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Abstract To accurately predict the performance of a
seismometer, knowledge of its key parameters is re-
quired. We present a new method that requires a single
reference instrument to estimate some of the important
parameters of the seismometer, such as the ratio of the
generator constants, the orthogonality deviation, and
the rotation in space and in the horizontal plane with
regards to the reference instrument. The procedure is
performed in the three-dimensional spaces where the
Euler rotation theorem is applied in order to define a
transformation, which is then used to transform the
detection of the reference seismometer as well as the
detection of the instrument under test. The estimated
transformation matrix is defined as an upper triangular
matrix, where its elements contain the information
regarding the parameters of the tested seismometer,
which are then evaluated using the Euler angles. The
new method has been verified on a pair consisting of
two STS-2 seismometers and on a pair consisting of
one CMG-3T and one STS-2 seismometer.
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Abbreviations
ARSO Slovenian Environment Agency
PSD Power spectral density
3D Three dimensional
E–W East–west
N–S North–south
Z Upwards, vertical

1 Introduction

A modern broadband seismometer consists of three
built-in sensors, with the orthogonality of its outputs
being within a fraction of a degree and where the gain
of each component is known to within 1 % (Ekström
and Busby 2008). The “gain constant” for a particular
sensor is usually given in its calibration sheets. There are
two ways to manufacture a three-component seismom-
eter (Wielandt 2002): the sensors can be oriented or-
thogonal to each other, where the construction of the
vertical component usually differs from the construction
of the horizontal ones (e.g., Guralp seismometers); or
the three sensors can be of identical construction, while
their sensitive axes are inclined to the vertical by an
angle of 54.7° (e.g., STS-2 seismometers). For this last
type of seismometer, the output signals are factory
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adjusted in order to present the motion in the or-
thogonal axes. The gain constants for these outputs
are not usually known exactly. For example, in the
“certificate of calibration” of an STS-2 seismome-
ter, it says only: “generic constants (x, y, z value
1,500±15 V×s/m each)”. Otherwise, the values of
the generator constants for each component are
sometimes given separately in the calibration sheet
(e.g. for Guralp seismometers). However, there is
no information about the uncertainty related to
these data. A generator constant for the particular
seismometer can be estimated absolutely by using
the three-component calibration table CALTAB_1
installed at the Conrad Observatory (Central Institute
for Meteorology and Geodynamics) or a portable
calibration table CT-EW1 by Lennartz Electronics.
Both calibration tables use a procedure described by
Wielandt (2002).

Generally, the manufacturers give just a generic
value for the deviation of the axes’ orthogonality,
while the deviations are not known exactly for a
particular seismometer. For an STS-2 seismometer
the maximum deviation should be ±0.6°, while for a
Guralp seismometer there is no data in the “certificate
of calibration”—the relevant information is available
on the manufacturer’s website. Like with the 3T and
the 3ESPC seismometers, one can read: “sensor axes
orthogonal to within ±0.05°” (Guralp 2011a; b). Eval-
uating these two producers, Holcomb writes the fol-
lowing (Holcomb 2002): “The author doubts that any
of the manufacturers have actually performed the cost-
ly experiments necessary to validate their alignment
claims. Instead, the author feels that, in the cases of the
Guralp CMG-3T and the Streckeisn STS-2, the man-
ufacturers may have measured the sensitivity axis
misalignment in one or two or at most “a few” of their
preproduction sensor systems and then assumed that
all their production units were assembled to the same
accuracy.” The same page contains the following
statement: “Regardless of the source of the error, it
seems to make sense that it is useless to attempt to
align the sensor systems with geographic north–south
and east–west more accurately than they are con-
structed internally.”

