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Abstract A method for the determination of con-

sistent local magnitude ML values (Richter scale, or

MWA) for earthquakes with epicentral distances rang-

ing from 10 km through 1000 km is demonstrated.

The raw data consists of nearly 1300 amplitude read-

ings from a network of six digital seismographs in

Baden–Württemberg (Southwestern Germany) during

26 months starting in 1995, later extended by an-

other 1000 amplitude readings until 1999. Relying

on most of the basics introduced by C.F. Richter a

three-parameter attenuation curve (distance correction,

magnitude-distance relation) for Baden–Württemberg

and adjacent areas is presented. Station corrections are

evaluated and the attenuation curve is calibrated with

respect to other agencies for distances greater than

650 km. Reasonable parametrisations are discussed and

meaningful error bars are attributed. Finally, a seventh

station is incorporated by means of its station correc-

tion alone, without needing to update the attenuation

curve.
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Introduction

Even in the age of digital seismographs and computer-

aided data processing the importance of the magnitude

concept still persists. Originally, Richter (1935, 1958)

used solely the maximum amplitude of horizontal seis-

mograms from Wood–Anderson (WA) seismometers to

compute his magnitude (ML, local magnitude or MWA)

with the aid of a distance correction, which is not very

smooth compared to more recent proposals (Fig. 1).

For an absolute calibration of his magnitude scale,

Richter (1935) used a pivotal point (called the Richter
hinge in this study) at a distance of 100 km where

1mm WA-amplitude was defined as magnitude 3.0.

Hutton and Boore (1987) proposed an accordant

magnitude-three hinge for 10 mm WA-amplitude at a

distance of 17 km.

While there exist better concepts for the quantifica-

tion of the earthquake source (e.g. Ben-Zion, 2001),

the magnitude as a relative scale is widely in use al-

beit its use is not beyond doubt (Hough, 2001 and

replies in Seismological Research Letters, Vol. 71).

It is popular, not only, among seismologists but also

for public information, and a great number of vari-

ations, extensions and improvements to the original

idea of Richter have been proposed (e.g. Jennings

and Kanamori, 1983; Kim, 1998 for Eastern North

America; Ferdinand, 1998; Langston et al., 1998 for

East Africa).

The intention of this paper is not merely to add to this

variety and to propose a magnitude formula especially
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Fig. 1 Distance correction
curves for ML from various
authors: LED from 1996
through 1997 (solid line);
parameterisation of Richter
(1958) in use from 1983
through 1996 (dashed line);
Bakun and Joyner (1984)
(dotted line); SZGRF at
1 Hz (K. Klinge, pers.
comm.) (dash–dotted line);
Richter original (1958)
(gray line)

suited for Baden–Württemberg without changing the

maximum–amplitude concept of Richter. But more-

over, an improved use of existing concepts is detailed

and a single magnitude calculation for a small net-

work in a big area (such as Europe) is suggested. It

is shown that the local magnitude ML can be mean-

ingfully extended up to a distance of 1000 km and that

for these great distances the tuning to agencies nearer

to the epicenter is important for sparse and small–

aperture networks. Error considerations are introduced

and the essential importance of station corrections is

elucidated.

The reason for continuing with the maximum–

amplitude concept and not adopting moment magni-

tude (Kanamori, 1977) is outlined below. First of all,

consistency and continuity within the catalogue of an

agency is deemed very important. Following Kanamori

(1983), the differences between moment magnitude

and local magnitude are restricted to a constant offset

and therefore are negligible compared to other uncer-

tainties (see below for the discussion of error bars) up

to a magnitude of about six. Hence, there is no need to

switch to moment magnitude since the historical cata-

logue for earthquakes in Germany (Leydecker, 1986)

does not list any events with a magnitude of more than

six and a half and only a few events that may exceed

six. Furthermore, for small earthquakes recorded with

solely short period instruments the computation of the

moment magnitude by means of a moment tensor in-

version is not feasible.

Instrumental earthquake observation in Baden–

Württemberg (Fig. 2) has a history of over a cen-

tury (Schick and Wielandt, 1994). In Württemberg, the

eastern part of the state area mapped in Fig. 2, the

earthquake survey was maintained by the University

of Stuttgart, and up to 1993 the original Richter for-

mula for magnitude determination was in use. In Baden

(western part, University of Karlsruhe) modern earth-

quake observation started in 1973. From 1983 to 1993

a simple parameterization of the Richter distance cor-

rection (Fig. 1) was utilized. In 1993 the Earthquake

Survey (LED) of the State Bureau of Geology, Nat-

ural Resources and Mining (NEIC code is LEDBW)

succeeded its two predecessors as the defining agency.

