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Abstract The study of earthquake swarms and their char-
acteristics can improve our understanding of the transient
processes that provoke seismic crises. The spatio-temporal
process of the energy release is often linked with changes
of statistical properties, and thus, seismicity parameters can
help to reveal the underlyingmechanism in time and space
domains. Here, we study the Torreperogil–Sabiote 2012–
2013 seismic series (southern Spain), which was relatively
long lasting, and it was composed by more than 2000
events. The largest event was a magnitude 3.9 event which
occurred on February 5, 2013. It caused slight damages,
but it cannot explain the occurrence of the whole seismic
crises which was not a typical mainshock–aftershock se-
quence. To shed some light on this swarm occurrence, we
analyze the change of statistical properties during the
evolution of the sequence, in particular, related to the
magnitude and interevent time distributions. Furthermore,
we fit a modified version of the epidemic type aftershock
sequence (ETAS) model in order to investigate changes of

the background rates and the trigger potential. Our results
indicate that the sequence was driven by an aseismic
transient stressing rate and that the system passes after
the swarm occurrence to a new forcing regime with more
typical tectonic characteristics.
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1 Introduction

The occurrence of seismic activity in southern Spain is
ultimately explained as a consequence of the shortening
between the Iberian microplate and the African tectonic
plate, which is accommodated over a broad deformation
area (Benito and Gaspar-Escribano 2007). Typical
mainshock–aftershock sequences and swarm-like seis-
mic series are relatively common in this zone (e.g.,
Martinez et al. 2005; Rodríguez-Escudero et al. 2014).
The particular interest of the Torreperogil–Sabiote
2012–2013 (TS-1213) seismic series lies in the involved
significant scientific, social, and media concern.

The seismic series started on October 20, 2012,
which lasted for a relatively long period of 8 months,
with over 2000 low-magnitude events (−0.1 ≤M ≤ 3.9).
According to the seismic record, this area was consid-
ered as a zone of low seismic activity (Cantavella et al.
2013). Some authors (e.g., Pedrera et al. 2013) indicate
the presence of basement faults and suggest their acti-
vation during the TS-1213 series. The epicentral area
was located within the eastern Guadalquivir basin,
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beneath an elongated ridge known as Loma de Ubeda,
between the towns of Torreperogil and Sabiote. A recent
study on structural data revealed a previously unknown
shear zone including right and left lateral blind faults
where their parallel geometry does not promote static
triggering (Morales et al. 2015). The shallow and dense
distribution of epicenters caused many events to be felt,
raising a considerable social concern and a debate about
the tectonic or hydro-seismic origin, such as human-
made changes in aquifers and reservoirs (Doblas et al.
2014). Morales et al. (2015) discard this idea, associat-
ing the initiation of this swarm activity with slow strain
release in small but highly fragmented regions under a
bending scheme.

Statistical analyses of the seismic series may con-
tribute to gain important insights about their nature
because the generation mechanism and the system
state changes are often connected to systematic
changes of statistical parameters and distributions
(e.g., Hainzl and Fischer 2002; Mignan 2012;
Schoenball et al. 2015). Especially for cases as
southern Spain, where the seismotectonic setting is
complex, conclusions can be mainly drawn from
statistical analysis of the seismicity patterns.

The main effort of this paper is to investigate the
temporal evolution of the seismic series in order to
better identify the underlying process. Using a more
expanded spatio-temporal overview, we try to dis-
cuss this sequence not as an isolated incident, but as
a part of a significant growth in the seismic activity
in the area. This growth is associated with the oc-
currence of small clusters since 2010 and within a
radius of 30 km to the Torreperogil–Sabiote se-
quence. We analyze the temporal changes of statis-
tical parameters; in particular, we focus on the b-
value and interevent times. We also carry out an
epidemic type aftershock sequence (ETAS) model-
ing of the sequence to unravel the background rate
and trigger potential characteristics. Finally, the con-
clusions of the different statistical observations are
brought together and discussed.

2 Data

We analyze the seismic catalog provided by the National
Geophysical Institute of Spain (IGN) focusing on a
rectangular region centered in the TS-1213 epicentral
area within longitude [−3.7, −2.8] and latitude [37.6,

38.4] (box marked in Fig. 1). We start the analysis back
in 1980 to explore the study area in a more expanded
temporal frame.

A relative seismic inactivity is observed from
1980 to 2010. Then, from 2010 up to April 2015,
an increase in seismic activity is noted, including
the occurrence of the TS-1213 series and other
small groups of events to the west and southeast.

