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Abstract The aim of the present work is to furnish a
detailed picture of the space-time-magnitude statistical
properties of the instrumental seismic catalogue of Azer-
baijan and surrounding regions from 2003 to 2016.
Although Azerbaijan is one of the most seismically
active areas in the world, an exhaustive description of
the statistical properties of the time, space, and magni-
tude distribution of its seismicity is still lacking. There-
fore, the aim of this work is to fill this scientific gap.
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1 Introduction

The territory of Azerbaijan is located within the central
part of theMediterranean tectonic belt, whose seismicity

is caused by intensive geodynamic interaction of the
Eurasian and Arabian lithospheric plates (McKenzie
1972; Reilinger et al. 2006; Kadirov et al. 2012;
Kadirov et al. 2015).

Although the territory of Azerbaijan represents one
of the most seismically active regions worldwide, and in
the past several strong and catastrophic earthquakes
with magnitude M ≥ 6 occurred (like the Goygol earth-
quake (1139), the Ganja earthquake (1235), the Eastern
Caucasian earthquake (1668), the Mashtaga earthquake
(1842), and the numerous Shamakhi earthquakes (1192,
1667, 1669, 1828, 1859, 1868, 1872, 1902), or Caspian
earthquakes (957, 1812, 1842, 1852, 1911, 1935, 1961,
1963, 1986, 1989, 2000) that triggered earth relief
changing, destroyed buildings completely and caused
numerous casualties, it was only after the earthquake in
the Caspian Sea occurred on November 25, 2000
(M = 6.3; φ = 40°, λ = 50°, h = 35 km) that the seismic
monitoring of Azerbaijan was improved by the installa-
tion of modern telemetric stations with satellite commu-
nications system (Yetirmishli et al. 2013; Kadirov et al.
2013) providing a rather good spatial coverage of the
whole territory and surrounding regions.

In the territory of Azerbaijan, there are also numerous
mud volcanoes which are perhaps under the influence of
the crust deformations and earthquakes (Fig. 1). The
number of mud volcanoes located on land and at sea
exceeds 250. Many mud volcanoes are active at the
present time (Yakubov et al. 1971; Aliyev et al. 2009,
2015). A relationship between the occurrence of large
earthquakes and the eruptions of close mud volcanoes is
well known and it is studied in works (Mellors et al.
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2007; Babayev et al. 2014). Mellors et al. (2007)
showed that there is a statistically significant number
of mud eruptions triggered by earthquakes by analyzing
their temporal–spatial relationships especially in Azer-
baijan. Babayev et al. investigated the evaluation of both
the static and dynamic strains induced by earthquakes in
the substratum of mud volcanoes. A relationship be-
tween the occurrence of the crust deformations (GPS
velocity) and the activity of mud volcanoes is studied in
works (Kadirov et al. 2014; Kadirov and Safarov 2013).
The analysis of the relationships between the contem-
porary deformation processes and mud volcanic activity
overall demonstrates the predominance of vertical dis-
placements, which may result from the horizontal com-
pression, where horizontal strains act as triggers.

With the exception of some case studies, mainly
focused on seismic hazards and risk of some regions
within the Azerbaijani territory (Babayev 2010;
Babayev and Telesca 2014), an exhaustive statistical
analysis of the properties of the space-time-magnitude

distribution of the entire instrumental seismic catalog of
Azerbaijan is still lacking, up to our knowledge.

Therefore, the aim of the present study is to furnish a
detailed picture of the statistical properties of the most
updated seismic catalog of Azerbaijan and surrounding
regions from 2003 to 2016.

2 Seismo-tectonic settings

The territory of Azerbaijan represents the mountainous
section of the Greater Caucasus, the Lesser Caucasus,
Kur depression zone, and the South Caspian Basin (Fig.
1). Mountains of the Greater and Lesser Caucasus ex-
tend between the Black and Caspian seas and creates a
part of the continuous Alpine-Himalayan orogenic belt
(Nemčok et al. 2011; Kadirov et al. 2012; Alizadeh et al.
2016) (Fig. 1). Greater and Lesser Caucasus is the main
orogens of the Azerbaijan earthquake-prone country.
The Azerbaijan territory has been exposed to the

Fig. 1 Overview of the tectonics of the Azerbaijan. Black vectors
are GPS velocities relative to Eurasia from Reilinger et al. (2006).
Red triangles are mud volcanoes. The focal mechanism solutions
are from Global CMT catalog (Ekström and Nettles 1997; Huang
et al. 1997; Chen et al. 2001) and the white star marks the
approximate location of the 1902 Shamakhi and 1139 Ganja

earthquakes. NCT North Caucasus Thrust fault, MCT Main Cau-
casus Thrust fault, LCT Lesser Caucasus Thrust fault, WCF West
Caspian fault, NCFNorth Caspian fault. The figure was generated
using the Generic Mapping Tools (GMT) software (Wessel et al.
2013)
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continuous collision between Arabian and Eurasian
plates (Mckenzie 1972; Sengor et al. 1985; Jackson
1992; Philip et al. 2003; Reilinger et al. 2006; Kadirov
et al. 2012; Kadirov et al. 2015; Alizadeh et al. 2016).
The collision closed the Greater Caucasus region, fur-
ther deformed it together with the Eurasian Platform
during Middle-Late Miocene, and the Kur Basin and
the Greater Caucasus become zones of the maximum
underthrusting (Nemčok et al. 2011).