Seismometers are usually oriented towards the east
(E–W), north (N–S), and upwards (Z) in order to ob-
serve the ground motion in all directions. The sensor
orientation can be perform using different instruments
and procedures (Davis and Gee 2009), such as

gyroscopic theodolites, astronomical methods, differen-
tial GPS methods or magnetic field methods. While the
orientation of a seismometer on the surface is a relative-
ly simple task, and can be determined even with a
compass and a previously known magnetic declination
for the site, such is not the case for an installation in
deep, underground vaults or for a borehole installation.
The orientation in deep, underground vaults can be
performing using a Gyroscopic theodolite, which is
highly accurate, but this equipment is expensive and is
difficult to operate properly (Davis and Gee 2009). To
define the orientation of seismometers in deep vaults or
boreholes, a reference seismometer that is temporarily
installed on the surface with a known orientation can
also be used. There are many techniques used to define
the horizontal orientation of a “target” seismometer in
comparison to a reference instrument (Holcomb 2002;
Ringler et al. 2012). An extended study relating to this
problem was performed by Holcomb (2002), where he
points out two sources of errors that are related to the
gain of the sensors and to the imperfections in the
sensors’ orthogonality. He states that: “if the gains are
not equal, errors arise in the calculated azimuths” and
“the lack of a perfect alignment of the two horizontal
components within a given sensor may contribute to
errors in the relative angular measurements”. There is
another source of error, which is usually neglected: the
misalignment of the vertical component. While a mod-
ern seismometer is a three-dimensional detector of the
moving earth, the problem of a seismometer’s orienta-
tion was mostly addressed in horizontal space, i.e., in
two dimensions only. Under these assumptions, the
horizontal planes of both seismometers are supposed
to be parallel or aligned. The question then arises, if this
can really be true, especially in borehole installations,
when the seismometer is fixed in a borehole by sand
(Guralp 2006).

It is also desirable for each institution that main-
tains a local seismic network to have a reference
seismometer with well-defined gain constants, transfer
functions, deviation of orthogonality, and self-noise in
order to control and check the parameters of all the
seismometers within an institution (Hutt et al. 2009;
Tasič and Runovc 2010). This reference seismometer
can then be referred to the “secondary standard” of a
particular seismic network and can be used in a pro-
cedure for testing seismometers, for example, when
they are purchased from the manufacturer, or later,
when they are installed at a seismic station. However,
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nowadays, secondary reference units are very rare and
the situations where broadband seismometers are used
as control units are more or less coincidental, and the
estimated parameters of the tested seismometers are
only defined or estimated relative to this particular,
noncalibrated, coincidentally chosen “reference”
system.

Under field conditions, the procedure to orient a
seismometer involves the following three steps (Davis
and Gee 2009): determining true north, translating true
north to a fiducial line, and finally orienting the sensor
to a fiducial line. Each of these steps can add some
error in the correct orientation to true North. Because
of this, our opinion is that orienting a seismometer in
the field with a precision of one tenth of a degree is
more than adequate. However, under laboratory con-
ditions, where two collocated seismometers are used
in the test, and true north is not important, information
about angles with a precision of one hundredth of a
degree is adequate. So it would be ideal to have a
reference seismometer with orthogonal deviations be-
low 0.01° and with a generator constant having a
relative error of less than 0.1 %. But according to the
information that we have at present, a more realistic
scenario is the following: the orthogonal deviations
are below 0.03° and the generator constant has a
relative error of less than 0.5 %.

After considering the above-presented problems,
we developed a procedure to estimate the gain
constants, the relative orientation between the test-
ed and the reference seismometer, and the relative
orthogonal deviation using the Euler angles. This
can be performed when the matrix that is mapping
the seismic data from the reference seismometer to
the tested one in three-dimensional (3D) space is
known. Such a matrix can be calculated using a
procedure described by Tasič and Runovc (2011)
or Wielandt (2009).

2 The seismometer’s generator constant
and azimuth determination

We have two 3-component seismological systems,
each consisting of a broadband seismometer and an
analog-to-digital converter (or an acquisition unit). Let
us mark the first system with the index “q”, and the
second one with the index “r”. We assume that the
transfer functions of both systems are constant, within

their respective bandwidth, and that the sensors in the
seismological system “q” are orthogonal to each other
and lie on the axis of a Cartesian coordinate system.
The sensors of the system “r” are not completely
orthogonal to each other: there are small deviations
in the orthogonality. The seismometer “r” is also not
aligned in the same direction as the seismometer “q”
(Fig. 1). We will also assume that the generator con-
stant is not known for any of the sensors of the
systems “r”.