The National Seismic Network of IGN, joint
with other centers’ stations like the Andalusian
Institute of Geophysics (IAG) and conventions of
Real Observatory of Armada, Complutense Univer-
sity of Madrid, and German Research Centre for
Geosciences (ROA–UCM–GFZ), has localized the
seismic activity since its beginning in October
2012. Because of the peculiarity of this series and
in order to run a specific study on it, IGN and IAG
established additional temporary stations (Fig. 1e)
between December 18, 2012, and April 18, 2013,
with real-time data transitions (Cantavella et al.
2013).

Apart from the main sequence, four small groups
of events are recognizable in time and space while
three of them occurred before October 20, 2012.
The re-localizations of the main sequence reveal
some clustering in the main activity period as well
(Peláez et al. 2013; Morales et al. 2015). The
occurrence of seismic clusters in the selected frame
does not seem usual since diffused seismicity was
dominating before in this part of Spain. To explore
the potential reasons for this apparent system
change, we study in the following sections the
statistical properties of this activity. The analyzed
data include 2713 events with M ≥−0.1 in the
mentioned box region between longitude [−3.7,
−2.8] and latitude [37.6, 38.4].

In order to perform a statistical analysis of the
seismic series, the first step is to select the subse-
ries which are best suited to characterize the evo-
lution of the plenary incident in time. In this study,
we decided to divide the activity into three sub-
series in time. The precedent period (phase D1)
starts in 2010 and ends just before October 20,
2012, when a sharp increase on the seismic activity
indicates the beginning of the main activity phase
(phase D2). This lasts until June 30, 2013, when the
seismic activity returns to the level of the precedent
phase. The subsequent phase (phase D3) lasts until
the end of the catalog (Table 1). Figure 3 shows the
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Fig. 1 The seismic catalog of IGN (M≥1.0) for southern Spain
since 1980 is presented in intervals of 10 years in captions a-c. The
last temporal interval (d) was chosen until more recent time, end of
April 2015. e The spatial distribution of the seismic stations

contributing in IGN seismic catalog during the last decade and
temporary stations were installed between December 18, 2012 and
April 18, 2013. f Zoom into the box-region marked in plots a-e
with IGN total data (M≥-0.1) since 2010 to the end of 2014
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epicentral locations from 2010.0 to 2015.0, plotting
the three phases with different colors. This division
provides a suitable term to investigate the changes

in statistical properties during and after the se-
quence. Table 1 provides the details of the time
intervals and earthquake numbers of the selected
sub-series in Fig. 2. In the following, the statistical
properties of the mentioned sub-series are studied
(Fig. 3).

3 Statistical characterization

The statistical characterization of the TS-1213 series
focuses on the time variations of the parameters defining
the magnitude–frequency relation (including b-values

Fig. 2 Total seismic data form IGN catalog during 5 years where selected periods are marked by vertical dashed lines. aMagnitude versus
time plot. b Daily rate of seismicity versus time

Table 1 The characteristic of the selected sub-series

Period Starting
date

Ending date
(year decimal)

Duration
(days)

Number
of events

D1: Pre-
activity

01.01.2010 19.10.2012
(2012.8)

1022 233

D2: Main
activity

20.10.2013 30.06.2013
(2013.5)

254 2199

D3: Post-
activity

01.07.2013 31.12.2014
(2015.0)

549 281
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and magnitude of completeness Mc) and addresses the
distribution of interevent times.

3.1 Frequency–Magnitude Distribution

The study of the magnitude frequency distribution is a
basic step to characterize any seismic population. Earth-
quake magnitudes are known to follow generally the
Gutenberg–Richter law (Gutenberg and Richter 1956)
describing the number of earthquakes with magnitude
equal or greater than M as

N Mð Þ ¼ 10a−bM ð1Þ

whereas parameters a and b describe the activity level
and the slope of the distribution, respectively. The b-
value scatters generally around 1. Experiments of rock
samples and observations suggest that the b-value is a
Bstress meter^ where low b-values are indicative of
rocks under high stress (Schorlemmer et al. 2005;
Scholz 2015). We effectively find a linear relationship
between log10(N) and M for magnitudes greater than
approximately 1.0 (Fig. 4), which can be fitted by a
typical b-value in the order of 1.

