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Abstract Current computational resources and physi-
cal knowledge of the seismic wave generation and prop-
agation processes allow for reliable numerical and
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analytical models of waveform generation and propaga-
tion. From the simulation of ground motion, it is easy to
extract the desired earthquake hazard parameters.
Accordingly, a scenario-based approach to seismic haz-
ard assessment has been developed, namely the neo-
deterministic seismic hazard assessment (NDSHA),
which allows for a wide range of possible seismic
sources to be used in the definition of reliable scenarios
by means of realistic waveforms modelling. Such reli-
able and comprehensive characterization of expected
earthquake ground motion is essential to improve build-
ing codes, particularly for the protection of critical in-
frastructures and for land use planning. Parvez et al.
(Geophys J Int 155:489-508, 2003) published the first
ever neo-deterministic seismic hazard map of India by
computing synthetic seismograms with input data set
consisting of structural models, seismogenic zones, fo-
cal mechanisms and earthquake catalogues. As de-
scribed in Panza et al. (Adv Geophys 53:93-165,
2012), the NDSHA methodology evolved with respect
to the original formulation used by Parvez et al.
(Geophys J Int 155:489-508, 2003): the computer codes
were improved to better fit the need of producing real-
istic ground shaking maps and ground shaking scenar-
ios, at different scale levels, exploiting the most signif-
icant pertinent progresses in data acquisition and model-
ling. Accordingly, the present study supplies a revised
NDSHA map for India. The seismic hazard, expressed
in terms of maximum displacement (Dmax), maximum
velocity (Vmax) and design ground acceleration
(DGA), has been extracted from the synthetic signals
and mapped on a regular grid over the studied territory.
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1 Introduction

The Indian subcontinent is surrounded by the most
seismically active areas of the world, including the
Himalayan belt on the north, Kirthar and Sulaiman
ranges on the west, Arakan Yoma ranges and
Andaman Islands on the east (Fig. 1). Many devastating

earthquakes inflicted heavy loss of life and considerable
economic damage to the region (Fig. 2). Rapid urbani-
zation, development of critical structures and lifelines,
such as dams and nuclear power plants, industrialization
of cities and the concentration of population, living or
settling in hazardous areas, are all matters of growing
concern. Thus, the recent social and economic develop-
ment exposed to earthquake hazard implies in the future
heavier loss of life and economic damage, unless reli-
able preventive actions are enforced following the rapid
rise of interest about environment concerns, and
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Fig. 1 Geological map of India and adjacent areas
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Fig. 2 Seismicity map of India and adjacent areas with focal mechanisms

increased official and public awareness about earth-
quake hazard in India.

Seismic hazard, by definition, describes a natural
phenomenon associated with an earthquake, such as
ground shaking, fault rupture, tsunami, liquefaction,
rockfall and landslide. We do not discuss here all the
available approaches used in seismic hazard, as it is
beyond the purposes of the present work. However, they
can be broadly classified as PSHA (probabilistic seismic
hazard assessment) and DSHA (deterministic seismic
hazard assessment) or, its enhancement, NDSHA (neo-
deterministic seismic hazard assessment). Many authors
(e.g. Castafios and Lomnitz 2002; Kliigel 2007; Wang
2011; Panza et al. 2014) expressed serious criticisms on
the probabilistic method and evidenced some essential
limits in the physical and mathematical models, as well
as in other basic assumptions. Possible alternatives to

PSHA are discussed in the Topical Volume 168 of Pure
and Applied Geophysics (Panza et al. 2011) and in
Panza et al. (2012), where the NDSHA method is de-
scribed in detail.

In order to mitigate the destructive impact of the
earthquakes, the regional seismic hazard in India has
been assessed using the neo-deterministic, multi-
scenario methodology based on the computation of
synthetic seismograms. A more detailed definition of
NDSHA, which is based on the possibility of efficiently
computing realistic synthetic seismograms by the modal
summation technique, is given by Panza et al. (2001).
The neo-deterministic method describes seismic ground
motion due to earthquakes based on modelling tech-
niques of the seismic source process and of the propa-
gation of seismic waves. This permits us to define a set
of earthquake scenarios and to generate the associated