Temporarily, the magnitude determination was adopted

from Karlsruhe and the distance correction was im-

proved in 1996 for distances beyond 200 km (Fig. 1).

The official and actual magnitude formula (in applica-

tion since 1997) is developed in this paper, observing

as much continuity and integration with the European

seismological community as possible.

The necessity of an improved magnitude formula

for Baden–Württemberg is evidently illustrated by a

display of the data from station KIZ (Kirchzarten, see

Table 1): Fig. 3 displays the magnitude readings at KIZ

computed with the magnitude scale in use until 1997
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Fig. 2 Baden-Württemberg (light shaded area), the south–
western state of Germany, bordering France and Switzerland.
Black triangles denote the station network, open circles are some
epicenters used in this study. Outlined areas with white-on-black
labels are selected seismo–geographical regions after Leydecker
and Aichele (1998): OR (Upper Rhine Graben), SF (Eastern
Swiss Alpine Foreland), BO (Lake of Constance), SA (Swabian
Jura)

(Fig. 1). The normalization with respect to the event

magnitude denoted by the horizontal line at zero offset

exhibits two clear features: the first is the general offset

that can be dedicated to the lack of a station correction

(constant for all distances). The second is a distance

dependent trend that might be due to the use of a non–

optimal attenuation curve.

Stations and data

Seven stations (Fig. 2) were selected from the 30-

station monitoring network operated in Southwestern

Germany by the LED (Henger and Leydecker, 2000;

Brüstle and Stange, 2002). These stations are equipped

with Lennartz LE3D-1 Hz seismometers and Mars88

20-bit data loggers recording at a 16 ms sampling in-

terval. The transfer function is proportional to ground

velocity and is flat from 1 Hz to 25 Hz. The seven seis-

mograph systems are identical to each other, well cali-

brated, and provide vertical as well as horizontal com-

ponents. The latter are routinely used for ML determi-

nation.

Station site underground conditions are fairly di-

verse as listed in Table 1. The seismometers are located

in basements of water storage basins, in abandoned

mines, and in underground bunkers (vaults).

The maximum aperture of the 7-station-network

measures slightly over 200 km in the SW-NE direction;

mean station distance is in the order of 80 km (Fig. 2).

Data contribution of individual stations is moder-

ately inhomogeneous as listed in Table 1, because the

installation of the network in Baden–Württemberg was

in progress during the recording period. In general, sta-

tion GUT did not participate at first, since it was opened

only in October 1997 to replace SGW, which had to be

closed down.

For the first data set 293 events (of which at least

99 percent are earthquakes) in the period from January

1995 to March 1997 were evaluated, resulting in a total

of 1300 good–quality amplitude readings. The epicen-

ters are distributed over central and southern Europe

showing a lopsided distribution towards southern di-

rections. Epicentral distances range from 10 km (Upper

Rhine Graben, Black Forest, Swabian Jura, cf. Fig. 2)

up to 1000 km (Vienna Depression, Balkan countries,

Central/Southern Italy, Pyrenees).

Data processing

The basic principles of amplitude measurement from

three–component stations are as follows. Firstly, the

seismograms of a station should show at least one

phase (P or S) which can be unequivocally picked.

Further, the horizontal traces must not be truncated be-

fore the largest amplitudes (S or Lg) and must also not

be clipped. If strong transient signals unrelated to the

earthquake in question are present the corresponding

traces are omitted.

After band pass filtering from 0.5 Hz to 12 Hz and

integration both whole traces are equalized and ampli-

fied to simulate a Wood–Anderson instrument with an

eigenperiod of T = 0.8 s, a damping of h = 0.8, and
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Table 1 Stations participating in the study with number of data, resulting station correction, stratigraphy/lithology, and
site description

No.

Station of data Station correct. Stratigraphy Lithology Site

KIZ Kirchzarten 255 +0.28 Palaeozoic Gneiss (diatexite) Mine

HOL Hollenbach 140 −0.14 Pleistocene/Unterkeuper Clay over dolomite Storage basin

UBR Überruh 209 −0.08 Upper Fresh water–Molasse Marl/siltstone Storage basin

LBG Lerchenberg 223 +0.07 Künzelsauer Schichten Bioclastic limestone Vault

BEU Beuren 197 −0.08 Wedelsandstein Sandy limestone Vault

SGW Sigmaringen 247 −0.05 Liegende Bankkalke Bedded limestone Storage basin

GUT Gutenstein 147 +0.25 Oberer Massenkalk Massive limestone Storage basin

Fig. 3 Station KIZ:
residual magnitudes (event
magnitude minus station
magnitude) for 255 events
with the pre-1997 distance
correction and without
station correction

an amplification of S = 2800. These are the classical
values although Urhammer et al. (1996) determined the

correct values for real Wood–Anderson seismometers

which were never in use in Baden–Württemberg. The

peak maximum amplitude from both horizontal com-

ponents of a record is measured separately and the two

values are averaged. At last the logarithm of the mean

is calculated.