However, for b-value estimation, it is essential to
firstly determine the magnitude of completeness for
the data. For this purpose, we follow the method intro-
duced by Wiemer and Wyss (2000) and apply it to the
total activity during 5 years. This was done by calculat-
ing the goodness of fit of the Gutenberg–Richter (GR)
law to the observed frequency–magnitude distribution
as a function of the lower magnitude cutoff. The mag-
nitude Mc at which 95% of the data was modeled by the
GR power law is 1.2. For the calculation of a- and b-
values of the GR law, we used maximum likelihood
estimation for M ≥Mc.

Applying the same method for detecting potential
changes of Mc with time, we select subsequent samples
of N events. Considering the lower seismicity in phases
D1 and D3, we choose N = 100 events for each sample
with an overlap of 10 events. Then, we establish less
strict criteria of 90% goodness of fit for data in each
sample to be modeled with the GR law.

The result for both D1 and D3 does not oscillate
significantly and shows Mc values between 1.2 and 1.3
with σ ∼ 0.1 for 200 bootstrapped samples (Fig. 5). In
phase D2 we see a large fluctuation with this sample
size. In fact, as during D2 the seismicity rate rises
notably, a sample size of 100 covers much shorter time
intervals and leads to a less smooth Mc–time curve. On
the other hand, establishment of temporary seismic sta-
tions between December 18, 2012, and April 18, 2013
(Fig. 1e), enhanced the network capabilities for data
detection in quality and quantity. Thus, the capability
of detecting smaller magnitude events explains the first
drop in Mc values. Then, along with a rise in the occur-
rence of relatively large magnitudes M ≥ 3.0 since De-
cember 2013, the detection ability of the smaller events
is likely lowered because of overlapping (and hence
inability to spot) of the seismic records of lower-

Fig. 3 Spatial distribution where colors refer to the different
temporal intervals: white for pre-activity (Fig. 2) or D1, black
for main activity or D2, and gray for post-activity or D3

Fig. 4 The frequency–magnitude distribution of the total activity
during 2010 to 2014
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magnitude events occurring immediately after higher-
magnitude events, which explains some fluctuations to
larger Mc values (Hainzl 2016). However, uncertainties
of the Mc values might partially also explain those
fluctuations. Increasing the sample size reduces sharp
changes but also reduces the temporal resolution. Final-
ly, an Mc value of 1.3 is found to be a reasonable choice
for the overall completeness magnitude of the sequence.

Conducting the b-value estimation of events ex-
ceeding the time-dependent Mc value (or even a fixed
Mc=1.3) results in an evident decrease of the b-value
with time. In fact, the result for a sample size of 100
(the same as we used for Mc estimation) indicates b-
values of approximately 1.3 in D1 (∼1000 days)
followed by a decreasing trend within the high-
activity phase from a value over 1.5 to a value of
approximately 1.1 in the end and a further decrease
toward a value of 0.8 in the D3 phase (Fig. 6). This
drop of b-value might result from an increase in stress
level that leads to the occurrence of bigger magni-
tudes. Such process might be the same as the differ-
ential stress diminishes at the location of the activity
in phase D1 and right before the main sequence
where the b-value rises (Scholz 2015). Beside the
general b-value decay, larger fluctuations occur on
short times which might be related to secondary
loading/unloading processes due to stress transfer or
pore pressure changes.

In Fig. 7, we show the normalized magnitude distri-
bution for each of the three phases. In all cases, the
distribution can be well described by the Gutenberg–
Richter law with similar slope for D1 and D2, while the

slope for D3 is significantly smaller, in agreement with
our analysis in moving time windows (Fig. 7).

3.2 Interevent time distribution

For characterizing the temporal occurrence of the
events within the seismic sequence, we study the
interevent time distribution. Time lag or interevent
time τ indicates the time between two consecutive
events. Figure 8 visualizes the interevent time dis-
tribution versus event index for the 1622 events that
occurred in the three phases considered in this study
with M ≥ 1.3. Right after October 20, 2012, the
interevent time starts to decrease by a factor of
almost 102 and remains smaller than 103 in almost
the whole duration of the high-activity phase D2.

The interevent time is the most important character-
istic of any point process in the time domain and can be
quantified by cumulative probability distribution as

Ft τð Þ ¼ 1−expð−
Zτ

0

ht uð ÞduÞ ð2Þ

where ht(u)du is the probability that the next event after
time t occurs between times t + u and t + u + du condi-
tioned on its non-occurrence between times t and t + u.
Assuming a zero probability for simultaneous events
implies that ht(τ)dτ ≈ λ(t|Ηt)dt with λ(t|Ηt) being the
intensity (local event rate) of the process which gener-
ally depends on the history Ηt of the preceding events.