A signal detected by the system “r” needs to be
transformed in order to detect the same signal as the
system “q”. The linear transformation can be repre-
sented by a matrix. Let us define a matrix A that maps
the vector xr to the vector xq:

xq ¼ Axr !
xq1
xq2
xq3

2
64

3
75 ¼

a11 a12 a13
a21 a22 a23

a31 a32 a33

2
64

3
75

xr1
xr2
xr3

2
64

3
75:

ð1Þ

The transformation matrix A between the two col-
located seismometers can be calculated using the pro-
cedure developed by Tasič and Runovc (2011). Under
the assumption that the generator constants are not
known for the seismometer “r”, we can conclude that
the matrix A does not represent a pure rotation but also
contains a scaling factor (the ratio of the generator
constants). Accordingly, the following relationship
applies:

det Að Þj j 6¼ 1: ð2Þ

r
1x

r
2xr

3x

1
qx

q
2x

q
3x

i

j

k

Fig. 1 Sensors of the seismometer “q” lie on the axes of the
Cartesian coordinate system. The sensors of the seismometers
“r” are not aligned equally in the space as those of the system “q”
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The elements of the matrix A can be:

a11 a12 a13
a21 a22 a23
a31 a32 a33

2
64

3
75 ¼

ar11G1 ar12G2 ar13G3

ar21G1 ar22G2 ar23G3

ar31G1 ar32G2 ar33G3

2
64

3
75;

ð3Þ
where Gi; i=1, 2, 3, are the ratios for the generator
constants between the ith component of a tested and a
referenced seismometer gri gqi= and arij is the element of

the pure rotation matrix Ar when |det(Ar)|=1. If a
generator constant of the reference system is known,
or if the output of the reference seismometer is cali-
brated, then Gi is just a generator constant of the
system under test.

2.1 Simple approach

When the orientation of both seismometers can be set
to be equal at a very precise level, we can assume that
the off-diagonal elements are small when compared to
the diagonal elements. The ratio of the generator con-
stant Gi can then be estimated as:

Gi � aii; for aij � aij;¼ 1; 2; 3 and i 6¼ j: ð4Þ

Mostly for historical reasons, and in some other
cases, we are only interested in the rotation in the
horizontal plane. Such is, for example, the case of a
borehole installation. Let us set the vertical component
in the direction “k”. A submatrix Ahor of the matrix A
can be then applied as follows:

Ahor ¼ A 1; 2; 1; 2½ � ¼ a11 a12
a21 a22

� �

¼ G1 cos að Þ �G2 sin að Þ
G1 sin að Þ G2 cos að Þ

� �
: ð5Þ

When the values of a31; a32; a13; a23 are close to
zero, we estimate the ratio of the generator constant as:

Gi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1i þ a2i

p
; for i ¼ 1; 2 and G3 � a33: ð6Þ

When the generator constants are known, the
rotation in a horizontal plane (given by angle α)
can be calculated using the element of Ahor (Eq. 5)
by using elementary inverse trigonometric functions
(Holcomb 2002).

2.2 Using Euler angles

In a nonlaboratory environment (e.g., setting a ref-
erence system at a remote seismic station or
performing the borehole installation of a seismom-
eter), or sometimes even in laboratory conditions, a
precise installation is very difficult to achieve. For
this reason, the generator constant cannot be esti-
mated in a straightforward way. To calculate the
ratio of the generator constants, we will perform a
virtual “rotation” of the reference instrument so that
the third component of both seismometers (xq3 and
xr3) is aligned on the same axis. This can easily be
done by using Euler’s rotation theorem (Arfken and
Weber 2005). There are several conventions
expressing Euler angles, depending on the axes
about which the rotations are carried out. In this
case, the rotation is presented by the three rotation-
al matrices Rψ, Rθ, and Rϕ (see Fig. 2). The first
rotation will be performed by an angle ψ about the
axis “k” using the rotation matrix Rψ:

