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Abstract
We study the topological properties of a nodal-line spin gapless semimetal superconductor. In the normal state, the low energy 
states are completely spin polarized so that the p + ip-wave pairing symmetry is considered. In the superconducting state, 
the energy bands are fully gapped in both the system bulk and at the system surface. However, when two open boundaries 
are considered, the gapless states emerge at the system hinges, indicating that the system is actually a higher-order topologi-
cal superconductor.
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1  Introduction

Since the successful separation of the single-layer graphene 
in 2004 [1], the novel physical properties and unique mor-
phology of graphene have been studied intensively. The 
undoped graphene material is a gapless semimetal because 
the conduction band and the valence band only contact at 
the Dirac points [2, 3]. Later, a new concept of spin-gapless 
semiconductors (SGS) was proposed [4]. For a spin-gapless 
semiconductor, one spin channel is gapless and exhibits 
metallicity, while the other is fully gapped. Therefore, the 
charge carriers, which are excited from the valence band to 
the conduction band of the SGS, are generally fully spin-
polarized. The special energy band structure of a SGS has 
opened up broad prospects for practical spintronic applica-
tions. Therefore, the SGS materials are important for the 
preparation of spintronic devices. The properties of SGS 
materials have been a hot topic in the field of the condensed 
matter physics.

Recently, the nodal-line semimetal materials (NLSM) 
have attracted broad interest. A three-dimensional NLSM 

material has one-dimensional loop at the Fermi energy. At 
the system surface, it has the zero energy flat band. Previ-
ously, the NLSM is proposed to be realized in several real 
materials [5–10] and the cold atom system [11]. Many inter-
esting physical properties have been proposed. Particularly, 
at the system surface, there is a zero energy flat band, lead-
ing to the large density of states at the Fermi energy. As 
a result, the NLSM may be an ideal system to realize the 
superconductivity with a high transition temperature [12]. 
And it may provide an ideal platform to realize and study 
the topological superconductivity [13].

For the superconducting system, one of the most impor-
tant issues is the pairing symmetry. In the NLSM system, it 
was proposed experimentally that the s-wave pairing sym-
metry may be realized [14]. On the other hand, the surface 
state of an NLSM material is spin polarized. As a result, 
the surface states do not favor the s-wave pairing; instead, 
a p-wave pairing symmetry was proposed theoretically [15, 
16]. Actually, the competition of the s-wave pairing and 
the p-wave pairing in the NLSM material always exists and 
somewhat blocks the realization of superconductivity in the 
NLSM system.

Very recently, the combination of the spin-gapless fea-
ture and a NLSM nature was proposed, namely, the topo-
logical nodal-line spin-gapless semimetal (NLSGS) [17]. In 
an NLSGS material, one spin channel is fully gapped. The 
other spin channel is gapless with a line-type Fermi surface. 
The band structure is fully spin polarized and topologically 
nontrivial with zero energy flat bands. Similar to the usual 
NLSM material, here the zero energy flat band may favor the 
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superconductivity. Moreover, since one spin channel has been 
fully gapped; thus, in the superconducting state, now only the 
p-wave pairing symmetry is possible. Therefore, it is timely 
and of importance to study the properties and the topological 
nature of the NLSGS superconductor with the p-wave pairing 
symmetry.

In the past several years, the concept of the higher-order 
topology was proposed and has been studied intensively 
[18–22]. For a first-order topological material with the 
d-dimensional, the band structure is gapless at its d-1 dimen-
sional edges. However, for a higher-order topological system, 
the band structure is still fully gapped at the d-1 dimensional 
edges. The gapless edges states appear at the d − n edges 
(n ≥ 2) . In this paper, we study theoretically the physical 
properties of the NLSGS superconductor with a chiral p-wave 
pairing symmetry. Our results indicate that the system is a 
second-order topological superconductor. The second-order 
topology can be identified through the band structure, the spec-
tral function and the local density of states (LDOS) spectra.