Plate tectonic reconstructions provide only broad
constraints on the timing of the initial collision of the
Arabian Plate with Eurasia of between 10 and 30Ma BP
(e.g., Allen et al. 2004; Kadirov et al. 2008; Alizadeh
et al. 2016) and indicate that the rate of northward
motion of Arabia relative to Eurasia has remained more
or less constant at about 20 mm/year since collision
began (Reilinger et al. 2006). These reconstructions
imply that Arabia has progressed from 200 to 600 km
Binto^ space formerly occupied by Eurasian continental
lithosphere. This Bintrusion^ of Arabia into Eurasia
continues to be accommodated by lithospheric shorten-
ing on roughly E-W striking thrust faults and lateral
displacement of lithosphere out of the collision zone
along right-lateral strike-slip faults (McKenzie 1972;
Sengor et al. 1985; Jackson 1992; Reilinger et al.
2006). These regional tectonic processes give rise to
earthquakes that have devastated the Caucasus region
throughout recorded history.

Repeating GPS measurements in Azerbaijan dur-
ing the period 1998–2016 were providing direct
observations of present-day surface motions (Fig.
1). They clearly define active convergence between
the Lesser Caucasus/Kur depression and the Greater
Caucasus with strain concentrated along MCT
(Philip et al. 2003; Reilinger et al. 2006; Kadirov
et al. 2008; Kadirov et al. 2012; Telesca et al.
2015). Present-day slip rates on the MCT decrease
from 10 ± 1 mm/year in eastern Azerbaijan to
4 ± 1 mm/year in western Azerbaijan (Kadirov
et al. 2008; Kadirov et al. 2015). In the Lesser
and Greater Caucasus, the observed stress pattern
shows lateral variations. The seismic activity pat-
tern provides important information about the re-
cent block differentiation.

The predominant faults in Azerbaijan are longitudinal
sublatitudinal of the Caucasus extension which consid-
erably obscures the appearance of the transversal faults.
Tectonics of Azerbaijan is characterized by main fault
structures which are North Caucasus Thrust fault (NCT),

Main Caucasus Thrust fault (MCT), Lesser Caucasus
Thrust fault (LCT), West Caspian fault (WCF), North
Caspian fault (NCF) (Fig. 1). The compression is ob-
served in the western part of Azerbaijan through MCT
fault and the depression occurs southward alongside
the northern edge of the mountain ring. Besides, an
obvious transition from the left-lateral strike-slip to
the mostly right-lateral strike-slip occurs towards
southern part of the Greater Caucasus Mountain
Range. Reverse dip slips in the north-north-eastern
direction are predominant along MCT, which results
in the crustal contraction along MCT (Nemčok et al.
2011; Kadirov 2000; Babayev and Telesca 2014;
Telesca et al. 2013; Kadirov et al. 2015; Alizadeh
et al. 2016). Figure 1 shows faults determined by sur-
face geological mapping and those interpreted from
earthquake and gravity data. This set of faults demon-
strates that the majority is formed by NW-SE striking
faults. Mapped faults (Alizadeh 2008; Shikhalibeyli
1996; Kadirov 2000), based on observation of the
dip-slip displacement component, indicate that some
NW-SE striking faults comprise reverse and normal
faults (Kadirov 2000; Agayeva and Babayev 2009).
Their dip towards NE is prevalent. Mapped NNW-
SSE to NE-SW faults in the Greater Caucasus region
indicate that they formed as dextral and sinistral strike-
slip faults accommodating in homogeneous shortening
(Alizadeh 2008; Shikhalibeyli 1996).

Taking into account the geological structure, level of
seismicity, complex analysis of GPS velocities
(Reilinger et al. 2006), seismicity (Kondorskaya and
Shebalin 1982; Gasanov 2003; Babayev 2010;
Babayev et al. 2010), fractal dimension of the earth-
quakes, and the stress state of the Earth’s crust (Agayeva
and Babayev 2009), Azerbaijan territory can be divided
into the several individual large zones: southern slope of
the eastern part of Greater Caucasus (SSGC), Kur de-
pression (KD), northern slope of Lesser Caucasus
(NSLC), Gusar-Shabran depression (G-SD), Absheron
Peninsula (AP), Talish Zone (TZ), and Caspian Sea.
There are four seismogenic zones throughout the south-
ern slope of the eastern part of the Greater Caucasus:
Balaken-Zagatala, Sheki-Gabala, Shamakhi-Ismayilli
and Absheron (Kadirov et al. 2013) (Fig. 2). The
Balaken-Zagatala zone and the Shamakhi-Ismayilli
zone are characterized by the extension, and the dis-
placements over those areas are mainly normal dip slips
and normal dip slips with strike-slip motion. The Sheki-
Gabala and the Absheron zones are mostly compression
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with the thrust and reverse faults (Kadirov et al. 2013).
The Lesser Caucasus is characterized by strike-slip fault
type, while TalyshMountains are characterized by thrust
regimes.

