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Abstract We introduce a new approach for ground
motion relations (GMR) in the probabilistic seismic
hazard analysis (PSHA), being influenced by the ex-
treme value theory of mathematical statistics. Therein,
we understand a GMR as a random function. We derive
mathematically the principle of area equivalence,
wherein two alternative GMRs have an equivalent in-
fluence on the hazard if these GMRs have equivalent
area functions. This includes local biases. An interpre-
tation of the difference between these GMRs (an actual
and a modeled one) as a random component leads to a
general overestimation of residual variance and hazard.
Beside this, we discuss important aspects of classical
approaches and discover discrepancies with the state of
the art of stochastics and statistics (model selection and
significance, test of distribution assumptions, extreme
value statistics). We criticize especially the assumption
of logarithmic normally distributed residuals of maxima
like the peak ground acceleration (PGA). The natural
distribution of its individual random component (equiv-
alent to exp(ε0) of Joyner and Boore, Bull Seism Soc
Am 83(2):469–487, 1993) is the generalized extreme
value. We show by numerical researches that the actual
distribution can be hidden and a wrong distribution
assumption can influence the PSHA negatively as the
negligence of area equivalence does. Finally, we suggest
an estimation concept for GMRs of PSHA with a
regression-free variance estimation of the individual
random component. We demonstrate the advantages of

event-specific GMRs by analyzing data sets from the
PEER strong motion database and estimate event-
specific GMRs. Therein, the majority of the best
models base on an anisotropic point source ap-
proach. The residual variance of logarithmized PGA
is significantly smaller than in previous models. We
validate the estimations for the event with the largest
sample by empirical area functions, which indicate
the appropriate modeling of the GMR by an aniso-
tropic point source model. The constructed distances
like the Joyner–Boore distance do not work well for
event-specific GMRs. We discover also a strong
relation between magnitude and the squared expecta-
tion of the PGAs being integrated in the geo-space
for the event-specific GMRs. One of our secondary
contributions is the simple modeling of anisotropy
for a point source model.

Keywords Groundmotion relation . Probabilistic
seismic hazard analysis . Area equivalence . Regression
analysis . Extreme value statistics . Model
selection . Statistical test . Random function

1 Introduction

The level of local seismic impact is estimated for
modern building codes and the earthquake-resistant
design of industrial facilities by probabilistic seismic
hazard analysis (PSHA) as a part of seismology and
earthquake engineering. Therein, the average annual
exceedance frequency of local earthquake ground mo-
tion intensity is estimated. An important element of
PSHA is the ground motion relation (GMR), which
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describes the relation between the local ground motion
intensity and different event parameters such as the
magnitude (Bommer and Abrahamson 2006). It is also
called ground motion prediction equation. We prefer
the term GMR of Atkinson (2006) because we research
an appropriate relation for the PSHA that needs not to
be the best prediction and its residual variance for a
single event. The previous GMRs are mostly modeled
by a statistical regression analysis (Strasser et al. 2009)
wherein the event parameters are predictors. Douglas
(2001, 2002) provides a good overview of GMRs
being published before 2002, and Douglas (2003)
gives an excellent overview of all aspects of GMRs
like estimation methods or source models. Therein, the
physical unit of local ground motion intensity is the
peak ground acceleration (PGA) or the maximum of
another type of local time history. The parameters of
current GMRs are fixed, not event-specific, including
the depth parameter. The conditional probability distri-
bution of the local ground motion intensity is generally
modeled by the logarithmic normal (log-normal) dis-
tribution in the GMR, which implies a normal distri-
bution for the logarithmized ground motion intensity
(Joyner and Boore 1993; Strasser et al. 2009). This
approach results in unrealistically high estimations of
ground motion intensities for low exceedance frequen-
cy (Stepp et al. 2001; Abrahamson et al. 2002;
Bommer and Abrahamson 2006), which has not been
improved by the next generation of GMR (NGA;
Abrahamson et al. 2008). Beside this, truncation of
the log-normal distribution was suggested to avoid
overestimations, but choosing the truncation point is
difficult according to Strasser et al. (2008). Therein,
statistical estimation methods for truncation points
(Raschke 2011) have not been considered. We gener-
ally note a lack of consideration of current knowledge
of stochastics and statistics in the research of GMR.
For example, it is known for a long time that the
statistical significance of regression models of GMR
should be validated (Joyner and Boore 1981), but
many NGAs are not validated in this sense (see
Table 2). Beside this, at least the individual random
component (ε0 of Joyner and Boore 1993) of the PGA
should follow an extreme value distribution according
to the extreme value statistics (Leadbetter at al. 1983;
Coles 2001). Dupuis and Flemming (2006) have intro-
duced the concept of extreme value statistics into
GMR, but their paper was not considered any further.
In the following section on regression models for

GMRs, we criticize important statistical aspects of
previous GMR and briefly call arguments for the ex-
treme value distribution of the individual random com-
ponent in Section 3. However, our break with the
traditional approaches to GMRs is deeper; in
Section 4, we mathematically derive the area equiva-
lence for GMRs in PSHA inspired by equivalences in
max-stable random fields (Schlather 2002; Kabluchko
et al. 2009). Therein, GMRs are random functions,
which include event-specific GMRs and distinction
between GMRs for an actual prediction and GMRs
for the PSHA. We also introduce an approach to an
anisotropic point source model in this section. In
Section 5, we numerically research the detectabil-
ity of the distribution model and the influence of
this and other items like the area equivalence on
PSHA. Then, we suggest an estimation concept for
our approach to GMR in Section 6, including a
regression-free estimation of the variance of the
individual random component. We partly apply
this concept to nine suitable data sets and research
the link between the event-specific GMR and the
magnitude. Finally, we conclude our results in the
last section. We follow here the rules of statistics,
use its terms (see Upton and Cook 2008).

2 Regression model for GMR

2.1 Basic formulation

The GMR is usually formulated by a regression model
with the basic formulation (Lindsey 1996; Rawlings
et al. 1998; Montgomery et al. 2006)

Y ¼ g Xð Þ þ ε�;E Yð Þ ¼ g Xð Þ;E ε�ð Þ ¼ 0;V Yð Þ ¼ V ε�ð Þ;
ð1Þ

Y is the predicted variable (response variable, depen-
dent variable, conditional variable, or regressand). The
regression function g(X) includes a parameter vector
θ, which is estimated. The predictors (independent
variables, predicting variables, or regressors) are the
elements of the random vector X=(X1, X2,..,Xm). E(.)
are the expectations and V(.) are the variances. The
random variable ε* is the random component (residu-
al, random term, or measurement error) and deter-
mines the cumulative distribution function (CDF) Fy

of Y under condition of X. If g(X)≥0 and V(ε*) is
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proportional to g2(X), then we write the equivalent
formulation

Y ¼ εg Xð Þ; ε ¼ 1þ ε�;E Yð Þ ¼ g Xð Þ;E εð Þ
¼ 1;V Yð Þ ¼ V εð Þg2 Xð Þ: ð2Þ

We prefer this formulation for GMRs, wherein Y is
the PGA or something similar, because the expectation
is a very important characterization of a random vari-
able and ε can be neglected under certain conditions
(Section 4.1). If Y≥0, then we can logarithm and for-
mulate the popular model for GMRs (Douglas 2001,
Abrahamson et al. 2008)

ln Yð Þ ¼ g� Xð Þ þ ξ; E ln Yð Þð Þ ¼ g� Xð Þ;E ξð Þ
¼ 0;V ln Yð Þð Þ ¼ V ξð Þ: ð3Þ

It is assumed for most GMRs for PSHA that ξ is
normally distributed (Joyner and Boore 1993; Strasser
et al. 2009). This implies a model according to Eq. (2)
with log-normally distributed ε. The link between
Eqs. (2 and 3) is (Johnson et al. 1994, Eq. (14.8))

E Yð Þ ¼ g Xð Þ ¼ exp g� Xð Þ þ V ξð Þ
.
2

� �
and ð4aÞ

V Yð Þ ¼ exp 2g� Xð Þð Þexp V ξð Þð Þ exp V ξð Þð Þ−1ð Þ; ð4bÞ

ε ¼ exp ξð Þ−exp V ξð Þ
.
2

� �
: ð4cÞ

We apply Eqs. (3 and 4) simultaneously even if ε is
not exactly log-normally distributed (Johnson et al.
1994, Eq. (12.67) with ξJohnson≈0). A typical formula-
tion for a GMR is (Douglas 2002)

g� Xð Þ ¼ θ0 þ θ1m−θ2r−θ3ln rð Þ þ θsxs þ…; r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ h2

p
; θ1 > 0; θ2≥0; θ3≥0 ð5Þ

with predicting variables magnitude m, source distance
d (and r) and indicator variable xs and its parameter θs
for the site condition. The source depth is considered
by h and can be a parameter or an event-specific
predictor. There are many variants and extensions for
g*(X) (Douglas 2002; Abrahamson et al. 2008).

2.2 Random components, estimation methods,
and errors

The random components ε resp. ξ are independently
and identically distributed (iid) variables, and the pre-
dictors are measured exactly in simple regression
models. For such cases, the least squared (LS) estima-
tion can be applied, which is equivalent to the
maximum-likelihood estimation for normally distrib-
uted residuals (see Rawlings et al. 1998, p. 77). This is
not popular in seismology, e.g., Castellaro et al. (2006)
incorrectly claim that the residuals have to be normally
distributed for the LS regression. The LS method
has often been used for GMRs and is extended to
random components that are not iid. Douglas (2003,
Section 11) gives an overview of approaches from be-
fore 2003. The two most important approaches seem to
be the one and two stage regression method with the
following random components (Joyner and Boore 1993;
with assumption of normal distribution)

ξ ¼ ξE þ ξS þ ξ0;E ξEð Þ ¼ E ξSð Þ ¼ E ξ0ð Þ ¼ 0; ð6Þ
wherein ξE is event-specific, ξS is site-specific, and ξ0
has an individual realization for each site (station) and
event. We prefer the product formulation according to
Eq. (2) with

ε ¼ εEεSε0εQ;E εð Þ ¼ E εEð Þ ¼ E εSð Þ ¼ E ε0ð Þ

¼ E εQ
� � ¼ 1; εQ ¼ gactual Xð Þ

.
geqivalent Xð Þ; ð7Þ

wherein the additional pseudo-random component εQ
(resp. ξQ) results from the ratio between actual and
equivalent function g(X) according to Section 4. A
general distribution assumption is not required, but it
is obvious that εQ has a finite upper bound and a lower
bound larger than 0 for a fixed distance d. That is one
reason why εQ cannot be log-normally distributed.