Ry ¼
cos yð Þ � sin yð Þ 0
sinðyÞ cos yð Þ 0

0 0 1

2
4

3
5: ð7Þ

The second rotation is carried out by an angle θ
about the axis “i” using the rotation matrix Rθ:

Rθ ¼
1 0 0
0 cos θð Þ � sin θð Þ
0 sin θð Þ cos θð Þ

2
4

3
5: ð8Þ

With this rotation, we actually ensure that the axes
of the sensors xq3 and xr3 are aligned. The third rotation
is carried out by an angle ϕ about the axis “k”, result-
ing in the rotation matrix Rϕ:

Rf ¼
cos fð Þ � sin fð Þ 0
sin fð Þ cos fð Þ 0
0 0 1

2
4

3
5: ð9Þ

This last rotation makes the axis of the sensor xr2 of
the seismometer “r” lie in the plane formed by the axes
of just two sensors, xq3 and xq2, of the rotated seismom-
eter “q”. Such a Euler rotation can be marked as
[3,1,3]. Equation (1) can now be expressed using the
Euler angles as:

RfRθRyx
q ¼ RfRθRyAx

r: ð10Þ
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The last equation can also be rewritten using the
general rotation matrices R:

Rxq ¼ RAxr: ð11Þ
The product of the matrices R and A gives a new

matrix K from:

RA ¼ K; ð12Þ
or when expressed by the elements:

R11 R12 R13

R21 R22 R23

R31 R32 R33

2
64

3
75

a11 a12 a13
a21 a22 a23

a31 a32 a33

2
64

3
75

¼
k11 k12 k13
k21 k22 k23
k31 k32 k33

2
64

3
75:

ð13Þ

The elements of the general rotation matrix R, using
the compact notation (cθ=cos(θ), sθ=sin(ϕ), …), are
then given by:

R ¼
cfcy � sfcθsy �cfsy � sfcθcy sfsθ
sfcy þ cfcθsy �sfsy þ cfcθcy �cfsθ

sθsy sθcy cθ

2
4

3
5:
ð14Þ

Using our definition of the rotation of the seismom-
eter “q”, the transformation matrix K becomes an
upper triangular matrix:

K ¼
k11 k12 k13
0 k22 k23
0 0 k33

2
4

3
5: ð15Þ

The Euler angles can be calculated by setting k21=
k31=k32=0:

sfcy þ cfcθsy
� �

a11 þ �sfsy þ cfcθcy
� �

a21

þ �cfsθ
� �

a31 ¼ 0;
ð16Þ

sθsya11 þ sθcya21 þ cθa31 ¼ 0; ð17Þ

sθsya12 þ sθcya22 þ cθa32 ¼ 0: ð18Þ

The Eqs. (17) and (18) are rewritten as sθ sya11þ
�

cya21Þ ¼ �cθa31 a n d sθ sya12 þ cya22
� � ¼ �cθa32.

After dividing these two expressions, we obtain the
relationship for ψ as:

y ¼ arctan
a22a31 � a21a32
a11a32 � a12a31

� �
: ð19Þ

The solution for y lies in the range [−π/2, π/2]. The
notation and the function atan2 are useful, where
atan2[y, x] is the arc tangent of the variables x and y.
The function atan2 is available in many programming
languages (e.g., FORTRAN, JAVA) and computation-
al environments (MATLAB, Mathematica) and it is
similar to the arctan of y/x, except that the signs of
both arguments are used to determine the quadrant of
the result, which lies in the range [−π, π] (Slabaugh
1999). So we obtain:

y ¼ atan2 a22a31 � a21a32ð Þ; a11a32 � a12a31ð Þ½ �:
ð20Þ

Knowing the angle y , the angle θ can be calculated
using Eq. (17):

θ ¼ atan2 �a31; sya11 þ cya21
� �	 


; ð21Þ

or Eq. (18):

θ ¼ atan2 �a32; sya12 þ cya22
� �	 


: ð22Þ
In general, Eqs. (21) and (22) give the same result.

