seismic occasions real recognizable proof. Thusly
random noise weakening is an exceptionally vital
advance for the seismic information handling and
planned number of seismic denoising techniques in
mathematical and geophysical science. Customary
sifting techniques likeWiener filter, Kalman filter, and
Fourier strategies were mainstream first and foremost
stage; however, these were touchy for linear and sta-
tionary signal investigation (Yan et al. 2009). Wavelet
is a great degree surely understood procedure for seis-
mic data denoising and besides associated for shudder
accelerogram denoising like adjustment of profoundly
uproarious solid movement records utilizing a modi-
fied wavelet (Ansari et al. 2010; Herranz et al. 2003).
The flag of intrigue and the defiled commotion in
watched time series information of solid movement
accelerograms are accepted to have distinctive variety

characteristics. Hence, the wavelet coefficients por-
traying the flag of intrigue and clamor are likewise
thought to appear as something else (Beena et al. 2012,
2016) P phase picking (Karamzadel et al. 2013) are the
some applications of wavelets on earthquake accelero-
gram denoising.

As a spectral decomposition method, the Empiri-
cal Mode Decomposition (EMD) (Huang et al. 1998)
has been used in seismic signal processing. Seismic
noise can be weaken adequately (Bekara and Baan
2009), EMD to build up a model for portraying slip
field on the crack plane (Raghu 2010) and additionally
connected as intrinsic mode function (IMF) of quake
slip dispersion. Similarly EMD for spectral analy-
sis, random noise attenuation (Han and Baan 2013;
Chen et al. 2016) are the few examples of EMD
based application on seismic data processing. As of
late another great method called synchrosqueezing
(SS) (Daubechies et al. 2011) was acquainted deputize
EMD. The extensions of EMD, ensemble empiri-
cal mode decomposition (EEMD) (Wu and Huang
2009), complete ensemble empirical mode decompo-
sition (CEEMD) (Torres et al. 2011) take care of mode
blending issue in some degree.

EMD has number of significants for the seismic
information investigation yet amid the procedure of
seismic noise lessening. EMD assaults all vitality at
high wave number and mode blending issue so it
is less successful as far as safeguarding the energy,
to right such impediment variational mode decom-
position (VMD) is proposed (Dragomiretskiy and
Zosso 2014). VMD is considered so obviously better
than EMD in various angles like with band confine
priory. It accomplishes higher determination in wave
number hub while separating the occasions and in
denoising every IMFs are kept without disposing of so
occasions are better protected and slop protection (Yu
and Ma 2017).

In this paper, we propose seismic signal denoising
strategy in light of VMD and CWT. VMD method can
disintegrate the seismic signal into series of intrinsic
mode functions (IMFs) from low to high frequency
adaptively. Seismic noise generally appear in the
intrinsic mode with high frequencies. So we initially
break down the boisterous signal into number of IMFs
by VMD then we select some high recurrence mode
and significant mode computing the probability den-
sity function (PDF) using Kernel density estimation
(KDE). The Manhattan distance (MD) between PDF
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of boisterous and every IMF is computed which still
contain noise and after that relevant IMFs are denoised
by CWT technique which guarantees the wiping out
of high recurrence solid noise. Subsequently, we can
take the benefits of both VMD and CWT technique to
improve noise free signal with high SNR with safe-
guarding the most extreme innovation. We test the
proposed system in simple synthetic signal, synthetic
and real earthquake accelerogram of Nepal’s seismic
tremor 2015.

2 Method

Consider the following equation,

x = y + z (1)

where x is observed noisy data, y is noise-free data,
and z represent the random noise. The approxima-
tion is generally done under the presumption that the
noise level is cognised. However, in real seismic data
the noise level is normally obscure and motive to be
estimated from the observed data. Noise level can be
estimated based on the principle of minimum statistics
(Martin 2001). This approach expect that the signal
is more stronger than the clamor; therefore, on the
off chance that we track the minima of uproarious
power range with a siding window, we will have a
gauge relative to the foundation commotion control.
We give the quantitative examination of the proposed
technique with established strategy Kalman filter and
EMD, VMD strategy in SNR by the accompanying
equation.

SNR = 20log10

( ||x0||2
||x − x0||2

)

where x0 is the clean signal and x represents the
denoised signal; SNR is measured in dB.