In other GMRs, the component εS resp. ξs had been
replaced by site-specific predictors xs in Eq. (5). But
there is no proof that one additional predictor can
completely replace εS resp. ξS and we doubt this be-
cause site response is very complex. Independent of
this, one condition of the regression models of Joyner
and Boore (1993) is that predictors m and r do not
include a measurement error. However, magnitudes are
not measured exactly. Rhoades (1997) considers the
known variance of the seismological magnitude esti-
mation in his regression analysis for GMR. It is not
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considered that this known error needs not to be the
only one. The actual error of the seismological estima-
tion can be higher according to Giardini (1984).
Arguments for this: The source mechanism influences
the ground motion (Campbell 1981, 1993; Crouse and
McGuire 1996; Sadigh et al. 1997). This acts like a
measurement error of magnitudes in the GMR. An
application of fewer classes of source mechanism
would reduce but not eliminate it. Furthermore, the
inter-event variability ξE can be interpreted as an error
in magnitudes because the seismological magnitudes
can be exact for a certain aspect of the rupture process
but do not need to be exact for the GMR. The actual
magnitude of GMR could be a non-measurable, latent
variable, which is estimated by common magnitudes
with an error in the sense of statistical error-in models
(Cheng and van Ness 1999, Section 1.1). The consid-
erable differences between the estimated residual var-
iances of GMRs for one sample of PGAs but for
different magnitude scales (see, e.g., Atkinson and
Boore 1995, Table 5) support this assumption.
Additionally, the magnitudes of the analyzed sample
could be from different scales (e.g., Bommer et al.
2007), which acts like a measurement error.

The source-to-site distance d is also treated as ex-
actly measured predictor. But it should include an error
because there are many definitions for this distance
(Douglas 2003, Section 9). How could it be possible
that all these measures for the same physical aspect act
without a measurement error? Moreover, the distances
are determined by the seismological source estimation,
which also includes errors. Even if parameters of this
error would be known, it would be difficult to consider
it in a regression analysis [personal communication
with (pcw) Douglas, spring 2013]. Beside this, the
influence of the source depth is often reduced to a fixed
parameter for a defined class of earthquakes (e.g.,
shallow events). In other GMRs (Ambraseys and
Bommer 1991), h is the seismological epicenter depth.
But neither is the influence of the source depth the
same for every earthquake nor is the seismological
depth exactly measured. In both cases, a kind of mea-
surement error is neglected. Furthermore, it is assumed
for current GMR that the parameter vector θ of the
GMR is the same for each event (Joyner and Boore
1993; Abrahamson et al. 2008).

There are more estimation methods for a regression
model (e.g., Rawlings et al. 1998, Section 10;
Stromeyer et al. 2004). The models for unknown

measurement errors of predictors (Cheng and van
Ness 1999, Section 4) are not applied for GMR as far
as we know. Beside this, the aspect of estimating the
estimation errors of the regression parameters is not
considered in all approaches. These standard errors can
be easily estimated for a simple linear LS regression
with iid random components (Rawlings et al. 1998,
Section 4.6). But it is more difficult for models with
random effects. Joyner and Boore (1993) applied the
Monte Carlo simulation to estimate the estimation er-
ror; Rhoades (1997) has computed these standard er-
rors using the likelihood function. Chen and Tsai
(2002) also give a method to estimate the standard
error. But Abrahamson and Young (1992) do not give
any advice for this issue regarding their procedure. We
draw attention here to the fact that an estimation error
can be computed by the Jackknife technique
(Quenouille 1956; Efron 1979). This also applies for
clustered data according to Raschke (2012, 2013), as is
the case for the mixed effects. The estimation error can
be applied directly to construct the confidence range
and verify the statistical significance of a predictor and
its parameter.

2.3 The danger of over-parameterization

We could explain the entire variance of a predicted
variable Y or ln(Y) by a regression model if we use a
large number of predictors and related parameters,
although not all predictors have an actual influence
(Rawlings et al. 1998, Fig. 8.2). The question is: how
can we distinguish between significant and insignifi-
cant predictors and/or parameters? Different statistical
tools can solve this problem. The first one is the sig-
nificance test for the regression parameters θI in g(X)
resp. g*(X)=…+θiXi. We test here if θi≠0, θi≤0, or θi≥0
for a defined significance level α (5 % is often used and
recommended here). The last two variants are applied
when physical reason bounds the influence of a pre-
dictor, e.g., a larger magnitude should be related to a
larger PGA. In this case, we can be sure with a prob-
ability of 100%−α that the actual parameter θI does not
have a contrary sign. The smaller α is, the more rigor-
ous is the test. The t test is such a test (Rawlings et al.
1998, Sections 1.6 and 5.3), which has seldom been
applied for GMR, e.g., by Joyner and Boore (1981),
Molas and Yamazaki (1995), and Ambraseys et al.
(2005, pcw Douglas March 2013). Note that the clas-
sical t test cannot be applied without modification or
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acceptance of inaccuracies to the case of mixed effects
(clustered data). The significance of a published GMR
is also examined implicitly by published standard er-
rors of the parameter estimation. If the related quantile,
corresponding with α, is not smaller/larger than 0, then
it implies statistical significance. This is the case for the
estimations of Joyner and Boore (1993, Table 3) and
Rhoades (1997, Table 1). Applying model selection
criterions in the model building (Rawlings et al.
1998, Section 7) is a further possibility for guarantee-
ing the statistical significance, e.g., the Akaike infor-
mation criterion (AIC) or the Bayesian information
criterion.

The significance has to be verified for each statisti-
cal model. Otherwise, danger of over-parameterization
arises. This problem applies to a considerable amount
of GMRs; we list 15 examples in Table 1. This is also
an issue in other researches (Raschke and Thürmer
2008).

2.4 The test of the distribution assumption

Any statistical distribution model should be validated
(D’Augustino and Stephens 1986). This also applies to
the residual distribution of a GMR in PSHA although a
distribution assumption is not necessary for the LS re-
gression. A powerful goodness-of-fit test is the best
method of examining the distribution assumption, as
the Anderson–Darling (AD) test for a normal distribu-
tion (Landry and Lepage 1992). Contrary to the afore-
mentioned t test, the test is the more rigorous the larger
the selected significance α is. There are such tests
for different distribution functions with estimated pa-
rameters (Stephens 1986). If all parameters are known,
then the distribution is fully specified and the classical
Kolmogorov–Smirnov (KS) test can be applied. If the
KS test is applied to estimated parameters, then the test
does not work (Raschke 2009). If there is not an appli-
cable goodness-of-fit test for the distribution type used,
then a quantile plot (q–q plot) can be used for a visual,
qualitative test as done by Dupuis and Flemming (2006)
for residuals with a mixed, non-normal distribution.
However, there is no objective criterion for rejecting
the distribution hypothesis in this case. A histogram is
a kind of parameter-free distribution model, but it is not
a tool for validating a distribution model (not mentioned
by D’Augustino and Stephens 1986) because there is no
objective criterion for rejection and there are many
possible histograms for a sample. We state that the

assumption of normally distributed ξ resp. its compo-
nents in Eq. (3) is often not correctly validated for
GMRs. For example, Ambraseys and Bommer (1991),
Ambraseys and Simpson (1996), Ambraseys et al.
(1996), Atkinson and Boore (1995), Spudich et al.
(1999), Douglas and Smit (2001), Atkinson (2004),
and Kalkan and Gülkan (2004) have neither assumed
nor tested a distribution model. Beside this, the assumed
normal distribution of ξ has been tested by the inappro-
priate KS test in other studies (e.g., McGuire 1977;
Campbell 1981; Abrahamson 1988; Monguilner et al.
2000; Restrepo-Velez and Bommer 2003). The quantile
plot (e.g., Chang et al. 2001; Bommer et al. 2004) and
the histogram (e.g., Atkinson 2006; Beyer and Bommer
2007; Morikawa et al. 2008) have also been applied to
validate the normal distribution although these methods
are not appropriate. Note that even though ξ seems to be
normally distributed, it needs not to be (see Section 5).
The inappropriate test of a distribution assumption is
also a problem in other researches, e.g., of flood hazard
in Germany (Raschke and Thürmer 2008).

3 The distribution of the maximum of a random
sequence

The popular assumption for GMR for PGAs that all
random components ε… are log-normally distributed
(ξ… normally distributed, Joyner and Boore 1993;
Strasser et al. 2009) is in contradiction to the ex-
treme value theory. According to this special field
of stochastics and statistics, the maximum of a
sample Y=Max{Z1,Z2,..,Zi,…,Zn} of iid random vari-
ables has a generalized extreme value distribution in
most cases (GED, Fisher and Tippett 1928; Gnedenko
1943; Beirlant et al. 2004; de Haan and Ferreira
2006). The maximum of a sequence of non-iid ran-
dom variables also has a GED under some weak
conditions (Leadbetter et al. 1983, Parts II and III;
Falk et al. 2011, Part III). Its CDF is written with the
extreme value index γ (shape parameter), scale
parameter σ, and location parameter μ

G yð Þ ¼ exp − 1þ γ y−μð Þ=σð Þ−1=γ

� �
; γ≠0; 1þ γ y−μð Þ=σ > 0;

ð8aÞ

G yð Þ ¼ exp −exp − y−μð Þ=σð Þð Þ; γ ¼ 0; ð8bÞ
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with the Fréchet domain for γ>0, the Weibull do-
main for γ<0, and the Gumbel domain for γ=0. The
latter one is also called the Gumbel distribution. A
fundamental property of the GED is max stability.
This means that the maximum max{Y1, Y2} of
extreme value distributed variable Y is again ex-
treme value distributed with the same extreme val-
ue index γ. If Y would be log-normally distributed,
then max{Y1,Y2} would not be log-normally distrib-
uted. Neither the normal nor the log-normal distri-
butions are max-stable. This problem is typical for
the combination of the two horizontal components
(Y1, Y2) of the earthquake record, it could be de-
fined by a maximum max{Y1, Y2} (Douglas 2003,
Section 6). All combinations with a maximum def-
inition of Douglas (2003, Section 6, #2, 4, 5) result
in a classical extreme value for which the GED is
the natural distribution. The log-normal assumption
for random component ε0 is wrong in this case
according to the state of the art of stochastics and
statistics. We consider here only maxima. In case of
other combinations of the horizontal components, it
is also unlikely that random component ε0 becomes
log-normally distributed. We have investigated the
distribution of the combination arithmetic mean,
geometric mean, and vectorial addition of Gumbel
distributed components ε01 and ε02 numerically
(Appendix 2). The log-normal assumptions are
rejected.

The argument of missing max stability of the log-
normal assumption also applies for sub-sections of the
ground motion time history. If the sub-maxima of not
overlapping sub-sections of the time history are log-
normally distributed, then the maximum of the entire
time history cannot be log-normally distributed

(exception: all sub-maxima are identical). Log-normal
assumptions would also contradict all our experiences
with extreme values (Hüsler et al. 2011, Raschke 2011,
2012, 2013).

We briefly investigate the possible domain of
attraction for PGAs and analyze the tail of three
acceleration time histories (Fig. 1). The tails are
exponentially distributed, which indicates the Gumbel
domain of attraction for the maxima of the accel-
erations (see Coles 2001, Section 4). Besides,
Dupuis and Flemming (2006) have estimated a
GMR with GED for the residuals of PGA with
extreme value index γ≈0, which also indicates the
Gumbel domain.

