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Abstract The evaluation of seismic risk of spatially
distributed systems requires the spatial correlation model
for ground motion intensity measures. This study inves-
tigates the spatial correlation of four earthquakes record-
ed in northern Iran. The intra-event spatial correlation for
both horizontal and vertical components of spectral ac-
celeration at eight periods in the range of 0.0–3.0 s is
estimated using geostatistical tools. An exponential form
is chosen to fit experimental semivariograms, and the
correlation ranges of spectral accelerations as a function
of period are derived. The results show similar trend of
correlation ranges for both components. It should be
mentioned that the ranges for the vertical component,
in general, are higher than those observed for the hori-
zontal one. For both components, the correlation ranges
as a function of period are divided into three segments.
The first and the third one are increasing while the
second one is decreasing with increasing period.

Keywords Lifelines . Spatial correlation .

Risk assessment . Spectral accelerations

1 Introduction

Estimating spatial correlation ground motion intensity
measures (IMs) over a region is necessary to assess
seismic risk of lifeline networks such as transportation,
electrical and gas networks, telecommunications, and
water supply. This requires to consider the correlation
between ground motion IMs during different earth-
quakes (inter-event correlation) and at different sites
(intra-event correlation). Several researchers investigat-
ed the effects of spatial correlation of ground motion
IMs on loss assessment of spatially distributed systems.
It is shown that ignoring or underestimating the spatial
correlation may overestimate frequent losses and under-
estimate rare ones (Bastami 2007; Bazzurro and Luco
2007; Lee and Kiremidjian 2007; Park et al. 2007).
Some studies used only a specific earthquake scenario
(Crowley et al. 2008; Goda and Atkinson 2009; Lee
et al. 2004; Lee and Kiremidjian 2007; Molas et al.
2006; Sokolov and Wenzel 2011b) which in general
analyzed the intra-event correlation effects. Multiple
earthquakes were investigated by Goda and Hong
(2008a), Goda and Hong (2009), McVerry et al.
(2004), Park et al. (2007), Sokolov and Wenzel
(2011a), andWesson and Perkins (2001) who in general
considered both inter- and intra-event correlations.
Bommer and Crowley (2006) and Crowley and
Bommer (2006) introduced two procedures to estimate
loss exceedance curve. The first method is based on
independent probabilistic seismic hazard assessment,
and the other has used a scenario-based Monte Carlo
simulation approach based on the seismicity model.
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The loss calculation approaches are based on ground
motion IMs. In general, ground motion IMs, such as
peak ground acceleration (PGA), peak ground velocity
(PGV), and spectral accelerations (SAs), can be obtain-
ed using ground motion prediction equations (GMPEs).
These equations are presented as a function of earth-
quake magnitude, source-to-site distance, faulting
mechanism, local site conditions such as Vs30 (time-
averaged shear wave velocity in the top 30m), and other
parameters. GMPEs can account for the effects of spatial
variations, and to do this, the database used and the
regression method are very important. Partially
nonergodic GMPE models developed by Gianniotis
et al. (2014), Kotha et al. (2016), Sedaghati and Pezeshk
(2017), and Stafford (2014) can account for spatial
variability for distinct regions. In addition, Landwehr
et al. (2016) presented a fully nonergodic groundmotion
model for California records with coefficients that vary
continuously on a spatial scale. However, most of old
GMPEs cannot model spatial correlation of IMs at dif-
ferent sites because of their regression methods or data-
base used.

