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Abstract
The discovery of the Meissner (Meissner–Ochsenfeld) effect in 1933 was an incontestable turning point in the history of 
superconductivity. First, it demonstrated that superconductivity is an unknown before equilibrium state of matter, thus allow-
ing to use the power of thermodynamics for its study. This provided a justification for the two-fluid model of Gorter and 
Casimir, a seminal thermodynamic theory founded on a postulate of zero entropy of the superconducting (S) component of 
conduction electrons. Second, the Meissner effect demonstrated that, apart from zero electric resistivity, the S phase is also 
characterized by zero magnetic induction. The latter property is used as a basic postulate in the theory of F. and H. London, 
which underlies the understanding of electromagnetic properties of superconductors. Here the experimental and theoretical 
aspects of the Meissner effect are reviewed. The reader will see that, in spite of almost nine decades age, the London theory 
still contains questions, the answers to which can lead to a revision of the standard picture of the Meissner state (MS) and, 
if so, of other equilibrium superconducting states. An attempt is made to take a fresh look at electrodynamics of the MS 
and try to work out with the issues associated with the description of this most important state of all superconductors. It is 
shown that the concept of Cooper’s pairing along with the Bohr–Sommerfeld quantization condition allows one to construct 
a semi-classical theoretical model consistently addressing properties of the MS and beyond, including non-equilibrium 
properties of superconductors caused by the total current. As follows from the model, the three “big zeros” of supercon-
ductivity (zero resistance, zero induction and zero entropy) have equal weight and grow from a single root: quantization of 
the angular momentum of paired electrons. The model predicts some yet unknown effects. If confirmed, they can help in 
studies of microscopic properties of all superconductors. Preliminary experimental results suggesting the need to revise the 
standard picture of the MS are presented.
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1  Meissner Effect

The history of the Meissner effect takes its origin from 
experiments of Keesom and coworkers of 1932 [1–3], in 
which it was revealed that the electron heat capacity in tin 
and thallium experiences a discontinuous jump near the 
critical temperature of the transition from the normal (N) to 
the superconducting (S) state Tc , a constant of the material 
in question.

Previous two decades after the discovery of supercon-
ductivity in the laboratory of Kamerlingh Onnes [4] super-
conductors were viewed as perfect (resistanceless) conduc-
tors. This implies that a dc electric current set in a closed 
superconducting circuit will be running persistently, i.e., 
without any kind of energy dissipation like it occurs with 
electrons bound in atoms. Such a viewpoint was based on 
measurements of electrical resistance and was supported by 
experiments performed with a short-circuited coil and rings 
carrying the superconducting current (see [5] for references). 
In particular, by results of a remarkable Onnes’ experiment 
reported by Willem Keesom at the 4th Solvay conference 
in 19241 [6, 7].

Recall that the hallmark of perfect conductors is the irre-
versibility of their magnetic properties, which means that 
thermodynamics is inapplicable to describe the properties of 
superconductors [8–10]. In its turn, this implies that there is 
no phase transition at the S/N transition. This picture follows 
from the Maxwell electrodynamics as applied to resistance-
less samples; it seemed so obvious that it looked pointless 
to test it [9].

However, the jump in heat capacity discovered by Kee-
som with collaborators indicated that this picture may 
actually be incorrect. Namely, that the S/N transition can 

represent a phase transition associated with yet unknown 
alteration of the electron structure, as it has been suggested 
in number of occasions before2.

Keesom’s results served as a powerful call to study mag-
netic properties and corresponding experiments were set up 
in Berlin, Kharkov, Toronto and Oxford. The first convincing 
results were obtained in Berlin (Meissner’s group) [11] and 
Kharkov (Shubnikov’s group) [12]. These historical experi-
ments are briefly considered below. Details can be found 
in [13].

Meissner and Ochsenfeld [11] reported on measure-
ments of the magnetic field in the vicinity and inside super-
conducting samples in four arrangements. The samples were 
single-crystalline tin and poly-crystalline lead cylinders 
(130–140 mm in length and 10 mm in diameter [13]) placed 
vertically in the horizontally applied uniform magnetic field 
�0 . The measurements were performed using a small search 
coil connected to a ballistic galvanometer. The coil could be 
moved round the sample and rotate in the horizontal plane 
without opening the cryostat. The current induced at turning 
the coil for 180° is proportional to the coil cross-sectional 
area and the induction B in the coil location, thus allowing 
to find an averaged field over the coil volume. As the main 
sources of error, the authors indicate insufficiently accurate 
knowledge the spacial distribution of the coil winding and 
the imperfection of the cylindrical shape of the samples, 
especially of the single-crystalline tin.

In the first arrangement, the field distribution near one 
sample was measured after it was cooled below Tc in H0 ≈ 5 
G. According to the Faraday law, the field should stay undis-
turbed since there is no e.m.f. induced and the magnetic 
permeability of the sample materials �m negligibly differs 
from unity. However, it turned out that below Tc the field pat-
tern near the sample changed almost to that which would be 
expected if �m of the superconductor is zero or the magnetic 
susceptibility � = −1∕4� (the authors used cgs units, which 
will be also used throughout this paper).

In the second arrangement, two parallel either tin or lead 
samples were cooled in the same transversely applied field. 
It was found that below Tc the field between the tin samples 
increased for a factor 1.70; for the lead samples this factor 
was 1.77. The increase factor for the field in the location of 
the search coil calculated coming from zero permeability of 
the S state was 1.77. These data support the statement above 
about zero permeability of the sample material in the S state. 

1 In this experiment, a superconducting lead sample (either a ring or 
a spherical shell) with the field-induced persistent current was sus-
pended on a torsion spring in a horizontal magnetic field produced 
by a fixed superconducting ring concentric with the suspended sam-
ple. Originally the magnetic moment induced in the sample was 
inline with the field. Then the spring with the sample was turned for 
30

o

 . It was expected that the transverse Lorentz force acting on the 
superconducting current carriers in the sample will tend to decrease 
the angle. However, the angle stayed undiminished over more than 6 
hours of observation for each sample. Onnes concluded that (a) the 
upper limit of the ratio of resistivity in the S state to that in the N 
state (at T slightly upper Tc ) is less than 10−12 ; and (b) probably, the 
transverse Lorentz force does not act on the superconducting charge 
carriers and therefore the Hall effect in superconductors is absent.