But under the same circumstances (e.g., sya11 ¼
�cya21 or sya12 ¼ �cya22) two solutions are possi-
ble. But only one is correct, where the condition k31=

k

'i

'k

ψ φ

θ

Fig. 2 Rotation using three Euler angles: ψ, θ, and ϕ
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k32=0 is satisfied. Now the angle f can be calculated
using the angle y , the angle θ, and Eq. (16):

f ¼ atan2 sθa31 � cθsya11 � cθcya21
� �

; cya11 � sya21
� �	 


:

ð23Þ

The value of G3 is simply the k33 element of the
matrix K. But as the orientation of the “rotated”
seismometer “q” is not predefined, k33 can also be
negative. After the “rotation”, the sensors xq3 and xq2
can be set in opposite directions. Because G3 is
always positive, their value is equal to the absolute
value of k33:

G3 ¼ sθsya13 þ sθcya23 þ cθa33
�� ��: ð24Þ

The rotation in the horizontal plane of the seismom-
eter “r” with regard to the seismometer “q” can be
estimated with the help of the Euler angles (see
Fig. 2):

a � � 8þ y cos θð Þð Þ: ð25Þ

Here, the angle α denotes the projection of the
rotation of a seismological system onto the horizontal
plane. The Euler angle θ gives information about the
difference in the vertical inclination between both
seismometers or in other words information about
the angle between the horizontal planes of both
seismometers.

The presented procedure is used to define the ratio
of the generator constant G3. A similar approach can
also be used to calculate the values G1 and G2. The
easiest way to calculate these values is a permutation
of the elements in the vectors xr and xq (Eq. 1). For G1

the indexes i, j, k are now j, k, i:

xq2
xq3
xq1

2
4

3
5 ¼

a22 a23 a21
a32 a33 a31
a12 a13 a11

2
4

3
5 xr2

xr3
xr1

2
4

3
5: ð26Þ

In order to calculate the value G1, the transforma-
tion matrix A in the Eq. (12) is now:

A ¼
a22 a23 a21
a32 a33 a31
a12 a13 a11

2
4

3
5: ð27Þ

A similar procedure is performed to calculate the
value G2, where the indexes i,j,k from Eq. 1 are now k,

i,j. Next, the transformation matrix A in Eq. (12) is
rewritten as:

A ¼
a33 a31 a32
a13 a11 a12
a23 a21 a22

2
4

3
5: ð28Þ

In both cases, the matrices K are upper diagonal
matrices again and the new Euler angles need to be
calculated for each ratio of the generator constants.

3 The determination of a seismometer’s
orthogonality deviation

When all the values G1, G2, and G3 are known with
respect to the definitions of the rotation of the seis-
mometer “r”, three additional angles can be calculated
using the elements of the matrix K. These angles are
δ23, δ12, and δ312 (Fig. 3). The angle between the axis
of xr2 of the seismometer “r” and the axis of xq2 of the
rotated seismometer “q”, which represents the devia-
tions in orthogonality in the 2–3 plane of the seismom-
eter “r”, is then:

d23 ¼ atan2 k23 G3= ; k22 G2=½ �: ð29Þ
The angle between the axis of xr1 of the seismome-

ter “r” and the axis of xq3 of the rotated seismometer

δ12

δ312

δ23

q
1x

r
3x

q
3x

q
2x

r
1x

r
2x

Fig. 3 Under the assumption that all three outputs of the refer-
ence seismometers (blue) are orthogonal to each other, the angle
deviations δ23, δ12, and δ312 of the tested seismometer (red) can
be calculated
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“q” represents the deviations between these two com-
ponents and is obtained from:

d312 ¼ atan2 k13 G3= ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k11 G1=ð Þ2 þ k12 G2=ð Þ2

q� �
:

ð30Þ
The angle of the xr1 component in the 1–2 plane of

the seismometer “r” is simply:

d12 ¼ atan2 k12 G2= ; k11 G1=ð Þ: ð31Þ
We need to be aware that in real circumstances, the

reference seismometer “q” also has some deviation in
its orthogonality and because of this the calculated
deviations between these two seismometers are
relative.