@ Springer



1562

J Seismol (2017) 21:1559-1575

synthetic seismograms without having to wait for strong
events to occur. NDSHA can be applied at the regional
scale, computing seismograms at the nodes of a grid
with the desired spacing, or at the local scale, taking into
account the source characteristics, the path and local
geological and geotechnical conditions. Synthetic sig-
nals can be produced in a short time and at a very low
cost/benefit ratio. Realistic synthetic seismograms are
constructed using the available knowledge of the phys-
ical process of earthquake generation (source position
and orientation of the focal mechanism), level of seis-
micity (distribution of maximum observed magnitude)
and wave propagation in anelastic media. From these
synthetic signals, engineering parameters can be extract-
ed in order to assess the seismic hazard. Therefore, we
can also estimate these parameters in those areas where
very limited (or no) historical or instrumental informa-
tion is available. As examples of the results that can be
obtained, we show the maps of the distribution of max-
imum displacement (Dmax), maximum velocity
(Vmax) and design ground acceleration (DGA) and
the corresponding periods. NDSHA has been success-
fully tested worldwide (Panza et al. 1996, 1999, 2002;
Alvarez et al. 1999; Aoudia et al. 2000; Bus et al. 2000;
Markusgié et al. 2000; Ziv&ié et al. 2000; El-Sayed et al.
2001; Vaccari et al. 2001; Parvez et al. 2003; Zuccolo
etal. 2011; Peresan and Panza 2012; Fasan et al. 2016)
and has proved its efficiency, particularly for recent
earthquakes (e.g. the Zemmouri-Boumerdes, Algeria,
2003 event; Gujarat, India, 2001 event; Emilia 2012
and Central Italy 2016 events), where the PSHA method
has failed to predict the level of ground motion
observed.

Parvez et al. (2003) published the first ever neo-
deterministic seismic hazard map of India by computing
synthetic seismograms with input data set consisting of
structural models, seismogenic zones, focal mechanisms
and earthquake catalogues. Last decade has witnessed
an increased activity in seismological experiments and
provides more detailed and denser information of sub-
surface structures. As described in Panza et al. (2012),
the NDSHA methodology evolved with respect to that
applied in Parvez et al. (2003), and the computer codes
were improved since their original implementation, to
better fit the need of producing realistic ground shaking
maps and ground shaking scenarios, at different scale
levels. Now, there is a need to revise the existing deter-
ministic hazard map (Parvez et al. 2003) with high-
resolution structural model, new focal mechanism data
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recently made available, extended source models, up-
dated earthquake catalogue and inclusion of
seismogenic nodes. Preliminary results about Gujarat
region are included in Magrin et al. (2016). The present
study is aimed to generate the second-generation
NDSHA map for India using the updated inputs avail-
able to date.

2 Input data

The computation of realistic synthetic seismograms with
the NDSHA technique greatly benefits from the knowl-
edge of the source and propagation effects. Therefore,
the input parameters describing the structural models
and seismic sources must be properly defined for the
study area, exploiting all significant available literature.
In general, the input data include five main groups of
parameters and these are (1) earthquake catalogue, (2)
seismogenic zones, (3) fault plane solutions, (4)
seismogenic nodes and (5) structural models. A brief
description of each input parameter for the Indian sub-
continent is given below.

2.1 Earthquake catalogue

Earthquake catalogues and databases are the most es-
sential and important parametric information for any
kind of seismic zoning or hazard studies. In the present
study, the earthquake data set spanning the time interval
from 25 to 2015 has been used. The Indian earthquake
catalogue can chronologically be broadly divided into
three groups: (1) pre-1900, based on pre-instrumental
and historical macroseismic information; (2) the period
1900-1962, based on early instrumental data; and (3)
post-1963, based on the WWSSN network and on mod-
e instrumentation. We have used the databases from
international agencies like NOAA, ISC, NEIC, CNSS
and CMT and national agencies like IMD and NDMA
and several published research papers to assemble our
working catalogue. Some of the historical events have
been re-assessed in terms of magnitude and location. In
most cases, Ms and MI are not present, and to be
conservative, when more than one magnitude estimate
is available, the maximum value is chosen. Empirical
relations have been established between Mw~Ms,
Mw~Mb and Mw~M]I, and using these relations, a ho-
mogeneous catalogue in terms of Mw has been com-
piled. Figure 2 shows the seismicity map of Indian
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region in terms of Mw. In NDSHA, the catalogue com-
pleteness at moderate-to-low magnitudes is not neces-
sary, contrary to PSHA, and just the potentially damag-
ing events have to be considered. Therefore, we look at
the spatial distribution of events with Mw >5.0.

2.2 Seismogenic zones

The seismogenic zones defined by Parvez et al. (2003)
have been updated. They are very dense along the plate
boundary, i.e. along the Kirthar Sulaiman, Hindukush,
Himalaya, Arakan Yoma and Andaman (Fig. 1), where-
as one can see gaps in seismicity in Peninsular India
(Fig. 2). Though Peninsular India is considered relative-
ly quiet seismically, still a dozen of seismogenic source
zones have been defined there, based on the occurrence
of some historical earthquakes. Similarly zones 703,
704 and 705, one of the largest, bring together earth-
quakes from Owen Fracture Zone (Makran subduction
zone) and Sulaiman ranges and have been revised as the
regions include strike slip, reverse slip and oblique slip
motion, often resulting in shallow, destructive earth-
quakes. Now, there are 43 seismogenic zones defined
for the Indian subcontinent (Fig. 3). One of the criteria
driving this revision is the inclusion of new earthquakes
with Mw > 5.0 and focal depths less than 50 km that fall
outside the seismogenic zones used by Parvez et al.
(2003). Main changes are in Peninsular India: new
seismogenic zones (740, 743, 741) are introduced, and
the geometry of others (731, 732, 736) changes signif-
icantly. A new seismogenic zone was added in Northern
India (742) and zone 718 was expanded. Figure 3 shows
the set of seismogenic zones and the representative focal
mechanisms for each zone.