Fig. 5 Black curve represents calculated Mc versus time for a sample size of 100 events with 10% overlap and 90% goodness of fit for
modeling the frequency–magnitude distribution with the GR law.Dashed gray curves represent ±σ obtained from 200 bootstrapped samples
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In a Poissonian process, the local event rate is inde-
pendent of the history λ(t), and it becomes a constant
value λ in the case of a stationary Poisson process. In
this case, the interevent time distribution is

F τð Þ ¼ 1−e−λτ ð3Þ

The probability density function of the interevent
time follows an exponential distribution:

f τð Þ ¼ λe−λτ ð4Þ

Here, λ is the long-term average of the event rate.
Thus, if the analyzed sequence represents a station-
ary Poisson process, we would expect to have an
exponential distribution of the interevent times. The
expected result for the Poisson process is illustrated
by the dotted curve in Fig. 9. In comparison, the
probability densities of interevent time calculated for

the M ≥ 1.3 events in the three phases show no
evidence of such exponential tendency.

Tomada (1954) reported a power law distribution
of interevent times of the form f(τ) ∝ τ−q, with q =
1 ∼ 2, for some volcanic swarms and aftershock se-
quences (Utsu et al. 1995). Senshu (1959)
interpreted Tomada’s result and showed that for a
decaying event rate according to (1/tp), the decay
exponent of the interevent time probability density
is q = 2 − 1/p.

Densities in Fig. 9 show that during D1 and D3 the
probability decays with an almost similar constant
power of approximately 0.75, which would relate to
a p value of 0.8 in Senshu’s formulation for a single
power law decay of the rate. Nevertheless, for limited
spatio-temporal windows and superpositions of
aftershock sequence and background activity, the
interevent time distribution gets more complex
(Saichev and Sornette 2007; Lippiello et al. 2012).

This stable power law behavior indicates the sim-
ilarity of earthquake occurrence in time scale, espe-
cially for time lags between 101 and 104 minutes.
The observed deviation for small interevent times is
likely related to incompleteness, while the bending
at large values might be related to finite sample size
and observation time. The interevent time distribu-
tion for D2 deviates from a stable power law toward
a faster decay for time lags bigger than 102 minutes.
This is influenced by a higher contribution of events
that occurs very closely in time because of a higher
degree of clustering.

Fig. 6 Temporal variation of the b-value calculated for sample sizes
of 100 events with 10% overlap with three methods: (1) using anMc

that provides 90% goodness of fit for modeling the frequency–
magnitude distribution of the data with the GR law (black solid

curve) and ±σ (gray solid curves); (2) using an Mc driven from the
maximum curvature method (light dashed curve) and ±σ (gray
dashed curve); and (3) using a fixed Mc = 1.3 (thick dashed curve).
Time interval selection is marked with vertical dashed lines

Fig. 7 The normalized magnitude distribution for the three periods
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4 ETAS analysis

One of the most common models for characterizing the
clustering of seismicity and understanding the probable
source processes is the epidemic type aftershock se-
quence (ETAS) model, a point process model intro-
duced by Ogata (1988).

This model accounts for activity driven by aseismic
processes as well as aftershocks triggered by observed
earthquakes. Aftershock occurrences can be well de-
scribed by the Omori–Utsu law (Utsu et al. 1995) stating
that the aftershock rate decays with time t after the
mainshock according to

Naftershocks∝
K0

tþ cð Þp ð5Þ

where c and p are constants (see Utsu et al. (1995) for a
review). The exponent p is typically in the range 0.8–1.2
and independent of the mainshock magnitude M,

whereas K0 is known to depend exponentially on M
(Utsu et al. 1995, Hainzl and Marsan 2008). Detailed
aftershock studies showed that the delay parameter c is
very small, in the order of 1 to several minutes or even
less (e.g., Peng et al. 2006; Enescu et al. 2007), while
larger estimations often result from incomplete record-
ings directly after the occurrence of larger earthquakes
(Kagan 2004; Hainzl 2016). Note that for single after-
shock decay according to the Omori–Utsu law, the
probability density function of the interevent times de-
cays with an exponent of 2 − 1/p (see above).