2 For example, at the 1st Solvay conference in 1911, Langevin sug-
gested that superconductivity can be associated with a new diamag-
netic state. Similar proposal was sounded by Langevin and Bridgman 
at the 4th Solvay conference in 1924 to explain the existence of the 
temperature-dependent critical field Hc(T) . However, Keesom and 
Lorentz did not think that thermodynamics could be applicable in this 
case [7].

MS  Meissner state
N  normal (state, phase, etc.)
S  superconducting (state, phase, etc.)
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Note that no eddy currents can be induced under conditions 
of these experiments unless the Faraday law is broken.

In the third arrangement, the sample was a hollow lead 
cylinder (a tube with the wall 2 mm thick). It was again 
cooled through Tc in the same field as before and B was 
measured inside the tube and adjacent to it outside. It was 
found that the outer field changed in about the same way as 
it was for the solid cylinder. The inner field changed also: it 
increased for about 5% (Smith and Wilhelm [13] discussing 
this experiment in 1935 name this increase as 10%). The 
authors were not able to establish if the field inside remained 
uniform. On switching off the applied field keeping the 
sample superconducting, the field inside stayed unchanged; 
at the same time the field outside decreased but it did not 
become zero.

In regard of this arrangement, the authors noted that 
their observations may look inconsistent with the statement 
about zero permeability. They suggested that these results 
can be explained in terms of microscopic or macroscopic 
currents in the superconductor assuming that �m = 1 for the 
current-free regions. Now we understand (see, e.g., [10]) 
that due to a non-ellipsoidal shape of the tube sample it was 
in neither one of the equilibrium superconducting states, 
the field passes through it via irregular N domains, and the 
flux is trapped when H0 is switched off. One can add that the 
observed field enhancement inside the tube sample is con-
sistent with recent direct measurements of the field near the 
sample in the intermediate state [14]. This means that there 
is no contradiction between results of the first two arrange-
ments with those of the third one, and that Meissner and 
Ochsenfeld were exactly right in their interpretation.

After all, in the fourth arrangement, two tin samples used 
in the second arrangement were connected end-to-end in 
series and a dc current of about 5 A was introduced through 
their other ends. As found, the field between the samples 
was greater below Tc than that above it, although the cur-
rent was kept unchanged. Smith and Wilhelm noted that the 
measured field was about the same regardless whether the 
current was introduced before or after the sample passed 
through Tc , and in both cases the field readings were greater 
than that calculated assuming the surface superconducting 
current. This observation is largely ignored in textbooks; we 
will come back to it later.

The main conclusion of Meissner and Ochsenfeld 
was that B in the S phase is always zero, however not all 
researchers agreed with that (see, e.g., [15]). The experiment 
of Rjabinin and Shubnikov removed all doubts.

Rjabinin and Shubnikov [12] attacked the same prob-
lem via measuring the magnetic moment � of a supercon-
ducting lead rod (5 mm in diameter and 50 mm long) at 
constant temperature 4.2 K vs �0 applied parallel to the 
sample longitudinal axis. Two methods were used, which 

are similar to those employed in contemporary ac and dc 
magnetometry. In the first method the change Δ� was deter-
mined by measuring the current induced in a pickup coil 
tightly wound around the middle of motionless sample at a 
sadden change of the applied field in small steps Δ�0 . In the 
second method, the current in the pickup coil was induced 
by quickly removing the sample away from the coil without 
changing �0 . Results obtained by both methods were con-
sistent with each other but the second method appeared to 
be more reliable. So, the discussion was mainly based on 
the results obtained via dc measurements. The reported data 
were � vs the field intensity � inside the sample, which in 
the chosen geometry equals �0.

It was found that (a) when the sample was first magnet-
ized (i.e., after cooling in zero applied field) B and �m were 
zero at H ⩽ Hc ; in a narrow field interval near Hc the induc-
tion B rapidly changed to a magnitude equal to that in the 
normal metal; at the H > Hc �m = 1 . (b) At decreasing H, 
B = H until H reached its critical value; at H close to Hc , the 
induction experienced a sudden jump down, but it did not 
become zero; with a further decrease of the field B was also 
decreasing; at H = 0 there remained a residual induction 
close to 18% of the maximum B at H = Hc . The observed in 
such a way magnetization loop was reproducible.

The authors concluded that “the actual fact that a jump 
takes place in the induction in falling field strengths we 
are incline to ascribe to the formation of a new phase with 
B = 0 .” The incomplete reversibility of the data obtained 
was attributed to imperfections of the sample material. As 
now well known (see, e.g., Fig. 3 below) the interpretation 
of Rjabinin and Shubnikov was correct.

The experimental results of Meissner and Ochsenfeld 
plus Rjabinin and Shubnikov, confirmed in experiments of 
Tarr and Wilhelm [16], and Mendelssohn and Babbitt [17] 
once and for all changed the landscape of superconductivity. 
Specifically, it was established that at definite conditions a 
superconducting sample can be found in a reversible state, 
referred to as the Meissner state (MS), which is character-
ized by zero induction simultaneously with zero resistivity. 
This is the essence of the Meissner effect. However, par-
adoxical as it may sound, the physics of this well-known 
phenomenon, as shown below, still remains an unsolved 
problem. To discuss a possible way to resolve it is the main 
objective of this review.

2  Meissner State Definition

Before discussing the theories, we have to specify the defini-
tion of the MS.

It is defined as a thermodynamic (and therefore revers-
ible) state at which the induction � throughout the volume 
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V of a massive superconducting body (sample) placed in a 
static magnetic field �0 is zero.