2.3 Fault plane solutions

As for seismogenic zones, we have updated the focal
mechanism database for each seismogenic zone defined
by Parvez et al. (2003). One of the main criteria in the
formation of the seismogenic zones is to examine the
existence of similar focal mechanisms while defining
the geometry of the zones and to identify a representa-
tive focal mechanism for each seismogenic zone. Focal
mechanisms used in the present study are mainly taken
from Harvard CMT Catalogues. However, published
focal mechanism solutions by Fitch (1970), Molnar
et al. (1973) and Chandra (1977, 1978) have been used
for the large earthquakes that occurred before 1977 and

60° 70° 80° 90° 100°

Fig. 3 The 43 seismogenic zones defined from the available
information about geology, tectonics and historical seismicity of
the region. The representative earthquake focal mechanism asso-
ciated with each zone is shown, as well

for the Peninsular India events. A representative fault
plane solution is defined for each seismogenic zone
either looking at the mechanism associated with (a) the
strongest event, (b) the best studied event, (c) the most
frequent event or (d) the average mechanism obtained
from the available moment tensor solutions (weighted
by the scalar seismic moments). The entire investigated
region is dominated by thrust and strike-slip faulting
although normal-type faulting is present in a few zones
(Fig. 3).

2.4 Seismogenic nodes

In addition to seismicity data, the flexibility of NDSHA
permits incorporating the supplementary information
about the possible location of strong earthquakes pro-
vided by morphostructural analysis, thus significantly
reducing gaps in known seismicity, as reported in para-
metric catalogues (Zuccolo et al. 2011).

The methodology for the recognition of areas prone
to large earthquakes includes two main steps. The first
step is the identification of the morphostructural nodes
using the morphostructural zoning method (Gelfand
et al. 1972) that delineates a hierarchical block structure
of'the studied region, using tectonic and geological data,
with special care to topography. The boundary zones
between blocks are called lineaments. The nodes are
formed at the intersections or junctions of two or more
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lineaments, characterized by a uniform set of
morphostructural, topographic, geologic and geophysi-
cal parameters.

The second step is the classification of all mapped
nodes into nodes where earthquakes with magnitude
exceeding a certain threshold (My) are possible and
nodes where only earthquakes with smaller magnitude
may happen, using the pattern recognition algorithms
CORA-3 (Gelfand et al. 1976; Gorshkov et al. 2003).
This methodology has been applied to many seismic
regions worldwide, and so far, 87% of the post-
publication events occurred at the nodes recognized as
prone to strong earthquakes (Keilis-Borok and Soloviev
2003 and references therein; Soloviev et al. 2014).

The recognition of earthquake prone areas has been
carried out for Himalaya (Bhatia et al. 1992) for two
magnitude thresholds, My > 6.5 and My > 7.0, and
tested by Gorshkov et al. (2012). The nodes have been
defined as circles of radius R = 50 km surrounding each
point of intersection of lineaments (Fig. 4). A representa-
tive fault plane solution is defined for each seismogenic
node in two ways: (1) where available from the average of
focal mechanisms (weighted by the scalar seismic mo-
ments) of events from database described in Sect. 2.3 that
fall inside the nodes and (2) using focal mechanisms of
seismogenic zones that include the centre of the node.

2.5 Structural model

Layered anelastic models within which earthquake
wave propagate are assembled representative of the
average properties of the crust and upper mantle along
the considered source site paths. In order to assemble a
suitable structural model, available geophysical and

Fig. 4 Position of seismogenic
nodes (blue circles) in Himalayan
region from Gorshkov et al.
(2012) and Bhathia et al. (1992)
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geological information for the investigated territory
has been considered after an extensive bibliographic
search (Acton et al. 2010; Julia et al. 2009; Mandal
2006; Mitra et al. 2005, 2011; Murty et al. 2008;
Srinagesh et al. 2011; Ravi Kumar et al. 2001; Ravi
Kumar and Mohan 2005; Prasad et al. 2002; Tewari
et al. 2009 and references therein). In this paper, the
velocity structure given by Parvez et al. (2003) has been
refined using a relatively higher resolution cellular mod-
el with the cells of 1° x 1°. Figure 5 shows the 387 cells,
which include Nepal, Bhutan, Bangladesh and
Andaman and Nicobar island regions, where the veloc-
ity model has been assembled. A similar study leading
to cellular models in the Tibetan Plateau has been per-
formed by Zhang et al. (2014).