To compute magnitude values for each station (this

station magnitude is abbreviated MST) from the ampli-

tude readings one needs the distance to the hypocenter

which comes with the localisation process. The event

magnitude (ML which is assigned to the event in the

catalogue) is then derived by computing the median of

the station magnitudes. The median is less sensitive to

outliers than the mean, and it is used in the L1–norm

context (Shearer, 1997).

Methodology for the distance correction

The amplitude of a traveling seismic wave is affected

by geometrical spreading as well as intrinsic attenu-

ation and scattering. In a homogeneous medium the

geometrical spreading of body waves is proportional

to r−1 where r is the hypocentral distance. In an arbi-

trary medium this can be generalized to a power law

of the form r−a . Published empirical values for the ex-

ponent a range from 0.8 through 2 (a comprehensive

compilation is found in Bormann and Bergman, 2002).

Further sophisticated descriptions of the geometrical
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spreading account for structural effects and therefore

introduce a distance dependence (e.g. Douglas et al.,

2004, or see below in this publication).

The attenuation (including intrinsic damping and

scattering) is described by e−γ r where γ = 0 for a

medium without any attenuation. Common values of

γ are around 0.002 (Bormann and Bergman, 2002) but

they depend strongly on wave type and medium. Easier

to handle, in some cases, is the parameter b which is

defined by b = γ log e ≈ γ /2.3.

With these considerations in mind and following for

instance Bakun and Joyner (1984) the basic equation

for the magnitude at station ST reads:

MST = log A + a log r + br + c + dST (1)

where A is the Wood–Anderson amplitude in mm, and

the distance r is measured in km. a and b are the spread-

ing and attenuation parameters introduced above while

the third parameter c defines an absolute level and can

be determined by the Richter hinge at 100 km. The sta-

tion correction dST is discussed in a later section.

While the parameters a, b, and c can be derived

from the data using a standard least–squares scheme,

the event magnitude ML is calculated as the median

of the station magnitudes MST (see above). Hence, the

overall procedure to derive ML from the data is slightly

non–linear. Linearization can be achieved by using dif-

ferential parameters instead of the original ones. This

again requires start values for ML since the linearized

inversion can only calculate differences to these (i.e.

�M = MST − ML). Additionally, iteration may lead

to an incremental improvement and sufficient conver-

gence.

Implementation of the iterative procedure exhibited

that the resulting attenuation curve was independent of

the start values except for the greatest epicentral dis-

tances. Hence, reasonable start values for these longest

distances had to be introduced. They were taken from

other agencies or networks [e.g.: SED (Zürich), INGV

(Roma) and LDG (Paris)] which could consider the

event in question to be of “local” character. This im-

proved the result considerably in two ways: first, the

inversion for the correction curve was stabilized and

second, a good degree of consistency with other agen-

cies in Europe was obtained for the longest distance

range without biasing the local range.

Unfortunately, there was only rather sparse infor-

mation about the magnitude calibration of the other

agencies. Therefore, the large uncertainty resulted in

low confidence for this data. Nevertheless, the far end

of the correction curve was reduced by more than one

magnitude compared to other estimates (Fig. 1).

For earthquakes nearer home start magnitudes were

simply taken from the previous calculations with

the Richter parametrization of the distance correction

curve (see above).

Other means of constraining the attenuation curve

are described in a later section.

Results

With the data and inversion methodology introduced

in the previous sections the magnitude–distance rela-

tion for earthquakes observed in Baden–Württemberg

reads:

ML = log A + (1.11 ± 0.1) log r + (0.95 ± 0.2)

×10−3 r + (0.69 ± 0.05). (2)

In the following this magnitude scale is called

BWAC (abbreviation of Baden–Württemberg attenu-
ation curve) and it is plotted in Fig. 4. The variance

reduction compared to the LED–Richter parametrisa-

tion (Fig. 1) is 14 percent.