The MS can be also defined as the S state at which the 
magnetic susceptibility � all over the volume of the massive 
body is −1∕4�.

The massive body is considered to be as such if its 
dimensions greatly exceed a so-called penetration depth 
� , i.e., the width of a near-surface layer within which the 
induction of the external field near the sample �ext(= �ext 
in cgs units)3 decays down to zero inside it.

The MS is observed only in sufficiently pure (see footnote 
(2) on p. 82 in [10]) singly connected samples of an ellipsoi-
dal shape in a range of the applied field 0 < H0 < Hc1(1 − 𝜂) , 
where � is a demagnetizing factor with respect to the sample 
axis parallel to �0 , and Hc1 is the lower critical field of type-
II superconductors. In type-I materials Hc1 = Hc , where Hc 
is the thermodynamic critical field. The latter is a measure of 
the condensation energy Ec defined through the relationship 
Ec = (H2

c
∕8�)V . Recall that � , the proportionality coefficient 

between the demagnetizing field �d and magnetization � , is 
well defined only for ellipsoidal bodies with uniform � [10, 
18, 19].

If �0 is not parallel to either one of the ellipsoidal axes, 
it should be broken for components parallel to the axes and 
� in the formula for the MS field range is the maximum 
demagnetizing factor for the given sample-field configura-
tion. In particular, for a planar sample in a non-parallel field, 
the maximum � equals one4 and therefore such a sample 
does not exhibit the MS in any �0 , regardless how small 
this field is [10].

On the other hand, a sample with � = 0 (referred to 
as the sample of cylindrical geometry) is in the MS at 
H0 < Hc1(= Hc for type-I materials). This can be a long 
cylinder (not necessarily a circular one), an infinite slab or 
a wide ribbon-like foil in the field parallel to its generat-
ing line [10]. In all such cases the applied field �0 stays 
undisturbed all the way down to the sample surface, i.e., 
�ext = �0.

Other (inhomogeneous) equilibrium S states, such as the 
intermediate and mixed states in type-I and type-II materi-
als, respectively, are also observed only in samples of the 

ellipsoidal shape5 [9]. A common feature of the ellipsoidal 
samples in either homogeneous or inhomogeneous states 
is uniformity of the field intensity (the field strength or, as 
Maxwell names it [18], the magnetizing force) � throughout 
their volume [10].

In non-ellipsoidal samples � is not uniform and such 
samples cannot be entirely in either one of the equilibrium 
states6. Therefore, the MS can be also defined as the equi-
librium S state in which the field intensity � with magnitude 
less than Hc1 is uniform throughout the volume of the mas-
sive body.

All three definitions of the MS are identical, i.e., each one 
unambiguously follows from the other.

Finally, let us pay attention to one more important cir-
cumstance7 associated with the fact that any equilibrium 
system (whether it is classical or quantum) have to possess 
symmetry with respect to reversal of time [20]. This implies 
that if currents are present in the equilibrium state, as it takes 
place in the MS, they must mutually compensate each other 
so that a total current does not arise8 [19]. Evidently, this 
rule is equally related to the intermedium and the mixed 
states.

3  Two‑Fluid Model

The two-fluid model of Gorter and Casimir [21] (see also [9, 
13, 22]) is a thermodynamic theory addressing properties of 
superconductors in zero field. Its key idea is that the conduc-
tion electrons of the superconducting material are divided 
for two interpenetrating groups or fractions with different 
energy levels. This turned out very fruitful idea is used in all 
theories of superconductivity and superfluidity ever since. 
The fraction x with the higher (Fermi) energy represents 
“non-condensed” or “normal” electrons, correspondingly 
another fraction (1-x) represents “condensed” or “supercon-
ducting” electrons. As postulated, properties of the latter 

4 Strictly speaking, a phrase like “superconducting samples with 
� = 1 ” has no sense because I in this case in not uniform and, there-
fore, � is undefined. As was first shown by Maxwell, superconductors 
with � = 1 do not exist [10, 18]. The above phrase should be under-
stood as a superconducting infinite plate in a perpendicular field.

5 This can be easily understood from consideration of a magnetiza-
tion curve of a sample in thermodynamic equilibrium. The inhomo-
geneous state occupies an upper part of this curve, whereas its lower 
part (the one at low field) is taken by the MS. So, if a non-ellipsoidal 
sample can be in equilibrium in the inhomogeneous state, i.e., at the 
high field, it should be in equilibrium at the low field as well. This 
implies that the non-ellipsoidal sample can be in the MS, which has 
never been observed.
6 Some symmetrical but not ellipsoidal bodies in the field parallel to 
the symmetry axis can mimic the MS in a sense that their magnetiza-
tion curve at low H0 can be linear. However, unlike the bodies in the 
genuine MS, their average susceptibility � differs from −1∕4�.
7 The author is grateful to professor Kresin for pointing out this 
moment.
8 Naturally, this does not apply to multiply connected bodies since 
they cannot be in equilibrium in a magnetic field.

3 In general, �ext ≠ �0 , but it is always parallel to the surface of the 
sample in the MS due to continuity of the normal component of � at 
the sample boundary, i.e., the external field bends around the sample.
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fraction are characterized by zero entropy, which means that 
the superconducting electrons are supposed to be completely 
ordered. This postulate is based on the experimental fact 
of the absence of thermoelectric effects in superconductors 
[9, 13]. The fractions are functions of temperature: x = 0 at 
T = 0 , and x = 1 at T = Tc.

The free energy9 of electrons per unit volume f(T) is cho-
sen as

where subscripts n and s designate the N and S fractions, 
respectively.

The free energy density of the N fraction is chosen as 
fn = −�T2∕2 to fit the liner dependence of the electron heat 
capacity in normal metals. The power 0.5 in the first term 
is chosen to fit an observed quadratic temperature depend-
ence of the thermodynamic critical field Hc(T) which, as 
it was shown by Kok [23], images the cubic temperature 
dependence of the electron heat capacity in superconduc-
tors. The free energy density of the S fraction is chosen as 
fs = −� = const , what reflects the zero entropy postulate. 
The coefficients � and � are parameters characterizing prop-
erties of the N and S fractions, respectively.