Most of the cells have square shape except at the
edges, where they are bounded at political boundaries or
along the coastline (see Fig. 5). All velocity data were
collected from broadband seismic studies, DSS studies
and surface wave data. For each cell, two files were
generated; one for the shape of the polygon and the
other for the layer properties: thickness, density, P-
wave velocity, S-wave velocity, Qp and Qs. The
Southern India region is fairly well covered by receiver
function experiments, while some other regions have
quite poor data coverage or no coverage at all. In case
of poor coverage, velocity models are copied from the
cells, which fall in similar geological regions, while
surface wave data, when available, have been used to
obtain the layering for regions not covered by local
studies. When different authors for the same cell have
proposed different structural parameters, an educated
average model has been prepared, giving more weight
to the results of the recent publication obtained from
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reliable high-resolution data. For those cells where up-
dated velocity models are not available, the structural
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Fig. 6 Example of lithospheric structures associated with the cells
with white borders in Fig. 5: cell 10 in Himalayan region and cell
356 in Peninsular India. Density, P- and S-wave velocities are

model given by Parvez et al. (2003) has been adopted.
Examples of the average structural model of two cells
used in the computations are shown in Fig. 6, up to a
depth of 100 km. The legend in Fig. 5 gives the shear
wave velocity (Vs) of the topmost layer for each cell.

The attenuation properties of the structure have
been updated using the lithospheric attenuation to-
mography study across Eurasia by Gung and
Romanowicz (2004) and the work by Mitchell
et al. (2008). Figure 7 illustrates the Qs in the
uppermost layer for each cell and evidences the high
Q values for the Indian shield as compared to the
Himalayas and Northern India. This peculiarity may
be related to the fact that the Indian shield is a deep-
seated, relatively undisturbed old continental litho-
sphere of probably high strength, whereas the
Himalayan crust is surrounded by highly dislocated
accretionary complexes, with relatively low strength,
similar in their properties to usual tectonic environ-
ments (Parvez et al. 2001).
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shown here for the uppermost 100 km, but the complete structure
reaches the depth of about 1000 km. It is possible to see the
different depths of Moho
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3 Methodology

The procedure for the neo-deterministic seismic hazard
assessment (NDSHA) (Panza et al. 2001, 2012) is based
on the calculation of realistic synthetic seismograms
(ground motion scenarios). In NDSHA, seismic hazard
is defined as the envelope of the values of ground
motion parameters considering a wide set of scenario
earthquakes, including maximum credible earthquakes
(MCE), calculated using the available physical knowl-
edge on earthquake sources and wave propagation
processes by means of physically rooted models. At
the regional level, the ground shaking scenario is

defined through the computation of synthetic
seismograms generated from the set of potential sources
distributed in the active seismogenic zones recognized
in the study area.

In Fig. 8, we summarize the NDSHA methodology,
as described in detail in Panza et al. (2001) and applied
in Parvez et al. (2003), with inclusion of seismogenic
nodes as described in Zuccolo et al. (2011). In the
application of the NDSHA procedure at the regional
scale, on account of the quality of the available data,
the study area has been subdivided into a regular grid
0.2° x 0.2°. The seismic sources in NDSHA are placed
at the centre of each cell of the grid, while the sites
where signals are computed are placed at the nodes of
the grid. Each source is characterized by a focal mech-
anism and a magnitude.

To define the source magnitudes, the NDSHA pro-
cedure makes use of information about the space distri-
bution of large-magnitude earthquakes (M > 5), which
can be defined from historical, instrumental and geolog-
ical observations. In order to obtain a conservative dis-
tribution of the maximum observed magnitude over the
Indian subcontinent, the seismicity map obtained from
the earthquake catalogue, discretized in cells of the
regular grid, is smoothed to partly account for the earth-
quake source dimensions, for catalogue incompleteness
and for localization errors (Panza et al. 2001).

Only the sources that lie within a seismogenic zone
or within a seismogenic node are selected amongst the
ones defined during the smoothing process (Fig. 9).

Fig. 8 Flow chart of NDSHA Regional Focal Seismogenic Earthquake Seismogenic
methodology described in Sect. 3. polygons mechanisms zones catalogue nodes
In blue, the input data described in
Sect. 2 that allow us to define I-D layered
o N Choice of focal Magnitude
structural‘ model and Sélsmlc s::jclifl'i:s mechanism for each discretization
sources (in red) for which we seismogenic zone and smoothing
compute the synthetic
seismograms. The steps of the Choice of magnitude Choice of magnitude
procedure described in Sect. 3 are for sources inside for sources inside
in arey ' seismogenic zones seismogenic nodes
Structural .
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Synthetic
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Fig. 9 Location and magnitude of the seismic sources used to
generate the ground shaking maps: fop: sources inside
seismogenic zones of Fig. 3; bottom: sources inside seismogenic
nodes of Fig. 4

Each source in this figure is described as a double-
couple point source. The strength of the source is
determined as the maximum between a lower bound
and the magnitude defined by the smoothing proce-
dure. The lower bound for magnitude inside the
seismogenic zones is 5, that is conventionally
(D’Amico et al. 1999) taken as the lower bound
for the magnitude of damaging earthquakes. The
lower bound of magnitude inside the seismogenic
nodes is the magnitude threshold identified for that
node by the morphostructural analysis. The orienta-
tion of the double-couple point source is the one
representative of the parent seismogenic zone or
seismogenic node. Hypocentral depth is taken as a
function of magnitude (10 km for M < 7, 15 km for
7 <M < 8 and 25 km for M > 8) in fairly good
agreement with Doglioni et al. (2015).