According to the map of the focal mechanisms and
stress distribution (Fig. 1), the thrust fault of horizontal
compression trending north-north-east in the western
part of the southern Caucasus and east-northeast within
the eastern part of the Greater Caucasus occurs
(Agayeva and Babayev 2009; Kadirov et al. 2013).
The map of focal mechanisms of earthquakes with mag-
nitudes larger than 5 is shown in Fig. 1.

3 Data

Our multiparametric statistical analysis of the seismicity
relied on the catalog the Republican Seismic Survey
Center of the Azerbaijan National Academy of Sciences
of the earthquakes with local magnitudeM ≥ 2, available
at the following link: http://www.seismology.
az/en/earthquakes#.WMVMgDieaPg (Fig. 3 shows the
seismic network of Republican Seismic Survey Center
of Azerbaijan National Academy of Sciences). Figure 4
shows the spatial distribution of the investigated seismic
catalog from 2003 to 2016.

4 Methods and results

In this study, we investigate the seismicity occurred
from January 1, 2003, to April 21, 2016, in the territory
of Azerbaijan and surrounding regions by employing

several and independent statistical approaches. Our aim
is to get the most exhaustive description of the earth-
quake process involving the territory of Azerbaijan, by
furnishing a complete space-time dynamical characteri-
zation of the Azerbaijani seismicity that, up to our
knowledge, has not been performed so far.

4.1 The frequency-magnitude distribution

The frequency-magnitude distribution (FMD) in tecton-
ic areas can be fit by the Gutenberg-Richter (GR) law
(Gutenberg and Richter 1944) that is a power-law rela-
tionship between a threshold magnitude Mth and the
cumulative number of seismic events with magnitude
larger than such a threshold; it is generally expressed as
log10(N) = a-bMth (a line in semi-log scales) where N
represents the cumulative number of events whose mag-
nitude is above the threshold, a represents the earth-
quake productivity, and b is a critical parameter
informing about the size distribution of earthquakes
(Gutenberg and Richter 1944; Ishimoto and Iida
1939). A large/small b value suggests a relatively
larger/smaller proportion of less intense events in rela-
tion with the more intense ones. In particular, the b value
can indirectly quantify stress crustal conditions (Scholz
1968; Wyss 1973) or identify volumes of active magma
bodies (Wiemer et al. 1998). It is even employed to
discriminate purely tectonic seismicity (b < 1.5–1) from
volcano-tectonic earthquakes (b > 1.5) that are princi-
pally caused by hydraulic fracturing of the host rock
induced by overpressurized magma and/or associated
fluids. Variations in seismic b value of acoustic emission
events during the stress buildup and release on

Fig. 2 The seismogenic zones
throughout the southern slope of
the eastern part of the Greater
Caucasus: I—Balaken-Zagatala,
II—Sheki-Gabala,
III—Shamakhy-Ismailly, and
IV—Absheron
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laboratory-created fault zones were investigated
(Goebel et al. 2013), and evidence was shown that the
b value in the size distribution of acoustic emission
events decreases linearly with differential stress
(Scholz 2015). Tormann et al. (2015) found that b
changes in space mirroring the tectonic regime. Spada
et al. (2013) found a negative correlation between b

value and differential stress, confirming, thus, the idea
of b as stress meters in the Earth’s crust (Schorlemmer
et al. 2005).

The reliable estimation of b for seismicity repre-
sents an important task aimed at the characterization
of different stages of seismicity evolution and, thus,
changes in the dynamic processes; it has also a great

Fig. 3 The Seismic network of Republican Seismic Survey Center of Azerbaijan National Academy of Sciences

Fig. 4 Spatial distribution of
seismicity in Azerbaijan and
surrounding regions from 2003 to
2016. The sizes of the crosses are
proportional to the magnitude of
the events
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importance in seismic hazard assessments (Naylor
et al. 2009).

In our paper, we estimate the b value by means of
maximum likelihood method (Aki 1965),

b ¼ log10 eð Þ
< M > − M c−ΔMbin=2

�
;

� ð1Þ

where <M> is the mean magnitude of the subset of
seismic events with magnitude larger or equal to the
completeness magnitude Mc and ΔMbin represents the
binning width of the catalog (Utsu 1999).

The standard deviation of the estimate of b is calcu-
lated by using the Shi and Bolt’s (1982) formula,

σb ¼ 2:3b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i¼1
Mi− < M >ð Þ2

N N−1ð Þ

vuuut
: ð2Þ

The estimation of the b value depends on the
estimate of the completeness magnitude Mc which
represents the minimum magnitude above which the
seismic catalog can be considered complete.
Selecting only the earthquakes with magnitude
M ≥ Mc ensures that the results of the statistical
analysis are reliable.