At equilibrium (�f∕�x)T = 0 . From that with the use of 
condition x(Tc) = 1 it follows that

and

After substituting Eqs. (2) and (3) into Eq. (1) and using 
the same condition x(Tc) = 1 , Eq. (1) takes form

Therefore, the electron specific entropy is

Hence, in spite of zero entropy of the superconducting 
electrons, the entropy of the S fraction is not zero due to 
the temperature dependence of (1 − x) , which is a relative 

(1)f (T) = x0.5fn(T) + (1 − x)fs(T),

(2)x =

(
T

Tc

)4

(3)� =
�T2

c

4
.

f = −a
T2
c

4
− a

T4

4T2
c

.

(4)s = −
df

dT
= �

T3

T2
c

.

number density of the superconducting electrons in the Lon-
don theory.

Next, the specific heat capacity is

This justifies the chose of the power 0.5 in Eq. (1).
In a few more steps (see, e.g., [9]), the two fluid model 

yields

where Hc0 is the critical field at T = 0.
Therefore, � equals the condensation energy density at 

T = 0 , which implies that the second term in Eq. (1) repre-
sents a temperature-dependent difference (gap) of the ener-
gies of electrons in the N and S fractions, similar as it was 
later found in the theory of Bardin, Cooper and Schrieffer 
(BCS) [24, 25].

The Keesom formula for the latent heat and the Rutgers 
formula for the specific heat difference at the S/N transi-
tion (see, e.g., [10]) can also be derived from the two-fluid 
model. All formulae of the model nicely fit experimental 
data. It is worth reminding that it was the two-fluid model 
(specifically Eq. (2)) that provided the success of the London 
theory and Eq. (2) itself is a demonstration of the predicting 
power of thermodynamics at an adequately chosen thermo-
dynamic potential.

Overall, so broad list of successful formulae leaves no 
room to question the correctness of the both fundamental 
assumptions of the two-fluid model, namely of the assump-
tion about the interpenetrating fluids and of the zero-entropy 
postulate. Hence, there are three “big zeroes” characterizing 
superconductivity, i.e., properties of the superconducting 
electrons: zero resistivity, zero induction and zero entropy. 
Respectively, a theory which does not lead automatically to 
all these three zeros cannot be complete. In fact, the incom-
pleteness is the only disadvantage of the two-fluid model, 
but it has never pretended to be considered as a complete 
theory.

4  London Theory

A description of the electromagnetic properties of super-
conductors in the MS is given in the theory of Fritz and 
Heinz London [8, 26]; with modifications it is adopted in 
the theory of Ginzburg and Landau (GL) [27] and in the 
BCS theory [24, 25].

The London theory is based on two equations. The first 
one follows from Newton’s acceleration equation for a free 
and spinless electron, which is assumed to be applicable to 

(5)c = T
ds

dT
= 3�

T3

T2
c

.

(6)� =
H2

c0

8�
,

9 Since the system (sample) is in zero field, there is no difference 
between the Helmholtz, Gibbs, and total free energies. On the same 
reason the free energy does not depend on the sample shape. Since 
the sample is not magnetized, the free energy density can be used 
regardless of the sample shape [10].
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the superconducting electrons, i.e., to the charge carriers not 
experiencing resistance. This equation reads

where m and e are the mass and charge of one of these elec-
trons, respectively, �̇ is the time derivative of its velocity, and 
� is the electric field acting on it.

Coming from Eq. (7), the time derivative of the current 
density �(= nse� , where ns is the number density of the 
superconducting electrons) is

This is the first London equation, where c is the electro-
magnetic constant of the cgs unit system equal to the speed 
of light and �L is a temperature-dependent material constant 
referred to as the London penetration depth, which is defined 
as10

The second London equation is

where � is the magnetic field intensity acting on the super-
conducting electrons [26]. Important to stress that this is not 
the induction � , as written in some textbooks11.

Equation (10) is the famous London equation for the 
current density in superconductors replacing the Ohm Law 
in normal metals. In [26] it is derived from Eq. (8) tak-
ing curls from its both sides and using the Maxwell equa-
tion c∇ × � = −��∕�T  along with a set of assumptions. 
Specifically,

where �m and �e are the magnetic permeability and dielectric 
permittivity of the superconducting material, respectively.

(7)m�̇ = e�,

(8)�̇ =
c2

4𝜋𝜆2
L

�,

(9)�L =

(
mc2

4�nse
2

)1∕2

.

(10)∇ × � = −
c

4��2
L

�,

(11)�m = �e = 1,

In [26] the assumptions Eq. (11), equating electromag-
netic properties of superconductors with those of vacuum, 
are introduced as a simplification. The authors explain that 
“we do not know anything about it”, adding that “This may 
subsequently to be corrected”. However, 15 years later F. 
London [8] keeps these assumptions in force and on the 
best of our knowledge they have never been reconsidered 
afterwards.

Two other assumptions are [9, 26]

where subscript ∞ designates the quantities in the sample 
interior or at the depth much greater than �L.

The first of these two assumptions is a postulate based on 
the Meissner effect, and the second one is justified by a never 
published theorem ascribed to Bloch. F. London formulates 
it as “in the absence of an external field the most stable 
state of any electronic system is a state of zero current” [8]. 
Hence, due to the absence of the field within the sample in 
the London theory, the second assumption in Eq. (12) fol-
lows. Note that �∞ = 0 directly stems from the time reversal 
rule mentioned above.

The assumptions of Eq. (12) lead to

Here �∞ = 0 because �n = 1 (Eq.  (11)) and �∞ = 0 
(Eq. (12)); and �∞ = 0 because �∞ = 0 (Eq. (12)).