The synthetic signals are computed for an upper
frequency content of 1 Hz, which is consistent with
the level of knowledge about earthquake sources and
regional structural model. If a source—site path crosses
one or more boundaries between structural models, the
site structural model is used along the entire path, since
the site properties seem to have a large influence, as
shown by Panza et al. (2001) for P-SV waves. To
optimize the number of computed seismograms, the
source—site distance is kept below an upper threshold,
which is usually taken to be a function of the magnitude
associated with the source. The horizontal component
(P—SV radial and SH transverse) synthetic seismograms
are first computed at each site for a seismic moment of
1077 N m and then scaled to the magnitude of the
earthquake using the moment—-magnitude relation of
Kanamori (1977). The finiteness of the source is
accounted for by scaling the spectrum using a relatively
simple scaling law. The horizontal components at each
site are first rotated into a reference system common to
the whole territory (N—S and E-W directions), and then,
the vector sum is calculated. The largest amplitude
resulting signal, due to any of the surrounding sources,
is selected and associated with that particular site.

For acceleration, the deterministic results are extend-
ed to frequencies higher than 1 Hz (i.e. the frequencies
considered in the generation of the synthetic
seismograms) by using design response spectra, for
instance, Eurocode 8 (EC8 1993), which define the
normalized elastic acceleration response spectrum of
the ground motion, for 5% critical damping, in such a
way obtaining the design ground acceleration (DGA)
(Panza et al. 1996). DGA is comparable to peak ground
acceleration (PGA) since an infinitely rigid structure
(i.e. a structure having a natural period of 0 s) moves
exactly like the ground (i.e. the maximum acceleration
of the structure is the same as that of the ground, which
is the PGA). This is why PGA has been used over the
years to provide a convenient anchor point for the de-
sign spectra specified by various regulatory agencies.
Moreover, DGA is practically equivalent to effective
peak acceleration, which is defined as the average of
the maximum ordinates of the elastic acceleration re-
sponse spectra within the period range from 0.1 t0 0.5 s,
divided by a standard factor of 2.5, for 5% damping
(Panza et al. 2003). At each node of the grid, not only
the peak values are available, generated by the nearby
earthquake sources, but also the full time series from
which the peak values are extracted.
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4 Computations

As described in Panza et al. (2012), NDSHA methodol-
ogy evolved with respect to that applied by Parvez et al.
(2003) and the computer codes have been improved to
better fit the need of efficiently producing realistic
ground shaking maps and ground shaking scenarios, at
different scale levels.

The computation of synthetic seismograms was en-
hanced by increasing the maximum length considered
for the site—source paths and by using the discrete wave
number technique (Pavlov 2009) for short paths, namely
for epicentral distances less than, or comparable with,
the source depth. Code optimization leads to a speedup
in the computations by a factor of about 6. This allowed
us to consider, in the computations, the maximum
source—receiver distance equal to 150, 200, 400 and
800 km, respectively, for M < 6,6 <M <7,7<M<8
and M > 8 events and to guarantee that signals are
computed up to distances where possible earthquake
effects are significant.

In order to take into account the source extension, in
the standard procedure, seismograms are scaled for the
fault dimensions using a relatively simple spectral scal-
ing law, with zero phase, called size-scaled point source
(SSPS). In Parvez et al. (2003), two different scaling
laws were used: the one proposed by Gusev (1983) as
reported by Aki (1987) and a modified version, specific
for East Himalayas sources. Here, we adopt a more
realistic source model, in which phase spectrum ac-
counts for the duration and other features of the
rupture process, named by Parvez et al. (2011) size-
and time-scaled point source (STSPS). The extended
source (ES) model is described in terms of a grid of
subpoint sources (shortly subsources). The spectra of
the subsource moment rate functions satisfy the condi-
tion to fit the reference spectral law and provide the
basic elements necessary to describe realistically an
ES. Their sum leads to a single source spectrum, repre-
sentative of the entire space and time structure of the ES
in far source condition (STSPS). A neutral directivity
has been chosen in the computation of the synthetic
seismograms, but the analysis of directivity effect can
be made through parametric tests. As reference spectral
law, we used the one given by Parvez et al. (2003) in the
Appendix. The main effect of the introduction of STSPS
source model is the natural increase in the duration of
the synthetic seismograms and the reduction of peak
amplitudes, especially for great magnitudes. In other
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words, the signals turn out to be more realistic than the
ones by Parvez et al. (2003); however, in terms of
damage potential, the results of this new modelling turn
out to be not much different since the longer duration of
the ground shaking obtained with the STSPS model can
compensate for the decreased peak value.