The TS-1213 series is however not dominated by
a single mainshock with its aftershocks and consists
of several events with similar magnitudes, the
highest one in the range between 3.4 and 3.9 (see
Fig. 2). Thus, we are dealing with a swarm-like
sequence likely attributed to some external aseismic
forcing. Aseismic forces contribute to the back-
ground seismicity which becomes time-dependent
(Hainzl and Ogata 2005), e.g., due to transient creep
(such as slow earthquakes) or rapid fluid intrusions
(Marsan et al. 2013). In this study, we analyze the
temporal behavior of the seismicity using a modifi-
cation of the ETAS model by Hainzl and Ogata
(2005) which provides comprehensive information
about time variation of the background rate:

λ tð Þ ¼ μ tð Þ þ υ tð Þ ¼ μ tð Þ þ
X

ti< t

Keα Mi−Mcð Þ

t−ti þ cð Þp ð6Þ

where ti and Mi are the occurrence times and mag-
nitudes of earthquakes. This formulation separates
the time-dependent forcing (background) rate μ(t)
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Fig. 8 Interevent time versus index of the events for events with M > 1.3 whereas D2 starts with the 164th event on October 20, 2012, and
ends by the 1421st event on June 30, 2013

Fig. 9 Probability densities of the interevent times for the three
subsequences. They tend to have a linear decay in a double-
logarithmic scale. For comparison, the result for a Poissonian
process with the average D2 rate of 0.003 events per minute is
marked by the dotted line
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and the earthquake rate υ(t) related to earthquake–
earthquake triggering, where parameters c and p
come from the Omori law and K and α are related
to the magnitude-dependent aftershock productivity.
At any time t since the start of the catalog, the rate
of seismicity λ(t) is history-dependent through the
term υ(t) which sums the aftershock rate of all the
earthquakes that occurred before t with magnitude
Mi which is equal or greater than Mc. If the aseismic
forcing would be almost constant, then λ(t) could be
modeled by aftershock rate υ(t) plus a constant rate
μ. But if the background significantly varies with
time during the swarm, then a reasonable model fit
requires a variant aseismic forcing which should be
questioned on its roots.

5 Method

To estimate the model parameters and background
rate simultaneously, we apply the algorithm
developed by Marsan et al. (2013) and further tested
by Hainzl et al. (2013) which is based on the inver-
sion of the temporal ETAS model. This algorithm
iteratively estimates the four parameters K , α , c,
and p of the ETAS model by maximizing the log-
likelihood value inside a time interval Di and then
estimating the time-dependent background rate
using the plus/minus n-nearest neighbors.

With the estimated μ(t), the ETAS parameters are
re-estimated and so on, until the convergence of
both parameters and background rates. The smaller
the smoothing window n, the larger the degree of
freedom of the model would be and the variation of
μ(t) would be stronger as well. The optimal value of
the smoothing window is determined by the Akaike
information criterion, AIC = 2 k − 2ln(L) where k is
the number of free model parameters and L is the
maximum likelihood value. The computation of the
ETAS parameters is carried out considering the three
phases of Table 1. An alternative computation for
phase D3 is developed excluding the aftershock pro-
ductivity of events before July 2013 (D3′). This
leads to an unrealistic situation in the case of D3′,
which assumes no prior high activity. However, it
prepares a more conceivable comparison between
background seismicity before and after the main
sequence.

6 Results and discussion

The Akaike information criterion (AIC) yields n = 3
as optimal smoothing parameters for D1, D3 and D3′,
while the optimal value is n = 9 in the case of D2.
These small smoothing windows indicate that strong
temporal changes of the background rates are nec-
essary to statistically explain the observed data.
Thus, transient aseismic processes likely occurred
in all three phases which triggered the majority of
observed M ≥ 1.3 events. The estimated fraction of
events attributed to the background activity is be-
tween 60 and 83%. Vice versa, only 17 to 40% of
the events are identified as aftershocks. This result is
provided in Fig. 6 together with the estimation of
the ETAS parameters. The estimated c-values are
small and range between 3 and 13 min (0.002 and
0.009 days), while α-values are close to 1 for D1

and D2 which are significantly smaller than those
values observed for typical aftershock sequences
(Ogata 1992; Hainzl and Ogata 2005). However,
smaller α-values have been previously found to be
indicative of swarm activity. In contrast, the latest
phase has an estimated value of 1.55 which is close
to typical tectonic values (Hainzl et al. 2013). To-
gether with the observed b-value decrease in this last
phase, this might indicate the change of the activity
from swarm-type to mainshock–aftershock-type ac-
tivity. However, the reason for the significant in-
crease in the Omori p value from 1.15 in D1 to
1.44 in D2 and 1.69 in D3 remains unclear.