In the literature, several spatial correlation models for
different IMs have been introduced. Boore et al. (2003)
used the 1994 Northridge earthquake observations to
compute spatial correlation model of PGA. Wang and
Takada (2005) computed spatial correlation of PGV
using several earthquakes in Japan and the 1999 Chi-
Chi earthquake. Goda and Hong (2008b) and Jayaram
and Baker (2009) computed spatial correlation models
based on the 1999 Chi-Chi earthquake and some well-
recorded earthquakes in California, and Hong et al.
(2009) used only some earthquakes in California. In
these studies, the models were proposed using well-
recorded individual earthquakes, such as the 1994
Northridge earthquake. In fact, in these studies, the
correlation ranges of each earthquake were investigated
separately; then, a model based on obtained ranges was
proposed. However, in the other approach, spatial cor-
relations were investigated based on gathering the data
from a group of earthquakes. Goda and Atkinson (2010)
proposed models based on comprehensive databases
accumulated in Japan. Esposito and Iervolino (2011,
2012) used the Italian accelerometric archive and the
European strong-motion database and Pavel and
Vacareanu (2016) used Vrancea (Romania)
intermediate-depth earthquakes. The models in above-
mentioned studies investigated the spatial correlation of
single IMs at different sites, and in most cases, the

horizontal component is considered. The spatial cross
correlation of vector IMs was presented by some
researchers. For example, Loth and Baker (2013) and
Du and Wang (2013) investigated the spatial cross cor-
relation of SAs at multiple periods. In other study, Wang
and Du (2013) proposed models for two sets of vector
IMs: the first set (PGA, PGV, and Ia) and the second set
(SAs at multiple periods) considering the effects of
regional site conditions. The results reported by these
studies show different rates of decay of correlation with
site-to-site separation distance. Some studies investigat-
ed the effects of local site conditions on spatial correla-
tion of IMs (Du and Wang 2013; Jayaram and Baker
2009; Sokolov and Wenzel 2013; Sokolov et al. 2012;
Wang and Du 2013). These studies reported that spatial
correlation of IMs tends to be stronger if the regional site
conditions are more homogeneous. The spatial homo-
geneity of a region can be presented using the spatial
correlation of Vs30. The region whose range of Vs30 is
larger shows a more homogeneous site condition.

Spatial correlation models of IMs have not been esti-
mated for the Iranian plateau so far. However, it has
experienced destructive earthquakes since ancient times
and has a long history of seismicity (Ambraseys and
Melville 2005; Berberian and Yeats 1999). Therefore,
the spatial correlation models are required to accurately
perform seismic hazard analysis. In addition, aforemen-
tioned models were proposed for horizontal component
of earthquake, although the importance of vertical com-
ponent of earthquake in inflicting damage has been
shown in some earthquakes such as 1995 Kobe, 1999
Chi-Chi, and 2005 Bam (Elgamal and He 2004;
Papazoglou and Elnashai 1996; Zahrai and
Heidarzadeh 2007). In particular, for a transportation
network including bridges in which the vertical compo-
nent of earthquake is significant, the derived correlation
ranges for vertical component can be useful. Esposito
et al. (2010) analyzed spatial correlation of vertical com-
ponent PGA based on European data; however, a model
for vertical SAs has not been proposed so far.

In this study, spatial correlation models for horizontal
and vertical spectral acceleration based on four
earthquakes in northern Iran were proposed. Four
earthquake events with considerable number of records
were selected. These earthquakes were located in the
northern Iranian plateau. The residual for each IM was
computed using the GMPE developed by Soghrat and
Ziyaeifar (2016) [SZ-16] which was derived based on
northern Iranian plateau earthquake records. The
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computation of spatial correlation was performed using
semivariogram as geostatistical tools. Then, the ranges
of spatial correlation were presented for eight periods,
ranging from 0.0 to 3.0 s. Since computing empirical
variogram needs a relatively large number of data which
are not available for individual earthquakes in the se-
lected datasets, data from multiple earthquakes were
pooled to estimate the correlations. This approach has
been used by Esposito and Iervolino (2011, 2012).
Finally, based on the results, models for spatial correla-
tion ranges as a function of structural period were pro-
posed. The obtained ranges are necessary to quantify
regional seismic risk.