4 GMR in the PSHA as random function
in geo-space

4.1 GMRs as random functions in space

A random function is a function randomly selected from a
set of functions (population). Schlather (2002, Theorem 1
and its proof; we use different symbols) applies a
measurable random function W(s−t)≥0 to construct a
max-stable process. This max-stable process max(Y(si))
refers to the maxima at site s from all point events i with
local event intensity Y(si)=moiW(si−t). Therein, t is a
source allocation resp. the source point in the sense of
PSHA (not necessary a point source), being part of a
homogeneous Poisson process in the geo-space and at a
moment scale mo≥0 with density mo

−2. Its (annual) max-
imum max(Y(si)) has the CDF G(y)=exp(−λ(y)) with
annual exceedance function (AEF) λ(y) of annual aver-
age frequency of exceedance Y(s)≥y according to the limit
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Fig. 1 Tails of the time series of ground acceleration a of the
PEER Strong Motion Database (2010): a station: CDMG 24278,
component: 090, earthquake: Northridge earthquake 01/17/94; b

station: ARAKYR, component: 090, earthquake: GAZLI 5/17/76;
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law for extremes (Coles 2001, Section 7.3).
This distribution is equivalent for different sets of ran-
dom functions if their expectations E(Vo) of the volume
Vo=∫sW(s−t)ds are equal. This construction can be
interpreted as homogeneous seismicity with
moW(s−t)=g(X). The spatial distance s−t is part
of the distance elements of the predicting vector
X beside the event parameters in sub-vector XE of
X. It is scaled by the earthquake magnitude with
m=ln(mo) without influence on the shape of W(s−t)
resp. g(X). The magnitude is exponentially distrib-
uted without an upper bound. According to Theorem 1
of Schlather, the AEF λ(y) is equal for different GMRs if
the expectation E(Vo) is equal for any fixed event pa-
rameters like magnitude m and h. Furthermore, we
can extend this equivalence to moW(s−t)=ε(s)g(X)
according to Theorem 2 of Schlather (2002; pcw
Kabluchko 2012) if the random component ε has the
expectation E(ε)=1. This includes that for an event is
∫sg(X)ds≈∫sε(s)g(X)ds if the variance and the spatial
correlation of ε(s) is relative small. In all cases, we can
interpret a GMR as a random function in space

being an element of a set (population). Different
sets of GMR act equivalent if the expectations E(Vo) are
equivalent. Note that the variance and the distribution
type of ε have no influence on λ(y). This could be the
reason why Cornel (1968) did not explicitly consider a
random component in his GMR for the PSHA with
exponentially distributed magnitudes without upper
bound—he did not need and could have find this out
by numerical researches. Non-mathematicians can
check all results in the same way.

This equivalence of GMRs works only for exponen-
tially distributed magnitudes without upper bound. We
introduce the area function K(y) to derive a general
equivalence of GMRs being independent of the mag-
nitude distribution. For this purpose, we consider at
first GMR g(X) in a simple one-dimensional geo-space
as shown in Fig. 2b. We use an example with two
maxima of g(X) to demonstrate the general application
of this equivalence. For fixed event parameters and a
fixed value y, the GMR covers a certain area of all
points with y≤g(X). The area function K(y) is for ho-
mogeneous site conditions

Fig. 2 GMR and area equivalence: a g(X) in a 1D geo-space, b
resulting area function K(y), c g(X) for fixed source point t and
reflected version for fixed s, d 2D geo-space with isolines of

g(X) for different t (light gray) and reflected isoline (dark gray)
for fixed s for anisotropic point source model, e as d but for a line
source

1164 J Seismol (2013) 17:1157–1182



K yð Þ ¼ ∫1 g Xð Þð Þdt; 1 g Xð Þð Þ ¼ 1 for y≤g Xð Þ; otherwise 1 g Xð Þð Þ ¼ 0:
ð9Þ

The first derivation is the related area density mea-
suring the amount of points with y=g(X)

k yð Þ ¼ −dK yð Þ=dy: ð10Þ
The area function is defined according to
Fig. 2a, b for a fixed source point t. But we could
also fix s and draw g(X) at t although it acts at
site s. We reflect the GMR in this way for 1D
geo-space, as shown in Fig. 2c. We have an equiv-
alent formulation for K(y) with

K yð Þ ¼ ∫1 g Xð Þð Þds; 1 g Xð Þð Þ ¼ 1

for y ≤ g Xð Þ; otherwise 1 g Xð Þð Þ ¼ 0:

ð11Þ

The reflection becomes complicated for the two-
dimensional geo-space, but Eqs. (9–11) still apply.
We can illustrate the reflection for an isoline with
fixed y=g(X), as shown in Fig. 2d for an aniso-
tropic GMR for a point source and an isotropic
GMR for a line source in Fig. 2e.

Now, let us assume the case of homogeneous seismic-
ity: Each point t in the geo-space represents a source
allocation with equivalent occurrence intensity ν, equiv-
alent g(X) with X=(s,t,XE) with event parameter
XE=(m,h,xi) and its multivariate probability density func-
tion fE. The distances d resp. r of theGMR are determined
by s, t, h and the source model.We formulate for the AEF
λ(y) of annual average frequency of exceedance Y(s)>y

λ yð Þ ¼ ν∫XE
∫t f E XEð Þ 1−Fy y;E Y sð Þð Þ ¼ g Xðð Þ;V Y sð Þð Þ ¼ g2 Xð ÞV εÞÞð� �

dtdXE; X ¼ XE; s; tð Þ: ð12Þ

Therein, the CDF Fy is parameterized by its expecta-
tion E(Y(s)) and variance V(Y(s)) according to Eq. (2).
V(ε) can be influenced by XE but does not include εQ.
Equation (12) is oriented on the absolute probability

integral ofMcGuire 1995, but there are many equivalent
formulations. One includes a replacement of the inte-
gration on t by the area density k(y) and the integration
on y=g(X) with

λ yð Þ ¼ ν∫XE
∫zk zjXEð Þ f E XEð Þ 1−Fy y;E Y sð Þð Þ ¼ z;V Y sð Þð Þ ¼ z2V εð Þ� �� �

dzdXE; ð13Þ

because the integration in the geo-space in Eq. (12) is
nothing else than a computation of the amount of
points with y=g(X) in the sense of measure theory
(Billingsley 1995, Chapter 2). Now, it is obvious that
two GMRs g1(X)≠g2(X) result in equivalent hazard
with λ1(y)=λ2(y) if the area density is equal with
k1(y)=k2(y) resp. K1(y)=K2(y). Note, all other compo-
nents in Eqs. (12 and 13) are equal, including the

parameterization of CDF Fy by V(ε), which does not
include εQ. The equivalence of λ(y) of Eqs. (12 and 14)
applies only to one site s with homogeneous seismicity
in its surrounding. We introduce now an expansion of
this equivalence to the influence function λ*(y). This
function describes the influence of any fixed source
point t to the seismic hazard of all sites s with homog-
enized site conditions

λ� yð Þ ¼ ν∫XE
∫s f E

XEð Þ 1−Fy y;E Y sð Þð Þ ¼ g Xðð Þ;V Y sð Þð Þ ¼ g2 Xð ÞV εÞÞð� �
dsdXE; X ¼ XE; s; tð Þ: ð14Þ
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This integral is basically equivalent to the integral of
Eq. (12), and the principle of area equivalence also
applies. Area-equivalent GMRs result in equal influ-
ence functions. Therein, homogeneity of seismicity is
not required for Eq. (14); fE and ν can be source point
specific. Time dependence is also possible.

What is the consequence? For an actual and area-
equivalent GMR is gactual(X)≠gequivalent(X) for almost all
X, what includes a local bias. An example is given in
Fig. 3b. But εQ=gactual(X)/gequivalent(X) of Eq. (7) is not
an actual random component and is not considered in
Eqs. (12–14). If εQ resp. ξQ are interpreted as an actual
random component, and the estimated residual variance
from the regression analysis for the GMR is directly
applied to the GMR in PSHA, then we overestimate the
entire random component (residual) ε resp. ξ and the
variances V(Y(s)) and by this the influence function
λ*(y) resp. the entire influence of each source point t
on the AEFs λ(y) of all sites. The hazard estimation of
all sites is systematically overestimated in this way. This
does not exclude the possibility of local underestimation
of λ(y) according to Fig. 3b. The only exception of the
systematic overestimation is the case if all random com-
ponents εQ, ε0, and εE have no influence (see above).

Non-mathematicians can numerically check these
results. Beside this, we state that GMRs could be
random functions because there is no proof that all
events need to have equal parameters θ in Eqs. (2–5).

4.2 A model of anisotropic GMR for a point source

An anisotropic GMR can be simply formulated for a
point source model according to the intercept theory
(Fig. 3a) by a unit-isoline which includes area π equal
to the unit circle of angle functions. The radius function
dunit(φ) determines the unit-isoline with azimuth φ of
local polar coordinates with origin t. The distance d in

r2=h2+d2 is replaced by d*=d/dunit (φ). An example is
pictured in Fig. 3b. Different unit-isolines can obvi-
ously be combined by the sum d2unit(φ)=∑iai⋅d2i,unit(φ)
with weighting 0≤ai≤1 and ∑iai=1. We do not discuss
any physical interpretation because our focus is on
statistical modeling and physics is also not discussed
in other anisotropic models (Enescu and Enescu 2007;
Sørensen et al. 2010).

4.3 Examples of area-equivalent GMRs

We illustrate the action of misinterpretation of εQ as an
actual random component in example I. We apply the
unit-isoline of Fig. 3b, and we set θ3=1 and θ2=0 of a
GMR according to Eq. (5) (see Fig. 4a). The parameters
are θ0=θ1=θs=0 because they are not relevant here.
Furthermore, we fix h=10 km and simulate for a fixed
site in the center of a source region with homogeneous
seismicity as described in Appendix 3. There is no
actual random component in the actual GMR because
V(ξ)=0. We have plotted ln(Y) in relation to distance r in
Fig. 4b with the regression function for the isotropic,
circular GMR. The estimated parameters are almost equal
to the actuals. If the observed residuals are interpreted as
actual random components, then the residual variance is
overestimated with V(ξ)=0.10. An interesting aspect con-
stitutes the distance dependency of ξQ in Fig. 2b: It
increases with increasing distance. But we can also con-
struct an example II of area equivalence with decreasing
variance using the Joyner–Boore distance. In Fig. 4c,
an actual and an estimated vertical projection of the
rupture is pictured. The shape of both projections and
the included area is equal; only the azimuth is differ-
ent. Obviously, the actual and the modeled Joyner–
Boore distance are area equivalent for the same
GMR. But there is a component εQ resp. ξQ. We
simulate again observations without actual random

Fig. 3 Construction of
anisotropic GMR by an unit-
isoline: a the intercept theo-
rem with relation between
distances (A′−A)/(A−t)=
(A′−B′)/(A−B), b example

of an unit-isoline with dunit
φð Þ ¼ 0:96þ 0:352ð j
sin 2φð Þð j1:5=sin 2φð Þ (gray
regions overestimation,
white regions underestima-
tion, A and B for Fig. 4a)

1166 J Seismol (2013) 17:1157–1182



components and show these in Fig. 4d. V(ξQ) de-
creases with increasing, large distances.