5 Results

The maps of seismic hazard obtained for the whole India
are shown in Fig. 10 for displacement, velocity and
DGA. The highest peaks are obtained in northeast
India, eastern Nepal and part of Gujarat with displace-
ment and velocity falling in the range 30-60 cm and 60—
120 cm s ', respectively. In other parts of the region,
such as the central and western Himalayas, western
Uttar Pradesh, Himachal Pradesh, western and central
Nepal and some parts of the Gujarat state and
Northeastern India, the maximum velocity is up to
60 cm s ' and the maximum displacement is ~30 cm.
In the area of Andaman and Nicobar, some parts have
the maximum velocity up to 120 cm s, but the major-
ity of cells fall in the range 30-60 cm s . Similarly, the
displacement is in the range 15-30 cm and reaches the
range of 30—-60 cm in north Andaman.

The maximum values of DGA (above 0.6 g) are in
Gujarat, Northern India, central and eastern Nepal, epi-
central zone of the great Assam earthquakes of 1897 and
1950 and Andaman islands. Lower values (0.3-0.6 g)
are in Western Nepal, Northeastern India and
Bangladesh.

The three metropolitan and biggest cities of India,
with relevant industrial and economical importance,
namely Delhi, Mumbai and Kolkata, lie in the hazard-
ous zones of the DGA map. The most severe hazard is in
Kolkata and its surroundings, where the DGA estimate
is between 0.3 and 0.6 g, followed by Delhi (0.15-
0.3 g), while in Mumbai, estimates are between 0.04
and 0.08 g. The DGA estimates in Peninsular India are
less than 0.15 g with maximum values (0.08-0.15 g)
south of Mumbai.

We tested the effect of use of seismogenic nodes by
comparing hazard maps of Fig. 10 with maps computed
without seismogenic nodes. The increasing of magni-
tude of sources produces an increase of expected ground
motion only in a few points. The effect of nodes is lower
than what happens in Italy (see Zuccolo et al. 2011)
because of the magnitudes of historical events in
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Fig. 10 Peak Ground Displacement (PGD) on fop, Peak Ground
Velocity (PGV) in middle and maximum DGA in the bottom

Himalayan region (up to 8.8) that is bigger than magni-
tude of nodes (My = 6.5 or My = 7.0): the ground
motion maps are dominated by the effect of the biggest
events.

6 Comparison with maps of Parvez et al. (2003)

Changes in the input definition and in some parts of the
procedure with respect to Parvez et al. (2003) produce
several differences in the new hazard maps, even if the
general hazard pattern remains persistent. The distribu-
tion of sources (shown in Fig. 9) changed with respect to
the one used in Parvez et al. (2003), due to differences in
shape and location of the seismogenic zones, especially
in Peninsular India. In addition, with the new catalogue
source, magnitudes are generally greater than those used
in the old computations.

Another added value of this study is to include the
seismogenic nodes formed at the intersections or junc-
tions of two or more lineaments, characterized by a
uniform set of morphostructural, topographic, geologic
and geophysical parameters (Fig. 4). The changes in
the absolute values of PGV and DGA due to the com-
putations from the seismogenic nodes are illustrated in
Fig. 11.

The comparison of PGV maps is shown in Fig. 12.
Only the sites where there is a change of at least 1° of
intensity, corresponding to about a factor of 2 in the peak
value (Cancani 1904; Panza et al. 2001), are mapped.
The areas showing the largest increase are distributed
around seismogenic zone number 708, in Uttar Pradesh,
in Western Nepal and in Northern coast of Bengala Gulf.
Lower PGV values are concentrated in Northeastern
India and around seismogenic zones 731 and 735. The
new structural model explains some of these changes,
for example, the decrease of PGV values in
Northeastern India, due to higher values of Vs in
shallower layers. Other changes can be associated with
variations in the source properties (focal mechanism and
the adoption of the STSPS model).

A noticeable difference with respect to the maps by
Parvez et al. (2003) is the increased number of grid
nodes where the hazard estimate is provided.
Considering only the common areas where the hazard
was estimated (see Fig. 3 in Parvez et al. 2003 and Fig. 5
in the present work), we have now 8052 grid points
instead of 3796. This is due to the extended maximum
epicentral distance allowed in the new computations. It
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Fig. 11 Increase of DGA (top) and PGV (bottom) due to use of
nodes

now happens that in some regions, hazard is controlled
by far sources with great magnitude, rather than by
smaller local earthquakes. If we now concentrate on
the points in common between the two sets, about
50% of the values are compatible between old and
new maps (ratio between 1:2 and 2 in Table 1). For all
considered ground motion parameters (displacement,
80’

90° 100°

40°

30°

20°

60° 70° 80° 90° 100°

velocity and DGA), the hazard increase is more evident
where Parvez et al. (2003) obtained the lower values.