From Eq.  (8) using of the Maxwell equations 
c∇ × � = 4�� and ∇ ⋅ � = 0 along with conditions �m = 1 
(Eq. (11)) and H∞ = 0 (Eq. (13)) one obtains (see, e.g., [9])

Analogically, with the use �∞ = 0 and taking into account 
that no external current is fed into the sample (i.e., ∇ ⋅ � = 0 ) 
one obtains

Equations (14) and (15) imply that in the massive samples 
the induction �(= � in the theory) and the current density � 
exponentially decay with depth from their values at the sam-
ple boundary to zero in its interior with the decay constant 
�L in both cases. Hence, taking into account the smallness 
of �L(∼ 10−6 cm assuming one superconducting electron per 
atom), it looks as the theory meets the Meissner condition 
(zero B in the volume of the massive sample) explaining it as 

(12)�∞ = �∞ = 0,

(13)�∞ = �∞ = 0.

(14)�2
L
∇2� = �.

(15)�2
L
∇2� = �.

10 Note that if the superconducting electrons are combined in Cooper 
pairs �L remains unchanged.
11 Recall that � is a magnetic field acting inside a body on a “native” 
(i.e., belonging to the body) charge. � does not include the field due 
to the charge in question, whereas the induction � (the average micro-
scopic field caused by all native charges) includes it. On that reason 
a “foreign” (probing) charge always experiences the action of � , but 
not � [10].

1984 Journal of Superconductivity and Novel Magnetism (2021) 34:1979–2009



1 3

a screening effect of the current (assumed circumferential12) 
persistently running in a thin surface layer.

So far, the theory may appear as a rather strange construc-
tion13, the sole purpose of which is to fulfill deliberately 
introduced (Eq. (12)) the Meissner condition B = 0 . There-
fore, it was quite unexpectedly when it turned out that, being 
combined with the two-fluid model14, results of the London 
theory appeared to be consistent with experimental data on 
the temperature dependence of the penetration depth [9].

Another form of the London equation (10) is

where � is the vector potential defined as � = � = ∇ × �.
To restrict multiplicity of � , the theory imposes supple-

mentary conditions15

and

where �⟂ is a component of the vector potential inside the 
sample normal to its surface.

Given Eq. (16), the condition Eq. (17) reflects the conti-
nuity of the induced current (no source, no sink), implying 
that the current and the lines of the vector potential make 
closed loops. Equation (18) implies that the current cannot 
cross the sample surface ( �⟂ = 0).

(16)� = −
c

4��2
L

�,

(17)∇ ⋅ � = 0,

(18)�⟂ = 0,

Equation (16) is that form of Eq. (10) for which Pippard 
suggested a non-local extension of the London theory [32]. 
It is also consistent with experiment [33–35].

After all, Eq. (16) can be written (substituting � = ens� 
and �L given in Eq. (9)) in a microscopic form as

where �̃ is a generalized linear momentum [47] of a single 
superconducting electron.

Equation (19) is highly remarkable, as it was shown by F. 
London himself [8]. He obtained Eq. (19) in a different way 
and showed that Eq. (10) follows from Eq. (19). Hence, the 
theory can be constructed starting from Eq. (19) as a postu-
late. At the same time he did not reconsider the assumptions 
(11) and (12). Note, that due to Eq. (16) �∞ = 0 implies that 
�∞ = 0 as well.

Here are some consequences of Eq. (19). 

1. The London equation Eq. (10)/(16) takes an extremely 
simple form16: �̃ = 0.

2. Since in magnetic field de Broglie’s wave length is 
�DB = h∕p̃ , Eq. (19) implies that �DB of superconducting 
electrons is infinite, indicating that the superconducting 
body is a macroscopic quantum object.

3. Since the London theory is not restricted by any par-
ticular area of the phase diagram of the MS, Eq. (19) 
should be valid regardless on parameters of this state 
(e.g., temperature T and the applied field H0 ). On this 
ground F. London concluded that the S phase17 possess 
a long-range order, characterized by the “rigid” (i.e., 
independent on the state parameters) linear momentum 
p̃(= 0) . F. London foreseen that this rigidity is a corner-
stone of superconductivity, which “offers a remarkable 
possibility of reducing superconductivity to an appar-
ently very simple model” [8].

4. For multiply connected bodies the concept of rigidity led 
F. London to prediction of the magnetic flux quantiza-
tion in superconductors [8]. A decade later the latter was 
confirmed experimentally [37], albeit with a factor 1/2 
absent in the original prediction; this factor, as it was 
shown by Onsager [38], stems from the pairing concept 
of the BCS theory [25]. A pure theoretical prediction 
of the flux quantization is, in any respect, the highest 
achievement of the London theory.

(19)m� +
e

c
� ≡ �̃ = 0,

12 The idea of the field induced circumferential surface current 
appeared well before the Meissner–Ochsenfeld effect was discovered 
and the London theory was proposed. For example, it was used by 
Lorentz [28] for interpretation of Onnes’ experiment with supercon-
ducting shell (see footnote ( 1 ) above). Hall challenged this idea [29]. 
Nowadays, the assumption that the induced current is the circumfer-
ential one is taken for granted. However, as we will see, this is one 
of the most controversial assumptions of the standard theories. Note 
also, that it conflicts with the time reversal rule.
13 In the first edition of Shoenberg’s book [9] (1938) the London 
theory was hardly mentioned. Pippard recollects, that when he asked 
why, Shoenberg said that Landau thought it ill-founded [30]. For 
reference: Shoenberg wrote this book being in Kapitza’s institute in 
Moscow, where Landau transferred from Kharkov Physical-Technical 
Institute after arrest of Shubnikov in 1937. Shubnikov was executed 
in the same year. In 1938 Landau was also arrested. In one year he 
was released owing to an extraordinary action of Kapitza (see, e.g., 
[31]).
14 As mentioned above, ns∕ns0 in the London theory corresponds to 
(1 − x) in the two-fluid model. Accordingly, ns∕ns0 = 1 − (T∕Tc)

4 , 
where ns0 is ns at T = 0.
15 Eq.  (17) is the standard supplementary condition for the vector 
potential. Physics behind it is that the current cannot pass through 
the metal/insulator interface [42]. In quantum mechanics Eq.  (17) 
provides the commutativity of operators of the generalized linear 
momentum and of the vector potential [20].