The rest of this article is organized as follows: In Sec. 2, we 
introduce the model and propose the corresponding formalism. 
In Sec. 3, we report the numerical calculations and discuss the 
results obtained. Finally, the full text is briefly summarized 
in Sec. 4.

2 � Model and Hamiltonian

We start from a two-band model describing the NLSGS mate-
rials, expressed as,

with rs = 1 + s3 , where s3 = 1(−1) represents the spin-up 
(spin-down) electrons, respectively. �1,2 are Pauli matrices 
representing the orbital channel. �0 is the 2 × 2 identity 
matrix in the momentum space. � is the chemical poten-
tial of the system. When the value of m is large, the energy 
bands for the spin-down electrons are fully gapped, while 
the spin-up electrons form a nodal-line semimetal with a 
zero energy flat band at the system surface. In this case, the 
above model indeed describes the NLSGS materials. Since 
the system is spin-polarized, we consider the p + ip-wave 
superconductivity in the superconducting states. The whole 
Hamiltonian in the superconducting state is expressed as,

The p + ip-wave pairing term is written as,

(1)
HNL(k) =

[
(cos kx + cos ky + cos kz − rs)�1 + sin kz�3

]
s3

+ m(1 − s3)�2 − ��0,

(2)H = HNL + Hp+ip
sc

.

(3)Hp+ip
sc

=
∑

�,�

[
2Δ0(sin kx + i sin ky)C

†

��
C
†

−��
+ H.c.

]
.

To study the possible topological surface state, we con-
sider the open boundary condition along the z-direction 
and perform the partial Fourier transformation along the 
z-dimension for the Hamiltonian. The NLSGS Hamiltonian 
is then reexpressed as,

in which positive and negative indicate different spin direc-
tions. The subscript A, B represents different orbitals. And 
the momentum � is reduced to a two-dimensional parameter 
with � = (kx, ky).

Similarly, the Hamiltonian of the superconducting pairing 
term can be rewritten as,

The whole Hamiltonian can be expressed as the 4Nz × 4Nz 
matrix form ( Nz is the number of lattice sites along the 
z-direction). Through diagonalizing the Hamiltonian, we 
can obtain the spectral functions depending on the reduced 
momentum � , expressed as

Here, u�
iz�
(�) and E�(�) are the eigenvectors and eigenval-

ues. Then, we can obtain the local density of states (LDOS) 
by summing the momentum �,

For a second-order topological system, the gapless states 
emerge at the system hinge. Therefore, to study the second-
order topology, we need to consider the open boundary con-
dition along the y and z directions. In this case the Hamilto-
nian is expressed as,

(4)

HNL = ±
∑

z,�

(cos kx + cos ky − rs)
[
c
†

zA
(�)czB(�) + H.c.

]

±
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2
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†

zA
(�)cz+1,A(�) −

i

2
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†
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]

±
∑
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1

2
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c
†
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†
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+
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c
†
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†
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(5)

H
px+ipy
sc =

∑

z,�,�

[
2Δ0(sin kx + i sin ky)C

†
z�
(�)C†

z�
(−�) + H.c.
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.

(6)Az(�,�) = −
1

�
Im

∑
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|u�
iz�
(�)|2

� − E�(�) + iΓ
.

(7)�z(�) =
∑

�

Az(�,�).
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and

In addition, we will explore the topology invariants of the 
model through the winding number to explore the topologi-
cal nature of the system [23],

in which un(�) is the eigenvector of the occupied band.

3 � Results and Discussions

We first study the energy bands and possible topological 
nature in the normal state. The band structures as a function 
of the in-plane momentum �∥ = (kx, ky) obtained from Eq. 
(1) in the kz = 0 plane for the undoped sample (� = 0) with 
m = 0 and m = 2 are plotted in Figs. 1(a) and (b), respec-
tively. The corresponding normal state Fermi surfaces are 
plotted in Figs. 1(c) and (d), respectively. For the case of 
m = 0 , both the spin-up energy bands and the spin-down 
energy bands cross the Fermi energy [Fig. 1(a)], forming two 
Fermi surface loops, as is shown in Fig. 1(c). As m increases, 
the energy bands of the spin-up electrons do not change, 
while the ones of the spin-down electrons depend on the 
value of m. For the case of m = 2 , the spin-down electrons 
are fully gapped [Fig. 1(b)] and in this case only one Fermi 
surface loop for the spin-up electrons exists [Fig. 1(d)]. 
Therefore, when exploring the low energy properties, one 
needs to consider only spin-up electrons. Especially, in the 
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†
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+
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i