7 Comparison with observed intensities

In order to test the quality of the NDSHA results, the
DGA values of the old (Parvez et al. 2003) and new
maps (Fig. 10) have been converted to intensities using
the relation between acceleration and EMS intensity of
Lliboutry (2000) and compared with the observed in-
tensities reported in the European Macroseismic Scale
(EMS) by Martin and Szeliga (2010). The relation be-
tween acceleration and intensity reported by Lliboutry
(2000) is compatible with other similar relations (e.g.
Medvedev 1977), taking account for the difference in
the used intensity scales. Neo-deterministic maps aim to
estimate the maximum possible shaking; therefore, un-
derestimation of maximum intensity is a failure of the
map. It is important to underline that in this paper, we
present maps computed at bedrock, whereas the report-
ed intensities can include substantial effects of local
amplifications.

Martin and Szeliga (2010) published a unified cata-
logue of felt intensity data for 570 earthquakes in India
from 1636 to 2009. Most of the reported earthquakes
(more than 90%) occurred in the past two centuries. The
catalogue contains the latitude, longitude and location of
each felt report and its inferred intensity, evaluated on
the base of the EMS-98. As observed by Martin and
Szeliga (2010), the completeness of the catalogue is
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Fig. 12 Ratios between PGV map from Parvez et al. (2003) and PGV map of Fig. 10 (computed in common points). Map on the /eff shows
where new values are greater than older; the right one shows where the new values are lower than older
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Table 1 Summary of comparison of Fig. 12

N/O>16

8<N/O<16

4<N/O<8

2<N/O<4

1:12<NO<2

1:4<N/O<1:2

1:8<N/O<14

1:16 <N/O<1:8

N/O <1:16

13

42

20
20

PGD

51

PGV

21

53

DGA

The table reports the percentages of points for different intervals of ratios between the values obtained in the present work (N) and those obtained by Parvez et al. (2003) (O)

60° 70° 80° 90° 100°
Fig. 13 Spatial distribution of maximum observed intensities in
EMS scale (Iyax) taken from Martin and Szeliga (2010),
discretized into cells of 0.2° x 0.2°

conditioned by some factors: density of population,
propensity of a population to permanently record the
perception of shaking or damage and types of exposed
building. They emphasize that their catalogue is com-
plete only for M > 8 in the Indian subcontinent since
1800.

We computed the spatial distribution of maximum
observed intensities from Martin and Szeliga (2010)
discretized on the same regular 0.2° x 0.2° mesh used
for the modelling (Fig. 13). Then, we compared the
maximum observed intensities (/yyax) With the intensi-
ties computed from DGA values of the old (Parvez et al.
2003) and new maps (Fig. 10) converted to intensities
(Ipga) using the relation between acceleration and EMS
intensity of Lliboutry (2000). We can see that where
observations are available, the modelled intensities are
rarely exceeded by maximum observed intensities (Fig.
14 and Table 2). Underestimations of intensities equal or
greater than 2° (red and orange points) are only present
in central and southern India for the new map, whereas
for the old results, they can be found also in Northern
India, Gujarat and north-eastern India as well. For both
models, the relevant underestimations are obtained in
the Latur region. From Table 2, we can say that accord-
ingly with this comparison, the performance of new map
overcomes the old one. For the new map, the underes-
timation of I\jax is greater than 1° of intensity only in
2% of the cells for Iy ax between VI and VIII and in 7%
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Fig. 14 Distribution of the difference between intensities convert-
ed from DGA (Ipga) and observed intensities fyiax (for hyax > VI)
(as in Fig. 13): dI = Inga — Imax- DGA values used to compute
intensities are taken from Parvez et al. (2003) for the map on the

of the cells for [yax = IX and there is no underestima-
tion for Iyax = X.

8 25 April 2015 Nepal earthquake

A great devastating earthquake, followed by a series of
M > 6 aftershocks, including a M = 7.3 event on May 12,
2015, shook Nepal on April 25, 2015, with Mw = 7.8 and
Iyax = IX that killed 8964 people (23,447 the injured
ones). The earthquake occurred 80 km northwest of the
Nepalese capital, Kathmandu, nucleated ~80 km northwest
of Kathmandu and ruptured a 140-km-long segment of the
fault with a hypocentral depth of ~15 km and a dip of 7—

Table 2 Summary of comparison in Fig. 14

60’ 70’ 80’ 90’ 100°
40 =
30°
dl
di>=0
dl=—1
B dl=-2
20 dl<-2
10°
60’ 70’

left and from the present study for the map on the right. The
dominance of blue dots indicates that Ipga > Iviax for most of
the sites

12°. According to USGS, the location, size and focal
mechanism of the earthquake are consistent with its occur-
rence on the main subduction thrust interface between the
India and Eurasia plates. This earthquake is not a surprise
amongst the scientific community, as it is well known that
the Indian plate is continuing to dive below the Eurasian
plate at a velocity of about 5 cm year '

