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Abstract
In this contribution, we studied the magnetization, magnetic susceptibility, and electronic superconducting density of a super-
conducting irregular octagon in the presence of an external magnetic field H. We solved the time-dependent Ginzburg-Landau 
equations (TDGL) for a one-band condensate for a mesoscopic type-I sample ( 𝜅 < 1∕

√

2 ). Our results show the existence of 
Shubnikov-vortices in the up-branch of the magnetic field (H). Also, we found a paramagnetic response in descending field. 
We think that the vortex state proposed here reflect intrinsic features of the superconducting sample.
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1 Introduction

In a type-I superconducting sample, the magnetic field H is 
expelled from the bulk of the material below a specific criti-
cal magnetic field, called the critical field Hc [1]. However, 
when the magnetic field exceeds the critical field, the super-
conductivity is suppressed in the bulk of the material, and a 
vortex state may form. A vortex is a region within the super-
conductor where the magnetic field penetrates and is trapped 
in quantized magnetic flux lines, also known as Shubnikov-
Abrikosov vortices [2]. These vortices are arranged in a 
regular lattice structure within the superconductor, with 
the magnetic field lines threading through the vortices and 
circulating them. The formation of a vortex state in a type-
I superconducting sample occurs when the magnetic field 
exceeds the critical field, and the superconducting order 
parameter, which characterizes the macroscopic pseudo-
wave function of the superconducting condensate, is no 

longer uniform throughout the sample [3–11]. The vortices 
act as “holes" in the superconducting condensate, where the 
order parameter is suppressed, and the material returns to 
a normal conducting state within the vortex core. The vor-
tex state in type-I superconductors is typically meta-stable, 
meaning thermal fluctuations or external perturbations can 
easily destroy it. The behavior of vortices in type-I supercon-
ductors differs from that in type-II superconductors, where 
vortices are more stable and can form complex structures 
such as vortex lattices and vortex liquids [12–16].

The dynamics of vortices in type-I superconductors are an 
active area of research and have important implications for 
the performance of superconducting devices and applications. 
The vortices form a disordered and mobile vortex state in a 
type-I superconductor. As a result, these kinds of materials 
are used in applications where the formation and stability of 
a well-defined vortex lattice are required, such as in high-
field magnets or superconducting devices that rely on precise 
control of vortices [12–16]. The term “spike vortex state" in 
superconductors typically refers to a particular configura-
tion of vortices that can occur in certain superconductors. 
The spike state is a meta-stable vortex state, like phase-slips 
and kinematic-vortices, that arises and disappears at a single 
critical field, the one that sets the transition from the normal 
to the superconducting state. This state is typically observed 
in superconducting materials with layered structures or ani-
sotropic properties, where the vortices can be guided along 
particular crystallographic directions or channels. The forma-
tion of the spike vortex state is influenced by factors such as 
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temperature, magnetic field strength, and the properties of the 
superconducting material (geometry), such as its anisotropy 
and pinning landscape [17–20].

In type-I superconducting samples, magnetic flux pen-
etration also can occur in the intermediate state if the thick-
ness of the sample is less than the coherence length d < 𝜉 
[5, 21]. Recently, the intermediate state in type-I super-
conductors was studied theoretically in the reference [17] 
and experimentally in the references [22–24]. Our study is 
restricted to constant temperature T and varying the exter-
nal magnetic field H. We study magnetization curves M(H), 
magnetic susceptibility �m(H) , and density of superconduct-
ing electrons (|�|

2) under ascending and descending applied 
magnetic field. The outline of this paper is as follows. Sec-
tion 2 is presented the theoretical formalism. In Sect. 3, we 
report the results and discussions. A conclusion is given in 
Sect. 4.

2  Theoretical Formalism

In the present work, we studied the vortex state and the mag-
netic response in a single-band superconducting irregular 
octagon in the presence of an external magnetic field H. The 
studied system exhibits invariance along the z direction (per-
pendicular to x, y plane), and the external magnetic field is 
applied in the z-direction. Within this scenario, the problem 
becomes a bi-dimensional problem for which the physical 
quantities vary only with the x and y coordinates, and demag-
netization effects are absent. We numerically solve the non-
lineal time-dependent Ginzburg-Landau (TDGL) equations in 
a 2D plane [25]. We obtain the hysteresis loop of the mag-
netization and values of the order parameter as a function of 
H. The dimensionless form of TDGL for the order parameter 
�(x, y) and potential vector A(x, y) , related to magnetic induc-
tion as B = ∇ × A , is [16, 26–29]:

As usual, the Eqs. 1 and 2 are presented in dimensionless 
form, with the temperature in units of the critical tempera-
ture Tc , the order parameter � in units of �∞ =

√

−�∕�  , 
being �, � experimental parameters, length in units of the 
coherence length �(0) at zero temperature, and the potential 
vector A in units of Hc2� , where Hc2 is the second critical  
thermodynamic (which the magnetic field is also meas-
ured). So we considered a superconducting octagon of side 
L = 20� , immersed in an external applied magnetic field 
Hz . In all the studied cases, a superconducting-dielectric 
boundary is considered n ⋅ (i� + A)� = 0 , with n an outer 