2 Database of ground motions

The Iranian plateau as a large prone zone is divided into
five tectonic regions (Azerbaijan-Alborz, Kopeh Dagh,
central–east Iran, Makran, and Zagros) classified by
Mirzaei et al. (1998), as shown in Fig. 1. The earth-
quakes considered in this study were located in
Azerbaijan-Alborz region in northern Iran. The ground
motion model proposed by Soghrat and Ziyaeifar
(2016) was developed for Azerbaijan-Alborz and
KopehDagh regions. Figure 2 shows the map of stations
for four considered earthquakes: 2002 Changureh, 2004
Kojour, double events of 2012 Ahar-Varzeghan.

Additional information about these events is listed in
Table 1. The stations with available site class were
considered in this study. These classifications are based
on the Standard 2800 (Iranian Code of Practice for
Seismic Resistant design of Building). Sites are classi-
fied into four groups in term of Vs30 (I-Vs30 > 750 m/s,
II-375 < Vs30 < 750 m/s, III-175 < Vs30 < 375 m/s, and
IV-Vs30 < 175 m/s). Figure 3 shows the magnitude-
distance distribution of events considered.

3 Investigation of spatial correlations of IM residuals

The theoretical background of computing spatial corre-
lation is discussed in several references (Du and Wang
2013; Jayaram and Baker 2008; Sokolov and Wenzel
2013). Hence, in this section, it will be reviewed briefly.
In general, a ground motion IM recorded at site i,
triggered by earthquake j, can be estimated by GMPEs
as follows

ln Y ij
� � ¼ lnY ij M ;R; θð Þ þ εij þ η j ð1Þ

where Y ij M ;R; θð Þ denotes the predicted mean value of
groundmotion intensity,M denotes the earthquakemag-
nitude, R is the site-to-source distance, θ shows the other
parameters, such as local site conditions and faulting
mechanism. εij and ηj indicate the intra- and inter-event
residuals, respectively. These terms are assumed to be

Fig. 1 Tectonic regions in the
Iranian plateau (Mirzaei et al.
1998) and the considered
earthquakes
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normal variables with zero mean and standard devia-
tions of σij and τj, respectively (Jayaram and Baker
2008).

The predicted values of IMs for both horizontal and
vertical component were computed at eight different
periods using the SZ-16 model. The horizontal compo-
nent defined in SZ-16 is the geometric mean of N-S and
E-W. This model is proposed in two forms based on
either the value of Vs30 or site class. Because the Vs30

values for all stations were not available, the second
form of SZ-16 model was used. The SZ-16 model is
calibrated in this study because we used more records
than the database of Soghrat and Ziyaeifar (2016). The
observed bias for PGA and SA (T = 1.0 s) by using the
SZ-16 model is shown in Fig. 4. The estimated residuals
are corrected and the bias is removed. This can be
performed as follows (Du and Wang 2013)

εcorrij ¼ εij− α1 þ α2ln Rrup
� �� � ð2Þ

in which α1 and α2 denote the coefficients computed by
linear regression. In order to accurately compute the
intra-event spatial correlations, the residuals can be nor-
malized as follows

�εij ¼
εcorrij

σij
≅
ln Y ij
� �

−lnY ij M ;R; θð Þ− α1 þ α2ln Rrup
� �� �

σij

ð3Þ
where �εij indicates the normalized corrected intra-event
residuals. The spatial correlation of these residuals can
be investigated using semivariogram which is widely
used in geostatistics. The semivariogrm, γ(h),identifies
the spatial decorrelation or dissimilarity between data
separated by a vector h (Cressie 1993). Under the
second-order stationary assumption, the semivariogram
function can be written as follows

γ hð Þ ¼ 1

2
E Zui−Zuiþhð Þ2
h i

ð4Þ

Fig. 2 Location of stations of four considered earthquakes

Table 1 Earthquake events used in this study

Earthquake name Date Latitude Longitude Magnitude (Mw) Depth (km) Fault mechanism Number of records