2.1 Similarity measure techniques

Probability density function of a continuous random
variable can be deciphered as providing a relative
likelihood which is very applicable to measure the
similarities (Komaty et al. 2014). To calculate the
PDF, we may apply KDE, which is mathematically
expressed as,

Let (x1, x2, ..., xn) be a univariate independent
and identically distributed sample drawn from some

distribution with an unknown density f . Then, its
kernel density estimator is,

f̂h(x) = 1

n

n∑
i=1

Kh(x − xi) = 1

nh

n∑
i=1

K

(
x − xi

h

)

where K is the Kernel a non negative capacity that
coordinates to one and h > 0 is a smoothing param-
eter called the data transfer capacity. Utilizing this
KDE work we compute the PDF of boisterous sig-
nal and every IMF which assist us with selecting the
applicable modes.

2.2 Continuous wavelet transform

The continuous wavelet transform is executed through
a model breaking down capacity known as mother
wavelet ψ , which can be rendered as bandpass. The
continuous wavelet transform of any signal x(t) at
scale a and time shift τ is given by Daubechies and
Heil (1992)

Wx(a, τ )=〈x, ψa,τ 〉=
∫ +∞

−∞
x(t)a

−1
2 ψ∗

(
t−τ

a

)
dt.

(2)

where ∗ denotes the complex conjugate, 〈x, ψ〉 is the
inner product and Wx is the coefficient representing to
the limited vitality of the signal x in the concentrated
time recurrence picture. The mother wavelet ψ must
be square integrable capacity, where its Fourier trans-
form ψ̂(ς), ought to vanish at zero frequency. The real
contrast between CWT and discrete wavelet transform
(DWT) is the manner by which the scale parameter is
discretize. The CWT discretize scale more finely than
DWT. The discretized wavelets for CWT is

1√
2j /v

ψ

(
n − m

2j /v

)

where v is an integer greater than 1 and j =1,2,3..
Also discretized wavelet for DWT is,

1√
2j

ψ

(
n − m

2j

)
.

To denoise the signal by DWT method, we must
select the reasonable thresholds may be soft or hard.
Yet, we can decipher the CWT as a recurrence-based
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bandpass filtering of the signal by changing the CWT
as a inverse Fourier transform

C(a, b; f (t), ψ(t)) = 1

2π

∫ ∞

−∞
f̂ (w)ψ̂(aw)eiwbdw

(3)

where f̂ (w) and ψ̂(w) are the Fourier transform of the
signal and wavelet (Daubechies and Heil 1992).

2.2.1 Variational mode decomposition

Variational mode decomposition is planned to break
down a composite signal into an ensemble of band-
limited modes termed IMFs, which are portrayed by
the sparsity in the bandwidth which is gotten by
solving an optimization problem (Dragomiretskiy and
Zosso 2014)

min{uk}{ωk}

{∑
k

‖∂t

[(
δ(t) + j

πt

)
uk(t)

]
e−jωkt‖22

}

(4)

such that∑
k

uk = f

where uk is the kth disintegrated mode of the sig-
nal, {uk} refers an ensemble of modes {u1, u2, ..., uk},
wk is the center frequency of the corresponding kth
mode of the signal, {wk} is an ensemble of center
frequencies related to the modes after disintegration
{w1, w2, ..., wk}, f (t) is the input signal and δ(t)

is the Dirac function. Additionally, the verbalization(
δ(t) + j

πt

)
∗ uk(t) is the Hilbert transform of uk(t),

which goes for changing uk(t) into the logical sig-
nal remembering the true objective to make an uneven
repeat run with simply positive frequencies. The expo-
nential term e−jωkt makes the recurrence range of
every mode move to the baseband. Besides, the data
transmission of every mode dictated by squared stan-
dard of the inclination (Dragomiretskiy and Zosso
2014). The alternating direction method of multipli-
ers (ADMM) approach can be applied to solve Eq. 4,
which delivers an outfit of mode parts and the relat-
ing focus recurrence. Every mode evaluated from
arrangements in the recurrence area is spoken to as:

ûk
n+1

(w) =
ˆf (w)−∑k−1

i=1 ûi
n+1

(w)−∑K
i=k+1 ûi

n
(w)+ λ̂n(w)