5 Numerical studies

5.1 The influence of the distribution type

We numerically investigate the influence of the type of
CDF Fy, which is determined by the distribution of ε
resp. ξ, on the hazard curve for equivalent residual
variance. For this purpose, we use again the constructed
situation of seismicity according to Appendix 3 with
fixed depth h=10 km and consider different upper mag-
nitudes mmax=7 and 9. Additionally, we consider differ-
ent variances V(ξ)=0.152 and 0.32 for log10, which are
typical for previous GMRs. The applied GMR is g*(X)=
0.5m−ln(r)−0.002r+4.7. We consider different distribu-
tions of random component ε: Gumbel, the log-normal
and truncated log-normal distribution. The latter
has an upper and lower bound at three times its
standard variation. The computed AEFs are shown
in Fig. 5. We note that the influence of the distri-
bution type depends on the maximum magnitude,
the residual variance, and the range of y. The
hazard of rare events is the largest for the log-
normal distribution with high variance. Of course,
further seismicity parameters influence the contri-
bution of the distr ibution model, and the

Fig. 4 Area-equivalent GMR g*(X): a isotropic and anisotropic
variant of example I (directions A and B according to Fig. 3b), b
estimation of isotropic (circular) g*(X) for a with a Monte Carlo
simulated sample, c vertical projection of example II, d estimated
g*(X) for estimated projection and simulated sample
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distribution model has no influence in case of
unbounded exponentially distributed magnitudes
(Section 4.1).

5.2 An example of area-equivalent GMRs in a PSHA

We research the influence of the misinterpretation of εQ
of example I (Section 4.3, Fig. 3b) on the PSHA. The
GMR is g*(X)=0.5m−ln(r)+4.7. The considered site s
again is the center of the quadratic source region of
uniform seismicity with mmax=8; for further details, see
Appendix 3. We compute the AEF for an isotropic
(circular) GMR and the anisotropic one, both without a
random component resp. residual. In the third variant, we
consider the isotropic GMR and consider a normally
distributed random component ξ with V(ξ)=0.10
according to the estimation of example I in Section 3.5.
The results are illustrated in Fig. 6. As expected according
to the theory given in Section 4.1, the area-equivalent
GMRs without random component result in equivalent
hazard and the misinterpretation of the differences as
random component results in the overestimated hazard.

5.3 The obscuration of a Gumbel distributed random
component ε0

The Gumbel distribution of random component ε0
(Eq. (8b)) could be hidden. If we observe/estimate the
product ε0εS (εS as unknown site effect, acting as ran-
dom variable according to Joyner and Boore 1993), then
we cannot test the assumption of log-normal distribution
for each component. But the product could be distributed
similarly to a log-normal distribution. An example: ε0 is
Gumbel distributed with E(ε0)=1 and V(ε0)=0.199, εs is
beta distributed (see Eq. (22)) with E(εs)=1 and V(εs)=
0.091 and with bound 0.5≤εs≤2.8. The product ε0εS has
a mixed distribution as shown in Fig. 7a. It looks very
similar to a log-normal distribution. However, their tails

in Fig. 7b differ considerably. The tail is important for
PSHA according to the studies of Restrepo-
Velez and Bommer (2003) and Strasser et al. (2008),
and it is a specially studied object in extreme value
statistics (Leadbetter et al. 1983). Therein, the tail of a
distribution should be modeled by the generalized Pareto
distribution. Huyse et al. (2010) has already modeled the
tail for the residuals of a ground motion using a general-
ized Pareto distribution.

Furthermore, we research in detail the possibility of
hidden distributions for a GMR Y=ε0εSexp(0.7m
−ln(r)+θs,1xs,1+θs,2xs,2+θs,1xs,2) with a site parameter
exp(θs,i)=0.8, 1.1, and 1.2 and indicator variables xs,i
for three site types. We Monte Carlo generate a large
sample (ln(Y),m,ln(r),x) with uniform distributed mag-
nitude with 4≤m≤7.5, uniform distributed ln(r) with
ln(5)≤ln(r)≤ln(200) and an occurrence probability of
1/3 for each site type. Then we carry out a LS regres-
sion using this sample and analyze the estimated resid-
uals ξ to be normally distributed. We have done this for
a sample size of n=1,500. The estimated residual var-
iance is V(ξ)=0.293. The q–q normal plot of the resid-
uals is shown in Fig. 7c. Similar plots (see Bommer
et al. 2004, Fig. 2) have been interpreted as a proof for
a normally distributed ξ, and the wrong KS test would
also indicate a log-normal distribution. Only the AD
test would reject the false assumption. However, also
this correct test would often accept the false distribu-
tion model. We state that the actual distribution of ε
resp. ξ could be hidden.

5.4 The influence of the different effects
on the estimation of GMR and PSHA

Now we research the effects of the combination of mis-
interpreted random component εQ, incorrect distribution
assumption for Fy, and measurement errors in the
predictors on the PSHA using examples of anisotropic
GMRs with point sources. For this purpose, we assume
again the constructed situation of a site s and surrounding
homogeneous seismicity according to Appendix 3.
The magnitude is upper bounded here by mmax=8. The
seismicity parameters are precisely known for the
PSHA, but the parameters of the GMRs are estimated.
For the latter, regressionmodels are estimated forMonte
Carlo simulated samples of (Y,mmeasured,rmeasured).
Therein, the actual hypocenter depth h is fixed
and the accidental distance d to the point source
is beta distributed; the related parameter depends
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Fig. 6 Hazard curves for the example of misinterpreted differ-
ences of GMR (see Fig. 4a, b)
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partly on the simulated beta distributed magnitude
(for details, see Appendix 3).

The measurement errors of depth h and distance d
are also Monte Carlo simulated; hmeasured is a log-
normally distributed random variable; the measured
distance is dmeasured=|dactual+derror| (in kilometers) with
normally distributed derror with a standard deviation
of 5 km and an expectation of 0. A seismological
epicenter or point of maximum energy could be
estimated more precisely, but the seismological epi-
center can differ from the epicenter of the
GMR—the point of maximum g(X) resp. g*(X).
We also assume a normally distributed measure-
ment error for the magnitude with a standard devi-
ation of 0.15 and 0.25. This is plausible according
to our discussion in Section 2.2 and the magnitude
errors in the PEER database (2013, NGA_Flat-
file_2005Version.xls). We simulate 500 pairs of
(mmeasured,rmeasured) for each sample using this pro-
cedure. Examples are illustrated in Fig. 8. These are
conceivable possibilities according to actual sam-
ples (e .g. , Ambraseys and Simpson 1996;
Ambraseys et al. 1996; Spudich et al. 1999;
Atkinson 2004; Kalkan and Gülkan 2004; Massa
et al. 2008).

The related ground motion intensity Y=εSε0g(X) is
computed by the actual pair (m.r) and the defined
GMR. It is formulated by g*(X) and V(ξ0) of Eq. (3)
and is transformed to g(X) and V(ε0) by Eqs. (4a, 4b,
and 4c). Its relevant parameters are listed in Table 2.
The individual random component ε0 is Gumbel dis-
tributed (Eq. (8b)). The site-specific random compo-
nent εS is beta distributed with expectation E(εS)=1
with a small share to ε (see Table 2, rows 9 and 10).
Anisotropy is considered by an elliptic unit-isoline (see
Section 4.2 and Fig. 16b). The actual random compo-
nent (residuals) ε is not log-normally distributed resp. ξ
is not normally distributed.

We estimate a GMR with the LS regression for each
sample of size n=500 and test the estimated residuals ξ
to be normally distributed using the KS test as done in
previous researches. We repeat this 100 times for each
researched variant. The averages of the estimated pa-
rameters are listed in Table 2 as well as the shares of
rejection of the KS test. The false normal assumption for
ξ is accepted in 68 to 98 % of the samples. The residual
variances of all four variants are overestimated
according to rows 10 and 11 in Table 2. Therein, the
contribution of the magnitude error is small (raw 15).
We show the GMRs g(X) in Fig. 9 with actual
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parameters and with the averages of the estimated pa-
rameters. They do not differ from each other very much,
but there is a certain bias.

Furthermore, we compute the AEF by PSHA and for
the assumed seismicity described above. We compare
the influence of the actual and the estimated GMRs. We
apply the averages of the estimations to the latter one.
The corresponding AEFs for the constructed seismicity

are depicted in Fig. 10. The actual AEFs are shown for
site condition E(εS)=1 and the 80 % quantile of εS. This
gives an impression of the small influence of the
considered site effects. Furthermore, we show an
AEF for the area-equivalent isotropic GMR with
the actual type and variance of Fy. We state: The area-
equivalence works well, as expected. The over-
estimated variance and the wrong log-normal

Table 2 Investigated variants of GMRs according to Eq. (1–5) and the estimations (±standard error of the estimations; parameters θi are
according to Eq. (5); see also Tables 8 and 9 of Appendix 4)

# Parameter Researched variant

#1 #2 #3 #4

1 Actual parameter θ1 0.5 0.5 0.7 0.7

2 Average of estimated parameter θ1 0.4587±0.0324 0.4805±0.0261 0.6670±0.0149 0.6837±0.0170

3 Actual parameter θ2 0.0050 0 0 0

4 Average of estimated parameter θ2 0.0059±0.0007 0 defined 0 defined 0 defined

5 Actual parameter θ3 1 1 0.8 1.1

6 Average of estimated parameter θ3 1 defined 0.9860±0.0436 0.7960±0.0368 1.0670±0.0402

7 Actual parameter θ0 4.7000 4.7500 3.000 4.000

8 Average of estimated parameter θ0 4.7838±0.2114 4.7015±0.2313 3.0987±0.2030 3.8759±0.1687

9 Actual V(ξ0) 0.1000 0.1100 0.0800 0.0500

10 Actual V(ξ)=V(ξ0)+V(ξs) 0.1133 0.1179 0.0879 0.0633

11 Average of estimated V(ξ) 0.4303±0.0226 0.4142±0.0319 0.3185±0.0232 0.4164±0.0268

12 Actual depth H (km) 10 15 20 20

13 Error of Hobs (km) 3 5 5 5

14 Max radius of unit ellipse 1.7 1.5 1.5 1.5

15 Error of Mobs (resulting bias of V(ξ)) 0.25 (0.0142) 0.15 (0.0055) 0.25 (0.0288) 0.15 (0.0109)

16 Min. of site effect εs 0.7857 0.80 0.80 0.7857

17 Max. of site effect εs 1.2857 1.20 1.20 1.2857

18 p of site effect εs (Eq. (22)) 1.5 2.0 2.0 1.5

19 q of site effect εs (Eq. (22)) 2.0 2.0 2.0 2.0

20 Share of accepted models (KS test) 86 % 68 % 89 % 83 %
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assumption lead to an overestimation of the hazard for
long return periods (reciprocal of exceedance frequen-
cy). The bias in parameter vector θ partly compensates
this overestimation. The theoretical results of Section 4.1
are confirmed.