Figure 5 shows the cumulative (CFMD) (squares)
and non-cumulative frequency-magnitude distribution
(NCFMD) (triangles) of the Azerbaijani seismicity.
The CFMD and NCFMD are used to evaluate the
completeness magnitude Mc. There are several
methods that perform such estimation. Wiemer and
Wyss (2000) proposed the method of the maximum
curvature (MAXC), which allows a simple estimate of
Mc as that magnitude corresponding to the highest fre-
quency of earthquakes in the NCFMD (Fig. 5a). Anoth-
er method, so called entire magnitude range (EMR)
(Woessner and Wiemer 2005) considers the entire mag-
nitude set, whose complete part is modeled by a power-
law with a and b value estimated by the MLE method,
and the incomplete part is modeled by a normal cumu-
lative distribution function describing the detection ca-
pability as a function of magnitude is fitted to the data
and depends on μ (magnitude at which 50% of the
earthquakes are detected), σ (the standard deviation
describing the width of the range where earthquakes
are partially detected) and Mc, which represents the
lower limit of magnitudes that are detected with proba-
bility 1. The Mc corresponds to the magnitude that
maximizes the log-likelihood function of a, b, μ, and σ

(Fig. 5b). Wiemer and Wyss (2000) proposed also a
method based on the goodness-of-fit (GFT) calculated
as the absolute difference of the number of earthquakes
in the magnitude bins between the observed CFMD and
synthetic CFMDs computed using the a and b values of
GR law of the observed dataset forM ≥Mth as a function
of increasing threshold magnitudesMth. It is taken asMc

of the catalog the magnitude above which the 90% of
the observed data are well modeled by a straight line
(Fig. 5c). All these methods were implemented in the
freely available software package ZMAP (Wiemer
2001). In our case, the three methods furnish different
values ofMc: 2.1 (MAXC), 2.5 (EMR), and 2.9 (GFT),
and correspondingly different values for the couple (a,
b): (4.45, 0.507) (MAXC), (4.68, 0.579) (EMR) and
(5.3, 0.763) (GFT). The standard deviation σb, calculat-
ed by using Eq. (2) are: 0.008 (MAXC), 0.01 (EMR),
and 0.02 (GFT). Actually, the shape of NCFMD seems
quite unusual, because appears bimodal with the pres-
ence of two very close maxima, one at 2.1 and one at
3.0, although the absolute maximum is at 2.1, as iden-
tified by the MAXC method. The bimodal shape of the
NCFMD leads to clearly lower estimation performance
of MAXC and EMR methods; in fact, the GR power-
law (red line) does not fit adequately the NCFMD for
magnitude larger than Mc, especially at higher ranges.
The bimodal shape of the NCFMD is very probably due
to a mixing of seismic data recorded by different seismic
network spatial configurations: the maximum at 3.1
could be associated to a regional network and the
maximum at 2.1 can be associated to a local network.
Mignan (2012) found the same phenomenon in the
Nevada earthquake catalog whose NCFMD displayed
two different maxima due to the superposition of two
different NCFMD arising from a regional and local
seismic network. Also Wiemer and Wyss (2002) exam-
ined several cases of bimodal NCFMDs due, for in-
stance, to contamination by explosions, or to onset of
volcano-related events.

In our case, therefore, for the Azerbaijani seismic
catalog, there should exist a spatial heterogeneity in
Mc that significantly alters the shape of the NCFMD.
The estimation of the Mc by using the GFT method,
thus, seems more reliable.

Figure 5d shows the variation of b value with the
magnitude threshold 2.0 until 4.5, with error bars
calculated by using formula (2). It is visible that for
thresholds until 2.9 the b value increases with the
threshold but it is quite stable for 3.0 ≤ threshold ≤ 3.8
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with b value around 0.85; for thresholds larger than
3.8, the b value peaks at 4.2 but stabilizes again
around 0.85 at largest thresholds.

Thus, on the base of all these results, we can
assert that the completeness magnitude of the Azer-
baijani catalog during the period 2003–2016 is 3.0
and the b value of the GR law is about 0.85.

In the next statistical analyses, then, we will
consider the subset of seismic events with magni-
tude M ≥ 3.0. The number of events with M ≥ 3.0 is
1163. The spatial distribution of the events is shown
in Fig. 4. Figure 6 shows the time-magnitude plot
(Fig. 6a) and the time-depth plot (Fig. 6b) for the
events with M ≥ 3.0.

4.2 The coefficient of variation

The coefficient of variation Cv is a simple quantity used
to investigate the properties of the temporal distribution
of a seismic series. It is defined as

Cv ¼ σ
μ
; ð3Þ

where σ and μ are the standard deviation and the
average of the interevent times (Fig. 7), respectively.
If Cv is smaller, equal or higher than 1, the seismic
series is regular (or periodic), purely random (or
Poissonian) or clustered (Kagan and Jackson
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1991). The coefficient of variation was extensively
employed to identify the type of temporal distribu-
tion of earthquakes in many seismic zones world-
wide. Recently, Telesca et al. (2016) introduced the
local coefficient of variation Lv, defined by

Shinomoto et al. (2005), to analyze the volcano-
related seismicity at El Hierro, Canary Islands
(Spain):

Lv ¼ 1

N−1
∑
N−1

i¼1
3

Ti−Tiþ1ð Þ2
Ti þ Tiþ1ð Þ2 ð4Þ

The value of Cv and Lv is 1 for a Poisson process
(with exponential probability density function of the
interevent times) and is 0 for a periodic process. Cv is
able to identify global variability of a whole interevent
sequence and can be affected by event rate fluctuation,
while Lv identifies local stepwise variability of
interevent times, because it is rather independent of slow
variation in average rate. Just as an example, if one joins
two periodic point processes like those in Fig. 8, Cv ≫ 1
because globally the process appears highly clustered,
but Lv~0, due to the regular character of the process at a
local scale.

