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Abstract An overview is given on remarkable progress
that has been made in theoretical studies of solitons and
other nonlinear wave patterns, excited during the defor-
mation of fault block (fragmented) geological media.
The models that are compliant with the classical and
perturbed sine-Gordon equations have only been cho-
sen. In these mathematical models, the rotation angle of
blocks (fragments) and their translatory displacement of
the medium are used as dynamic variables. A brief
description of the known models and their geophysical
and geodynamic applications is given. These models
reproduce the kinematic and dynamic features of the
traveling deformation front (kink, soliton) generated in
the fragmented media. It is demonstrated that the sine-
Gordon equation is applicable to the description of
series of the observed seismic data, modeling of strain
waves, as well as the features related to fault dynamics
and the subduction slab, including slow earthquakes,
periodicity of episodic tremor and slow slip (ETS)
events, and migration pattern of tremors. The study
shows that simple heuristic models and analytical and
numerical computations can explain triggering of seis-
micity by transient processes, such as stress changes
associated with solitary strain waves in crustal faults.
The need to develop the above-mentioned new
(nonlinear) mathematical models of the deformed fault

and fragmentedmedia was caused by the reason that it is
impossible to explain a lot of the observed effects,
particularly, slow redistribution and migration of stress-
es in the lithosphere, within the framework of the linear
elasticity theory.
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1 Introduction

During the recent decade, the sine-Gordon equation has
been successfully applied for mathematical modeling of
fault dynamics, mechanisms of rotation and slippage of
the crustal blocks generating strain waves and earth-
quakes, and, also, for interpretation of the observed seis-
mic and deformation effects (Nikolaevskii 1995;
Nikolaevskiy 1996; Garagash 1996; Wu and Chen
1998; Mikhailov and Nikolaevskiy 2000; Bykov 2001a,
2006, 2008; Majewski 2006; Vikulin 2008; Gershenzon
et al. 2009, 2011). Development of these models was
motivated, in the first place, by an intention to obtain
equation solutions in the shape of slow solitary inertial
strain waves recorded in fault block geological media.

The sine-Gordon equation applied for the fault block
(fragmented) geological medium is, eventually, heuris-
tic. In the overviewed models, the sine-Gordon equation
was postulated, and physical interpretation of the equa-
tion summands was given and the elements used from
the known theories were clarified. Validity of applying
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the sine-Gordon equation to geological media is proven
by the fact that its solutions and implications are af-
firmed by comparison with observations. Furthermore,
the sine-Gordon soliton may stop (without changing its
topology) and move again. This provides the possibility
of modeling fault dynamics.

The sine-Gordon equation, first obtained for the de-
scription of dislocation motion in crystals (Frenkel and
Kontorova 1938), was then successfully used for other
effects in the theory of ferromagnetism, quantum optics,
physics of elementary particles, and biology (Scott
2003; Braun and Kivshar 2004; Aero et al. 2009).
However, the sine-Gordon equation has been relatively
recently applied in geomechanics and seismology for
mathematical modeling of seismic and deformation pro-
cesses connected with their “microstructure” motion on
much larger scale than that of turning blocks (fragments)
in crushed geological media (Nikolaevskii 1995;
Garagash 1996; Garagash and Nikolaevskiy 2009).

Comprehensive information on the sine-Gordon
equation, its solutions and their properties, can be found
in remarkable papers and monographs (Kivshar and
Malomed 1989; Braun and Kivshar 1998; Lamb 1980;
Whitham 1974; Dodd et al. 1982; Braun and Kivshar
2004).

The classical sine-Gordon equation has a number of
qualitatively different precise analytical solutions in the
shape of kinks, solitary waves (solitons), and slow and fast
cnoidal waves (see Appendix), and a specific course of
evolution of themodeled fault block system corresponds to
each of the solutions (Bykov 2000). This significantly
simplifies the analysis and contributes to obtaining the
most reliable results when studying natural objects.

There are two different physical mechanisms of gen-
eration of strain waves. The first mechanism is allowing
for rotational and translational motions of blocks in the
fault zone or inside the fault body when the fault bound-
aries are relatively displaced. The second mechanism is
taking account of relative displacement of a fault bound-
ary at rigid fixation of blocks (grains) at the surface of
another fault boundary. Rigorous physical backgrounds
(prerequisites) were provided for the development of
two types of models. They are the following.

Rotational motions due to earthquake were actually
registered in proximity to faults. Numerous data are
published on this point in a Bulletin of the Seismological
Society of America special issue on Rotational Seismol-
ogy and Engineering Applications (Lee et al. 2009).
Some of them are mentioned below. The following

citation is from Takeo (2009, p. 1457): “We observed
six components of ground rotational and translational
motions in a near-field region during an earthquake
swarm in April 1998 offshore Ito, Izu Peninsula, Japan.
… These rotational motions are much larger than those
calculated by array data at the San Andreas fault.” Wu
et al. (2009, p. 1468) report: “Measurements in the near
field of earthquakes in Japan and in Taiwan indicate that
rotational ground motions are many times larger than
expected from the classical elasticity theory. … Both
rotational and translational ground motions are being
monitored along the activeMeishan fault, where a major
earthquake occurred in 1906, more than a century ago.”

When constructing equations of motion, this fact
(rotational motions of turning blocks) was accounted
for in the following way: the symmetric part of the stress
tensor (as in the micropolar theory of elasticity) was
assumed to be proportional to the deformation (or its
rate), while the antisymmetric part was taken to be
proportional to the sine of the rotation angle (or angular
velocity) of the fault blocks (see Eqs. (5)–(7)). In the
final result, this made it possible to obtain a solution in
the shape of slow waves, propagating at velocities of the
order of 10–100 km/year, which correspond to strain
(tectonic) waves recorded by various methods. The
elasticity, or viscoelasticity, or elastoplasticity models
(without account of fragments rotation) do not produce
such results.