Since this result was obtained through least–squares

inversion, numerical error bars (standard deviations)

can be attributed. With almost 1300 data samples and

only three parameters small errors are to be expected

for Gaussian distributed data.

A problem will occur if the data distribution is not

normal. In this case standard deviations of a least–

squares inversion may underestimate realistic error

bars significantly. For instance, Stange and Friederich

(1993) reported an underestimation factor of up to 10.

As a workaround Efron and Gong (1983) proposed the

so called bootstrapping technique. The basics are as

follows: secondary data sets are created by randomly

drawing from the original data pool with “put–back”.

Hence, a new set may contain multiple entries of a data

point while other samples may not be present at all.

The same inversion as described above is now com-

puted for, say, 1000 new data sets. The scatter of the

solutions gives an indication of Gaussian error bars.
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Fig. 4 Graphical representation of Equation (2): BWAC distance
correction (black line) with 68 percent confidence level (shaded
area) from the bootstrap procedure. The white dashed line repre-

sents Equation (6) with its local slope dM/d log r (dashed black).
Dotted: local slope of BWAC

Furthermore, features like bimodal distributions would

show up in the collection of solutions.

It should be mentioned that the bootstrap is only

used to calculate the error bars and not for computing

the best value of a parameter itself, since this can only

be accomplished with the original data set. On the other

hand, a consistency check showed that the mean of

the bootstrap solutions sufficiently resembled the orig-

inal least–squares result. The bootstrap data sets were

choosen to exactly match the number of entries of the

original. Up to 1500 inversions were then performed

and stabilty of the results was ensured.

Since the bootstrap–computed standard deviations

are considered the most meaningful in this study they

are denoted in Equation (2). They exceeded the least–

squares standard deviations by a factor of up to 10.

The bootstrap–errors of the three parameters of the

distance curve (Equation (2)) can be combined with

the Gauss’ law of error propagation to obtain a sin-

gle one–standard deviation or 68–percent confidence

interval as sketched in Fig. 4 (shaded area). Note

the influence of the Richter hinge: at a distance of

100 km the error range reduces to that of the con-

stant term, i.e. the standard error of the mean of the

station corrections. At short distances the error of the

spreading term dominantes while at long distances the

largest error contribution arises from the attenuation

term.

For most events the final standard deviation for the

network computed magnitude ML lies around ±0.2.

A competing solution: Distance dependent
parameters

Up to now, it was argued that for Baden–Württemberg

one simple 3-parameter curve could sufficiently de-

scribe the magnitude–distance correction for 10 km

to 1000 km. Though, this kind of parametrisation is

deemed inadequate for instance by Bragato and Tento

(2005) for NE–Italy. One suggested reason for the suc-

cess in Baden–Württemberg is the smooth development

of seismogram characteristics with distance. However,

there still exists a transition from the body–wave regime

to a surface–wave regime.

On one hand, this concerns geometrical spreading:

very near the source body waves are supposed to behave

like spherical waves, that is their amplitudes are pro-

portional to r−1. At long distances the magnitude deter-

mining Lg waves undergo surface-wave-like spreading,

which was given by Kvamme et al. (1995) for Scandi-

navia to be proportional to r−0.71.
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On the other hand, the transition affects the attenu-

ation due to anelasticity and scattering which was as-

sumed to be modelled by γ = 2–3 × 10−3 for body

waves, and was determined to γ = 1.8–2×10−3 for

western European Lg waves (Nicolas et al., 1982).

Finally, in the same paper the entire amplitude at-

tenuation coefficient for Lg waves in western Europe

is shown to be roughly 2.5×10−3 which translates into

a local slope of dM/d log r = 2.5.

Omitting the station correction in Equation (1) the

distance correction can be rewritten in a more general

form:

M = log A + a(r ) log r + 10−3b(r )r + c (3)

where both a(r) and b(r) are distance–dependent func-

tions of the form:

a(r ) = a0 − 10−3a1r and b(r ) = b0 − 10−3b1r.

(4)

Rearranging Equations (3) and (4) into:

M = log A + a0 log r + 10−3b0r + c

− (a1 log r + 10−3b1r ) × 10−3r (5)

facilitates another interpretation of the new attenua-

tion curve description. The first terms (featuring a0, b0,

and c) are easily recognised as the original 3-parameter

curve. The later part might be read as a correction term

in form of another attenuation curve weighted with dis-

tance.