As the deviation is expected to be small, it is useful
to rewrite the upper diagonal matrix from (15) in the
following form:

KG ¼
k11
G1

k12
G2

k13
G3

0 k22
G2

k23
G3

0 0 k33
G3

2
64

3
75 ð32Þ

Using the expansion for small angles, where tan(x)~
x and arctan(x)~x, the following equations are obtained
for δ23, δ12, and δ312:

d23 � KG 2; 3ð Þ; ð33Þ

d12 � KG 1; 2ð Þ; ð34Þ

d312 � KG 1; 3ð Þ: ð35Þ

Because the ratio of the generator constants is given
as the absolute value of k33 (Eq. (24)), the information
about its sign is lost. But as we are interested in the
relative deviation only, the equation for the deviation
estimation can be left as it is.

4 Other Euler rotations

There is another possibility to use Euler angles. For
example, the rotation [3,2,3], where the second rota-
tion is not about the axis “i” but about the axis “j”.
Now, the three new Euler angels y1, θ1, and f1 using
three rotation matrices Rψ1, Rθ1, and Rϕ1 can be

calculated. The two rotation matrices Rψ1 and Rϕ1

have the same form as the matrices in Eqs. (7) and
(9), while the matrix Rθ1 turns to:

Rθ1 ¼
cos θ1ð Þ 0 � sin θ1ð Þ

0 1 0
sin θ1ð Þ 0 cos θ1ð Þ

2
4

3
5: ð36Þ

The general rotation matrix R1 is R1=Rϕ1Rθ1Rψ1.
Equation (12) is now rewritten as R1A=K1. In this
case, the transformation matrix K1 is not an upper
triangular matrix anymore, but becomes:

K1 ¼
0 k12 k13
k21 k22 k23
0 0 k33

2
4

3
5: ð37Þ

Simple mathematics leads to the final solutions for
the Euler angels ψ1, θ1, and ϕ1 by using elements of
the general rotation matrix R1.

5 Tests, results, and discussion

The transformation matrices A were calculated using
the procedure outlined in Tasič and Runovc (2011).
Two main sources of error affect the calculation of the
matrix A. The first one is the numerical procedure
itself, where the output is affected by parameters used
in the procedure, such as the frequency interval, in
which the calculation is performed. Two conditions
need to be fulfilled in order to properly define this
frequency interval. The transfer functions of both seis-
mometers need to be flat and the expected average
self-noise needs to be as low as possible. Our experi-
ence shows that for seismometers having a bandwidth
from 0.0083 to 50 Hz an optimal solution is
obtained, when the transformation matrix A is eval-
uated in the frequency interval from 0.2 to 0.5 Hz.
Additional information about the seismometer’s
self-noise (Ringler and Hutt 2009) can also be used
to estimate the requested frequency range for dif-
ferent pairs of seismometers.

The second main source of error is the influence of
an inaccurate installation of both seismometers, where
strong non-seismic noise—which can be present at
high frequencies—can affect the seismic detection,
so the installation of the complete system needs to be
carried out very precisely.
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A large distance between the seismometers can be
another possible source of error, because the compu-
tation is based on a calculation of the cross-correlation
between two signals. But according to the paper of
Juravlev et al. (1993), the correlation between two
STS-2 seismometers is still high enough in the fre-
quency interval from 0.2 to 0.5 Hz, even at a distance
of 500 m, in order to allow the calculation of the
transformation matrices.