2

1+2α(w−wn
k )2

(5)

wk
n+1 =

∫ ∞
0 w|ûk

n+1
(w)|2dw∫ ∞

0 |(̂uk
n+1

(w)|2
(6)

where f̂ (w), ûi (w), λ̂(w), and ˆ
un+1

k (w) represent the
Fourier transforms of f (t), ui(t), λ(t) and un+1

k (t),
respectively, and n is iterations (Liu et al. 2017;
Dragomiretskiy and Zosso 2014). It can be watched
that Eq. 5 is recognized as a Wiener filtering sys-
tem, which specifically refreshes the mode in Fourier
space. What’s more, we can extricate the genuine part
for the opposite Fourier transform of the proposed
expository signal with a specific end goal to acquire
these modes after decay in the time domain. Then
again, the middle recurrence of the evaluated mode
wn+1

k can be effectively gotten by Eq. 6, which puts
the new focus recurrence at the focal point of the
gravity of the related mode’s capacity range.

The VMD method disintegrate the seismic sig-
nal x(t) into low to high frequencies, which can be
explained as (Liu et al. 2017)

f (t) =
N∑

i=1

ui(t)

where f (t), ui(t) represent the observed signal and
the ith IMF, respectively, and N represent number of
IMF. So we can make characterization IMF in noise
overwhelming and noise prevailing as

f (t) =
M∑
i=1

unoise
i (t) +

N∑
i=M+1

u
signal
i (t)

where unoise
i (t), u

signal
i (t) are the noise prevail modes

and signal prevail modes respectively, and M repre-
sents the division between noise and signal (Liu et al.
2017). As the VMD strategy can break down the
seismic flag into arrangement of inborn modes from
low recurrence to high recurrence adaptively. Seismic
noise for the most part show up in the characteristic
mode with high frequencies.

2.2.2 VMD-CWT method

We now select the noise prevailing modes and allow
them to be further denoising. For the selected high fre-
quency IMF, we apply CWT and inverse continuous
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wavelet transform (ICWT) to reproduce the signal.
The term Wx(a, τ ) in CWT should be evacuated to
make the division administrator numerically stable
and CWT can be connected as bandpass filtering
strategy as

w(F, t) =
⎧⎨
⎩
0 for, F > F2

0 for, F < F1

w(F, t) F1 ≤ F ≤ F2.

The scale α and frequency F are in contrarily cor-
responding connection, w speaks to the CWT coeffi-
cients F1 and F2 represents upper and lower frequen-
cies. F is the coveted stop-band weakening in dB,
take note of that this gauge for w turns out to be too
little when the channel pass-band width approaches
zero. We set F1, F2 on chose IMFs keeping on mind
that concentrate the commotion and protect inven-
tiveness with number of examination. The CWT
registers the internal result of the signal x(t), with
interpreted and enlarged adaptations of investigating
wavelet ψ(t). We can see that extending a wavelet
in time makes its help in the recurrence space recoil.
Notwithstanding contracting the recurrence bolster,
the inside recurrence of the wavelet shifts toward bring
down frequencies. This portrays the CWT as a band-
pass filtering of the input signal. CWT coefficients
at bring down scales speak to vitality in the info
motion at higher frequencies, while CWT coefficients
at higher scales speak to vitality in the information
motion at bring down frequencies. Notwithstanding,
not at all like Fourier bandpass sifting the width of
the CWT channels diminishes with expanding scale.
In the wavelet change, the scale or widening activity
is characterized to safeguard vitality. To save vitality
while contracting the recurrence bolster necessitates
that the pinnacle vitality level increments. With these
properties of CWT, here, we apply for selected high
frequency IMFs and we add all IMFs including low
frequency to reconstruct the denoised result which
ensures the more noise free signal with increment
of SNR.

3 Results and discussion

3.1 Similarities measure test

Probability density function of a continuous random
variable can be interpreted as providing a relative

likelihood which is very applicable to measure the
similarities. To calculate the PDF, we use the Kernel
density estimation function of noisy signal and each
IMFs. From above Fig. 1, we see the PDF of IMF 1,
IMF 2, IMF 3 IMF 4 are in a same pattern and are
relevant. This implies that these IMFs are compose of
low frequency, but the PDF plot of noisy and IMF 5
are in comparatively close pattern so IMF 5 consists of
high frequency noise. Also we calculate the Manhat-
tan distance of PDF between noisy and each IMF. By
identifying the high frequency noisy IMF, we further
introduce CWT method and reconstruct the signal.