It is also noticeable that the result for D3 does not
change significantly, if we exclude the aftershock
productivity of events before July 2013, as in D3′.
Figure 10a shows the estimated time-dependent
background rate before and after the main swarm
activity in logarithmic scale. Apart from short time
excursions, the rate fluctuates around 0.1 events per
day in D1 and around 0.3 events per day in the D3

phase. The background rate during D2 is strongly
amplified and gradually decays with time approxi-
mately according to an exponential function. The fit
of the ETAS model is shown in Fig. 10b indicating
that the ETAS model is capable to model the swarm
activity and predicts only 24 events less than
observations.

In order to understand changes in the aftershock
productivity (trigger potential), we need to introduce
the theoretical relation between the number of
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aftershocks triggered by a mainshock of magnitude
M, studied by Utsu (1971).

n ¼ AeαM ð7Þ
In the ETAS formulation, this should be related to

∫∞0 Keα M−Mcð Þ tþ cð Þ−pdt for p > 1, that is,

c1−p

p−1
Keα M−Mcð Þ ¼ AeαM ð8Þ

A ¼ K

e1:3α p−1ð Þcp−1½ � ð9Þ

Using ETAS parameters in Table 2, we find A to be
0.030, 0.068, 0.005, and 0.008 for D1, D2, D3, and D3′.

Then, we can find the minimum magnitude that will
produce at least one aftershock (n = 1) using Eq. (9)
in order to compare the productivity more explicitly.

Figure 11 shows the productivity changes during
the three phases. The trend varies with the α-value
and with the A-value and defines the mainshock
magnitude which is related to the specific number
of aftershocks. The trend during D1 and specially D2

is slower with a rise in magnitude (α ∼ 1), and
among D2, smaller magnitudes are more productive
in comparison to the other phases (A = 0.068).

After D2, the capacity of the aftershock produc-
tion is shown for both cases D3 and D3′. As we have
seen in ETAS calculation results, they basically ex-
pose very similar parameters and occurrence rates.

Fig. 10 a The time-dependent background rate before (D1), after
(D3), and during the main activity (D2). b The result of ETAS
modeling for the cumulative event numbers in D2 is illustrated

with a red solid line in comparison to the observed one (black
dashed line), while the blue dotted line describes the cumulative
number of estimated background events
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Such comparison indicates the independence of seis-
micity rate in this phase from the past. However,
Fig. 11 illustrates that if we ignore D2 for ETAS
parameter calculations in post-activity phase D3′, the
productivity potential after the swarm is more or less
likely before the swarm and starts with magnitude
∼3.1, but then the trend gets faster, indicating a
more rapid rise in productivity with rise in the
magnitude. This is an evidence for the fact that since
July 2013, the forcing system is experiencing some
changes that cause less swarm characteristics or
more elastic effects. But the same minimum magni-
tude for being a potential parent seems unrealistic if
we assume that the system has gone toward a higher
rigidness. Including the history for ETAS calcula-
tions of the post-activity phase D3, the result gives a
more reasonable view of what happens after the
main swarm D2. It can be seen that the minimum
patented magnitude for having at least one after-
shock rises from 3.1 in D1 and D3′ to 3.4 for D3.

7 Summary and conclusions

The Torreperogil–Sabiote 2012–2013 seismic series
represents a swarm-like activity with strong

clustering in space and time. Earthquakes are known
to interact by means of induced dynamic and static
stress changes and thus cannot be modeled as inde-
pendent events. This is clear for classical mainshock–
aftershock sequences which can be modeled by the
Omori–Utsu law. However, stress interactions occur
also during earthquake swarms where no clear
mainshock can be identified. Some earthquake
swarms might be only the random result of stress
interactions where several triggered events have by
chance similar large magnitudes. Often, however,
earthquake swarms are driven by an additional tran-
sient aseismic process, such as fluid intrusions or slow
earthquakes. The aseismic process might change not
only the background rate but also some other statisti-
cal properties of the activity. For a proper analysis of
the observed sequence, we thus analyze temporal
changes of the statistical properties and apply a mod-
ified version of the ETAS model which includes time-
dependent background rates.