The models of the second type are appropriate to a
different real situation, when the surfaces of fault bound-
aries exhibit a periodic structure. Such a concept is
based on the analysis of numerous in situ and laboratory
observations (Power and Tullis 1991). It is reported in
this paper (p. 423): “Preliminary examination of surface
profile data from natural fault and fracture surfaces
indicates most natural rock surfaces are approximately
self-similar, although some have self-affine character
within small wavelength bands.” The topography of
the fault surfaces has a fractal or affine structure, i.e., it
is a summation of sinusoids with different wavelength
relations—periodic structure with an irregularity speci-
fied by the threshold height of the asperities (Power and
Tullis 1991). Therefore, developing of the models of this
type suggested the appearance of the additional periodic
“restoring” force due to displacement of the sinusoidal-
homogeneous surfaces of the fault, and that force is
striving to return the fault back to the state of equilibri-
um after local displacement. The force has the meaning
of the tangential component of the reaction force of the
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quasi-sinusoidal surface of one fault boundary which is
responding to the displacement of the other fault
boundary.

Quite recently, it has been established during laboratory
experiments (Di Bartolomeo et al. 2012) that, actually, the
tangential force (“tangential contact force”) appears at the
contact of blocks of rocks acting in the plane of slippage
(see p. 128, Fig. 15). The value of this tangential force at
relative block slippage varies in adherence to the periodic
law. In the mathematical models of the second type, this
fact is taken into account by including the restoring force,
which contains the periodic sine function, to the equation
of motion—see Eqs. (17) and (24).

The principal goals of the paper are as follows: (i) to
give an overview of the mathematical models of fault
block (fragmentary) geological media, leading to the
classical or perturbed sine-Gordon equations, and the
methods allowing the construction of these equations
for some specific geomechanical and seismological
problems and (ii) to show the application of mathemat-
ical models for explanation of the observed effects and
the conditions for their occurrence in geological media.

The paper is organized as follows. In Section 2, the
observational data of seismic migration and strain waves
are presented. In Section 3, the theoretical models of
strain waves and examples illustrating the application of
solutions of the classical sine-Gordon equation to fault
dynamics are given. Section 4 contains the application
of solutions of the perturbed sine-Gordon equation to
fault dynamics and the description of strain waves.
Section 5 presents the concluding remarks. In the
Appendix, some appropriate solutions of the classical
sine-Gordon equation are extracted.

2 Observational evidence

The concept of strain (tectonic) waves generated in the
Earth is based on the results of the study of spatiotem-
poral earthquake distribution and slow tectonic defor-
mation processes and the transfer of geophysical field
anomalies in close proximity to fault zones.

Special direct or indirect observations can reveal the
speed of strain propagation and other parameters of slow
motion. Monitoring of seismicity and strain by dense
instrumental networks indicates the wave-like behavior
of stress and strain changes which are driven by active
geodynamic processes and are responsible for time-
dependent variations in seismic velocity or lithospheric

deformation. Propagation of strain waves is represented
quantitatively by the rates of earthquake migration and
geophysical responses to active faulting. These process-
es, and possibly the related strain waves, are either of
global (global tectonic waves) or local (strain waves in
faults) scales (Bykov 2005).

Global tectonic waves propagating at velocities from
10 to 100 km/year are detected from migration of large
earthquakes (Fig. 1a) (Stein et al. 1997), seismic velocity
anomalies (variations in velocity, travel time, and travel
time residuals, and other parameters of the seismotectonic
process) (Fig. 1b, c) (Lukk and Nersesov 1982; Nevsky
et al. 1987), offsets of water level in wells along faults
(Barabanov et al. 1988), cyclic wandering of nonseismic
belts in the mantle (Malamud and Nikolaevskii 1983;
1985), or from transient displacement of seismic reflectors
(Fig. 1d) (Bazavluk and Yudakhin 1993, 1998). Direct
geodetic measurements established migration of deforma-
tion processes in fault zones of some aseismic and
seismoactive areas at an annual speed of 2–4 to 20–
30 km/year (Kuz’min 2012).

Strain waves along crustal faults at velocities of 1–
10 km/day are inferred from radon, electrokinetic, and
hydrogeodynamic signals, such as solitary waves
(Fig. 2a–c) (Nikolaevskiy 1998).

The recent discovery of episodic tremor and slip (ETS)
in subduction zones is based on slow slip episodes visible
during global positioning system (GPS) observations cor-
related with nonvolcanic tremor signals on broadband
seismometers. Tremor and slow slip migrates along
faults at a rate of 10 km/day, on an average (Rogers
and Dragert 2003; Schwartz and Rokosky 2007).

All the more, two distinctly identified sequences of
foreshocks migrate at rates of 2 to 10 km/day along the
trench axis toward the epicenter of the 2011 moment
magnitude (Mw) 9.0 Tohoku-Oki earthquake in Japan.
GPS observations have shown migration of two se-
quences in the propagation of slow slip events along
the plate interface toward the initiation point of the
mainshock rupture (Kato et al. 2012). The slow slip
migration speeds of 2 to 10 km/day are comparable to
those of episodic tremor and slow slip events found
along deeper extensions of warm subduction zones.
This supports interpretation of the foreshock migration
as propagation of slow slip.

Thus, a quite large collection of observational data
provides either explicit or implicit evidence for the proba-
bility of strain wave propagation in the crust, lithosphere,
and subduction zones at different rates.
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There exist in nature two types of transfer: of energy
and matter. Matter transfer (movement of the block
geological medium) does not occur during foreshock
migration, tremor, and slow slip. Therefore, energy
(stress) transfer should occur in the shape of a wave
(wave process).