16 Simplicity is the doubtless merit of any theory. Citing Feynman, 
“Nature has a great simplicity and therefore a great beauty” [36].
17 The S phase is defined as a phase of a superconducting material in 
which ns ≠ 0 . The S phase can occupy the entire sample volume (as it 
takes place in the MS) or a part of it.
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To summarize, we see that the London theory has an 
impressive list of achievements and it cannot be denied that 
this theory served as the basis for understanding supercon-
ductivity [9, 39]. However, it is hard not noticing serious 
difficulties in this theory18. Let us look closer at some of 
them. But before that we remind two facts solidly established 
in experiments (see, e.g., [12, 40, 41]) and justified by ther-
modynamics [10]. 

(a) The magnetic moment of a sample in the MS [the sam-
ple has the ellipsoidal shape and �0 is parallel to one of 
its axes19, demagnetizing factor with respect to which 
is �(≠ 1) ] is 

(b) The magnetic energy of the sample in the MS is 

In magnetostatics, Em represents the work done by the 
magnetic field (executed by an electric field generated while 
the magnetic field is changing) to magnetize the sample. By 
virtue of the energy conservation, it is equal to the variation 
of the kinetic energy of electrons ΔT  plus the energy of the 
outer field produced by the magnetized sample. In diamag-
netics ΔT = Ek , the latter being the kinetic energy of the 
field-induced motion of electrons. In diamagnetic samples of 
the cylindrical geometry Em = Ek because the outside field 
caused by the sample is absent [10, 42].

A schematic of the massive sample in the MS in the Lon-
don theory is shown in Fig. 120. An “active” part of this 
sample (i.e., the part where � and � are not zero) is a surface 
layer with an effective width21 𝜆L ≪ ℜ . Behind this layer all 
magnetic characteristics are zero (Eq. (12)), implying that 
the sample interior, nearly whole its volume, is totally inert. 
If so, there should be no difference if the interior is in the S 
or in the N state, or there is no interior at all.

Thus, in the London theory magnetic properties of solid 
(continuous) and hollow samples are identical. However, as 
is well known [18, 43], properties of the solid and hollow 
magnetized bodies are different. As we know, for super-
conductors it was clearly demonstrated by Meissner and 
Ochsenfeld. This can be also seen from the fact that M and 
Em (Eqs. (20) and (21)) are proportional to the volume of 
the sample, like for all other continuous bodies where M and 
Em are caused by magnetization, and include parameters of 
neither the cavity nor the wall.

More specifically, in the London theory, a long circular 
cylindrical sample in the longitudinal field �0 is identical 

(20)� = −
V

4�(1 − �)
�0.

(21)Em ≡ −
�

� ⋅ d�0 = −
��0

2
=

VH2

0

8�(1 − �)
.

Fig. 1  A massive cylindrical sample in the London theory. 
L ≫ ℜ ≫ 𝜆L , the demagnetizing factor � = 0 . The London penetra-
tion depth �L is an effective width of a surface layer containing the 
field induced circumferential screening current. The induction � and 
the current density � in this layer equal �0 = �0 and c� ×�0∕4��L , 
respectively; behind this layer � , � , � , and � are zero. � is the sam-
ple magnetic moment caused by the surface current. �0 is the applied 
field

18 From the very beginning (see [26]) the Londons well understood 
the weakness of the theoretical background of Eqs.  (8) and (10). In 
[8] F. London does not derive them stating instead that the validity 
of these equations follows from the experimental confirmation of the 
consequences which they imply.
19 At another orientation of �0 , it should be broken for components 
parallel to the sample axes and � is the vector sum of the moments 
relative to each axis; in such case � can be not aligned with (antipar-
allel to) �0 , but it is always antiparallel to �.

20 In [8] and [9] solutions of the London equations for the field, cur-
rent and the magnetic moment are available for cylinders, plates and 
spheres. The calculated magnetic moment of the cylinder and sphere 
with radius ℜ ≫ 𝜆L equals the moment of these figures with zero 
induction and the radius ℜ − �L ; for the plate of thickness d ≫ 𝜆L 
the moment equals that of the plate with B = 0 having the thickness 
d − 2�L.
21 The effective width of the penetration layer is defined as 
�eff ≡ H−1

0
∫ ∞

0
B(z)dz , where z is the depth from the surface 

and B(z) is the depth’s profile of the induction. Inside this layer 
B = Beff ≡ (�eff )

−1 ∫ ∞

0
B(z)dz and j = jeff ≡ (�eff )

−1 ∫ ∞

0
j(z)dz , where 

j(z) is the depth’s profile of the current. In the cylindrical sample of 
the London theory �eff = �L , Beff = H0 and jeff = g∕�L = cH0∕4��L , 
where g is the linear current density.
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to a solenoid of the same shape and in the same field with 
the current per unit length � = c� ×�0∕4�

22, where � is 
the unit vector normal to the surface and directed outward; 
the moment � produced by this current is the same as that 
in Eq. (20) with � = 0 (see Problem 1.4 in [10]). The field 
inside the solenoid due to this current equals −�0 , it com-
pensates the field �0 resulting that the field there (both � 
and � since the solenoid is empty and therefore �m = 1 ) is 
zero. Hence, the solenoid’s interior is screened from the 
applied field, or the field is expelled from the solenoid when 
the current is turned on.

On the other hand, the long solenoid is a particular case 
of a current shell shaped as an ellipsoid of revolution also 
referred to as a spheroid. As known (see, e.g., [46]), the field 
inside such a shell is uniform provided g ∼ sin� (see Fig. 2). 