In order to minimize these sources of errors, two
transformation matrices are calculated. For each pair
of seismometers, firstly the matrix Aqr is calculated,
which actually represents the mapping of the data of
seismometer “r” to the space of seismometer “q”.
Secondly, the matrix Arq is calculated, representing
the mapping of the data of seismometer “q” to the
space of seismometer “r”. In an ideal case, the next
relation is applied: Aqr=inv(Arq). But as the evaluation
of the transformation matrices Aqr and Arq involves a
numerical procedure, some errors can be expected for
any calculation and both matrices are used to compute
an average value of the transformation matrix A:

A ¼ 0:5 Aqr þ Arq

� ��1
� 

: ð38Þ

These two matrices can also be used to estimate the
error matrix ΔA

ΔA ¼ A� Aqr

�� �� ð39Þ

Elements of the matrix ΔA are important in order
to define the way of calculating the seismometer’s
orthogonality deviation. Because angles δ23, δ12, and
δ312 are expected to be small we can use the small-
angle approximation, tan (α)~α. If the order of mag-
nitude of the angles is 10−4 rad (0.01°), then the error

needs to be at least 1 order of magnitude lower so the
elements of the matrix ΔA need to be of an order of
magnitude of 10−5 or lower.

The validity of transformation matrix A can be
checked by another method as well. Let us define the
transformation y=Axr. Then, the transformation ma-
trix between xq and y is calculated. If the transforma-
tion is an identity matrix I,

xq ¼ Iy; ð40Þ
then the transformation matrix A represents the correct
mapping of the data of the seismometer “r” to the space of
the seismometer “q” in a predefined frequency interval.

The following results are presented for two pairs of
seismometers. The first pair consists of two STS-2
seismometers and the second pair consists of a
CMG-3T and an STS-2 seismometer. All the seismom-
eters have a bandwidth from 0.0083 to 50Hz. Some
additional numerical tests and results are given for the
second pair. Both tests were performed in the year
2011, the first pair being tested in April and the second
pair being tested in December, both at the Observatory
Golovec in Ljubljana, of the Slovenia Seismology
Office (ARSO). A part of the observatory is a seismic
room with a pier for the seismometers. The seismom-
eters were installed 1 m apart, side by side. They were
connected to a six-channel EarthData PR6 acquisition
unit. The inputs in our tests were 6-h, finite length–
time, seismic data segments, sampled at 200 samples
per second, giving a total of 4,320,000 data points.

5.1 Two STS-2 seismometers

Figure 4 represents the matrices Aqr, inv(Arq), I, and
KG in the [i,j,k] orientation (the vertical component is
set to be oriented in the “k” axes) for a pair of two
STS-2 seismometers. Both transformation matrices are

Fig. 4 Matrices Aqr, inv(Arq), I and KG in the [i,j,k] orientation, calculated for a pair of two STS-2 seismometers
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equal to the fifth order of the decimal. All the results
for the angles will be presented for the i,j,k orientation
only. The Euler angles are ψ=−141.64°, θ=179.96°,
and ϕ=−141.74°. The rotation in the horizontal plane
is α=−0.10° (Eq. (25)). The ratios of the generator
constants are as follows: G1=1.009, G2=1.011, and
G3=1.009. The calculated orthogonal deviations are
smaller than from the specification of STS2 and are
|δ23|=0.01°, |δ312|=0.03°, and |δ12|=0.02°.

5.2 CMG-3T and STS-2 seismometer

Figure 5 represents the matrices Aqr, inv(Arq), I and
KG for a pair consisting of a CMG-3T seismometer
and an STS-2 seismometer. Again, both transforma-
tion matrices are equal. The Euler angles are ψ=
−92.46°, θ=179.91°, and ϕ=−93.03°. The rotation in
the horizontal plane is α=−0.57° (Eq. (25)). The ratios
of the generator constants are: G1=1.013, G2=1.017,
and G3=1.008. It is clear that the KG estimated from
two collocated STS-2 seismometers has lower values
compared to the KG estimated in this experiment. This
is also reflected in the calculated orthogonal devia-
tions, which are |δ23|=0.20°, |δ312|=0.38°, and |δ12|=

0.09°. As we do not have any information about the
deviations of the STS-2 seismometer, we cannot sim-
ply conclude that the CMG-3T is worse. But as one of
the STS-2s was used in both experiments and the
quality of the STS-2 seismometers is known to be
high, we can say that the orthogonal deviations for
the CMG-3T are worse than the ones obtained from
the specification.