3 The classical sine-Gordon equation in models
of tectonic stress transfer and strain waves

The most important geodynamic problem is concerned
with clarifying the mechanisms of propagation and

redistribution of energy of the deformation processes
and tectonic stress migration within the crust and
the lithosphere. Propagation and redistribution of
the major portion of energy of the deformation
process in the block geological medium are related
to slow movements. Slow stress transfer occurs in
the lithosphere in the shape of strain (tectonic)
waves excited in the crustal and lithospheric faults
during interaction of individual structural elements
(blocks and microplates).

Let us consider the main models of the deformation
processes in the crust, which are compliant with the
classical sine-Gordon equation.

Fig. 1 Signatures of global tectonic waves. a Migration of large
historic earthquakes along North and East Anatolian faults (Stein
et al. 1997): 1 earthquakes, 2 hypothetical earthquakes, 3 active
fault, 4 fault branch, 5 direction of earthquake migration, 6 slip;
numerals are earthquake dates. b Time series of P velocity in
different parts of Garm test ground (Tajikistan) (Lukk and
Nersesov 1982). c Time series of residuals, from seismic stations

HAZ, BCG, HCR (San Andreas, Central California, USA)
(Nevsky et al. 1987). d Time-dependent changes in positions of
seismic reflectors beneath stations ANV (Anan’yevo) and KDS
(Kadjisai, Tien Shan) (Bazavluk and Yudakhin 1998). Conversion
boundaries of different intensities: 1 over 20 converted waves, 2
over 15 waves, 3 about 5 waves
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3.1 Slow solitary waves of the rotational type
in fragmented media

Strain waves detected by noting the variations in geo-
physical fields are accompanied by migration of seismic
activity in a number of cases. To consider slow tectonic
strain waves, Nikolaevskii (1995, 1996) developed the
elastic mathematical model, corresponding to the micro-
plate structure of the lithosphere (the crust or
cataclastically fragmented massif) and taking into con-
sideration the inertia of kinematically independent rota-
tions ofФmicroplates. The corresponding modification
of the Cosserat mechanics has led to the balance of
moments of momentum in the form of the sine-
Gordon equation.

During the simplest movement, displacements ui are
rigidly related to the rotation angle Φk by the vector rule,
where

∂2Φ
∂t2

− c21
∂2Φ
∂x21

− c22
∂2Φ
∂x22

¼ −N Φð Þ;

ui ¼ 1

2
εijkb jΦk ; ci ¼

ffiffiffiffiffiffiffiffi
Λ j

ρ0 J

s
¼ di

d

ffiffiffiffiffiffi
Gi

ρ

s
¼

ffiffiffiffiffiffi
Gi

ρ�

s
; N ¼ M

ρ0 J
:

ð1Þ

Here, εijk is the Levi-Civita tensor, N is the given
body moment of force; J is the moment of inertia per
unit block volume; G∗ and ρ∗ are the effective rigidity
and density of the fragmented massif; ρ is the density of
continuous geomaterial; ρ0 is the true fragment density;
ci denotes the velocities of waves (waves of block

rotation and seismic shear waves); di designates the
internal length scales; and Λ identifies the rotation
moduli.

If the volumetric moment M is determined by the
restoring force f and the radius of fragment rotation

Re ffiffiffiffi
J

p
, then

M ¼ f R sin Φ; N ¼ f sinΦ= ρ0
ffiffiffiffi
J

p� �
ð2Þ

and Eq. (1) for the one-dimensional case takes on the
form of the classical sine-Gordon equation:

∂2Φ
∂t2

− c21
∂2Φ
∂x2

¼ −
f

ρ0R
sinΦ: ð3Þ

One of the solutions of Eq. (3) is a soliton-like wave
called a kink:

u ¼ Φ
ffiffiffiffi
J

p
¼ 4

ffiffiffiffi
J

p
arctg exp

x − Vtð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
f =ρoR

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− V=cð Þ2

q
0
B@

1
CA: ð4Þ

From (4), it follows that in the fragmented geological
medium or in the cataclastically fragmented body of the
fault, propagation of slow solitary waves due to block
microrotations is possible. These waves are moving
with velocities a great number of orders of magnitude
less than those of seismic waves. At fitting of real
parameters, expression (4) is compliant with the wave
propagating at a velocity of 10 km/day=0.12m/s, which
is consistent with the concepts on tectonic wave.

Fig. 2 Implicit indicators of strain waves along crustal faults. a
Radon concentration in Guzan before Luhao earthquake (pointed
by arrow) (Nikolaevskiy 1998). b Staggered water level

fluctuations in Kim (1) and Asht (2) wells near Ashkhabad
(Nikolaevskiy 1998). c Electrokinetic pulses measured by a pair
of electrodes during earthquake (Nikolaevskiy 1998)
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3.2 Tectonic waves of the rotational type

The mathematical model of slow rotational tectonic
wave propagation with seismic shear wave radiation
has been formulated by Mikhailov and Nikolaevskiy
(2000). The model is consistent with seismological
and geophysical observations. The same concepts of
the Cosserat mechanics allowing for dynamics of
rotations of particles forming the continuous medium
were taken as a basis. In this model, the geological
medium is composed of separate rigid blocks ca-
pable of performing microrotations independent of
translatory displacements. It is suggested that
block rotation is performed in the X,Y plane,
whereas the vector of block rotation has the only
non-zero component along the Z axis. The dis-
placements in the shear wave propagating along
the X axis have only one component not equal to
zero Y ux ¼ uz ¼ 0; uy ≠0ð Þ , and the mаss veloc-
ity is determined as vy=∂uy/∂t.