The result of maximum log-likelihood estima-
tions for the ETAS parameters was derived for small
smoothing windows indicating rapid temporal
changes in background activity. Such fluctuations
in time can be due to rapid evolutions in the forcing
rate which switch the system to a higher seismic

Table 2 The maximum likelihood estimates of the ETAS parameters for the three different time periods

K c (days) α p N (M ≥ 1.3) N = ∫λ(t)dt NBG = ∫μ(t)dt NBG/T (no./day) NBG/N

D1 0.007 0.002 1.199 1.154 163 156.74 124.79 0.122 80%

D2 0.007 0.002 0.975 1.440 1257 1232.68 741.04 2.917 60%

D3 0.001 0.009 1.550 1.690 202 194.36 162.10 0.295 83%

D3′ 0.002 0.008 1.550 1.604 202 194.97 161.41 0.294 83%

Fig. 11 The curves show the
average number of M ≥ 0
aftershocks as a function of the
mainshock magnitude according
to Eq. (7) for the three periods.
The A-value in relation (9) was
calculated using the derived
values for K,α, c, and p in Table 2
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activity as we observe since October 20, 2012. The
high proportion of background events ∼80% for all
small clustered earthquakes between 2010 and Oc-
tober 2012 (before the main sequence) suggests a
high contribution of transient aseismic process.
Along with the occurrence of the main phase of
the swarm, the aftershocks’ contribution duplicates
from 20 to 40%. But it is still carrying out the
minority of the whole population of the events.
The resulting μ-value shows some strong fluctua-
tions which might suggest an episodic character of
the aseismic forcing. Nevertheless, some fluctua-
tions could also be partially related to missing
events in phases of activity (Hainzl 2016).

Our analysis of the sequence shows that the
activity is not solely explainable by tectonic load-
ing and earthquake–earthquake triggering and that
an additional transient aseismic loading process
must have taken place. Decreasing b-values
(Fig. 6) during the main seismic activity might be
related to an aseismic process which continuously
increased the average stress level. Considering that
the area is not volcanic, it is likely that fluid move-
ments or slow earthquakes were responsible for the
swarm activity in the years 2012–13 in the
Torreperogil–Sabiote area. The potential processes
were also suggested based on the analysis of the
hypocenter distribution and seismotectonic struc-
tures by Morales et al. (2015).

Furthermore, we find that the background rate
remains elevated after the main swarm activity with
decreased b-value and increased α-value of the trig-
ger potential. Altogether, this might indicate a sys-
tem change to a more critical stress state in this
region. The background rate in this period describes
83% of the activity. The result for D3′ is driven
independent of the history and shows the same per-
centage of the background events as for D3. It may
be concluded that the behavior of the area after the
main sequence is not a continuation of the 2012–
2013 swarm but is its consequence.

Acknowledgments Two anonymous reviewers provided in-
sightful comments to this paper and they are gratefully thanked.
Technical support by J.L.G. Pallero (UPM) and research discus-
sions with S. Cesca (GFZ) are highly appreciated. This work was
partly conducted during a research stay of P.Y. at GFZ (Potsdam).
It is part of the PhD Project of P.Y. that is carried out in the
Earthquake Engineering Research Group of UPM, which it is also
acknowledged.

References

Benito B, Gaspar-Escribano JM (2007) Ground motion character-
ization in Spain: context, problems and recent developments
in seismic hazard assessment. J Seismol 11:433–452

Cantavella JV, Morales J, Martinez-Solares JM (2013) La serie
sísmica de la comarca de La Loma (Jaén). Antecedentes,
distribución temporal, localización y mecanismo focal,
Jaen. Informe del grupo de trabajo interinstitucional sobre
la actividad sísmica en la comarca de la loma (Jaen),
Ministerio de Fomento, Madrid, pp 25–38

Doblas M., Toubi N, Delas Doblas J, Galindo AJ (2014) The 2012/
2014 swarmquake of Jaen, Spain: a working hypothesis involv-
ing hydroseismicity associated with the hydrologic cycle and
anthropogenic activity. Nat Hazards 73(II): 1223–1261

Enescu B, Mori J, Masatoshi M (2007) Quantifying early after-
shock activity of the 2004 mid-Niigata Prefecture earthquake
(Mw6.6). J Geophys Res: 112(B4)

Gutenberg B, Richter CF (1956) Earthquake magnitude, intensity,
energy and acceleration. B Seismol Soc Am 46:105–145

Hainzl S, Fischer T (2002) Indications for a successively triggered
rupture growth underlying the 2000 earthquake swarm in
Vogtland/NW Bohemia. J Geophys Res 107(B12)

Hainzl S, Ogata Y (2005) Detecting fluid signals in seismicity data
through statistical earthquakemodeling. J Geophys Res 110(B5)

Hainzl S, Marsan D (2008) Dependence of the Omori-Utsu law
parameters on main shock magnitude: Observations and
modeling. J Geophys Res 113(B10)