5.3 CMG-3T rotated by 30°

In this experiment, the same seismometers were used
as in Section 5.2, but only the CMG-3Twas rotated by
30°±0.3°. The calculated transformation matrices Aqr

and inv(Arq) are now slightly different (Fig. 6), above
all in the first row. Differences also exist in the second
row, while the third row is the same. So the estimated
values differ from the results in Section 5.2 and
are less trustworthy. This is also reflected in the
estimated ratios of the generator constants, which
differ when compared to the data from Section 5.2
by approximately 0.13 % for horizontals (G1=
1.014, G2=1.015), while the vertical ratio (G3=
1.008) is equal. The incorrectly calculated generator

Fig. 5 Matrices Aqr, inv(Arq), I and KG in the [i,j,k] orientation, calculated for a pair of CMG-3T and STS-2 seismometer

Fig. 6 Matrices Aqr, inv(Arq), I andKG in the [i,j,k] orientation, calculated for a pair of CMG-3T and STS-2 seismometer, where CMG-
3T is rotated by 30°, with regards to the previous orientation
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constant affects the calculation of the angles of orthog-
onal deviations: their values are |δ23|=0.32°, |δ312|=
0.35°, and |δ12|=0.12°. The calculated Euler angles are
now ψ=1.47°, θ=−0.08°, and ϕ=30.94°. From Eq.
(25), we obtain α=29.47°. The calculated rotation of a
CMG-3T seismometer, taking its position from Sec-
tion 5.2, is 30.04° (29.47°+0.57°), and is within the
precision of manual rotation.

The transformation matrices Aqr and inv(Arq) need
to be equal and matrix I needs to be an identity matrix,
when the seismometer’s orthogonal deviations and the
ratio of the generator constants are the goal of the
calculation.

6 Conclusions

A novel procedure is described that enables an evalu-
ation of some of a seismometer’s parameters using a
reference seismometer. This approach offers improve-
ments in terms of the quality control of seismometers,
which can be performed by local seismic institutions.

The quality control of a scientific instrument is one
of the most important tasks necessary to make its
measurements reliable. This is also the case for seis-
mometers, which are treated as scientific instruments
because their outputs are used for additional scientific
studies. Broadband seismometers usually come with a
so-called “certificate of calibration” provided by the
manufacturers, where parameters that are related to the
transfer function, generator constant, self-noise, etc.,
are given. But because these calibration procedures are
not standardized between producers, results cannot be
compared between different types of seismometers
without some concerns.

Also, some of parameters provided by producers,
such as the deviation of orthogonality, are generic for
the same type of seismometers. When seismometers
are purchased by a particular institution, they are very
rarely, if it at all, compared or calibrated using higher-
level standards, but usually just installed at the seismic
station. A high-quality broadband seismometer should
have a known long-term stability of its transfer func-
tion (e.g., Wielandt 2004) and is usually permanently
and precisely installed at a seismic station to detect
seismic signals. All interruptions, like a temporary
deinstallation, transportation to an institution where
the calibration is performed, and a reinstallation at
the seismic station, may cause more problems than

are solved by a regular calibration. Because of this,
they are just controlled with test signals, which are
built into the acquisition units (which are often wrong-
ly equated with the calibration signals). Only in cases
when the response of a seismometer to the test signals
is unusual is the seismometer returned to the manu-
facturer for verification.

We will address some additional improvements in
our future work. We of course presume that the refer-
ence seismometer also has some unknown deviation in
terms of orthogonality. Some other possible errors
could originate from the deviation in orthogonality of
the reference seismometer, from the influence of the
distance between the seismometers, and from the in-
fluence of the nonlinearity of the seismometers. In
particular, evaluations of the parameters where larger
distances (vertical or horizontal) exist need to be in-
vestigated in more detail with a gyroscope in order to
precisely define the azimuth of the tested systems.
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