(1)
��

�t
= − (i� + A)2� + �(1 − |�|

2)

(2)
𝜕A

𝜕t
=Re[�̄�(−i� − A)𝜓] − 𝜅1� × � × A

vector. The numerical solution of TDGL was done using 
the link variable method [16, 30, 31] with the size of the 
computational mesh Δx = Δy = 0.1 . With this, we can calcu-
late the magnetic susceptibility �m = �HM , (where M is the 
magnetization 4�M = B −H and the dipole moment density 
�0m = �mB present in the superconducting sample ( �0 the 
magnetic susceptibility of the vacuum) [32–34]. The studied 
sample is an octagon-shaped superconducting sample with 
horizontal and vertical sides a = 10� , so the external diago-
nal has a size d = 15

√

2� , and this particular geometry is 
subscribed in a square of sides L = 40� [35–37].

Fig. 1  Magnetization curve −4�M as a magnetic field function H 
for a type-I superconducting octagon with � = 0.69 , � = 0.67 , and 
� = 0.65

Fig. 2  Magnetic susceptibility �
m
= �

H
M , as a magnetic field func-

tion H, for a superconducting type-I sample with � = 0.65, 0.67, 0.69
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3  Results and Discussions

In Fig. 1, we present the magnetization curves for an octa-
gon-shaped superconducting sample immersed in an exter-
nal magnetic field H. We plot these curves considering three 
type-I values of the Ginzburg-Landau parameter (GLP) � . 
We observe that as � decreases, the magnetic field at which 
the first vortex entry occurs, H1 , decreases. A very inter-
esting situation occurs in the intervals 1.38 < H < 1.8 for 
� = 0.65 , 1.62 < H < 1.80 for � = 0.67 , and 1.78 < H < 1.80 
for � = 0.69 . We see small and atypical jumps in the mag-
netization curve for a conventional type-I superconducting 
sample close to the normal superconducting transition field 
H2 . Let us call this field H2 ∗ because we analyze a type-
I superconductor. We also note that for lower � , the field 
interval in which these jumps occur increases.

Also, Fig. 1 shows the typical paramagnetic behavior 
M > 0 in the down-branch of the magnetic field, for all � 
values, and the magnetization is always negative for any value 

of the applied field. An interesting result in this figure is the 
quasi-constant behavior of the magnetization 4�M ≈ 0.1 in 
the interval 1.27 < H < 1.8 in the down-branch of the mag-
netic field. That is, the sample remains with a quasi-constant 
para-magnetization. We think that this fact represents an ener-
getically meta-stable state. Also, as is well known the Gibbs-
free energy of the quasi-type-II superconducting sample, it is 
positive though very close to zero. This small positive value 
is still sufficient to render it slightly below the normal state 
of zero-energy [17, 38–41].

Additionally, in Fig. 2, we present the magnetic suscep-
tibility �m = �HM as a function of the field H applied, for 
� = 0.65, 0.67, 0.69 , we can see abrupt jumps in the field 
where vortices enter very quickly in the superconducting 
sample. Also, we observe that the first jump in suscepti-
bility occurs for the highest value of the Ginzburg-Landau 
parameter (GLP) � = 0.69 , then for � = 0.67 and finally 
� = 0.65 , it is observed that for the two largest values of � , 
the oscillations are quasi-periodic with minor susceptibility 

Fig. 3  a Cooper pairs density 
|�|

2 and b its phase Δ� at 
H = 1.640 , for � = 0.65 (dark 
(blue) and bright (red) regions 
represent values of the modulus 
of the order parameter |�| , as 
well as Δ�∕2� , from 0 to 1)

Fig. 4  a Cooper pairs density 
|�|

2 and b its phase Δ� at 
H = 1.642 for � = 0.65 (dark 
(blue) and bright (red) regions 
represent values of the modulus 
of the order parameter |�| , as 
well as Δ�∕2� , from 0 to 1)
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variations, due to the energy barrier in the superconducting 
system and the interaction between the vortices inside the 
octagon (repulsion). Then, we observe a maximum variation 
in this susceptibility close to H = 1.8 for the three values 
of � , after which it remains with slight variations since the 
sample is transitioning to a normal state.

The susceptibility �m jumps abruptly; as the field 
increases, the magnetic susceptibility decreases until another 
vortex penetrates when its jump occurs. This continues until 
the superconducting-normal state transitions.

In Fig. 3, we plot the Cooper pairs density |�|

2 (a) at 
H = 1.640 , and its phase Δ� (b) for � = 0.65 . In this figure, 
we can see that the vorticity N of the sample is equal to 
N = 25 ( Δ� = 50�).