An account of the block structure of the mediumwith
a constant density ρ corresponds to the balance of mo-
ment of momentum equation; see, for example (Eringen
1968):

ρJ
∂2

∂t2
Φz þ ωzð Þ ¼ ∂Mxz

∂X
þ σa

xy; Φz ¼ 1

2

∂uy
∂X

; ð5Þ

where ρJ is the specific moment of inertia of an aver-
aged block (values of J have an order of the block radius
square);Mxz denotes the couple stress;Φz is the vector of
an average microrotation (it is related to the rotation of
specific volume, containing a number of blocks as a
unit); ωz is the vector of an average rotation of one
block; and σxy

a is the antisymmetric part of the stress
tensor.

The mathematical model is closed by a quantity of
movement moment balance equation:

ρ
∂vy
∂t

¼ ∂σxy

∂X
; ð6Þ

where σxy is the stress tensor.
The symmetric part of the stress tensor is proportional

to the deformation, while the antisymmetric part is pro-
portional to the sine of the rotation angle (Nikolaevskiy
1996):

σs
xy ¼ Gexy; σa

xy ¼ −Nsin ωzð Þ : ð7Þ

The couple stressesMxz which are generated just due
to the block structure of the massif are proportional to
the gradient of the rotation angle:

Mxz ¼ Λ
∂
∂X

Φz þ ωzð Þ: ð8Þ

Substitution of expressions (7) and (8) into Eqs. (5)
and (6) yields:

∂2uy
∂t2

−C2
G

∂2uy
∂X 2 ¼ −γ

∂
∂X

sin ωzð Þ; ð9Þ

∂2

∂t2
Φz−ωzð Þ−C2

Λ
∂2

∂X 2 Φz þ ωzð Þ ¼ −βsin ωzð Þ; ð10Þ

where

C2
G ¼ G

ρ
; C2

Λ
¼ Λ

Jρ
¼ d1

d2

G

ρ
¼ G*

ρ*
; β ¼ N

Jρ
; γ ¼ N

ρ
:

Here, CG is the velocity of the seismic shear wave;
CΛ is the velocity of the wave of block rotation; d1 and
d2 are the internal scales; and G∗ and ρ∗ denote the
effective rigidity and density of the fragmented rock
massif.

Introduction of the running coordinate ξ=x−Vt and
the notations uy≡ u and ωz≡ω neglecting the
microrotation Φz brings the system of Eqs. (9)–(10) to
the form:

V 2−C2
G

� �∂u
∂ξ

¼ −γ sin ωð Þ; ð11Þ

V 2−C2
Λ

� �∂2ω
∂ξ2

þ β sin ωð Þ ¼ 0: ð12Þ

The expressions for displacement u and velocity of
microrotation ωt have the following forms:

u ¼ 2
γffiffiffi
β

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

Λ−V
2

q
C2
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The characteristic parameter values of the
crust and the block sizes are as follows: CG=
1,200 m/s; CΛ=1 m/s; ρ=3 g/cm3; G=4.3⋅109 N/m;

N=10−1G; R ¼ ffiffiffiffi
J

p ¼ 100 m ; β=10−1 s; and γ=
1.4 ⋅108 s2. According to the computation results
performed by Mikhailov and Nikolaevskiy (2000),
the rotational wave propagation velocity attends to
some kilometers per year, i.e., actually, crustal block
(fragment) rotations are the cause for the occurrence of
such type of strain waves (solitary tectonic waves).

3.3 Wave dynamics of the deformation processes
in the transform fault

The solution of the sine-Gordon equation in the shape of
slow cnoidal waves has been quite recently applied for
mathematical modeling of wave dynamics of the deforma-
tion processes at plate boundaries in transform fault zones
and for the related effects (Gershenzon et al. 2009). The
one-dimensional Frenkel-Kontorova model, well-known
from the theory of dislocations in crystal materials, is
applied to the simulation of the process of stress propaga-
tion along transform faults. The model simulates the situ-
ation when strain waves are excited at constant tectonic
loading, and a short-term slow slip event occurs at the plate
contacts. It is physically based on the qualitative analogy
between the motions at plate boundaries and the processes
of plastic deformation in crystals. The model suggests that
plate displacement along a fault takes place due to the
dislocation motion along the plate boundary (the term
“dislocation” is used here as presented in the Frenkel-
Kontorovamodel). The shear of the dislocationmayweak-
en the deformation and stress. The average density of
dislocations is proportional to the average deformation at
the plate boundary, whereas the average dislocation rate
corresponds to the strain wave velocity. Dynamic param-
eters of plate boundary earthquakes as well as slow earth-
quakes and afterslip are quantitatively described, including
propagation velocity along the strike, plate boundary ve-
locity during and after the strike, stress drop, displacement,
extent of the rupture zone, and spatiotemporal distribution
of stress and strain. The model describes the states of the
fault, corresponding to all stages of the seismic cycle:
interseismic (creep), preseismic, coseismic, and
postseismic (afterslip).