Changureh 06/22/2002 35.67 48.93 6.4 10.0 Reverse 47

Kojour 05/28/2004 36.281 51.582 6.3 17.0 Reverse 92

Ahar-Varzeghan (1) 08/11/2012 38.31 46.80 6.4 7.0 Strike slip 35

Ahar-Varzeghan (2) 08/11/2012 38.394 46.814 6.4 19.2 Reverse 53
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where Zuiþh and Zui are the random variables separated
by the separation vector h and E[ ] denotes the expecta-
tion. In this study, the random variable is referred to the
normalized corrected intra-event residual, �εij. The
second-order stationarity of a random field implies that
the mean value of the random variable is constant over
the entire domain and the semivariogram values depend
only on the separation vector h and not on actual loca-
tion u. In addition, the stationary semivariogram is
isotropic if it is independent of the direction; therefore,
the vector h in Eq. (4) can be replaced by its norm ||h||.

The experimental semivariogram for second-order
random field can be computed as follows

γ̂ hð Þ ¼ 1

2N hð Þ ∑
N hð Þ

i¼1
Zui−Zuiþhð Þ2

h i
ð5Þ

in which N(h) denotes the number of pairs separated by h
and γ hð Þ denotes the empirical semivariogram (Cressie
1993). Several parametric functions have been proposed
to approximate the empirical semivariogram values.
Three basic forms can be considered: Gaussian,
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Spherical, and Exponential models (Cressie 1993). The
exponential model which is widely used in the literature
is applied to fit a model. This model can be written as

γ hð Þ ¼ a 1−e −3h
bð Þh i

þ c ð6Þ

where a is the sill of the semivariogram and equals the
variance of empirical data and b shows the range of the
semivariogram which is defined as the separation dis-
tance when the semivariogram reaches 0.95 times the sill,
c denotes the nugget that is defined the semivariogram
value when h tends to zero (Cressie 1993).

4 Spatial correlation models

This section discusses the ranges of semivariograms for
both horizontal and vertical components evaluated using
considered earthquakes. To estimate semivariogram
values, it is important to have at least 30 pairs in each
distance bin (Cressie 1993; Journel and Huijbregts
1978). Therefore, a bin width of 4 km and the maximum
site-to-source distance of 200 km are considered.
Figure 5 shows the number of pairs in each bin as a
function of separation distance. The exponential model
was selected to fit experimental values because this
model is widely used by other researchers (e.g.,
Esposito and Iervolino 2011; Esposito and Iervolino
2012; Jayaram and Baker 2009). It is assumed that the

model includes the nugget effect. Therefore, in eq. 6, the
range b and the sill a are parameters which are required
to estimate. There are several methods to estimate this
parameter, such as the least square fit, weighted least
square (WLS) fit, and the manual fitting method (Du and
Wang 2013; Jayaram and Baker 2009; Wang and Du
2013). In WLS, the weight is selected 1

hk
, where hk

denotes the center of each bin and this leads to better
approximation for the experimental values in close sep-
aration distance bins. WLS fitting approach is also ap-
plied by Wang and Du (2013). Since the correlations of
the large separation distances are low, hence, these cor-
relations have no significant effect on joint distributions
of ground motion IMs. In this study, both manual and
WLS fitting approaches are performed to estimate the
model parameters. The comparison of these approaches
shows that the predicted values using WLS for short
separation distances, less than 50 km, are more accurate.
Therefore, in this study, WLS is used to estimate the
parameters of the exponential model.

Figure 6 shows the experimental semivariograms and
corresponding fitted models for horizontal SAs at eight
periods ranging between 0.0 and 3.0 s. For each period,
the exponential model is built usingWLS approach. The
results show that the range of SA at T = 3 s is the largest
and the correlation decays at this period slower than the
others. The minimum range is obtained for T = 1 s.