6 Alternative estimation of GMR

6.1 The basic concept

We have stated in Section 4.1 that the GMR of an
earthquake is a random function in our model.
That means that the GMR has event-specific pa-
rameters. In consequence, the parameters of the
GMR can and should be estimated event-specific.
Therein, we assume that it is practically impossible
to find the “true” GMR being absolutely exact for
each azimuth and with a perfect source model.
Furthermore, we assume that an event-specific,

area-equivalent GMR g(X) can be formulated and
estimated by a regression model, except the vari-
ances of the actual random components. The rela-
tion of the event-specific GMRs to the event mag-
nitudes has to be researched in this concept after a
number of GMRs have been estimated. This ap-
proach has already been applied by Joyner and
Boore (1981): They estimated the parameter θ1 of
Eq. (5) by a regression analysis of the pairs (m, θ0),
wherein θ0 of our Eq. (5) is event-specific. Event-
specific random component εE resp. ξE would be the
residual variance of such secondary regression analysis.
The influence of side effects can be analyzed using a
posterior analysis of the estimated residuals (Morikawa
et al. 2008; negligence of non-iid). Thus, event-specific
randomness of the site effects could be considered. The
remaining problem is to estimate V(ε0) resp. V(ξ0) under
exclusion of any influence of εQ resp. ξQ. This should be
possible by an analysis of the two horizontal compo-
nents Y1 and Y2. The difference

ln Y 1ð Þ−ln Y 2ð Þ ¼ ln g Xð ÞεEεSε01εQ
� �

− ln g Xð ÞεEεSε02εQ
� �

¼ ln ε01ð Þ−ln ε02ð Þ ¼ ξ01−ξ02;E ln ε01ð Þ−ln ε02ð Þð Þ ¼ 0
ð15Þ

includes only the horizontal random components
ε01 and ε02 resp. ξ01 and ξ02. Therein ε01 and
ε02 (resp. ξ01 and ξ02) have an equivalent distribu-
tion, and they are interdependent. If we would
know the dependence structure between ε01 and
ε02 according to Mari and Kotz (2001, Section 4,
copula), then we could estimate the distribution of
ε01 and ε02 with the difference ln(ε01)−ln(ε02) by
statistical computations. Therefore, the dependence

structure should be investigated in future re-
searches. A differentiation by classes of magni-
tudes, regions, site conditions, or something else
is possible because there should be enough ground
motion observations to compute a large number
ln(ε01)−ln(ε02). We cannot prove the functionality
of our entire suggestion, but we estimate the
GMRs of different earthquakes to demonstrate the
potential of our approach.
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6.2 Analysis of empirical data

We analyze the observed PGAs of nine earthquakes of
the PEER Strong Motion Database (2013, files:
NGA_Flatfile_2005Version.xls, NGA_Documentation.
xls). We select such earthquakes with a large number of
records and an event center inside the cloud of strong
motion stations, which should cover the entire event area
(event # 136 differs slightly). Furthermore, we consider
only one event from a cluster: try to consider different
regions and to cover a relatively large range of the mag-
nitude scale. The selected earthquakes are listed in
Table 3. We consider different models: a point source
model with isotropic GMR, a point source model with
anisotropic GMR, and (if available) the source models
which lead to the constructed Joyner–Boore distance, the
Campbell distance, the root-mean-squared distance
(RmsD), and the closest distance to the ruptured area
(ClstD). Our basic formulation is g*(X)=θ0−θ2ln(r) − θ3r
according to Eq. (5) with r2=d2+h2 resp. r2=d2/d2unit(φ)+
h2 for the anisotropic point source. We use an eccentric

circle and an ellipse (Fig. 16) to model anisotropy.
Additionally, we consider different combinations of de-
fined and estimated parameters. The depth parameter h
can be set by the hypocenter depth or be estimated with
limit h≥0.1 km. The parameter θ3 for ln(r) is estimated or
set to 1; we do not consider a bound. The parameter θ2 is
either set to 0 or estimated with limit θ2≥0. We divide the
models into groups: the constructed distances, the isotro-
pic point source with epicenter as projected point source,
the isotropic point source with estimated coordinates of
the point source (start values are the epicenter coordi-
nates), and the anisotropic point source model with esti-
mated coordinates of the point source. For each division,
we select the variant of best combination of estimated/set
parameters by the smallest AIC (Rawlings et al. 1998,
Section 7) with sample size n and parameter number N

AIC ¼ ln bV ξð Þ
� �

þ 2N
.
n: ð16Þ

The parameters of the best models are listed in
Table 10 of Appendix 5. Their AICs are given in

Table 3 Analyzed earthquakes of the PEER strong motion database

# Earthquake Magnitude Latitude (Epic.) Longitude (Epic.) Hypocenter depth (km) Sample size n

030 San Fernando, California 1971 6.61 34.44 −118.41 13 44

113 Whittier Narrows-01, California 1987 5.99 34.05 −118.08 14.6 116

118 Loma Prieta, California 1989 6.93 37.04 −121.88 17.48 82

126 Big Bear-01, California 1992 6.46 34.21 −116.83 13 73

127 Northridge-01, California 1994 6.69 34.21 −118.55 17.5 157

136 Kocaeli, Turkey 1999 7.51 40.73 29.99 15 31

137 Chi-Chi, Taiwan 1999 7.62 23.86 120.8 6.76 420

161 Big Bear-02, California 2001 4.53 34.29 −116.95 9.1 43

163 Anza-02, California 2001 4.92 33.51 −116.51 15.2 73

Table 4 Best AICs of the different model approaches (bolted—absolute best, cursive—best of point sources)

Approach Distance (to) Earthquake #

127 113 137 118 030 163 126 161 136

Point source Isotrop. Seism. epicenter −1.61 −1.33 −1.12 −1.31 −1.16 −1.24 −1.71 −1.23 −1.06
Estimated epicenter −1.65 −1.32 −1.47 −1.29 −1.42 −1.21 −1.71 −1.37 −1.08

Aniso. Estimated epicenter −1.74 −1.55 −1.76 −1.30 −1.66 −1.42 −2.02 −1.39 −1.30
Constructed distance Joyner–Boore −1.71 −1.33 −1.31 −1.43 −1.45 – – – −1.34

Campbell −1.59 −1.32 −1.32 −1.37 −1.48 – – – −1.34
RmsD −1.67 −1.32 −1.45 −1.34 −1.47 – – – −1.22
ClstD −1.59 −1.32 −1.28 −1.37 −1.48 – – – −1.34
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Table 4, V(ξ) in Table 5. The constructed distances do
not result in good estimations; the anisotropic point
source model is frequently the best model. This may
be relative because constructed distances do not exist
for each event, but we consider four constructed dis-
tances and only two simple variants of anisotropy.
Additionally, it may be possible that we have estimated
only a local minimum of least squares for the aniso-
tropic models; the global one could be much better.
The average variance of the best models of all point
source models is V(ξ)=0.19. This also includes the site
effects, but it is nevertheless significantly smaller than
the residual variance of the intra-event component of
NGA. For example, Abrahamson and Silva (2008,
standard derivations s1 and s2 of Table 6, Eq. 27) have
variances between 0.35 (m≤5) and 0.22 (m≥7). This
fact indicates the advantage of our approach. Examples
of the estimated GMRs are shown in Fig. 11. The
graphs of the GMRs look partly very individual, which
is a result of event-specific parameters. This validates
the approach of individual GMRs for individual earth-
quakes. There are also some cases with estimated depth
h=0.1 km; our defined lower bound for h. Reason for
such poor estimations is the non-regular situation in the
regression model: A parameter h defines the predicting

variable−distance r. Smith (1985) has mathematically
researched the problem of irregularity for distribution
functions; we do not know a similar research for re-
gression models. However, this problem could be min-
imized by the Bayesian approach of parameter estima-
tion: The seismological source estimation could pro-
vide a prior distribution for the depth parameter.
Furthermore, the estimations for event #136, the
Kocaeli, Turkey 1999 earthquake are poor. The param-
eter θ3 is <0 in some estimations. However, we do not
change or remove this event.

6.3 Area functions and site effects of the Chi-Chi
earthquake

The Chi-Chi, Taiwan 1999 earthquake (#137) is
the one with the largest sample size n=420. We
can use it to compare the area function of the
estimated GMR to the actual one. But we cannot
compute the area function directly because the
records are from stations that are not uniformly
distributed; there are concentrations and thinning that
have to be considered. We do it using an empirical area
function wherein the integration of Eq. (9) is replaced by
a discrete accumulation with

bKobserved yð Þ ¼
Xn

i¼1
a�i 1 Y ið Þ; 1 Y ið Þ ¼ 1 if Y i≥y; otherwise 1 Y ið Þ ¼ 0 and ð17Þ

bKGMR yð Þ ¼
Xn

i¼1
a�i 1 g Xi;θb� �� �

; 1 g Xi;θb� �� � ¼ 1 if g Xi;θb� �
≥y; otherwise 1 g Xi;θb� �� � ¼ 0: ð18Þ

Table 5 Residual variances V(ξ) of g*(X) for ln(Y) of the different model approaches

Approach Distance (to) Earthquake #

127 113 137 118 030 163 126 161 136

Point source Isotrop. Seism. epicenter 0.191 0.255 0.321 0.262 0.285 0.273 0.176 0.267 0.286

Estimated epicenter 0.180 0.248 0.225 0.257 0.201 0.267 0.167 0.222 0.246

Aniso. Estimated epicenter 0.163 0.195 0.166 0.253 0.159 0.206 0.110 0.217 0.240

Constructed distance Joyner–Boore 0.177 0.263 0.266 0.228 0.214 – – – 0.231

Campbell 0.201 0.263 0.264 0.241 0.207 – – – 0.230

RmsD 0.184 0.262 0.232 0.254 0.219 – – – 0.260

ClstD 0.201 0.263 0.274 0.241 0.208 – – – 0.230

J Seismol (2013) 17:1157–1182 1173



We estimate these discrete steps ai
* by a Voronoi

analysis of the stations, and our estimated area functions
are defined with indicator function (see Eq. (9)). The
results are shown in Fig. 12. A goodmodel should include
a good accordance between Eqs. (17 and 18) with larger

differences for larger y because of a larger influence of the
random components. Additionally, a certain bias is con-
ceivable for very small values of y because of the effect of
the truncation of the geo-space by the finite sample resp.
station number in Eqs. (17 and 18). A good agreement is
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Fig. 12 Area functions of different GMRs for the Chi-Chi earth-
quake (black model, gray observed): a iso. point source with coor-
dinates=seismo. epicenter, b iso. point source with estimated coor-
dinates, c an-iso. point source with estimated source coordinates, d

Joyner–Boore distance, e Campbell distance, f RmsD, g ClstD, h
validation of the comparison of the empirical area functions (bold
light gray line log-normally distributed ε, bold dotted dark gray line
gamma distributed ε, thin black line Eq. (18))
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detected for the point source model with estimated coor-
dinates. Especially the anisotropic variant fits well, in
contrary to the constructed distances.

The plausibility of the comparison of bKobserved yð Þ andbKGMR yð Þ can be simply tested by generation of Y ¼ εg

Xi; bθ� �
with the estimated GMR and Monte Carlo

simulated random component ε. We do it for aniso-
tropic GMR for a point source and simulate 100 times
the entire sample and adopted the weighting ai

* forbKobserved yð Þ by factor 0.01. We consider a log-
normal and gamma distributed random component to
demonstrate the generality of the approach (gamma
distribution, see Johnson et al. 1994, Section 17).
Therein is E(ε)=1 and V(ε)=0.181, what corresponds
with V(ξ)=0.166 (see Eqs. (4a, 4b, and 4c)). The
results are pictured in Fig. 12h. The approach works

and the distribution type of ε is not relevant for the
medium range of PGA. We also estimate the site
effects for the Campbells GEOCODE of the PEER
data (2013, NGA_Documentation.xls) using the expec-
tation of the residuals (see Table 6).