The model is compatible with the classical sine-
Gordon Eq. (15), one of which solutions has the shape
of slow cnoidal waves, a pulse sequence with a spatial

period 2m(1−β2)1/2K(m), where K(m) is the complete
elliptical integral of the first kind:

∂2φ
∂η2

−
∂2φ
∂τ2

¼ sinφ;

φ ¼ 2πu=b; τ ¼ tcA=b; η ¼ xA=b;

ε ¼ ∂φ=∂η;w ¼ ∂φ=∂τ ; k ¼ πβ
2K

;

ð15Þ

φ ¼ φ θð Þ θ ¼ kξ; ξ ¼ η−Uτ ;

φ ¼ arcsin �cn −βξð Þ½ �; ε≡σ ¼ 2β ⋅dn βξð Þ;

w ¼ Uσ;β¼ m 1−U 2
� �� �−1=2

; Uj j < 1; 0≤m≤1:

< ð16Þ

Here, u is the plate displacement along the fault; t is
the time; b is the characteristic size of asperities on the
fault plane; c is the compressional wave in the crust; ρ is
the density of geomaterial in the crust; A is a dimension-
less empirical scaling factor; ε is a dimensionless defor-
mation (xx is the tensor component); w is a dimension-
less rate of asperities; σ is the xx stress tensor compo-
nent; U is a dimensionless constant velocity (in с units);
k is the wave number (in A/b units); m is the modulus of
the elliptic function; and cn(ξ,m) and dn(ξ,m) denote the
elliptic functions.

The solution of the sine-Gordon Eq. (16) in the shape
of slow cnoidal waves was first applied for mathemati-
cal modeling of the lithospheric plate motion. It follows
from the solutions of the mathematical model that the
propagation velocity of stress waves is almost exponen-
tial function of the dislocation density (or stress). The
velocity value of waves varies from several kilometers
per second during an earthquake to 10 km/day and 10–
100 km/year during the postseismic and interseismic
stages of the seismic cycle.

The most meaningful implication of the model is that it
predicts the existence of tectonic waves propagating at a
velocity of the order of 30 km/year, that is, ranging be-
tween the rate of the lithospheric plate displacement and
seismic wave velocity.

The computations show that strain wave velocity
after an earthquake is inversely proportional to time. A
number of aftershocks decrease with time according to
the same dependence (the Omori’s law). Hence, it fol-
lows physical interpretation of the fundamental

(15)

(16)
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empirical Omori’s law: aftershocks are called strain
waves generated by earthquakes.

Based on the classical sine-Gordon Eq. (15),
Gershenzon et al. (2011) have shown that some
features of plate dynamics, such as the scaling law
for slow slip events (SSE), periodicity of ETS, and
migration pattern of tremors, can be really de-
scribed by the Frenkel-Kontorova model. The an-
alytical solutions obtained from this equation are
appropriate for one or a few interacting pulses as
well as a sequence of many pulses, allowing a
unified analytical treatment of various seismic
events, such as regular earthquakes, ETS, and
creep. The periodicity interval should depend on
the average slip rate in the area considered and its
seismic history.

4 The perturbed sine-Gordon equation in models
of fault dynamics and strain waves

In this section, the perturbed sine-Gordon equation
for the case of crustal fault is suggested. It has
been shown that simple heuristic models and ana-
lytical and numerical computations suggest that an
entire class of commonly invoked models of earth-
quake failure processes can explain triggering of
seismicity by transients, such as stress changes
associated with solitary strain waves in crustal
faults. A detailed description of the models and
the results of computations can be found in publi-
cations (Bykov 2001a, 2001b, 2006, 2008).

Here, various versions of the perturbed sine-Gordon
equation will be used with the appropriate solutions
aimed to investigate the possibilities of its application
for simulating fault dynamics and strain waves in dif-
ferent regimes and under different conditions. There
have been considered precise analytical (Subsection
3.1) and numerical (Subsection 3.2) solutions of the
perturbed sine-Gordon equation.

4.1 Solitary waves in a crustal fault

The model that demonstrates a change in the slid-
ing regime on a fault and strain wave generation
and is compatible with the perturbed sine-Gordon
equation is proposed by Bykov (2001a). Interac-
tion of the fault surfaces takes place due to fric-
tion at relative displacement, which is simulated

by the introduction of the effective viscosity of
gouge in the fault zone. Assumptions on periodic
arrangement of roughness grains on the fault, the
lack of asperity in the fault, and the proportional-
ity of the friction force to the square of the shear
flow rate of the interlayer matter allowed obtaining
precise analytical solutions of the perturbed sine-
Gordon equation in the shape of slow cnoidal and
solitary waves.

The sliding regime change is “governed” by the
friction parameter, which depends on the geometric
sizes of the roughness grains (the radius, the diameter
of the circular contact, and the distance between grain
centers), the viscosity, and the thickness of the inter-
granular interlayer. Proportionality of the friction force
Fr to the square of the rate ∂U/∂η of the shear flow of the
interlayer matter is physically and mathematically vali-
dated in Bykov (2001a).

Under the above assumptions, and with the dimen-
sionless tectonic force σ=Ftect/mg introduced as the
source of energy (tectonic force, acting on the weight
unit of roughness grain), the mathematical model is
compliant with the perturbed sine-Gordon equation
(Bykov 2001a):

∂2U
∂ξ2

−
∂2U
∂η2

¼ sinU þ α0
∂U
∂η

	 
2

−σ ηð Þ;

U ¼ 2π
u

a
; ξ ¼ πx

ap
; η ¼ πω0t

p
; p2 ¼ a2Dt

4mgh
;

ω2
0 ¼

Dt

m
;αo ¼ 9

8π
aμ

dδρ ghð Þ1=2
;

ð17Þ

where u is the displacement of the blocks located
periodically along the fault length; а is the dis-
tance between the block centers; Dt is the tangen-
tial contact stiffness; m is the mass of the block; h
is the distance between the block centers of the
adjacent block layers; g is the gravity acceleration;
μ is the viscosity of the layer between the blocks;
d is the diameter of the circular contact of the
blocks; δ is the layer thickness; ρ is the density
of the block material; α0 is the parameter of fric-
tion; and σ(η) is the function which reflects the
external loading at the contact of fault surfaces.