Figure 7 shows the experimental semivariogram
values for vertical component of SAs and fitted models

Fig. 5 The number of data pairs
as a function of site-to-site
separation distance
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for eight periods. As it can be seen, in general, the
correlations decay slower in comparison with the hori-
zontal components, especially in periods between T =
0.5 s and T = 1 s. Figure 8a indicates the estimated
ranges as a function of spectral periods. It can be seen
from this figure that the estimated correlation range
tends to increase with period, except for short periods
(T < 1.0 s). This behavior observed in past studies of

ground motion coherency, which can be considered as a
measure of similarity in two spatially separated ground
motion time histories (Zerva and Zervas 2002). The
trend of correlation ranges can be approximated by three
segments: 0 ≤ T ≤ 0.5 s , 0.5 s ≤ T ≤ 1 s, and T ≥ 1 s.
The first segment is increasing up to T = 0.5 s which is
in contrast with the other studies. However, the second
and third segments are similar to the others. The second
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Fig. 9 Comparison of existing correlation models for horizontal acceleration component, a PGA and b SA (T = 0.5 s)
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decreasing segment was also observed by Jayaram and
Baker (2008), Jayaram and Baker (2009), and Zerva and
Zervas (2002) for sites with similar geological condi-
tions. The ranges in this segment decrease up to T = 1 s.
In the third segment, the trend is increasing as seen in the
model of Jayaram and Baker (2009). In this segment, the
rate of increasing range is larger than the models pro-
posed by Jayaram and Baker (2009) and Du and Wang
(2013), however, is consistent with the predicted model
presented by Esposito and Iervolino (2012). However,
the ranges estimated in the present study for long period
are smaller in comparison with the results in previous
studies.

Figure 8b shows the ranges of vertical component of
SAs as a function of periods. The trend of ranges for
vertical is similar to horizontal and can be divided into
three segments. In the first segment, ranges increase up to
T = 0.7 s, ; then, ranges have the decreasing trend up to
T = 2 s. In fact, in this case, the decreasing part is larger
than that of horizontal SAs. The ranges increase in the
third segment. It can be seen from Fig. 8b that the
correlation range tends to decrease with period in 0.7 s ,
2.0 s. The decreasing trend of correlation range in long
period is reported by Abrahamson et al. (1991). They
studied the vertical ground motion coherency and ob-
served that, at certain distances, the lagged coherency
attained lower values at lower frequencies.

Finally, the ranges obtained in this study are com-
pared with those of proposed by the other studies.
Figure 9 compares the intra-event correlation of hori-
zontal PGA and SA (T = 0.5 s) obtained from the
proposed model in this study for northern Iranian earth-
quakes with the results from models proposed by the
other researchers in the literature. Figure 9a shows that
the correlation ranges of PGA residuals of this study are
similar to those of the models proposed by Boore et al.
(2003), Goda and Hong (2008b), Esposito and Iervolino
(2012), and Du and Wang (2013). For distance less than
20 km, the model proposed by Boore et al. (2003) gives
the most correlation. The comparison of empirical cor-
relation of SA (T = 0.5 s) from the proposed model with
that of existing models, Fig. 9b, indicates that the model
proposed by Du and Wang (2013) gives more
correlation.

Figure 10 compares the empirical correlation of ver-
tical PGA from this study with that of the model pro-
posed by Esposito et al. (2010). This figure shows that
the decays of these studies are similar.

5 Conclusion

This study proposed the spatial correlationmodels based
on four earthquakes in northern Iran. The spatial corre-
lation for horizontal and vertical components of spectral
acceleration at eight periods was investigated using
geostatistical tools, which are widely applied in the other
similar studies. Because the stations are located in a
relatively large region, records from different events
were pooled to derive the models.

Based on the results presented in this study, an expo-
nential form was chosen for the proposed models. Re-
sults show similar trend of correlation ranges for both
horizontal and vertical components. However, the
ranges for vertical components of SAs are larger than
the horizontal ones. These ranges as a function of period
can be divided into three segments. The first and the
third one are increasing while the second is decreasing
with increasing period. The ranges increase up to 0.5 s
for horizontal SAs and up to 0.7 s for vertical ones. The
ranges decrease up to T = 1 s for horizontal components
of SAs while this segment extends up to T = 2 s for
vertical ones.
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