� ∫
�

�

⟨un(�)��kz�un(�)⟩dkz.

superconducting state, the possibility of the s-wave pairing 
symmetry can indeed be neglected and only p-wave pairing 
symmetry is possible. In the following presented results, we 
focus on the case of m = 2 and a p + ip-wave pairing sym-
metry is considered for the superconducting state.

We now discuss the topological features of the normal 
state energy bands. The energy bands of spin-up electrons 
with m = 2 are similar to those of a NLSM system. One can 
calculate the topological invariant depending on the in-plane 
momentum �∥ according to Eq.(10). We have C = 1 when 
the �∥ is inside the projection of the nodal loop and C = 0 
when �∥ is outside. The non-trivial topological invariants 
inside the Fermi surface loop generally lead to the topologi-
cally protected zero energy flat energy bands at the system 
surface.

The topological features can be studied further through con-
sidering the open boundary condition along the z-direction [Eq.
(4)]. The energy bands through diagonalizing the Hamiltonian 
with kx = 0 are plotted in Fig. 2(a). The LDOS spectra at the 
system surface (z=1) and in the system bulk ( z = Nz∕2 ) are 
displayed in Fig. 2(b). The spectral functions at the system sur-
face and in the system bulk are presented in Figs. 2(c) and (d), 
respectively.

The topological features of the normal state energy bands 
can be seen clearly in Fig. 2, namely, a zero energy flat band 
is seen in Fig. 2(a). The LDOS at the system bulk is gapped, 
due to the nature of the semimetal band structure. At the sys-
tem surface, the LDOS has a sharp peak at the zero energy 
due to the existence of the zero energy flat band [Fig. 2(b)]. 
The surface flat band can be seen further through the spectral 
function at the system surface, as is shown in Fig. 2(c), while 

Fig. 1   (a) The normal state energy bands as a function of the in-plane 
momentum �∥ with kz = 0 and m = 0.(b) The normal state energy 
bands as a function of the in-plane momentum �∥ with kz = 0 and 
m = 2 . (c) The normal state Fermi surface with kz = 0 and m = 0 . (d) 
The normal state Fermi surface with kz = 0 and m = 2
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in the system bulk, the spectral function is rather small at 
the Fermi energy [Fig. 2(d)]. The numerical results for the 
LDOS spectra and the spectral functions are well consist-
ent, providing useful probe of the topological features of the 
NLSGS system.

Let us turn to study the electronic structure and topo-
logical features of the superconducting NLSGS system 
with the chemical potential � = −0.2 and the gap mag-
nitude Δ0 = 0.2 . Considering the p + ip pairing symme-
try, the energy bands in the momentum space are plotted 
in Fig. 3(a). As is seen, in the superconducting state, now 
there are four energy bands for the spin-up electrons. In 
presence of the superconducting order, the energy bands 
in the momentum space are fully gapped. We present the 
numerical results of the winding number from Eq.(10) in 
Fig. 3(b). Due to the particle–hole symmetry, the winding 
number increases from 1 to 2 inside the normal state Fermi 
surface loop. The nonzero winding number indicates that in 

the superconducting state, the system is still topologically 
nontrivial.

We now study the energy bands numerically through 
considering the open boundary condition along the z direc-
tion and the periodic boundary condition along the x and y 
directions. The energy bands from diagonalizing the super-
conducting state Hamiltonian Eqs. (4-5) as a function of kx 
with ky = 0 are plotted in Fig. 4(a). As is seen, a rather small 
full gap is opened. The surface states still exist, while in 
the superconducting state, the surface states are dispersive 
and the surface states are also fully gapped. These results 
are significantly different from those shown in the normal 
state. The fully gapped surface states and no zero energy 
quasiparticle states indicate that the topological nature of 
the NLSGS superconductor is different from that of a usual 
topological superconductor.