We calculated both the global and the local coeffi-
cient variation for the seismicity of Azerbaijan for the
earthquakes with magnitude M ≥ 3.0, and obtained
Cv~1.25 and Lv~1.28. We compared these values with
those obtained from 10,000 Poisson processes randomly
generated with the same size (N = 1163) and mean
(<T > ~4.18 days) as the original seismic interevent time
series. The 95% confidence interval, which is given by
the 2.5th and 97.5th percentiles of the distribution of Cv

and Lv of the Poissonian surrogates, are [0.9448, 1.0579]
forCv and [0.9393, 1.0630] for Lv; and this indicates that
both globally and locally, the distribution of the Azer-
baijani earthquake occurrence times is clusterized.
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4.3 The scaling exponent of the magnitude time series

The Detrended Fluctuation Analysis (DFA) (Peng et al.
1994) is a well-known method employed to detect long-
range correlations in non-stationary series; it was used in
many scientific fields (Telesca and Lovallo 2009;
Telesca and Lovallo 2010; Telesca and Lovallo 2011;
Telesca et al. 2012). Telesca et al. (2016) found a rela-
tionship between the enhancement of the scaling expo-
nent calculated by the DFA (see later in the text) during
the reactivation periods of the volcanic activity at El
Hierro, Canary Islands (Spain) in the 2011–2014.
Varotsos et al. (2014) applied the DFA to the series of
magnitude of earthquakes occurred in different seismo-
tectonic zones worldwide and found characteristic
variations in the temporal correlations between
earthquake magnitudes and interpreted such variations
in terms of earthquake prediction. Lennartz et al. (2008)
analyzed by using the DFA the long-range correlations
of the magnitude series of earthquakes occurred in
Northern and Southern California and evidenced that
the temporal fluctuations of magnitudes are character-
ized by long-term memory in the seismicity. Varotsos
et al. (2012) found that in stationary regimes, California
seismic activity is characterized by long-range temporal
correlations among magnitudes (indicated by a DFA
scaling exponent ~0.6), while before the occurrence of
large shocks, these correlations break down.

From all above, we can argue that the analysis of
long-range correlations in earthquake magnitude series
can allow gaining insight into the dynamics of a seismic
process.

The DFA method is described below:

i) The magnitude seriesMi, where i = 1,…,N, and N is
the total number of events is integrated

yk ¼ ∑k
i¼1Mi− < M >; ð5Þ

where <M> is the average magnitude of the sequence;

ii) The integrated series yk is divided into windows of
same length n;

for each n-size window, the least square line yn,k fits
yk and is subtracted from yk;

iii) The fluctuation, Fn, is calculated

Fn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑
N

k¼1
yk−yn;k
� �2s

; ð6Þ

iv) The steps i–iv are repeated for all the available
window sizes n; if the relationship between Fn~n
is a power-law, the magnitudes are long-range
correlated:

Fn∼nα; ð7Þ

v) From the numerical value of the scaling exponent
α, we can get information about the type of corre-
lations: if the magnitude is uncorrelated, then
α = 0.5; if the magnitudes are persistently correlated
(meaning that a large (small) magnitude (compared
to the mean) has larger probability to be followed
by a large (small) magnitude), then α > 0.5; if the
magnitudes are antipersistently correlated (meaning
that a large (small) magnitude (compared to the
mean) has larger probability to be followed by a
small (large) magnitude), then α < 0.5.

Figure 9 shows the fluctuation function Fn of the
magnitude series (M ≥ 3.0) of the Azerbaijani catalog
plotted in log-log scales. The fluctuation function dis-
plays a very clear power-law behavior (indicated by the
linear shape in bilogarithmic scales). The slope of the
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line fitting in a least square sense the fluctuation func-
tions furnishes an estimate of the scaling exponent,
α~0.53 that indicates that the magnitudes should not
be correlated. This indicates that in the period analyzed
and for the area investigated, the magnitude of any event
that occurred in a certain time and in a certain location
does not depend on the magnitude of past events nor
will influence the magnitude of future events. The sig-
nificance of α is evaluated by using the method of
surrogates, uncorrelated magnitude sequences con-
structed by randomly shuffling the magnitudes of the
original series. The DFA is then performed on the sur-
rogates and the scaling exponent αS of surrogates is
computed. After generating a sufficiently large number
of surrogates and calculated αS for each one, the 2.5th
and 97.5th percentiles of the distribution of αS will
furnish the 95% confidence band. If α lies within the
95% confidence band, this indicates that the original
sequence is significantly uncorrelated, otherwise, it is
correlated (persistent if above, or antipersistent if below
the confidence band). In our case, on the base of 10,000
random surrogates, the 95% confidence band is given
by [0.40, 0.62], thus the magnitude series is
uncorrelated.

This finding is not trivial, if compared with
analogous results obtained in previous studies.
Lippiello et al. (2008), for instance, based the fea-
sibility of earthquake predictions also on the depen-
dence of magnitude of an event from those of past
earthquakes. In fact, if temporal and/or spatial
clusterization is nowadays accepted by the seismo-
logical community, much more debatable is the
presence of correlations in the magnitude series.
Lippiello et al. (2008) suggested that seismic events
occur with enhanced probability close in time,
space, and even magnitude to previous earthquakes.
Sarlis et al. (2009), using the natural time approach
verified that correlations between magnitudes are
larger for closer in time earthquakes when the max-
imum interevent interval varies from half a day to
1 min).