3.2 Synthetic data test

To approve the techniques, we first test on synthetic
seismogram signal as appeared in Fig. 2. We include
arbitrary noise with SNR 5 dB and apply distinctive
denoising strategies, it is watched that the proposed
technique produce the relatively more smooth sig-
nal with higher SNR and ready to recoup the nearby
comparable unique signal from the ruined one. The
numerical information clarifies that for SNR esteem
given by Kalman, EMD, VMD and proposed strategy
are 8 dB, 10 dB, 13 dB, and 15 dB individually as
specified in Table 1. When we denoise by Kalman fil-
ter it is not delicate for the non stationary signal for
EMD process we evacuate first IMF in which there
is high probability of losing the data on first IMF. So
we apply VMD technique to break down into num-
ber of IMF where VMD decay the signal from low
recurrence to high recurrence, we watched that some
high recurrence IMF still contains the commotion so
we additionally apply continuous wavelet transform
on chosen IMF to guarantee the more noise free signal
with better conservation of the inventiveness. During
the denoising processing, minimizing phase shift is
one of the challenging problem, as big phase shift dis-
turb wave arrival time which leads all the analysis less
accuracy. Here, we found that our method arise small
phase shift. The signal denoised by Kalman filter has
big phase shift Fig. 2c and by other methods like EMD
Fig. 2d, VMD Fig. 2e also appear but it is minimizes in
the proposed method Fig. 2f. VMD is recently devel-
oped adaptive signal decomposition method and an
adaptive for non stationary signal solving the mode
mixing problem and non optimal reconstruction prob-
lem. As our method based on these, it can minimizes
the such limitations.
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Fig. 1 Probability density funtion of noisy signal and a IMF 1, MD = 218 b IMF 2, MD = 247 c IMF 3, MD = 220 d IMF 4, MD =
228 e IMF 5, MD = 179

Next we choose the synthetic earthquake accelero-
gram as in Fig. 3 to observe the effect of noise on
peak ground acceleration, velocity, and displacement

component. This synthetic signal is designated as
frequency vector containing 2048 points, taking band-
width of the earthquake excitation 0.3, standard
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Fig. 2 Synthetic data test. a Original signal. b Noisy signal with SNR = 5 dB. c Denoised by Kalman filter, SNR=8 dB. d By EMD,
SNR=10 dB. e By VMD, SNR=13 dB. f By the proposed method, SNR = 15 dB
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Table 1 SNR values of four different methods applied to the
synthetic data in Fig. 2 with different relative percentage of
noises

Noise variances 0.01 0.25 0.5 0.75

Input noisy data 10 7 5 2

Kalman 14 10 8 5

EMD 14.5 14 10 7

VMD 15 14 13 9

Proposed 17 16 15 10

deviation of the excitation 0.3, dominant frequency of
the earthquake excitation 5 Hz, value of the envelope
function at ninety percent of duration 0.2, normal-
ized duration time when ground motion achieves peak
0.4, duration of ground motion 20 second. The time
series is generated in two steps, first a stationary is
created based on the Kanai-Tajimi spectrum (Guo and
Kareem 2016) then envelope function is used to trans-
form this stationary time series into a non stationary
record (Rofooei et al. 2001). The velocity component
can be obtained simply integration on acceleration

with respect to time and displacement component can
be obtained by integration on velocity with respect to
time as,

v =
∫

adt, d =
∫

vdt

where a, v, and d are acceleration, velocity, and
displacement respectively.

As we realize that displacement is the fundamental
constituent for the accelerogram, we have to con-
cern how the impact fall on the essential constituent
amid the seismic information preparing. Peak ground
acceleration (PGA), velocity (PGV), and displace-
ment (PGD) are the most critical parameter on tremor
seismology in light of this parameter designers can
examine the idea of soil on the specific territory and
can prescribe the reasonableness to develop the struc-
tures and other physical foundation that may safe amid
the quake debacle.