Then in an axial field �0 the field inside the shell is zero if 
� = c� ×�0∕4�(1 − �) , where � is the demagnetizing factor 
of a solid spheroid of the same shape as the shell (see, e.g., 
Problem 1.7 in [10]). Therefore, the above reasoning about 
the screening current and the expelled field in the solenoid 
holds for the spheroidal current shell. The moment � of 
such a shell is the same as that in Eq. (20) (see Problem 1.8 
in [10]).

On the contrary, inside samples in the MS the induction 
� = 0 , but the field intensity � is not. In the cylindrical 
sample, e.g., like that shown in Fig. 1, � = �0

23. However, 
someone can (perhaps) say that the field due to the induced 
circumferential surface current compensates the field � 
resulting in zero field (both B and H as stated in the London 
theory) inside the sample24.

Now, taking into account what was said about the sphe-
roidal current shell, can one say that the assumption of the 
induced circumferential current provides a consistent picture 
of the MS? The answer is no already because the MS is 
observed in samples of any ellipsoidal shape, but not only in 
the ellipsoids of revolution. For example, it can be the same 
cylinder as that in Fig. 1 but in the transverse field [9] or a 
film in the parallel field, like the film which magnetization 
curves are shown in Fig. 3. Another reason of this negative 
answer consists in the fact that the field inside the spheroi-
dal sample, produced by the circumferential current needed 
to obtain correct magnetic moment, equals −�0 , while the 

Fig. 2  A current shell having a form of an ellipsoid of revolution 
(spheroid) with respect to the vertical axis z; � is the angle between 
z and the unit vector � normal to the shell. If the current linear den-
sity g is proportional to sin � or, equivalently, there are equal currents 
in each axial interval Δz , the magnetic field inside this shell �(= � 
since �m = 1) is uniform and parallel to z (colored online)

Fig. 3  Magnetic moment of a 2.9-� m thick indium film in the paral-
lel field �0 [14]. The film (deposited on a SiO2/Si wafer) represents a 
rectangle schematically shown in the insert (colored online)

22 This current is calculated from the boundary condition for the tan-
gential component of the induction Bt , which stems from the condi-
tion of continuity for Ht [10, 19].

23 This follows from the Poisson theorem and in this case also from 
the continuity of Ht [10, 19].
24 A statement of such kind can be found in some textbooks, however 
it is incorrect because it contradicts to the boundary condition for Ht 
(continuity) which is used to calculate � [10, 19].
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field which is supposed to be compensated is �0∕(1 − �) (see 
problem 1.7 in [10]).

Another difficulty of the London theory can be seen from 
the following. A sample with � = 0 can be an infinite plate 
in the parallel field, like the film in Fig. 3. According to 
the London theory, the applied field �0 induces a circum-
ferential screening current persistently running along the 
film surface within a thin layer where the field is not zero; a 
transverse (perpendicular to �0 ) cross-section of this current 
represents a rectangle with an infinite length/width ratio ( ∼ 5 
mm/3 �m). But, how can electrons (supposed free) run along 
the straight path if they are constantly pushed sideways by 
the magnetic part of the Lorentz force? How can they make 
a U-turn at the ends keeping the constant speed, without 
canceling the law of inertia and following from it Newton’s 
acceleration equation Eq. (7)? The London theory does not 
answer these questions.

Even clearer picture is as follows. Consider the cylin-
drical sample in Fig. 1. Coming from the boundary condi-
tions for � [10, 19] and using the known formula for � , one 
can calculate average kinetic energy �k of the field induced 
motion of one superconducting electron. This energy is 
�k = H2

0
∕8�ns . From that one can find kinetic energy Ek of 

the induced motion of all superconducting electrons in the 
penetration layer, which create the correct sample magnetic 
moment. This energy is

where ℜ is the sample radius25.
As mentioned, according to the energy conservation law, 

the magnetic energy of this sample Em(= H2

0
V∕8�) equals 

the field induced kinetic energy of electrons Ek . However, 
in the London theory, as has just been calculated, Ek ≪ Em 
which clearly contradicts the law26.

The conflict of the London theory with the law of energy 
conservation was noted long ago by Shoenberg [9]. He paid 
attention to the fact that in a spherical sample in the MS the 
assumption of circumferential current leads to an appear-
ance of a Hall-like e.m.f. between points at the pole and the 
equator. If so, it would be possible to continuously draw 
energy from the static magnetic field into a resistive circuit 

(22)Ek =
H0

2V

8�
⋅

2�L
ℜ

,

connecting these points, in contradiction with the energy 
conservation27.

After all, we mention a dilemma one more time demon-
strating the inconsistency of the assumption of the circum-
ferential screening current. Another dilemma stemming from 
this assumption is discussed in Appendix.

Consider a spherical sample in the MS. The external field 
�ext is parallel to the sample surface (as mentioned, it bends 
around the sample in accord with the continuity of Bn ) and 
its magnitude decreases down to zero with the polar angle � 
as Hext = (3H0 sin�)∕2 , what was confirmed experimentally 
(see [9] for references). Therefore, the London penetration 
depth �L should decrease with � as well because it must 
vanish at the pole where Hext = 0 . However, in the London 
theory �L does not depend on the field, and therefore, it is 
supposed staying the same regardless on changing Hext (see 
footnote ( 20)). This obvious contradiction stems from the 
assumption of the circumferential current.

Any one of the listed inconsistencies (this list can be 
continued) is sufficient to cast doubt on the London theory. 
However, still one more very strange thing is that the theory 
does not mention the necessary condition of the existence 
of persistent current: quantization of the angular momentum 
of its carriers. Below we will see how these issues can be 
resolved.

5  Micro‑Whirls Model

5.1  Properties of the Meissner State

As known, diamagnetism of non-superconducting materi-
als, being essentially a quantum phenomenon [42, 45], is 
successfully described by the classical Langevin theory; the 
volume magnetic susceptibility � in this theory is identi-
cal to that in the quantum theory [46]. A similar (but semi-
classical) approach, as we will see below, may work for 
superconductors28. An important advantage of the classical 

25 This formula can be obtained without any calculations since in the 
theory superconducting electrons are active only in the penetration 
layer.
26 Note, that if each superconducting electron of the sample acquires 
kinetic energy �k , then Ek = ns�kV = VH0∕8� : the law is met!