We present the numerical results of the LDOS spectra for 
the NLSGS superconductor at the system surface and system 
bulk in Fig. 4(b). In the system bulk, the spectra is gapped 
and no clear superconducting coherent peaks are seen. At the 
system surface, significant particle–hole asymmetry exists 
and the LDOS spectrum has a large peak at a certain posi-
tive energy. The results are well consistent with the numeri-
cal results of the spectral functions shown in Figs. 4(c) and 
(d). At the system surface, the surface band at the positive 
energy is seen clearly, leading to the sharp peak of the LDOS 
spectrum at the positive energy. At the negative energy, the 
spectral weight of the surface band is rather small. In the 
system bulk, the most spectral weight appears at the negative 

Fig. 2   The numerical results of the NLSGS system considering 
the open boundary condition along the z direction and the periodic 
boundary condition along the x and z direction. (a) The energy bands 
in the normal state. (b) The LDOS spectra at the system surface and 
in the system bulk. (c) The spectral function at the system surface. (d) 
The spectral function in the system bulk

Fig. 3   (a) The energy bands in the superconducting state as a func-
tion of the in-plane momentum �∥ with kz = 0 . (b) The winding num-
ber as a function of the momentum kx

Fig. 4   The numerical results of the NLSGS superconducting system 
considering the open boundary condition along the z direction and 
the periodic boundary condition along the x and z direction, with 
Δ

0
= 0.2 and � = −0.2 . (a) The energy bands along the ky = 0 line. 

(b) The LDOS spectra at the system surface and in the system bulk. 
(c) The spectral function at the system surface. (d) The spectral func-
tion in the system bulk
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energy, as is seen in Fig. 4(d), also consistent with the LDOS 
spectrum shown in Fig. 4(b).

We consider the open boundary condition along the y and 
z directions and the periodic boundary condition along the 
x direction to explore the topological nature of the NLSGS 
system further. The corresponding energy bands through 
diagonalizing the Hamiltonian [Eqs.(8) and (9)] are pre-
sented in Fig. 5(a). As is seen, for the case of the two open 
boundaries being considered, the energy gap is closed. Also, 
the numerical results for the LDOS spectra and the spec-
tral functions at the system hinge and in the system bulk 
[Figs. 5(b-d)] indicate that the zero energy states indeed 
exist at the system hinge. There results indicate that the sys-
tem is indeed a second-order topological superconductor.

The second-order topology in the NLSGS superconduc-
tors can be explained qualitatively based on the double band 
inversion picture [22]. Generally, the nontrivial topological 
behavior comes from the band inversion effect. Therefore, 
for a usual NLSM material, the gapless surface state emerges 
inside the Fermi surface loop due to the band inversion effect. 
However, as discussed and verified in Ref. [22], for the 
NLSM system, in the double band inversion region, the sys-
tem naturally becomes a second-order topological one with 
the fully gapped surface state and the gapless hinge states. In 
the present work, in presence of the superconducting pairing 
term, the wave-vector space in enlarged and the energy bands 
are doubled naturally due to the particle–hole symmetry, as is 
seen in Fig. 3. Therefore, inside the Fermi surface loop, the 
energy bands inverted twice. Our numerical results indicate 

that the system indeed becomes a second-order topological 
superconductor, consistent with previous discussions.

4 � Summary

In summary, we study theoretically the physical properties 
and topological behavior of the superconducting nodal-line 
spin gapless semimetal materials. In the normal state, one 
spin channel is gapless and topologically nontrivial with a 
zero energy flat band. Another spin channel is fully gapped 
and does not contribute to the low energy quasiparticle 
properties. When a p + ip superconducting pairing term is 
considered, the system becomes a second-order topological 
superconductor. The local density of states and the spectral 
functions are explored and may be used as a useful probe 
for the topological nature of the system. The results can be 
understood well based on the double band inversion picture.
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