As described in the previous section the sparse

network suffers a certain lack of resolution. Hence,

it is recommended to reduce the degrees of free-

dom by introducing boundary conditions. Here, be-

sides the Richter hinge (M |100 = 3), two further restric-

tions were used: the local slope of the correction curve

was fixed to a value of 2.5 at a distance of 1000 km:

d M/d log r |1000 = 2.5. And, the geometrical spread-

ing at short distances should be around 1, hence, it was

set: a0 = 1.

Least–squares inversion of the data set for the re-

maining 2 parameters resulted in:

ML = log A + (1 − 0.29 × 10−3r ) log r

+ (2.2 − 0.28 × 10−3r ) × 10−3r + 0.84. (6)

This representation is rather descriptive: the effective

spreading parameter starts at a distance of 1 km for

instance, with a value very near unity (a ≈ 1) and

then decreases to a value of a = 0.71 at 1000 km,

matching nicely the properties of body and surface

waves as sketched above. Similarly, the attenuation

parameter b varies from 2.2 (r = 1 km) to 1.92 (r =
1000 km)(a factor of 10−3 is absorbed in the dis-

tance term). As intended, the local slope rises from

dM/d log r |1 = 1 to dM/d log r |1000 = 2.5 (Fig. 4),

contrary to BWAC where d M/d log r |1000 exceeds 3.3.

Furthermore, Fig. 4 also shows that the absolute differ-

ence between BWAC and the curve given by Equation

(6) exceeds 0.07 magnitudes at no point.

Unfortunately, while Equation (6) might provide a

reasonable physical interpretation it is far from being

a unique solution. Other parameter combinations are

possible or even entirely differing mathematical de-

scriptions. Some authors (e.g. Urhammer et al., 1996)

proposed the use of spline functions to smooth a dis-

tance correction curve which was originally obtained in

distance sections. Of course, more degrees of freedom

might provide a further variance reduction.

Variance reduction of Equation (6) is 19 percent,

compared to 14 percent of BWAC (Equation (2)). But,

is there a significant difference? Comparing two distri-

butions with their variances can be conducted by means

of a so-called F–test (Press et al., 1986). The F-test cal-

culates the probability of the null-hypothesis that two

distributions do not differ. F-testing the variances of

Equation (2) and Equation (6) offers a probability near

1, which means that for the presented data set no sig-

nificant improvements compared to BWAC could be

achieved.

Even so, if one considers distances around and be-

yond 1000 km, only the constant–slope extrapolation of

the curve from Equation (6) would yield a reasonable

correction for Lg magnitudes.

Station corrections

Station corrections compensate for that part of the site

effect which is invariant with azimuth. The station mag-

nitude mainly depends on station underground condi-

tions, e.g. shear wave velocity VS or attenuation QS

averaged over a specific depth range. Urhammer et al.

(1996) gave a relationship between near-surface rigid-

ity μ and station correction. Unfortunately, this cannot
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be applied here, since the absolute values they com-

puted were dependent on the particular distance cor-

rection chosen.

To get a qualitative idea of individual station cor-

rections one can inspect the surface lithology of the

station sites as compiled in Table 1. On a relative scale

the end members would be marked by stations HOL

and KIZ, respectively. Station HOL is situated on a thin

layer of pleistocene clay overlying mesozoic dolomite.

It is therefore expected to show some kind of ampli-

tude amplification, and thus greater than average sta-

tion magnitudes. On the other hand, station KIZ is lo-

cated 50 meters underground in an abandoned mine of

the Schauinsland ore district, in solid bedrock (gneiss).

Station magnitudes for KIZ are presumed to be sys-

tematically lower than the event magnitude. The data

shown in Fig. 3 (station KIZ) actually supports the ten-

dency anticipated from the lithological site conditions.

In principle, the computation of station corrections

using Equation (1) is straightforward although not ad-

visable due to the following considerations: first, the

mean of the station corrections is indistinguishable

from the constant c of the distance correction. Second,

the non–uniform data distribution with distance might

introduce systematic biases. To avoid these drawbacks

station corrections were computed using a modified

data set: only events with amplitude readings at all six

stations were used, resulting in 93 events with 558 read-

ings (out of 1300 for the entire data set). Furthermore,

the data were assigned to distance bins of a width of

20 km to achieve equal contributions from all distances.

The overall inversion now followed an iterative dual

step approach, alternating between the computation

of distance correction and station corrections, respec-

tively. A similar approach was proposed by Hutton

and Boore (1987). Final convergence was reached after

three iterations, which is considerably faster than the

20–40 iterations reported by Langston et al. (1998).