6.4 Relation of specific GMRs to the magnitude

There is the need to find a relation between the event-
specific GMRs and the earthquake magnitudes when the
event size in the PSHA is quantified by the magnitude.We
search such a relation by a statistical analysis of the rela-
tions between the parameters of the GMRs and the mag-
nitudes. The results are shown in Fig. 13a–d. Obviously,
there is not a significant relation. But we follow the idea of
the max-stable random fields and compute the volume of
GMRs in the geo-space. We compute the volume

V o ¼
Z

s
g2 Xð Þds ð19Þ

numerically for distance d resp. d*≤1,000 km in steps of
25m. Therein we squared the event-specific GMR because
the PGA is approximately proportional to the PGV (Wald
et al. 2006, Section 2.5, Eqs. (1.1–1.4)), the squared veloc-
ity is proportional to the energy, and the energy is strongly
related to the magnitude. The logarithms of these volumes
have a strong statistical linear relation to the magnitude
according to Fig. 13e, f with a minor influence of V(ξ).
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Fig. 13 Relation of magnitude to the regression models with correlation coefficient R: a to h, b to θ3, c to θ0, d to V(ξ), d to volume
according to Eq. (19), f as e but with V(ξ)=0 in g(X) according to Eq. (4a)

Table 6 Expectations of residuals of g*(X) and the statistical
significance for different site classes

Site
class

Expectation of
residuals of ln(Y)

Sample
size

Standard
error

Significance to
be ≠0, α=5 %

A 0.077 199 0.022 Yes

C −0.077 209 0.033 No

D −0.310 3 0.046 Yes

F 0.190 9 0.054 Yes
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Of course, the applied sample size is small, which
causes an uncertainty of the result. But the magnitudes
and the volumes are also only estimated and include an
estimation error. Such errors rather disturb the observed
relation. Therefore, the actual relation should be really
strong. The relation is also not changed significantly if
we eliminate event #136with the poor estimations. Such
a relation could be applied to GMRs in a PSHA. The
distance parameters θ2 and θ3 in Eq. (5) could be random
variables, and θ0 is computed using the relation magni-
tude to volume. The previous magnitude parameter θ1
would not be needed anymore.

7 Conclusion and outlook

We have discussed here important aspects of earlier ap-
proaches to GMR by a regression model and discovered in
Section 2 that many models have not been built according
to the rules of statistics regarding statistical significance,
model selection, and test of the distribution assumption.
But even if the log-normal assumption for residuals of ε are
tested positively, it is not because the individual component
ε0 according to Eq. (7) of a PGA or another maximum
value should be generalized extreme value distributed
according to the extreme value statistics (Sections 3 and
5). Its domain of attraction seems to be the Gumbel one,
but this issue should be examined by future researches. Our
major contribution is the introduction of area equivalence
of GMR for PSHA in Section 4, which implies a distinc-
tion between an appropriate prediction of the PGA for a
concrete earthquake by a conventional regression model
and an appropriate GMR for the PSHA. These models
need not to be equal regarding the residual variances. In
contrary, the residual of the regression model for the ran-
dom function GMR includes the component εQ of
Eqs. (4a, 4b, and 4c). This may not apply as an actual
random component in the GMR for the PSHA; otherwise,
the variance V(ε) is overestimated, which leads to an
overestimated hazard in the PSHA (except for one case,
Section 4.1). The possible influence of the distribution of ε
and the misinterpretation of εQ have been researched in
Section 5. The overestimation of hazard can be remarkable.
Our numerical studies consider a broader constellation of
parameters and distribution of predictors than the numeri-
cal studies of Joyner and Boore (1993) and Chen and Tsai
(2002) about estimation procedures for GMRs.
Nevertheless, the benefit is limited.More extensive numer-
ical studies with different sample sizes would be needed to

quantify more exactly the bias in the PSHA. Independent
of this fact, we have suggested an estimation concept for
GMRs in PSHA in the last section, including the indepen-
dent estimation of the parameters of the individual random
component ε0. We stated that the dependence structure of
the horizontal components has to be researched in the
future to apply this concept. However, we were able to
show that the event-specific modeling of GMR leads to
smaller variances V(ξ) than earlier models. Therein the
anisotropic point source approach results in the best regres-
sion models, while the constructed distances (e.g., Joyner–
Boore) do not work well. The relation between the event
magnitude and the GMRs is given by the integration of
g2(X) over the geo-space. Details of this relation and its
consideration in PSHA should be studied in further re-
searches. Beside this, the empirical area functions for the
Chi-Chi, Taiwan 1999 earthquake confirm that the aniso-
tropic point source approach works well. Nevertheless, we
also suggest developing a detailed theory of this geo-
statistical approach in the future. This also applies to the
estimation of point source coordinates and depth by a
regression analysis. Further statistical methods like Bayes
estimation, local regression, or kernel regression could
provide better estimations, and themodels of extreme value
statistics for the distribution tails could improve the GMR
in PSHA.A large challenge for future researches is also the
discovering, estimation, and/or examination of the distri-
bution of every single random component of the GMR.
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Appendix 1: An inappropriate approach to model
selection

Scherbaum et al. (2004) formulated the criterion for
model selection, which is the median of the statistic
LH, defined with (symbols according to the reference)

LH Z0ð Þ ¼ 2 1−Φ Z0

.
σ0

��� ���� �h i
ð20Þ

wherein Z0 is the estimated residual (here ξ) and its estimat-
ed standard deviation σ0. Φ is the CDF of the standard
normal distribution; a normal distributed Z0 is desired resp.
assumed. The smaller the value |Median(LH)−0.5|, the bet-
ter is the model. The problem is that |Median(LH)−0.5|=0
for different distributions of Z0. Examples are shown in
Fig. 14. The criterion does not work.
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Appendix 2: Numerical research of distributions
of combinations of horizontal components

The horizontal components (Y1,Y2) of ground motion
are combined for some GMRs as geometric mean,
arithmetic mean, or by a vectorial addition (see
Douglas 2003, Section 6). The possibility of a loga-
rithmic normal distribution of resulting ε0 is researched
here numerically. Therein, we assume Gumbel distrib-
uted components (ε01,ε02). The other components of
the GMR are not considered here because they scale
(ε01,ε02) simultaneously. The dependence structure of
(ε01,ε02) is assumed to be of a bivariate normal distri-
bution (Mari and Kotz 2001, Section 4.4) and is quan-
tified by the correlation coefficient R. We simulate
pairs of horizontal component ε01 and ε02 with this
copula and the Gumbel distributions as marginal and
combine them. We Monte Carlo simulate a large sam-
ple (10,000) of such combinations and check its loga-
rithm for normal distribution with the Anderson–
Darling test according to Stephens (1986) for a
significance level α=5 %. We repeat this procedure
100 times and get a share of rejected assumptions
to be normal distributed. This share should be
around 5 %; otherwise, the considered combina-
tions of Gumbel distributed maxima are not log-

normally distributed. This is the case according to
the results in Table 7.

Appendix 3: Details of the constructed situation
of seismicity

The constructed source region and the considered
site s are depicted in Fig. 15. The truncated expo-
nential distribution for the magnitudes is formulat-
ed according to Cosentino et al. (1977) with

Fm mð Þ ¼ 1−exp −βm m−mminð Þð Þð Þ=
1−exp −βm mmax−mminð Þð Þð Þ; mmin≤M ≤mmax;

ð21Þ

wherein βm is a scale parameter, mmax is the upper
bound magnitude, and mmin is the smallest consid-
ered magnitude. We set mmin=4 and βm=2.3 (see
Utsu 1999). The maximum magnitude mmax de-
pends on the investigated variant. The annual seis-
micity is set to ν=4.4/6002 [km−2], which means
that 4.4/6002 earthquakes with M≥4 occur per km2

in the source region (Fig. 15).
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Fig. 14 Measure LH of
Scherbaum et al. (2004) for
Z0 with different distribu-
tions: a CDFs of Z0, b
resulting CDFs of LH
according to Eq. (20), the
median of LH is 0.5 in every
case (uniform distribution
−1.3487≤Z0≤1.3487; two-
point distribution: z01=
−0.6745 and z02=0.6745)

Table 7 Share of rejections (in percent) for test of normality (estimated standard error in brackets; sample size n=10,000, 100 repetitions,
parameter b=1 of Gumbel distribution, see Eq. (8b))

Parameter a (variation coefficient) 2.8 (0.380) 3.3 (0.331) 3.8 (0.293)

Correlation R 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

Geometric mean 84 (3.7) 93 (2.6) 86 (3.5) 55 (5) 70 (4.6) 76 (4.3) 100 100 100

Vectorial addition 23 (4.2) 57 (5) 84 (3.7) 95 (2.2) 87 (3.4) 77 (4.2) 100 100 100

Arithmetic mean 42 (4.9) 61 (4.9) 80 (4) 67 (4.7) 77 (4.2) 82 (3.8) 100 100 100

J Seismol (2013) 17:1157–1182 1177



Appendix 4: Details of the simulations
of Section 5.4

We assume the following for the Monte Carlos simu-
lation of sample in Section 5.4. The beta distribution is
applied to simulate a sample of random magnitude m
which is generally written with (see Johnson et al.
1995)

f xð Þ ¼ x
.

b−að Þ
� �p−1

1−xð Þ
.

b−að Þ
� �q−1

Γ pð ÞΓ qð Þ

= b−að ÞΓ pþ qð Þð Þ; a≤x≤b; p > 0; q > 0:

ð22Þ

The parameters for the beta distributed magnitude m
are listed for all variants in Table 8. The real epicenter
distance is also simulated by a beta distribution with b=
0 and with parameter a

a ¼ cMd : ð23Þ

The parameters c, d, p, and q of the variants are listed in
Table 9.

Appendix 5: Details of the modeling
and estimations of Section 6

0                           600 km

(300, 300)

site s

0
60

0
km

Geo-space

Fig. 15 Constructed source region with uniform seismicity and
considered site in the geo-space

Table 8 Parameters for the constructed beta distribution of real
magnitudes M

Parameter Variant of Table 2

#1 #2 #3 #4

a 3.5 3 4 3

b 7 7.5 7.5 7.5

p 2 2 1 1

q 2 2 1 1

Table 9 Parameters for the constructed beta distribution of real
epicenter distance D

Parameter Variant of Table 2

#1 #2 #3 #4

p 2 2 1.7 1.7

q 2 1 1 1

c 200 100 200 20

d 0 0.5 0 1

a) 

t
Circle 
centre

Unit circle with 
radius 1

Δ1 Δ2

d
(

)
u nit ϕ

Geo-
space

b) 

t
Unit
ellipse

d
( )

unit
ϕ
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b

1/
b

ω

Fig. 16 Unit-isolines for the point source models of Section 6.2:
a eccentric circle, b ellipse with azimuth ω

1178 J Seismol (2013) 17:1157–1182



Table 10 Estimated parameters of the best variant (smallest AIC) of the different approaches and data sets according to Section 6.2 (E
and W geo-coordinates of t; ΔX, Δy, b, and ω according to Fig. 16; θi according to Eq. (5))

Approach Distance (to) Parameter Earthquake #

127 113 137 118 30 163 126 161 136

Point
source

Iso. Seismol.
epicenter

θ2 0.00 0.000 0.004 0.00 0.00 0.00 0.00 0.00 0.01

θ3 1.16 1.00 0.79 1.00 1.70 1.62 1.00 0.54 −0.08
h 9.49 10.79 6.76 17.48 13.00 15.20 34.21 9.10 15.00

θ0 2.43 1.19 1.30 2.17 4.18 2.79 1.63 −2.34 −1.60
Estim.