As pointed out by Dixit et al. (2015), strong-motion
monitoring in Nepal has remained limited, so instrumen-
tal data are lacking in the near-source region (Hough
2015). The nearest available instrumental records of the
mainshock are the few from Kathmandu area: a conven-
tional strong-motion instrument installed at a US
Embassy facility (KATNP) (Galetzka et al. 2015; Dixit

Ipga computed from Parvez et al. (2003)

Ipga computed from present study

Ivax No. of cells dr>0

VI 300 90 96
VIl 250 83 94
v 109 79 95
X 27 74 89
X 6 17 100

dl>-1

No. of cells dl>0 dl>—1
383 91 98

260 89 98

103 90 98

28 86 93

6 100 100

Asin Fig. 14, dI = Ipga — Ivax, Where Ipga means “intensity converted from DGA”, Iyjax means “maximum observed intensity” and “No.
of cells” is the number of cell where the value of maximum observed intensity is equal to /y;px and the DGA map reports a value. The table
reports percentages of cells where d/ > 0 and the percentages of cells where d/ > —1. The total number of cells for each value of intensity is
different between the two comparisons because of the different areas covered by maps of Parvez et al. (2003) and the maps of the present

study
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et al. 2015), an accelerometer installed in the premises of
the Department of Mines and Geology (DMG) in
Lainchaur (Bhattarai et al. 2015) and a low-cost acceler-
ometer (Dixit et al. 2015). The ground motion is domi-
nated by long periods, due to the character of the source
radiation combined with long-period basin effect
(Galetzka et al. 2015). The hazard maps of this study
(Fig. 10) give, for the grid point nearest to KATNP and
DMG stations, the value of 30-60 cm s~ for PGV and
0.6-1.2 g for DGA. The recorded PGA at KATNP and
DMG stations is significantly lower, ~0.16 and ~0.20 g,
respectively, whereas PGV is greater (107 cm sy at
KATNP or equal (58 cm's ') at DMG. While the discrep-
ancy in acceleration values, though conservative, requires
detailed ad hoc investigation, the underestimation of
PGV value of KATNP can be well justified by long-
period effects discussed by Galetzka et al. (2015).
Because of the lack of instrumental data in the near-
source region, the only reasonable comparison with our
hazard maps is supplied by the macroseismic data from
Martin et al. (2015). The updated earthquake catalogue
used to produce the hazard maps shown in Fig. 10 obvi-
ously includes the Apri-May 2015 sequence; therefore, to
test the stability of NDSHA results, a DGA map has been
produced removing from the catalogue the events of this
sequence. We follow a procedure similar to that described
in Sect. 7: from the macroseismic data of Martin et al.
(2015), we computed Iy;ax on the regular 0.2° x 0.2° mesh
used for the modelling and we converted DGA values into
Ipga. From this comparison, we can say that /\ax linked
with damage never exceeds Ipga; therefore, DGA values
provide a cautious estimate of hazard even when the
sequence is excluded. On the other hand, the inclusion of
the 2015 sequence increases ground motion values only in
a few points and provides a validation of the general
ground shaking prediction capabilities of NDSHA.

9 Conclusions

Realistic synthetic seismograms have been computed
for India using NDSHA to provide a powerful and
economically valid robust scientific tool for seismic
zonation and hazard assessment. Unlike other methods
for estimating seismic hazard, the advantage of this
approach lies in its ability to directly to account for the
effects of source mechanism and wave propagation on
the modelled ground shaking.

With respect to the work by Parvez et al. (2003), the
structural model for the entire India has been redefined at a
resolution of 1° x 1°, amounting to 387 cellular structures;
the earthquake catalogue and the seismogenic zones have
been updated and a more realistic source model, the size
and time-scaled point source (STSPS), has been adopted in
the computations.

The seismic hazard, expressed in terms of maximum
displacement (Dmax), maximum velocity (Vmax) and
design ground acceleration (DGA), has been extracted
from the synthetic seismograms and mapped on a regular
grid of 0.2° x 0.2° over the entire country. The highest
seismic hazard, expressed in terms of DGA (in the range of
0.6-1.2 g), is mainly distributed in western Himalayas and
Central Himalayas along the epicentral zone of Bihar
Nepal earthquake, part of NE India and Gujarat
(Kachchh region). A similar pattern has been found in
peak velocities and peak displacements in the same areas.

We have also compared our results with the maxi-
mum observed intensities reported in EMS scale by
Martin and Szeliga (2010). We can see that where
observations are available, the modelled intensities are
rarely exceeded by maximum observed intensities.

We believe that the robust results, well consistent with
the information content of the available data (Panza et al.
2013), presented here contribute to a better understanding
of the seismic hazard in India and neighbouring areas.
They should also be used to update the building code IS
1893 of the Bureau of Indian Standards. Furthermore, our
multidisciplinary approach may help those seismic and
civil engineers who wish to undertake comprehensive
and detailed studies of earthquake hazard especially in
the eastern Himalayan region, eastern and western India
and some big cities such as Delhi, Mumbai and Kolkata.
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