By increasing the external magnetic field, the surface 
energy barrier at the borders decreases and allows the entry 
of more vortices, which we observe in Fig. 4, at H = 1.642 . 
Still, although the sample is type-I, there is a very fast entry 
of transient vortex states for a small variation of the mag-
netic field, ΔH = 0.002 , which is unconventional. In the 

Fig. 5  a Cooper pairs density 
|�|

2 and b its phase Δ� at 
H = 1.666 , for � = 0.65 (dark 
(blue) and bright (red) regions 
represent values of the modulus 
of the order parameter |�| , as 
well as Δ�∕2� from 0 to 1)

Fig. 6  Logarithm of the modulus of the order parameter ln |�| at a H = 1.666 , b H = 1.668 , c H = 1.670 , d H = 1.672 , e H = 1.674 , and f 
H = 1.678 , for � = 0.65
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intermediate-vortex state, in type-I superconducting sam-
ples, the magnetic flux penetration occurs, depending on 
the thickness of the film. So, the sample may present the 
presence of quantum fluxoids always that the film thickness 
is d <<< 𝜉 [5, 17].

In Fig.  5(a), we present the Cooper pairs density for 
� = 0.65 , at H = 1.666 , where we observe a significant 
change in the magnetic induction in the sample. The separa-
tion between the vortices has decreased, generating a very 
strong repulsion between them, but that finally is not greater 
than the barrier of energy at the border, with which these are 
forced to concentrate more and more, and eventually, they 
will overlap. The mixed state will be lost, leaving the sample 
in a completely normal state. With this, in Fig. 5(b), we plot 
the phase of the superconducting condensate, where the large 
number of vortices in the sample is observed and that the 
superposition already begins at the borders of these, due to the 
overlap of the energy barrier and the vortex-vortex interaction.

Together, in Figs. 3, 4, and in Fig. 5, we observe the exist-
ence of Abrikosov vortex states in the superconducting sample, 
which is not the conventional behavior in mesoscopic samples; 
however, due to the geometry of the confinement of the quan-
tum condensate, the existence of vortices occurs for specific 

fields, and the vortices enter very quickly, generating transient 
states (vortex motion), interacting between them and for low 
variations of these nearby fields between them. The vortex 
number entering is very high, eventually leading to the normal 
state in the superconducting sample. In Fig. 6, we plot the 
logarithm of the order parameter ln |�| at (a) H = 1.666 , (b) 
H = 1.668 ; (c) H = 1.670 ; (d) H = 1.672 ; (e) H = 1.674 ; and 
(f) H = 1.678 , for � = 0.65 . We can appreciate the conglomer-
ate (cluster) of vortices at the horizontal and vertical edges of 
the sample, where we see a higher magnetic fluxoid density 
than the vortex density inside the sample (and in the diagonal 
edges). We think that due to the surface energy density (which 
is negative for a type-I superconductor), the material tends not 
to allow the formation of the mixed state inside, preventing 
the magnetic field from entering the sample, but finally, due 
to confinement effects, the flow quantization is possible and 
a vortex state occurs.

In Fig. 7, we plot the logarithm of the order parameter at 
H = 1.780 , for � = 0.65 . In this graph, we slightly appreciate 
the center of the vortices at high fields, H ∼ Hc2 . When the mag-
netic field increases, not is possible appreciate the core of the 
vortices, and finally, by increasing the magnetic field the cent-
ers of the vortices are very close and an impending giant vortex 

Fig. 7  Logarithm of the modu-
lus of the order parameter ln |�| 
at H = 1.780 for � = 0.65
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can be predicted before the transition to the normal state. As is 
well known, the study of type-I superconductors is carried out 
by increasing and decreasing the magnetic field around a given 
field in order to study the possible configurations of existing 
vortices. These works have been widely carried out by various 
research groups around the world. Our interesting result was to 
find in this little-studied geometry, Abrikosov vortex states in 
type-I superconductors when the magnetic field increases. We 
consider that it may be a novel result with possible technologi-
cal applications. Ultimately in Fig. 8, we present the vorticity 
(number of vortices), as a function of the external magnetic 
field. We observe that in the first entry of vortices, 20 vortices 
are stabilized in the sample, which coincides with the graph of 
the order parameter |�|

2 . After this, 100 stable vortices enter, 
due to the repulsion interaction between them. It is important 
to note that even with the existence of spike-type vortices, the 
fluxoid Φ continues quantized, which is observed in that the 
number of vortices is integer, which is a novel result in the 
analysis of these new type vortices spike.

4  Conclusions

In this work, we studied the magnetization, magnetic suscep-
tibility, and electronic superconducting density of a supercon-
ducting type-I irregular octagon in the presence of an external 
magnetic field. We solved numerically the time-dependent 
Ginzburg-Landau equations for a one-band condensate. Our 
results show the existence of a Abrikosov-Shubnikov-vortex 
state in the up-branch of the magnetic field when a � = 0.65 is 
considered. Also, we show this behavior in the up-branch of the 
magnetic field and there is paramagnetic response, in the down-
branch of the magnetic field. Finally, we shown the generation 

of an interesting vortex state into the irregular octagon, for a 
type-I superconducting sample and we show that even in spike 
vortices, the fluxoid Φ is quantized, allowing the vortices in 
the superconducting sample to remain at multiples of integers.
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