In our case, we found that magnitudes are indepen-
dent, due to the absence of correlations, and thus they
are in principle unpredictable. This last finding repre-
sents good information, in any case, in the context of
seismic hazard analysis of the area.

This finding supports current short-term earthquake
clustering models like ETAS, which draw the magni-
tudes of future events randomly from a GR distribution.

4.4 The correlation dimension of the spatial distribution
of the epicenters

The spatial distribution of the earthquake epicenters was
analyzed by using the Grassberger-Procaccia method
(Grassberger and Procaccia 1983) that is well known
in spatial statistics for its efficiency and low noisiness in
estimating the correlation dimension Dc of datasets with
even small size (Doxas et al. 2010).

Let NR<r be the number of points separated by a
distance R less than r; then, the correlation integral is
defined as the fraction of couples of points whose
interdistance is less than r:

C rð Þ ¼ 2NR< r

N N−1ð Þ ð8Þ

For fractal spatial point processes, C rð Þ≈rDC . The
numerical value of the correlation dimension Dc (that is
an estimate of the fractal dimension) reveals spatial
patterns of the point process. In bidimensional systems,
Dc is between 0 and 2; for Dc = 0, all the points are
clustered into one; for Dc = 2, the points are homoge-
neously distributed. Dc is given by the slope of the line
that fits in its linear (scaling) range by the least squares
the correlation integral versus r plotted in bilogarithmic
scales.

The estimation of the correlation dimension, howev-
er, could be affected by bias due to limited size of the
dataset and to the improper choice of the scaling range.
In order to check these effects, we applied the
Grassberger-Procaccia method to a synthetic spatial
monofractal Sierpinsky dataset of 1163 point (as many
as the epicenters of the Azerbaijani catalog) generated
by using the method of Kamer et al. (2013), whose
theoretical fractal dimension is D~1.585 (Fig. 10).

Figure 11 shows the correlation integral of the spatial
point process shown in Fig. 10. We can see that the
correlation integral is not linear for all the spatial scales,
but at large scales (for r > Lmax) tends to deviate from
linearity and then to bend down. In order to better
determine the value of Lmax, we calculated the slope
(namely the correlation dimension Dc) of the line best
fitting the correlation integral curve in a spatial scale
range [Lmin, Lmax], with Lmin corresponding with the
lowest spatial scale and Lmax varying until the largest
available spatial scale. Figure 12 shows the variation of
Dc versus L: the minimum absolute deviation from the
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theoretical fractal dimension is for Lmax = 0.455 that
corresponds to ~43% of rmax. For this value of Lmax, the
correlation dimension of the Sierpinsky set is 1.584.
This result is in agreement with Dongsheng et al.
(1994) who found that a value of Lmax ~20–30% of rmax

should be enough to avoid finite-size effect visible at
large spatial scales (see also Telesca et al. (2001)). Such
small absolute value enables us to use the correlation
dimension for quantifying the type of spatial distribution
of the epicenters of the Azerbaijani seismicity. Figure 13
shows the correlation integral for the Azerbaijani seis-
micity for spatial scale ranging from ~10−1 to ~878 km
that is the maximal interevent distance. As it was ob-
served for the synthetic monofractal Sierpinsky set, also
here, the relationship between the log10(NR<r) and the
spatial scale log10(r) is not the linear. Analyzing the first
derivative (Fig. 14) that is the local slope of the curve,
we can see that between Lmin~10 km and Lmax~262 km,
it is rather constant; within this range, the correlation
dimension is Dc~1.38, which indicates that the spatial
distribution of epicenters is fractal. Let us notice that the
upper value of this range (Lmax) is about 30% of the
maximal interevent distance, in agreement with the re-
sults of Dongsheng et al. (1994). The lower value of that
range (Lmin) is about 1% of the maximal interevent
distance. Applying the Smith’s criterion (Smith 1988)

Nmin≥
Lmax

Lmin

2−Q
2 1−Qð Þ

� � D½ �
: ð9Þ

where [D] is the integer part of the fractal dimension,
0 ≤ Q ≤ 1 is a quality factor, and Nmin represents the

minimum number required to estimate the fractal di-
mension, for [D] = 1, Q = 0.95, Lmin = 10 km and
Lmax = 262 km, Nmin ≥ 275; and this criterion is totally
satisfied for our dataset.

4.5 Analysis of the temporal variation of the seismic
parameters

The analysis of the time variation of the statistical
parameters defined in the previous section is impor-
tant to check if the parameters change with time or
are characterized by a rather stable behavior; possi-
ble change through time would reveal changes in the
dynamics underlying the seismic process. We ana-
lyzed the time variation of the statistical seismic
parameters by using two approaches: (i) fixed event
number (WN) and (ii) fixed day length (WD) of a
window sweeping the entire catalog with a shift of 1
event or 10 days, respectively. In each window, the
completeness magnitude Mc was calculated by the
GFT method and only in case the number of events
with magnitude M ≥ Mc was larger or equal to 50 (in
agreement with Woessner and Wiemer (2005)), the
statistical seismic parameters were calculated and
their value associated with the time of the last event
in the window. The minimum number of events per
window is enough to significantly calculate the fol-
lowing seismic parameters with a good time resolu-
tion: completeness magnitude, b and a values, mean
magnitude, Cv and Lv. We did not calculate the time
variation of the DFA scaling exponent of the mag-
nitude series and the correlation dimension of the
epicenters, since the computation of both these two
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parameters would require a significantly larger win-
dow size that would practically impede to perform
an analysis of the time variation with a good time
resolution.