Hainzl S, Zakharova O, Marsan D (2013) Impact of aseismic
transients on the estimation of aftershock productivity param-
eters. B Seismol Soc Am 10(3):1723–1732

Hainzl S (2016) Rate-dependent incompleteness of earthquake
catalogs. Seismol Res Lett 87(2A)

Kagan YY (2004) Short-term properties of earthquake catalogs
and models of earthquake source. B Seismol Soc Am 94:
1207–1228

Lippiello E, Corral A, Bottiglieri M, Godano C, de Arcangelis L
(2012) Scaling behavior of the earthquake intertime distribu-
tion: influence of large shocks and time scales in the Omori
law. Phys Rev E 86:066119

Marsan D, Prono E, Helmstetter A (2013) Monitoring aseismic
forcing in fault zones using earthquake time series. B Seismol
Soc Am 103(1):169–179

Martinez MD, Lana X, Posadas AM, Pujades L (2005) Statistical
distribution of elapsed times and distances of seismic events:
the case of the southern Spain seismic catalogue. Nonlinear
Proc Geoph 12:235–244

Mignan A (2012) Seismicity precursors to large earthquakes uni-
fied in a stress accumulation framework. Geophys Res Lett
39(21308)

Morales J, Azañón JM, Stich D et al (2015) The 2012-2013
earthquake swarm in the eastern Guadalquivir basin (South
Spain): a case of heterogeneous faulting due to oroclinal
bending. Gondwana Res 28(4):1566–1578

Ogata Y (1988) Statistical models for earthquake occurrence and
residual analysis for point processes. J Am Stat Assoc
83(401):9–27

Ogata Y (1992) Detection of precursory relative quiescence before
great earthquakes through a statistical model. J Geophys Res
97: 19, 845–19, 871

716 J Seismol (2017) 21:705–717



Pedrera A, Ruiz-Constán A, Marín-Lechado C, Galindo-Zaldívar
J, González A, Peláez JA (2013) Seismic transpressive base-
ment faults and monocline development in a foreland basin
(Eastern Guadalquivir, SE Spain). Tectonics 32:1571–1586

Peláez JA, García-Tortosa FJ, Sánchez-Gómez M et al (2013) La
serie sísmica de Torreperogil-Sabiote (Jaén). Enseñanza de
las Ciencias de la Tierra 21(3):336–338

Peng Z, Vidale JE, Houston H (2006) Anomalous early aftershock
decay rate of the 2004 Mw6. 0 Parkfield, California, earth-
quake. Geophys Res Lett 33(17)

Rodríguez-Escudero E, Martínez-Díaz JJ, Álvarez-Gómez JA et al
(2014) Tectonic setting of the recent damaging seismic series
in the Southeastern Betic Cordillera, Spain. B Earthq Eng 12:
1831–1854

Saichev A, Sornette D (2007) Theory of earthquake recurrence
time. J Geophys Res 112(B04313)

Schoenball M, Davatzes NC, Glen JM (2015) Differentiating
induced and natural seismicity using space-time-magnitude

statistics applied to the Coso Geothermal field. Geophys Res
Lett 42:6221–6228

Scholz CH (2015) On the stress dependence of the earthquake b
value. Geophys Res Lett 42(5):1399–1402

Schorlemmer D, Wiemer S, Wyss M (2005) Variations in
earthquake-size distribution across. Nature 734(22):539–542

Senshu T (1959) On the time interval distribution of aftershocks. J
Seismol Soc Jpn 12(4):149–161

Tomada Y (1954) Statistical description of the time interval distri-
bution of earthquakes and on its relations to the distribution
of maximum amplitude. Zisin 7(2):155–169

Utsu T (1971) Aftreshocks and earthquake statistics (III). J Fac Sci
U Hokkaido, Ser VII, Geophys 3(5):379–441

Utsu T, Ogata Y, Matsu'ura RS (1995) The centenary of the Omori
formula for a decay law of aftershock activity. Phys Earth 43:
1–33

Wiemer S, Wyss M (2000) Minimum magnitude of completeness
in earthquake catalogs: examples from Alaska, the Western
United States, and Japan. B Seismol Soc Am 90(4):859–869

J Seismol (2017) 21:705–717 717


	Statistical analysis of the 2012–2013 Torreperogil–Sabiote seismic series, Spain
	Abstract
	Introduction
	Data
	Statistical characterization
	Frequency–Magnitude Distribution
	Interevent time distribution

	ETAS analysis
	Method
	Results and discussion
	Summary and conclusions
	References