The results are listed in Table 1. Variance reduction is

now 43 percent compared to the previously achieved 14

percent, meaning that two thirds of the overall variance

reduction are due to station corrections.

The distance correction turned out to be rather stable

during iteration, hence justifying the dual step approach

in retrospect. This invariance of the distance correction

is also important for the incorporation of new stations

into an existing network.

How does an extension of the recording network

affect the magnitude computation? An opportunity to

research this question arose at the end of 1997 when

station SGW had to be closed due to extensive con-

struction work at the water storage basin nearby. The

equipment was moved about 8 km to the west to the

new location GUT (Fig. 2). The geological setting was

nearly identical (Table 1), hence, about the same station

correction (−0.05 for SGW) could be expected. Af-

ter a recording period of more than a year 222 events

had been collected, out of which 143 showed more

than 5 decent amplitude readings. Station GUT con-

tributed 147 readings, 84 of which are in the latter

data set.

With the inversion scheme described above the dis-

tance correction (Equation (2)) remained almost un-

changed while the station correction for GUT com-

puted to +0.25, severly contradicting the expectations.

To address this puzzling issue station SGW was rein-

stalled for three months in 1999. Earthquakes recorded

simultaneously at GUT and SGW at once revealed

strong amplitude differences. Therefore, surface lithol-

ogy obviously does not suffice to explain this site ef-

fect. On the other hand, SGW is situated a mere few

hundred meters from the east edge of the Lauchert

Graben, a prominent tectonic feature of the south–

central Swabian Jura. This structure might affect SGW

amplitudes, but, a detailed examination has to be rele-

gated to future research.

Source region and propagation path effects

Figure 5 displays residual magnitudes for station

KIZ, recomputed with BWAC and station correction.

Comparison with Fig. 3 illustrates the improvement

and corresponds to the reasonable variance reduction

(43 percent). Although, at distances shorter than 100km

the absolute values of the residuals seem to be larger

than average. Of course, the scatter of the data at short

distances should increase since source radiation effects

are more pronounced here. But, this cannot explain the

pattern visible in Fig. 6. Evidently, the residual magni-

tudes depend on the seismotectonic region of most of

the events shown: high values at distances below 65 km

correspond to events from the Upper Rhine Graben (cf.

Fig. 2) while low values at distances greater than 60 km

are located in the regions of Lake Constance and Swiss

Eastern Alpine Foreland. These two clusters separate

clearly in azimuth and distance, and therefore the cause

of the differences is mainly the propagation path to
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Fig. 5 Same as Fig. 3, now
computed with new distance
correction BWAC and with
station correction for KIZ

Fig. 6 Same as Fig. 5 for
distances below 100 km.
Grey circles: all events.
Events from the
seismo–geographic regions
(see Fig. 2) OR
(hourglasses); BO and SF
(triangles) are enhanced

station KIZ. The residual magnitudes of other stations

(not shown) did not exhibit a matchable pattern, there-

fore, a mere distance dependence of this effect could

be excluded.

With the concept of constant station corrections, ef-

fects such as those shown in Fig. 6 cannot be accounted

for. However, the interpretation of this phenomenon re-

mains conjectural and would have to be examined by

a detailed study of source and propagation effects with

an extended data base.

Conclusion

In this study it was demonstrated that with a medium–

size (aperture around 200 km) and sparse (6 to 7

stations) seismograph network reasonable magnitudes
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ML can be calculated for hypocentral distances from

10 km through 1000 km. Though, some precautions

have to be observed, which are outlined below.

Firstly, distance correction curves developed for a

different region (e.g. California) might produce mis-

leading results, or might be applicable only over a lim-

ited distance range. Therefore, a customised distance

correction should be computed. Furthermore, calibra-

tion of the long–distance end of a new attenuation curve

with respect to neighbouring agencies is recommended.

This is especially important within the European sur-

rounding where there exist quite a few independent

agencies but no unified magnitude specification.

Second, station corrections are essential for a con-

sistent determination of a network magnitude by aver-

aging station magnitudes. The introduction of station

corrections accounted for two thirds of the variance

reduction achieved in this study.

Finally, the incorporation of new seismometer sta-

tions can be done through their station correction alone,

without changing the attenuation curve. This seems

to be self–evident, but, for the described sparse and

medium–size network it had to be verified, and it could

be useful for networks under construction.

Assigning meaningful error bars to a magnitude

helps asses the scatter between agencies, although, it is

not helpful for public information.

The presented procedure for computing local magni-

tudes was included in the New Manual for Observatory

Practice (Bormann and Bergman, 2002).
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