Figure 15 shows the time variation of the seismic
parameters in the case of fixed event number window
for two different lengths: WN = 100 (blue circles) and
WN = 200 (red circles). In particular, the following pa-
rameters were calculated:Mc (Fig. 15a), number of events
with magnitude larger or equal to Mc (Fig. 15b), b value
(Fig. 15c) (the b value along with its error bar calculated
by using formula (2) is shown in Fig. S1), a value (Fig.
15d). Figure 15e, f shows respectively the departure of
the Cv and Lv from Cv,Pois(97.5%) and Lv,Pois(97.5%).
Cv,Pois(97.5%) (and, analogously, Lv,Pois(97.5%)) was calcu-
lated in the following manner: (i) for 1000 Poissonian,

sequences were randomly generated with the same length
and the same rate as the actual earthquake sequence
contained in the moving window; (ii) for each Poissonian
sequence, the Cv,Pois was computed; (iii) the 97.5% per-
centile of the distribution of the 1000 values of Cv,Pois is
calculated; (iv) Cv,Pois(97.5%) represents, then, the superior
value of the 95% confidence band of the Cv,Pois distribu-
tion, meaning that if the value of Cv of the actual earth-
quake sequence contained in that window is larger than
Cv,Pois(97.5%), then the actual earthquake sequence is sig-
nificantly globally clusterized, otherwise is significantly
Poissonian. Figure 16 shows the same seismic parameters
as plotted in Fig. 15, but considering a fixed day length
window for two different cases: WD = 180 days (blue
circles) andWD = 365 days (red circles). We can observe
that the time evolution of the seismic parameters is quite
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robust against the type and length of the moving window;
they, in fact, show approximately the same behavioral
trend in all the cases. The completeness magnitude ranges
between 2 and 3.5, being quite stable at 3.0 between 2007
and 2011 (Fig. 15a); during this period, no relatively
strong events occurred. Relatively short-range fluctua-
tions in Mc are especially evidenced from 2011 to 2016,
indicated by a certain variability of the parameter between
2.0 and 3.5. During the same period, also the number of
events with magnitude larger or equal to Mc is quite
unstable through time; this is probably due to the occur-
rence of several relatively strong earthquakes (M ≥ 5)
along with their aftershock sequences and to the mixing
of different seismic sources in the same time window.
Similar behavior is shown by the other parameters (a
value, b value) highly fluctuating between 2011 and
2016. In particular, it is observed a certain relationship
between the range of variability of the b value and the
occurrence frequency of relatively strong earthquakes
(Figs. 15d and 16d): in the period between 2007 and
2011, it ranges between ~0.7 and ~1.25, and between
2011 and 2016, it ranges between ~0.5 and ~1.0. This
indicates that in the first period a relatively large number
of small events are generated and a low stress character-
izing the investigated area; while in the second period,
relatively more large earthquakes are generated and a
high level of stress is present in the area. On the base of
the time variation of Cv-Cv,Pois(97.5%) (Figs. 15g and 16g)
and Lv-Lv,Pois(97.5%) (Figs. 15h and 16h), we can see that
the peaks of time clusterization both a global and local
scale could be associated to the strongest events of the
sequence.

4.6 Analysis of the spatial variation of Mc and b value

Since the data is sampled over a large and potentially
strongly inhomogeneous area, we performed an analysis
of the spatial variability of the completeness magnitude
and b value. In fact, the gradient shown in the time
variation of b could either mean that the conditions in
the same region change, or that no temporal changes
exist, but different regions with a different overall b
value have been activated. And of course, there might
be mixtures. Analogously,Mc depends on network con-
figuration, and unless there have been campaigns during
which more stations were used equally over the whole
study region, the times of apparently improvedMc of as
much as a unit of magnitude, could be associated with
periods in which the seismicity concentrated in a region

of better network coverage overall or a local campaign
with additional stations. Therefore, in order to check on
all these aspects, we superimposed to the investigation
territory a spatial grid with square cell side of 0.01° in
latitude and longitude. For each node, we considered a
circle of 50 km radius and calculated for the earthquakes
included within it the number of earthquakes (Fig. 17a),
the completeness magnitude Mc (Fig. 17b), the number
of events with M ≥ Mc (Fig. 17c), and only in case this
number if larger or equal to 50 events, the b value is
estimated (Fig. 17d). The b value spatial variation can be
interpreted in terms of stress changes across collision
zone along Main Caucasus Trust (MCT) thrust fault and
West Caspian fault (WCF). The decrease of the b value
from south to north along the WCF is an indication of
higher stress in northern part of the region. It might be
reasonable to connect this low b value region with a
Bharder^ patch on the fault. Based on new GPS obser-
vations on the Absheron peninsula and along the west-
ern coastal side of the Caspian Sea south of Absheron
peninsula, it is evidenced that below the 40° E latitude
between 48° and 49° longitude, the MCT turns sharply
to the south, crossing the Kur depression and extending
along the western side of the Caspian Sea. While the
MCT is predominantly a thrust fault, the WCF has a
substantial right-lateral, strike-slip component, at least
in the region immediately south of the Absheron Penin-
sula. The existence of WCF is also supported by the
topographic path of the Kur River, which sharply turns
to the south at 40° E latitude. This inflection is partly
marked by the region of submeridional discontinuances,
generally typical of plastic rocks of depression (Philip
et al. 1989; Saintot et al. 2006; Kadirov et al. 2012;
Alizadeh et al. 2016). The central part of this strike-slip
fault zone (near SALY, BLVR, and NEFT GPS points
(see Fig. 1)) is characterized by very low seismicity.
However, whether this segment is creeping aseismically
or accumulating strain without generating seismicity
still remains uncertain (Kadirov et al. 2015).