Equation (17) matches the structure of the equa-
tion of single fluxion dynamics in Josephson junc-
tion transmission line with dissipation and the
energy source (Parmentier 1978). The solutions
of Eq. (17) in the shape of a traveling wave
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U=U(τ)=U(ξ−βη) (β=(n2−1)1/2/n is the dimen-
sionless velocity; n>1 is the separation constant)
are the functions (Bykov 2001a):

U ¼ arcsin σ0 þ 2 arcsin cn
1

k

σ0
2α0β

2

	 
1=2

τ−τ0ð Þ; k
 !" #

;

ð18Þ

V ¼ ∂U
∂η

¼ � β

πk 1−β2
� �1=2 dn 1

k

σ0
2α0β

2

	 
1=2

τ−τ0ð Þ; k
" #

;

k¼ 2σ0
σþ σ0

	 
1=2

;σ0 ¼ 2α2
0

1−β2
� �2 þ 4α2

0β
2

� �1=2 ;
ð19Þ

where cn(τ,k) and dn(τ,k) are the Jacobian elliptic func-
tions, and k is the modulus of the elliptic function.

Solution (19) is in the shape of slow cnoidal waves, i.e.,
a periodic succession of pulses with 2k(1−β2)1/2K(k) as a
spatial period. Here,K(k) is the complete elliptic integral of
the first kind. It follows that model (17) simulates the
situation when, irrespective of the type of the energy
source σ (constant tectonic loading or external effect), the
fault geomedium forms a sequence of single pulses with a
spatial period determined by fault-zone rheological prop-
erties. This may lead to periodic slip on a crustal fault that
causes earthquakes.

At σ→σ0, the modulus of the elliptic function k→1
and it arises the limiting nonlinear case, when periodic
waves (18) turn into traveling solitary waves:

U ¼ arcsin σ0 þ 4 arctg exp
σ0

2α0β
2

	 
1=2

τ−τ0ð Þ
 !" #

:

ð20Þ
Assuming that the arbitrary constant τ0=0 and going

over to the parameters of initial Eq. (17), let us write
Eq. (20) and its variable v(x,t)=∂u/∂t in the form

u x; tð Þ ¼ a

2π
arcsin

2α0 n2−1ð Þ
1þ 4α2

0n
2 n2−1ð Þ� �1=2

" #

þ 2a

π
arctg exp

x−Vαt

Δ

	 
� �
;

ð21Þ

v x; tð Þ ¼ 2n ghð Þ1=2
aω0

Vαsech
x−Vαt

Δ

	 

; ð22Þ

Vα ¼ a
Dt

m

	 
1=2 n2−1ð Þ1=2

n 1þ 4α2
0n

2 n2−1ð Þ� �1=4 ;
Δ ¼ a2ω0

2πn ghð Þ1=2
:

ð23Þ

The profile of velocity v(x,t) of oscillation of parti-
cles at the fault surface has the shape of a soliton (22),
moving on the fault at velocity Vα (23). At the lack of
friction (α0=0), the solution of Eq. (17) coincides with
the solution of the classical sine-Gordon equation.

The main results of the computations using model
(17) are reduced to the following. The slip velocity (22)
depends on the friction parameter (that is more natural
under constant loading), but not conversely, as it is
usually assumed in stick-slip models. The friction pa-
rameter α0 “governs” the sliding regime change: at
α0→0, the velocity and amplitude of the soliton v(x,t)
sharply increase. On the one hand, the value of velocity
v is dependent on the state of the contact, parameter α0.
On the other hand, an increase of v should contribute to
weakening of the contact itself. This is consistent with
the nonlinear character of the deformation process.

It follows from the computations performed by (22)
at the characteristic physical parameters that if the value
Vα is small, then v is insufficient and stable sliding
without notable contact weakening (creep regime) is
observed. At relatively large velocities Vα of the order
of 102−103 m/s, we obtain v∼0.1–1 m/s and a sharp
increase of displacement u(x,t) to 0.1−1 m, which does
not contradict the dynamic parameters of earthquakes.
The calculated solitary wave velocities Vα during stable
sliding are close to the strain wave velocities of the order
of 10−100 km/year.

The solitary wave is weakening the contact, which, at
the constant loading, leads to the displacement of the
fault surfaces—dynamic slip. Thus, the sliding regime
in the crustal fault is determined by the solitary wave
velocity Vα. Originally, the described solitary waves are
similar to the slippage waves, observed at the contact of
blocks of rocks prior to their relative displacement
(Bykov 2008).

4.2 Waves of activation of crustal faults

It has been illustrated by Bykov (2000, 2006) that the
perturbed sine-Gordon equation can be applied for
modeling the peculiarities of fault dynamics. In fact,
the contribution of perturbation to the sine-Gordon
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equation in the form of friction and inhomogeneities
leads to the solutions in the shape of solitary-like waves
that can be interpreted as the waves of fault activation.
The perturbed sine-Gordon equation is used for model-
ing seismic process starting from fault activation with
further generation of strain waves due to seismic slips
which are considered to be the trigger of earthquakes.