epicenter
θ2 0.00 0.00 0.012 0.00 0.00 0.00 0.00 0.00 0.01

θ3 1.15 1.00 0.25 1.00 1.79 1.76 1.00 1.00 −0.27
h 8.72 8.80 6.76 17.48 13.00 15.20 34.21 9.10 15.00

θ0 2.40 1.13 −0.25 2.17 4.59 3.45 1.64 −0.28 −2.19
W −118.55 −118.12 120.90 −121.95 −118.35 −116.52 −116.72 −116.70 30.09

N 34.25 34.03 24.11 37.05 34.36 33.45 34.18 34.35 41.22

An-iso. Estim.
epicenter

θ2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.005

θ3 1.00 1.00 2.38 1.00 1.75 1.47 0.66 1.00 0.59

h 6.95 14.60 36.25 17.48 13.00 15.20 0.10 9.10 15.00

θ0 1.87 1.36 8.21 2.16 4.43 2.31 0.04 −0.11 1.27

W −118.49 −118.20 120.98 −121.88 −118.41 −116.35 −116.92 −116.95 30.86

N 34.37 33.88 24.06 37.04 34.44 33.66 34.23 34.29 40.84

ΔX 0.22 −0.38 – 0.13 −0.13 0.35 −0.34 −0.43 0.34

Δy 0.44 −0.75 – −0.05 0.20 0.52 0.17 −0.24 −0.39
b – – 1.10 – – – – – –

ω – – 0.76 – – – – – –

Constructed
distance

Joyner–Boore θ2 0.000 0.008 0.000 0.000 0.000 – – – 0.010

θ3 0.852 1.00 0.34 0.61 1.41 – – – 0.104

h 5.73 14.60 0.95 3.03 5.79 – – – 15.000

θ0 0.997 1.15 −0.79 0.28 2.60 – – – −1.192
Campbell θ2 0.000 0.004 0.000 0.000 0.000 – – – 0.010

θ3 1.000 1.00 0.67 0.65 1.52 – – – 0.109

h 5.621 0.10 0.10 0.10 6.44 – – – 15.000

θ0 1.648 1.17 0.34 0.44 3.17 – – – −1.155
RmsD θ2 0.000 0.008 0.000 0.000 0.000 – – – 0.010

θ3 1.233 1.39 0.63 1.00 1.79 – – – −0.016
h 0.100 14.60 6.76 0.10 13.00 – – – 15.000

θ0 2.772 2.81 0.96 2.09 4.58 – – – −1.337
ClstD θ2 0.000 0.000 0.000 0.000 0.000 – – – 0.010

θ3 1.000 1.00 0.41 0.65 1.51 – – – 0.108

h 5.621 0.10 1.59 0.10 6.65 – – – 15.000

θ0 1.648 1.17 −0.52 0.44 3.08 – – – −1.158

J Seismol (2013) 17:1157–1182 1179



References

Abrahamson NA (1988) Statistical properties of peak ground
motion accelerations recorded by the SMART 1 array. Bull
Seismol Soc Am 78:26–41

Abrahamson N, Silva W (2008) Summary of the Abrahamson &
Silva NGA ground-motion relations. Earthquake Spectra
24:67–97

Abrahamson NA, Youngs RR (1992) A stable algorithm for
regression analyses using the random effects model. Bull
Seismol Soc Am 82:505–510

Abrahamson NA, Birkhauser P, Koller M et al (2002)
PEGASOS—a comprehensive probabilistic seismic hazard
assessment for nuclear power plants in Switzerland. In:
Proceedings of the Twelfth European Conference on
Earthquake Engineering, Paper no 633, London

Abrahamson N, Atkinson G, Boore D, Bozorgnia Y et al (2008)
Comparisons of the NGA ground-motion relations.
Earthquake Spectra 24:45–66

Al Atik L, Abrahamson N, Bommer JJ, Scherbaum F et al (2010)
The variability of ground-motion prediction models and its
components. Seismol Res Lett 81:794–801

Ambraseys NN, Bommer J (1991) The attenuation of ground accel-
erations in Europe. Earthq Eng Struct Dyn 20:1179–1202

Ambraseys NN, Simpson KA (1996) Prediction of vertical re-
sponse spectra in Europe. Earthq Eng Struct Dyn 25:401–
412

Ambraseys NN, Simpson KA, Bommer JJ (1996) Prediction of
horizontal response spectra in Europe. Earthq Eng Struct
Dyn 25:401–412

Ambraseys NN, Douglas J, Sarma SK (2005) Equations for the
estimation of strong ground motions from shallow crustal
earthquakes using data from Europe and the Middle East:
horizontal peak ground acceleration and spectral accelera-
tion. Bull Earthq Eng 3:1–53

Anderson JG, Uchiyama Y (2011) A methodology to improve
ground-motion prediction equations by including path cor-
rections. Bull Seismol Soc Am 101:1822–1846

Atkinson GM (2004) Empirical attenuation of ground-motion
spectral amplitudes in southeastern Canada and the north-
eastern United States. Bull Seismol Soc Am 94:1079–1095

Atkinson GM (2006) Single station sigma. Bull Seismol Soc Am
96:446–445

Atkinson GM, Boore DM (1995) Ground-motion relations for
Eastern North America. Bull Seismol Soc Am 85:17–30

Beirlant J, Goegebeur Y, Teugels J, Segers J (2004) Statistics of
extremes: theory and applications. Wiley series in probabil-
ity and statistics. Wiley, Chichester

Beyer K, Bommer JJ (2007) Relationships between median
values and between aleatory variabilities for different defi-
nitions of the horizontal component of motion. Bull
Seismol Soc Am 96(4A):1512–1522

Billingsley P (1995) Probability and measure. Wiles series
in probability and mathematical statistics. Wiley, USA

Bommer JJ, Abrahamson A (2006)Why do modern probabilistic
seismic hazard analyses often lead to increased hazard
estimates? Bull Seismol Soc Am 96:1967–1977

Bommer JJ, Abrahamson NA, Strasser FO et al (2004) The
challenge of defining the upper limits on earthquake ground
motions. Seismol Res Lett 75(1):82–95

Bommer JJ, Stafford PJ, Alarcón JE, Akkar S (2007) The influ-
ence of magnitude range on empirical ground-motion pre-
diction. Bull Seism Soc Am 97(6):2152–2170

Boore DM, Atkinson GM (2007) Boore–Atkinson NGA ground
motion relations for the geometric mean horizontal compo-
nent of peak and spectral ground motion parameters. PEER
Report 2007/01, Pacific Earthquake Engineering Research
Center, College of Engineering, University of California,
Berkeley

Campbell KW (1981) Near-source attenuation of peak horizontal
acceleration. Bull Seismol Soc Am 71:2039–2070

Campbell KW (1993) Empirical prediction of near-source
ground motion from large earthquakes. In: Proceedings of
the International Workshop on Earthquake Hazard and
Large Dams in the Himalaya. Indian National Trust for
Art and Cultural Heritage, New Delhi, India

Campbell K, Bozorgnia Y (2008) NGA ground motion model
for the geometric mean horizontal component of PGA,
PGV, PGD and 5 % damped linear elastic response spectra
for periods ranging from 0.01 to 10 s. Earthquake Spectra
24:139–171

Castellaro S, Mulargia F, Kagan YY (2006) Regression prob-
lems for magnitudes. Geophys J Int 165:913–930

Chang T, Cotton EJ, Anglier J (2001) Seismic attenuation and
peak ground acceleration in Taiwan. Bull Seismol Soc Am
91:1,229–1,246

Chen Y-H, Tsai CCP (2002) A new method for estimation of the
attenuation relationship with variance components. Bull
Seismol Soc Am 92:1984–1991

Cheng C-L, van Ness JW (1999) Statistical regression with
measurement error. Kendall’s Library of Statistics, 6.
Arnold, London

Chiou BS-J, Youngs RR (2008) NGA model for average hori-
zontal component of peak ground motion and response
spectra. PEER Report 2008/09, Pacific Engineering
Research Center College of Engineering, University of
California, Berkeley

Coles S (2001) An introduction to statistical modeling of ex-
treme values. Springer, London

Cornell CA (1968) Engineering seismic risk analysis. Bull
Seismol Soc Am 58:1583–1606

Cosentino P, Ficarra V, Luzio D (1977) Truncated exponential
frequency–magnitude relationship in earthquake statistics.
Bull Seismol Soc Am 67:1615–1623

Crouse CB, McGuire JW (1996) Site response studies for pur-
pose of revising NEHRP seismic provisions. Earthquake
Spectra 12:407–439

D’Augustino RB, Stephens MA (eds) (1986) Goodness-of-Fit
techniques. Statistics: textbooks and monographs, Vol. 68.
Marcel Dekker, New York

de Haan L, Ferreira A (2006) Extreme value theory. Springer,
New York

Douglas J (2001) A comprehensive worldwide summary of
strong-motion attenuation relationships for peak ground
acceleration and spectral ordinates (1969 to 2000). ESEE
Report 01–1. Department of Civil and Environmental
Engineering, Imperial College, London. http://nisee.berke-
ley.edu/library/douglas/ESEE01-1.pdf

Douglas J (2002) Errata of and additions to ESEE report no. 01–
1: ‘A comprehensive worldwide summary of strong-motion
attenuation relationships for peak ground acceleration and

1180 J Seismol (2013) 17:1157–1182

http://nisee.berkeley.edu/library/douglas/ESEE01-1.pdf
http://nisee.berkeley.edu/library/douglas/ESEE01-1.pdf


spectral ordinates (1969 to 2000)’. Dept. Report, Imperial
College of Science, Technology and Medicine Department
of Civil & Environmental Engineering, London. http://
nisee.berkeley.edu/library/douglas/douglas2002.pdf

Douglas J (2003) Earthquake ground motion estimation using
strong-motion records: a review of equations for the esti-
mation of peak ground acceleration and response spectral
ordinates. Earth Sci Rev 61:43–104

Douglas J, Smit PM (2001) How accurate can strong ground
motion attenuation relations be? Bull Seismol Soc Am
91:1917–1923

Dupuis DJ, Flemming JM (2006) Modeling peak acceleration
from earthquakes. Earthq Eng Struct Mech 35:969–987

Efron B (1979) Bootstrap methods: another look at the jackknife.
The Annals of statistics 7:1–26

Enescu D, Enescu BD (2007) A procedure for assessing seismic
hazard generated by Vrancea earthquakes and its applica-
tion. III. Method for developing isoseismal maps and
isoacceleration maps. Application. Rom Rep Phys
59:121–145

Falk M, Hüsler J, Reiss R-D (2011) Laws of small numbers:
extremes and rare events, 3rd edn. Birkhäuser, Basel

Fisher RA, Tippett LHC (1928) Limiting forms of the frequency
distributions of largest or smallest member of a sample.
Proc Cambridge Philos Soc 24:180–190

Giardini D (1984) Systematic analysis of deep seismicity: 200
centroid-moment tensor solutions for earthquakes be-
tween 1977 and 1980. Geophys J R astr Soc 77:883–
914

Gnedenko BV (1943) Sur la distribution limite du terme d’une
série aléatoire. Ann Math 44:423–453

Hüsler J, Li D, Raschke M (2011) Estimation for the generalized
Pareto distribution using maximum likelihood and
goodness-of-fit. Commun Stat Theory Methods 40:2500–
2510