The low b values (0.60–0.70) in the central part of the
southern Talysh seismic zone surrounded by areas of
increased values of b (≥ 0.90) evidence the presence of
relatively more solid crust material than in Kur depres-
sion; here, folded rocks of the Oligocene-Miocene age
lie on volcanic rocks of the Eocene age (Alizadeh 2008;
Alizadeh et al.2016).

Except western part of the Lesser Caucasus, there is a
very low strain accumulation within the Kur basin; in
fact, very low b values can be observed along MCT.
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Fig. 15 Time variation of Mc (a), number of events with magni-
tude larger or equal toMc (b), b value (c), a value (d), departure of
the Cv fromCv,Pois(97.5%) (e), and departure of Lv from Lv,Pois(97.5%)

(f), in 100 event number window size (blue) and 200 event number

window size (red). The error on b value was calculated by using
Shi and Bolt’s formula (1982) are 0.04 and 0.18 (Wn = 100) and
0.03 and 0.13 (Wn = 200)
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Fig. 16 Time variation of Mc (a), number of events with magni-
tude larger or equal toMc (b), b value (c), a value (d), departure of
the Cv from Cv,Pois(97.5%) (e) and departure of Lv from Lv,Pois(97.5%)

(f), in 180-day window size (blue) and 365-day window size (red).

The maximum and minimum error on b value calculated by using
Shi and Bolt’s formula (1982) are 0.04 and 0.17 (WD = 180) and
0.03 and 0.17 (WD = 365)
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Particularly, at the central part of the MCT, it becomes
minimal, and this is themost seismically active segment.
This part of MCT has broken historically in shallow
(~15–20 km) continental thrust events including highly
destructive earthquakes in 1191, 1859, and 1902 in the
Shamakhi region (e.g., Kondorskaya et al. 1977; Triep
et al. 1995). It is possible that the differences on seismic
regime and estimates of b value at MCT and Kur de-
pression are due to differences in the nature of the crust
and lithosphere, which is more soft and thin composed
by quaternary marine, marine terrigenous sediments for
the Kur Depression and more solid with very thick and
consolidated sediments in the MCT and Talysh (Saatli
ultradeep well 1999; Allen et al. 2004; Vincent et al.
2005). It is also possible that the different stress regimes
trusting along the MCT, strike-slip along the WCF,
reflect the different dynamics. Furthermore, the evi-
dence of mud volcanoes distributed to the east of
WCF in the eastern Kur depression and in Absheron
peninsula can also be the reason of less seismicity (due
to more plastic crust material).

5 Conclusions

The present study furnishes a detailed picture of the
statistical properties of the spatial, temporal, and mag-
nitude distribution of the 2003–2016 instrumental

seismic catalog of Azerbaijan and surrounding regions
that represent one of the most seismically active areas
worldwide. The statistical analysis has been performed
by using standard and non-standard methodologies to
get the most exhaustive description of the catalog. The
main findings are as follows:

1) The Gutenberg-Richter law is satisfied for M ≥ 2.9
with a b value of 0.76, by using the GFT method.

2) The time clustering of the complete catalog was
investigated by using the global (Cv) and local
(Lv) coefficient of variation, obtaining the values
Cv~1.23 and Lv~1.26 with a 95% confidence inter-
val of [0.9459, 1.0566] and [0.9391, 1.0598], re-
spectively, that indicate time clusterization of the
events at both global and local scale.

3) The magnitude series are uncorrelated, and this
indicates that they are in principle unpredictable;
this finding represents an important information in
the context of seismic hazard analysis of the area.

4) The spatial distribution of the epicenters of the
Azerbaijani earthquakes is fractal for spatial scales
ranging from ~10 to ~262 km.

5) The time variation of the analyzed seismic parame-
ters (Mc, number of events with magnitude larger or
equal toMc, b value, a value, Cv, and Lv) show that
from 2011 to 2016, the completeness magnitude is
weakly fluctuating, along with the number of
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Fig. 17 Spatial distribution of a number of events, b Mc, c number of events with M ≥ Mc, d b value
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events; other parameters (a value, b value, <M>)
show a very visible variation during the same peri-
od. The behavior shown by these seismic parame-
ters between 2011 and 2016 could be linked with
the occurrence of the strongest events associated
with a high level of stress in the area, to which also
high time clusterization both a global and local
scale could be associated.

6) The spatial variation of the seismic parameters (Mc,
number of events with magnitude larger or equal to
Mc, b value) show a highly space variability con-
nected with the peculiar seismo-tectonic settings of
the different areas of Azerbaijan.
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