The peak ground displacement esteem gives the
position change of the earth surface and shaking
degree. By investigating the vertical segment and hor-
izontal segment, we can affirm the idea of earth’s
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Fig. 3 Effect of noise in synthetic earthquake accelerogram
max. value and SNR test. a Original signal. b Noisy signal with
SNR = 5 dB. c Denoised by Kalman filter, SNR=9 dB. d By

EMD, SNR=10 dB. e By VMD, SNR=11 dB. f By the proposed
method, SNR = 12 dB
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Fig. 4 Zoom version of synthetic earthquake accelerogram data test. a Original signal. b Noisy signal. c–f Denoised by Kalman filter,
EMD, VMD, and the proposed method
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Fig. 5 Displacement component with noise effect and max.value derived from synthetic accelerogram. a Original signal. b Noisy
signal. c–f Denoised by Kalman filter, EMD, VMD, and the proposed method
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Fig. 6 Effect of noise on real earthquake accelerogram with max. value test. a Noisy signal. b–e Denoised by Kalman filter, EMD,
VMD, and the proposed method
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development and the specific soil structure.We test the
impact of clamor on peak ground acceleration and dis-
placement. From Fig. 3, we found PGA of noise free
signal accelerogram is 150 cm/sec2 but when we add
some random noise its value found 168 cm/sec2. Also
for PGD value for original synthetic signal is 2.3 cm
but for noisy signal is 4.1 cm, this implies that param-
eters like PGA and PGD vary according to the noise
presence. At the mean time, we apply different denois-
ing methods for the noise accelerogram and got the

PGA value as 143 cm/sec2, 167 cm/sec2, 155 cm/sec2,
and 152 cm/sec2 for Kalman, EMD, VMD and pro-
posed methods. Figure 4 expose the zoom version of
the Fig. 3 that indicates the smoothness of the region
for P phase arrival point.

Also PGD is obtained as 1.7 cm, 4.3cm, 3.7 cm,
and 2.8 cm for Kalman, EMD, VMD, and proposed
methods respectively. Based on this result, we can
conclude that Kalman and EMD method can denoise
the signal but they harm for inaccurate calculation for
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Fig. 7 Corresponding Scalogram for real earthquake data of Fig. 6. a Noisy signal. b–e Denoised by Kalman filter, EMD, VMD, and
the proposed method
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Fig. 8 Zoom version of real earthquake accelerogram data test. a Noisy signal. b–e Denoised by Kalman filter, EMD, VMD, and the
proposed method
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PGA and PGD as its more deviation from original sig-
nal but VMD and proposed methods can give better
denoised result with close PGA and PGD value with
original signal.

Here, we observed that during the denoising by dif-
ferent process the peak ground displacement varies
with the noise on synthetic earthquake records. The
Kalman filter and EMD can give the denoised result
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Fig. 9 Displacement component with noise effect and max. value derived from real earthquake accelerogram data test. aNoisy signal.
b–e Denoised by Kalman filter, EMD, VMD, and the proposed method
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but they are not stable for the displacement coefficient
as in Fig. 5.

3.3 Real earthquake data test

At last, we applied methods on real earthquake
accelerogram which was recorded in the Department
of Mine and Geology, Nepal during Nepal’s earth-
quake in April 2015 with magnitude 7.8.

For real earthquake accelerogram signal, the peak
ground acceleration of the data which we use is
59 cm/sec2 which is supposed to contain the noise.
After denoising by Kalman, EMD, VMD, and by pro-
posed method, PGA value was noticed as 56 cm/sec2,
55 cm/sec2, 57 cm/sec2, and 58 cm/sec2 respectively.
The corresponding scalogram plot of the real earth-
quake accelerogram of Fig. 6 is shown in Fig. 7 which
displays the wavelet scale as a function of time. Color
intensity at any point in the picture corresponds to the
coefficient magnitude of a wavelet with a particular
period at a particular point of the time series. Figure 7e
shows the proposed method successfully removed the
noise with preserving the feature and strong energy
section compare to the other existing methods. It can
simultaneously achieve accurate frequency represen-
tation for low frequencies, and good time resolution
for high frequencies.

The effect of denoising on the synthetic and real
earthquake data has been observed very clearly based
on the tool which we used to denoise the seismic
signal. In Fig. 9, the displacement coefficient that
obtained from noisy real earthquake accelerogram
whose maximum value is 244 cm and after the denois-
ing by Kalman, EMD, VMD and proposed method got
528 cm, 582 cm, 237 cm and 250 cm respectively as
mentioned in Table 3. Figure 8 represents the zoomed
version of Fig. 6 that show the P phase region of
the signal. Based on this we can conclude that tradi-
tional methods like Kalman and EMD are not sensitive
during the denoising process as there is great devi-
ation on original displacement coefficient and VMD
and the proposed method denoise the signal very well
with high SNR and does not allow to deviate the dis-
placement component with compare to the original
one.