Huyse L, Chen R, Stamatakos AJ (2010) Application of gener-
alized Pareto distribution to constrain uncertainty in peak
ground accelerations. Bull Seismol Soc Am 100(1):87–101

Idriss IM (2007) Empirical model for estimating the average
horizontal values of pseudo-absolute spectral accelerations
generated by crustal earthquakes. Vol.1. Interim Report
Issued for USGS Review, PEER. http://peer.berkeley.edu/
ngawest/nga_models.html

Johnson NL, Kotz S, Balakrishnan N (1994) Continuous univar-
iate distributions—Vol. I. 2nd edn. Wiley, New York

Johnson NL, Kotz S, Balakrishnan N (1995) Continuous univar-
iate distributions—Vol. II. 2nd edn. Wiley, New York

Joyner WB, Boore DM (1981) Peak horizontal acceleration and
velocity from strong-motion records including records from
the 1979 Imperial Valley, California, earthquake. Bull
Seism Soc Am No 6:2011–2038

Joyner WB, Boore DM (1993) Methods for regression
analysis of strong motion data. Bull Seism Soc Am
83(2):469–487

Kabluchko Z, Schlather M, de Haan L (2009) Stationary max-
stable random fields associated to negative definite func-
tions. Ann Probab 37(5):2042–2065

Kaklamanos J, Baise LG (2010) Model validation of recent
ground motion prediction relations for shallow crustal
earthquakes in active tectonic regions. In: Proceedings:
5th International Conference on Recent Advances in

Geotechnical Earthquake Engineering and Soil Dynamics,
May 24–29, 2010, San Diego, California

Kalkan E, Gülkan P (2004) Empirical attenuation equations for
vertical ground motion in Turkey. Earthquake Spectra
20:853–882

Landry L, Lepage Y (1992) Empirical behavior of some
tests for normality. Commun Stat Simul Comput
21:971–999

Leadbetter MR, Lindgren G, Rootzen H (1983) Extremes and
related properties of random sequences and processes.
Springer series in statistics. Springer, New York

Lin PS, Chiou B, Abrahamson N, Walling M (2011) Repeatable
source, site, and path effects on the standard deviation for
empirical ground-motion prediction models. Bull Seismol
Soc Am 101:2281–2295

Lindsey JK (1996) Parametric statistical inference. Oxford
Science Publications, Oxford University Press, Oxford

Mari DD, Kotz S (2001) Correlation and dependence. Imperial
College Press, London

Massa M, Morasca P, Moratto L et al (2008) Empirical ground-
motion prediction equations for northern Italy using
weak- and strong-motion amplitudes, frequency con-
tent, and duration parameters. Bull Seismol Soc Am
98:1319–1342

McGuire RK (1977) Seismic design spectra and mapping pro-
cedures using hazard analysis based directly on oscillator
response. Earthq Eng Struct Dyn 5:211–234

McGuire RK (1995) Probabilistic seismic hazard analysis and
design earthquakes: closing the loop. Bull Seismol Soc Am
85:1275–1284

Molas GL, Yamazaki F (1995) Attenuation of earthquake ground
motion in Japan including deep focus events. Bull Seismol
Soc Am 85:1343–1358

Monguilner C A, Ponti N, Pavoni S B et al. (2000) Statistical
characterization of the response spectra in the Argentine
Republic. In: Proceedings of 12th World Conference on
Earthquake Engineering, paper no. 1825

Montgomery CM, Peck EA, Vining GG (2006) Introduction to
linear regression analysis. Wiley, Hoboken

Morikawa N, Kanno T, Narita A et al (2008) Strong motion
uncertainty determined from observed records by dense
network in Japan. J Seismol 12:529–546

PEER Strong Motion Database (2010) http://peer.berkeley.edu/
smcat/. Accessed December 2010

PEER Strong Motion Database (2013) http://peer.berkeley.edu/
peer_ground_motion_database. Accessed March 2013

Quenouille MH (1956) Notes on bias in estimation. Biometrika
43:353–60

Raschke M (2009) The biased transformation and its application
in goodness-of-fit tests for the beta and gamma distribution.
Commun Stat Simul Comput 38:1870–1890

Raschke M (2011) Inference for the truncated exponential dis-
tribution. Stoch Env Res Risk A. doi:10.1007/s00477-011-
0458-8

Raschke M (2012) Möglichkeiten der mathematischen Statistik
zur Schätzung der Hochwasserwahrscheinlichkeit
(German, Possibilities of mathematical statistics to estimate
flood probability). Wasser und Abfall 14(6):49–53. cms.
springerprofessional.de/journals/JOU=35152/VOL=2012.
14/ISU=6/ART=193/BodyRef/PDF/35152_2012_Article_
193.pdf

J Seismol (2013) 17:1157–1182 1181

http://nisee.berkeley.edu/library/douglas/douglas2002.pdf
http://nisee.berkeley.edu/library/douglas/douglas2002.pdf
http://peer.berkeley.edu/ngawest/nga_models.html
http://peer.berkeley.edu/ngawest/nga_models.html
http://peer.berkeley.edu/smcat/
http://peer.berkeley.edu/smcat/
http://peer.berkeley.edu/peer_ground_motion_database
http://peer.berkeley.edu/peer_ground_motion_database
http://dx.doi.org/10.1007/s00477-011-0458-8
http://dx.doi.org/10.1007/s00477-011-0458-8
http://cms.springerprofessional.de/journals/JOU=35152/VOL=2012.14/ISU=6/ART=193/BodyRef/PDF/35152_2012_Article_193.pdf
http://cms.springerprofessional.de/journals/JOU=35152/VOL=2012.14/ISU=6/ART=193/BodyRef/PDF/35152_2012_Article_193.pdf
http://cms.springerprofessional.de/journals/JOU=35152/VOL=2012.14/ISU=6/ART=193/BodyRef/PDF/35152_2012_Article_193.pdf
http://cms.springerprofessional.de/journals/JOU=35152/VOL=2012.14/ISU=6/ART=193/BodyRef/PDF/35152_2012_Article_193.pdf


Raschke M (2013) Parameter estimation for the tail distribution
of a random sequence. Commun Stat Simul Comput
42:1013–1043

RaschkeM, Thürmer K (2008) Defizite derModellselektion in der
Hochwasserstatistik (German, Shortcomings of model selec-
tion in flood statistics). Wasser und Abfall 10(12):43–48

Rawlings JO, Pantula SG, Dickey DA (1998) Applied regression
analysis: a research tool, 2nd edn. Springer, New York.
http://web.nchu.edu.tw/∼numerical/course992/ra/Applied_
Regression_Analysis_A_Research_Tool.pdf

Restrepo-Velez LF, Bommer JJ (2003) An exploration of the
nature of the scatter in ground-motion prediction equations
and the implications for seismic hazard assessment. J
Earthq Eng 7:171–199

Rhoades DA (1997) Estimation of attenuation relations for
strong-motion data allowing for individual earthquake
magnitude uncertainties. Bull Seismol Soc Am 87:1674–
1678

Sadigh K, Chang C-Y, Egan JA et al (1997) Attenuation relation-
ships for shallow crustal earthquakes based on California
strong motion data. Seismol Res Lett 68:180–189

Scherbaum F, Cotton F, Smit P (2004) On the use of response
spectral-reference data for selection and ranking of ground-
motion models for seismic-hazard analysis in regions of
moderate seismicity: the case of rock motion. Bull
Seismol Soc Am 94:2164–2185

Schlather M (2002) Models for stationary max-stable random
fields. Extremes 33–44

Smith RL (1985) Maximum likelihood estimation in a class of
nonregular cases. Biometrika 72:67–90

Sørensen M, Stromeyer D, Grünthal G (2010) A macroseismic
intensity prediction equation for intermediate depth earth-
quakes in the Vrancea region, Romania. Soil Dyn Earthq
Eng 30(11):1268–1278

Spudich P, Joyner WB, Lindh AG et al (1999) SEA99: a revised
ground motion prediction relation for use in extensional
tectonic regimes. Bull Seismol Soc Am 89:1156–1170

Stafford PJ, Strasser FO, Bommer JJ (2008) An evaluation of the
applicability of the NGA models to ground-motion predic-
tion in the Euro-Mediterranean region. Bull Earthquake
Eng 6:149–177

Stephens MA (1986) Test based on EDF statistics. In: D’Augustino
RB, StephensMA (eds) Goodness-of-fit techniques. Statistics:
textbooks andmonographs, vol. 68.Marcel Dekker, NewYork

Stepp JC, Wong I, Whitney J et al (2001) Probabilistic seismic
hazard analyses for ground motions and fault displacements at
Yucca Mountain, Nevada. Earthquake Spectra 17(1):113–151

Strasser FO, Bommer JJ, Abrahamson NA (2008) Truncation of
the distribution of ground-motion residuals. J Seismol
12(1):79–105

Strasser FO, Abrahamson NA, Bommer JJ (2009) Sigma: issues,
insights and challenges. Seism Res Lett 80:40–56

Stromeyer D, Grünthal G, Wahlström R (2004) Chi-square max-
imum likelihood regression for seismic strength parameter
relations, and their uncertainties, with applications to an
mw based earthquake catalogue for central, northern and
northwestern Europe. J Seismol 8:143–153

Upton G, Cook I (2008) A dictionary of statistics, 2nd rev. edn.
Oxford University Press, Oxford

Utsu T (1999) Representation and analysis of the earthquake size
distribution: a historical review and some new approaches.
Pure Appl Geophys 155:509–535

Wald DJ, Worden BC, Quitoriano V, Pankow KL (2006)
ShakeMap® Maunual. Advanced national seismic system
USGS. http://pubs.usgs.gov/tm/2005/12A01/

Youngs RR, Abrahamson N, Makdisi FI, Sadigh K (1995)
Magnitude-dependent variance of peak ground accelera-
tion. Bull Seism Soc Am 85(4):1161–1176

1182 J Seismol (2013) 17:1157–1182

http://web.nchu.edu.tw/~numerical/course992/ra/Applied_Regression_Analysis_A_Research_Tool.pdf
http://web.nchu.edu.tw/~numerical/course992/ra/Applied_Regression_Analysis_A_Research_Tool.pdf
http://pubs.usgs.gov/tm/2005/12A01/

	Statistical modeling of ground motion relations for seismic hazard analysis
	Abstract
	Introduction
	Regression model for GMR
	Basic formulation
	Random components, estimation methods, and errors
	The danger of over-parameterization
	The test of the distribution assumption

	The distribution of the maximum of a random sequence
	GMR in the PSHA as random function in geo-space
	GMRs as random functions in space
	A model of anisotropic GMR for a point source
	Examples of area-equivalent GMRs

	Numerical studies
	The influence of the distribution type
	An example of area-equivalent GMRs in a PSHA
	The obscuration of a Gumbel distributed random component ε0
	The influence of the different effects on the estimation of GMR and PSHA

	Alternative estimation of GMR
	The basic concept
	Analysis of empirical data
	Area functions and site effects of the Chi-Chi earthquake
	Relation of specific GMRs to the magnitude

	Conclusion and outlook
	Appendix 1: An inappropriate approach to model selection
	Appendix 2: Numerical research of distributions of combinations of horizontal components
	Appendix 3: Details of the constructed situation of seismicity
	Appendix 4: Details of the simulations of Section&newnbsp;5.4
	Appendix 5: Details of the modeling and estimations of Section&newnbsp;6
	References