The model includes two most important mechanisms
providing interaction of the fault surfaces: friction, simu-
lated by the introduction of gouge viscosity in the fault,
and geometric inhomogeneities which are characterized by
the ratio of scales of asperity and the sinusoidal parts of the
internal fault surfaces and external load. The resulting
model is formally equivalent to the following equation:

∂2U
∂ξ2

−
∂2U
∂η2

¼ sinU þ α
∂U
∂η

þ γ ξð Þδ ξ−Lð ÞsinU þ σ ηð Þ;

U ¼ 2π
u

a
; ξ ¼ πx

ap
; η ¼ πω0t

p
; p2 ¼ a2Dt

4mgh
; ω2

0 ¼
Dt

m
;

α ≈
aμ

dΔρs ghð Þ1=2
;γ ¼ H

L
;

ð24Þ
where u is the displacement of the blocks located period-
ically along the fault length; a is the distance between the
block centers;Dt is the tangential contact stiffness;m is the
mass of the block; h is the distance between the block
centers of the adjacent block layers; g is the gravity accel-
eration;μ is the viscosity of the layer between the blocks; d
is the diameter of the circular contact of the blocks;Δ is the
layer thickness; ρ is the density of the blockmaterial;α and
γ are the parameters of friction and inhomogeneity, respec-
tively; H,L are the height of asperities and the distance
between them normalized to ap/π; and δ(ξ) is the Dirac
delta function and σ(η) is the function which reflects the
external load at the contact of the fault surfaces.

The left-hand side of the perturbed sine-Gordon
Eq. (24) corresponds to the wave operator applied to
the relative displacement of the fault surfaces. In the
right-hand side of Eq. (24), the first term characterizes
the restoring force originating due to shear along the
sinusoidal-homogeneous surfaces of the fault; the sec-
ond term is the friction force proportional to the velocity
relative to displacement; the third term corresponds to
corrections for inhomogeneities distributed at a distance
apL/π; and the fourth term describes the initiation of
external load on the fault.

Computation has been carried out with variation of
the parameters of friction α and inhomogeneity γ, char-
acterizing the state of the contact at the fault, and also the

value of σ(η), which determines the external load. Inte-
gration of Eq. (24) has been made by the McLaughlin-
Scott approximation method (McLaughlin and Scott
1978; Solerno et al. 1983), and numerical computation
has been performed by the Runge-Kutta-Felberg
scheme (Forsythe et al. 1977).

The main results of the investigations using model
(24) are reduced to the following. The profile of velocity
v of the particles on the fault surfaces has the shape of a
soliton v(x,t)=vmaxsech(x−Vαt), moving along the fault
at velocity Vα. Variation of the friction parameter α in
the sine-Gordon equation essentially clarifies the rea-
sons for variations of velocity Vα of the solitary wave in
the crustal fault, as well as the consequences related to
this variation. It follows from the computations that in
the case of low Vα, the value of v is insignificant, and
stable sliding (creep) occurs. For the relatively high
values of velocity Vα (of the order of 1–10 m/s), we
obtain the soliton profile v∼0.1–1 m/s and the stepwise
profile (kink) u(x,t). The slip velocity increases sharply
for the wave velocity Vα of 1 m/s and higher, and the
values of displacement u are compatible with the dis-
placements of the fault surfaces that are observed for
earthquakes.

At definite values of the friction and inhomogeneity
parameters, α and γ, the solitary wave “acquires” the
stationary regime with the values of Vα∼10−4–10−1 m/s
(from 3 km/year to 10 km/day) that correspond to the
velocities of strain waves. These waves, migrating along
the fault, may trigger the subsequent seismic events.

Evolution of velocity Vα of the wave of fault activa-
tion depends on the friction parameter α. This parameter
has a periodically changing component α1 that corre-
sponds to the regime of the cyclic perturbation contri-
bution to some segments of the fault. Then, the param-
eter α in Eq. (24) is transformed into α=α0+α1sin(τ/η),
where α0, α1, and η are some constants. The results of
computation of Eq. (24) at σ(τ)=0, η=102 for varying
α0, α1, γ show that the maximum of velocity Vα is
attained at t=2−8 s from the perturbation moment, the
time interval, within which Vα corresponds to a slip of
1–5 s. In fact, in real faults, the sliding time is a value of
the order of seconds at large earthquakes. At higher
values of α0 and α1, Vα acquires the periodic regime
with the velocities close to those of quick strain waves
reaching 1−10 km/day.

Periodic changes in the friction parameter in the
perturbed sine-Gordon equation, which models, for ex-
ample, weakening of the fault due to cyclic fluid flow,
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lead to the periodic generation of waves with the veloc-
ities characteristic of the observed strain waves.

We will simulate the initiation of the external loading
on the fault by including in Eq. (24) of another periodic
function σ(τ)=σ0sin(Ωτ), where σ0 and Ω are the di-
mensionless amplitude and frequency of the external
load, the friction parameter α being constant.

The computations show that the time delay of the
initiated dynamic slip decreases with an increase in the
amplitude of the external load. This agrees well with
laboratory (Savage and Marone 2007; Johnson et al.
2008) and field (Ruzhich et al. 1999) experiments. The
slip velocities depend weakly on the amplitude σ0 of the
external load. The number of slips is proportional to the
amplitude of the load and increases with increasing
frequency of the constant sinusoidal load, whereas the
time interval between the successive slips decreases.
This also coincides with experiments (Ruzhich et al.
1999; Savage and Marone 2007; Johnson et al. 2008).

The perturbed sine-Gordon Eq. (24) is, probably, the
simplest mathematical scheme which allows for all the
leading factors (friction, asperity) governing unstable
sliding along a fault during any time interval. This
equation contains no other values but only those capable
of being experimentally measured. Applying the
perturbed sine-Gordon equation to reproduce the ob-
served stick-slip effects at the contact of blocks of rocks
affirms its efficacy (Bykov 2001b, 2008).

5 Concluding remarks

The paper aimed to provide a consistent overview of
remarkable progress in theoretical studies of the solitary
strain waves that have contributed greatly, first of all, to
the solution of the fundamental problem of strain waves
in the Earth.