These parameters like peak ground acceleration,
velocity and displacement have an exceptionally huge-
ness in quake building so amid the denoising proce-
dure we should concern to take the precise estimation

Table 2 SNR (in dB) result for synthetic accelerogram test

Data/Method Noisy Kalman EMD VMD Proposed

Synthetic
earthquake
accelerogram

5 9 10 11 12

of these parameter. On the off chance that we
apply conventional strategy to denoise the signal yet
comprehend essential constituent displacement which
leads for erroneous figuring of PGA, PGV, and PGD
(Fig. 9).

The detail result on peak ground acceleration,
(cm/sec2) and peak ground displacement (cm) is given
in Table 2.

At last, we give a few discourses on velocity
and displacement segments. We denoise the seismic
tremor accelerogram signal which speak to the ground
acceleration, mathematically by integration on accel-
eration with respect to time we can get velocity and
integration on velocity we get displacement. This
implies that displacement is the basic constituent of
the acceleration. During the denoising on accelero-
gram signal, we unmistakably watched that clamor is
expelled altogether with change on SNR. The impact
of various denoising techniques are seen as looking at
the peak ground acceleration an incentive from both
synthetic and real tremor accelerogram that demon-
strates the both commotion expel and protecting about
the same PGA and PGD esteems by the proposed
strategy.

For the velocity and displacement part, we found
that the impact and nearness of clamor can not
watched altogether but rather essentially. We can
watch the peak ground velocity and displacement
esteem which show the techniques by which we
denoise the signal that can bode well for exact estima-
tion synthetic accelerogram PGD. As in Table 3, the
PGD esteem for synthetic accelerogram of unique is
2.3 cm, denoised by Kalman 1.7 cm, by EMD 4.3 cm,

Table 3 PGA and PGD result for synthetic earthquake
accelerogram different test

Method Original Noisy Kalman EMD VMD Proposed

PGA (cm/sec2) 150 168 143 167 155 152

PGD (cm) 2.3 4.1 1.7 4.3 3.7 2.8
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Fig. 10 Performance plots
(SNR values) of different
methods applied to
synthetic data in Fig. 2 and
Table 1 with different
relative percentage of noises

by VMD 3.7 cm and by proposed technique is 2.8 cm
this additionally confirm PGD estimation of unique
and in the wake of denoising by proposed strategy
demonstrates closeness.

This impact is altogether reside in real earthquake
accelerogram. The PGA and PGD esteems given by
original signal and denoised by proposed strategy give
the more comparable qualities than other technique.
Kalman filter and EMD technique can denoise the
signal however they vicious the essential constituent
displacement segment by veering off with expansive
scale with contrast with unique one. This makes the
issue to ascertain the exact PGA and PGD esteems.
However, in the event that we pick a reasonable
denoising strategy like the proposed one, it does not
make more contrasts on these parameters. We have
used amplitude of all sampling point for comprison
in the synthetic test, since SNR is computed with all
values. In terms of SNR, it also achieves higher val-
ues than the other three methods in all noise levels as
indicated in Tables 1 and 2 and Fig. 10. To calculate

Table 4 PGA and PGD result for real earthquake different test

Method Original Kalman EMD VMD Proposed

PGA (cm/sec2) 59 56 55 57 58

PGD (cm) 244 528 582 237 250

the SNR values for all sampling point in real data is
complicated as the degree of real noise is unknown
(Table 4).

4 Conclusion

We have actualized a seismic denoising enhanced
technique in view of VMD algorithm. We observed
that there is an impact of noise and denoising strategy
on quake accelerogram signal. The proposed strat-
egy gives more critical outcome than conventional
technique and EMD; exceptionally, this technique is
extremely huge on quake accelerogram denoising. We
watched that the clamor nearness on the accelerogram
influences the incorrect count on PGA and PGD and
diverse techniques to give the distinctive digressed
estimation of these parameters. In view of the PGD
esteem earthquake engineers can investigate the idea
of soil to suggest foundation development in a spe-
cific district, this technique is exceptionally touchy
one might say of to precise count of some parameter
like peak ground acceleration, velocity, and displace-
ment and to watch the impact of noise and the impact
of various denoising strategy in these parameters.
Accurate detection of P phase and onset time arrival
is very important for the earthquake signal analysis
and prediction problem, so the dealing with noise
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with appropriate denoising method is very important.
Here, we applied wavelet-based VMD technique to
get noise-free signal with safeguarding of original
features.
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