The search for causes of exciting strain waves
resulted in the development of the models, com-
pliant with the sine-Gordon equation, which
allowed the sources of their excitement to be in-
dicated, the mechanisms generating the waves of
earthquake migration to be proposed, and the
superlow velocities of strain waves to be obtained.
The sine-Gordon equation for the block medium
was first performed by Nikolaevskii (1995) using
the elements of the Cosserat mechanics (possible
to be accounted for the viscoelasticity and
elastoplasticity effects). This provided the

possibility to explain slow stress redistribution in
the crust due to strain waves (individual kink or
solitary waves), moving at velocities a great num-
ber of orders less than those of the ordinary seis-
mic waves. It happens because the inertial move-
ments are not coincident with a mean direction.

The detected mechanisms of strain wave exciting are
caused by the block and microplate rotation, relative
block displacement in crustal fault zones, transform
faults, zones of the lithospheric plate collision and sub-
duction, and irregularity of the Earth’s rotation (Bykov
2005). Probably, refinement of these models should be
reduced to the search for the effects capable of being
detected in laboratory and in situ experiments and in the
geophysical fields.

The theoretical advancements, covered in this over-
view, may be successfully applied in the new rapidly
growing discipline of geophysics, rotational seismology,
for the explanation of the observed effects (Teisseyre
et al. 2006; Teisseyre 2009). Conversely, it is necessary
to use the results of rotational seismology for the anal-
ysis of adequacy of the models developed (see, for
example, Lee et al. 2009).

The second problem successfully developed
using the sine-Gordon equation is related to the
study of tectonic activity of the new type—“slow
earthquakes.” The ETS events, accompanying slow
earthquakes, were observed in a number of the
Pacific subduction zones, the San-Andreas fault,
and other natural systems (landslides and glaciers)
(Schwartz and Rokosky 2007). They are remark-
ably regular in different subduction zones, and
their recurrence interval ranges from 3 to
18 months (Rogers and Dragert 2003). In the
paper by Gershenzon et al. (2011), ETS periodicity
and the rate of tremor migration in Cascadia are
reproduced. Episodic tremor and slow slip, devel-
oping at plate boundaries in subduction zones and
transform fault zones, may be new evidence and
indication of strain wave migration in the Earth.

Despite the great advance in the theoretical
studies, still a great number of problems remain
to be further developed and analyzed. The mecha-
nisms of strain wave generation, described in the
present overview, have not been sufficiently elab-
orated and mainly involve the empirical data; a lot
of predictions still expect experimental validation.

Further mathematical modeling of strain waves
in the Earth using the sine-Gordon equation is
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necessary to determine the optimal conditions for
their observation, to detect the main physical
mechanisms causing seismic migration and gener-
ation of signals of different origin, accompanying
strain waves at different scale levels, and, also, to
determine the conditions, mostly influencing the
parameters of these waves.
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Appendix

Here, only those analytical solutions of the sine-Gordon
equation are given that have been used by different
researchers for developing models of seismic activation
of faults, demonstrate the main features of the deforma-
tion process in fault zones and explore a relative role of
different factors in wave dynamics of the earthquake
source.

The classical sine-Gordon equation has the following
form:

∂2U
∂ξ2

−
∂2U
∂η2

¼ sinU ; ð25Þ

where ξ and η are the spatial and temporal coordinates;
U is the dynamic variable (the rotation angle or displace-
ment of the block or fragment of the medium). If to
search for the solution in the shape of a traveling wave
(β is the wave velocity),

U ¼ U τð Þ ¼ U ξ−βηð Þ:

Equation (25) turns into

d2U

dτ2
¼ sinU

1−β2 : ð26Þ

Equation (26) has the following well-known
solutions:

1. Periodic fast cnoidal waves (0<k<1; β2>1):

U ¼ 2arcsin ksn −
1

k

ξ−βη

1−β2
� �1=2

 !
; k

" # !
; ð27Þ

V ¼ ∂U
∂η

¼ −
βk

π β2−1
� �1=2 cn ξ−βη

β2−1
� �1=2

 !
; k

" #
: ð28Þ

Solution (27) appears as a traveling wave oscillating
close to the value U=0. Solution (28) corresponds to a
periodic wave with an average zero value. V is the
velocity of dynamic variable U (the rotation angle or
displacement of the block of the geological medium).

2. Periodic slow cnoidal waves (0<k<1; β2<1):

U ¼ arcsin �cn −
1

k

ξ−βη

1−β2
� �1=2

 !
; k

" #( )
; ð29Þ

V ¼ ∂U
∂η

¼ � β

πk 1−β2
� �1=2 dn 1

k

ξ−βη

1−β2
� �1=2

 !
; k

" #
:

ð30Þ

Solution (30) represents a periodic sequence of
pulses with a spatial period 2k(1−β2)1/2K(k), where
K(k) is the complete elliptical integral of the first
kind. In expressions (27)–(30), the notations sn(ξ,
k), cn(ξ,k), and dn(ξ,k) are the Jacobian elliptic
functions; k is the modulus of the elliptic function.

3. Solitary waves (solitons) ( k→1; β2 < 1 ):

U ¼ 4 arctg exp � ξ−βη

1−β2
� �1=2

 !" #
; ð31Þ
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V ¼ ∂U
∂η

¼ � β

π 1−β2
� �1=2 sech ξ−βη

1−β2
� �1=2

 !
: ð32Þ

Solutions (31) and (32) are most frequently encoun-
tered in the present overview and have the proper
names: the first one is a kink, a wave with invariant
profile in the shape of a twist by variable U; the second
one is a soliton, a solitary wave, transmitting at velocity
β. The above solutions are schematically shown in
Fig. 3. Figure 3b, c, corresponding to the solutions
(31) and (32) of the sine-Gordon equation, coincides
in their shapes with the displacements and velocities of
stick-slip at the contact of blocks of rocks, observed in
the laboratory experiments (Bykov 2008).
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