27 Referring to Pippard, Shoenberg writes that to meet the law we 
must suppose that there is an opposite contact potential difference 
varying with the field in such a way to compensate this e.m.f. exactly 
[9]. An evident strangeness of such a supposition (the contact poten-
tial can be easily excluded by using the resistive circuit of the same 
metal as the sample, as is always done in studies of the Hall effect 
(see, e.g., [44])) and other remarks throughout Shoenberg’s book 
show that he and Pippard (see also a footnote on p. 20 in [10]) well 
saw not only the merits of the London theory.
28 In both cases, this can be explained by the compensation of elec-
tron spins (either in molecules of conventional diamagnetics or in 
Cooper pairs of superconductors), which makes electrons responsible 
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approach is transparency of the physical significance of the 
used concepts allowing to visualize processes underlying 
and determining properties under question. At the same 
time one should not forget that a comprehensive descrip-
tion of superconductivity is not possible without a full scale 
quantum-mechanical theory.

We start from the Bohr–Sommerfeld quantization con-
dition, which ensures the dissipation-free electron motion 
over a closed path. At the same time, we understand that in 
magnetic field the linear momentum and, hence, the angular 
momentum and the action, should be taken in the general-
ized form [47].

In superconductors electrons responsible for persistent 
current(s) are coupled in Cooper pairs [48]. Therefore, the 
quantization condition should be written for the paired elec-
trons. Then the generalized action S̃cp and the magnitude of 
generalized angular momentum �̃cp of one pair is

where �̃cp is generalized linear momentum of the pair, R is 
radius of an orbital motion of paired electrons (the fact that 
the paired electrons are in the orbital motion will be seen 
slightly lower), h is the Planck constant, and n is a non-
negative integer ( n = 0, 1, 2, ...).

In the ground state (i.e., at zero T and H0 ) n takes the low-
est value n = 0 . Hence, the quantization condition (23) reads

Therefore (since in Eq. (23) R ≠ 0 otherwise the sample 
magnetic moment would be always zero),

This is the London rigidity principle written, however, 
for the paired electrons.

In zero field, the generalized linear momentum of the pair 
(�̃cp)0 equals its kinetic linear momentum (�cp)0 . Then from 
Eq. (25) it follows

where �10(≡ m�10) and �20(≡ m�20) are the kinetic linear 
momenta of each electron in the pair at zero field.

This is identical to the definition of Cooper pair [25] as a 
correlated state of two electrons with zero net kinetic linear 
momentum with respect to their center of mass and zero net 

(23)S̃cp = ∮
�̃cp ⋅ d� = 2�Rp̃cp = 2��̃cp = nh,

(24)∮
�̃cp ⋅ d� = 0

(25)�̃cp = 0.

(26)(�̃cp)0 = (�cp)0 = �10 + �20 = 0,

intrinsic magnetic moment (spin). The latter circumstance 
explains the absence of the spin term in Eq. (23)29.

On the other hand, Eq. (26) implies that in zero field the 
center of mass of the paired electrons is at rest (with respect 
to the sample) and electrons in each pair, separated by the 
coherent length �30, orbit their center of mass, like, e.g., 
proton and electron in a hydrogen atom31. Therefore, each 
Cooper pair possesses the kinetic angular momentum �0 and 
the magnetic moment �0 = ��0 , where � is the gyromagnetic 
ratio. Hence, in a magnetic field the pairs should precess and 
below we will see that this is indeed so.

Due to symmetry, in zero field the total magnetic moment 
of all pairs (the magnetic moment of the sample) is zero, i.e.,

where summation is taken over all pairs.
In view of uniformity of the bulk properties of the MS, 

Eq. (27) holds for the unit volume as well as for a physically 
infinitesimal volume element dV. The latter in supercon-
ductors should be defined as a volume, which size is much 
smaller than the size of the volume taken by the S phase and 
much larger than the spacial inhomogeneity of microscopic 
currents, i.e., �.

The condition Eq. (27) is similar to the definition of a 
diamagnetic atom, where each electron possesses a nonzero 
orbital magnetic moment, whereas the moment of the entire 
atom is zero.

Now we turn the applied field �0 on keeping the sample 
at constant temperature. Then the field intensity inside the 
sample rises from zero to � and each of the paired electrons 
experiences the action of the Lorentz force32 � , which is [47]

(27)M0 =
∑

�0 = 0,

(28)
� ≡

d�

dt
= −

e

c

(
��

�t

)
+

e

c
� ×� =

−
e

c

(
��

�t

)
+

e

c
� × (∇ × �),

30 At zero temperature � corresponds to the Pippard/BCS coherence 
length �0 , which is close to the GL coherence length at this tempera-
ture [49]. As we will see, � does not depend on the field, but it does 
depend on temperature.
31 Apparently, that �10 and �20 in Eq. (26) cannot be directed toward 
each other or vice versa, because in such case Cooper pairs would not 
be stable.
32 Naturally, the Lorentz force acts on “normal” (non-coupled) con-
duction electrons as well resulting in a weak Landau diamagnetism 
[50, 51]. Action of the Lorentz force on the atomic electrons and 
nuclei results in the normal diamagnetic response.

for the magnetic properties effectively spinless. The latter, in turn, 
excludes the appearance of Planck’s constant in the formula for the 
magnetic susceptibility of these materials.

Footnote 28 (continued)

29 The zero spin of paired electrons follows from the requirement of 
thermodynamics, since the system of units with zero spin has lesser 
free energy. The same provides the thermodynamic justification of 
the profitability of the paired state of conduction electrons since the 
pairing makes possible to null the spin.
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where t is time, � is the vector potential of the magnetic field 
�(= ∇ × �) acting on electron, and � is the electron velocity, 
which magnitude is slightly less than the Fermi velocity vF 
due to condensation33.

In Eq. (28) Coulomb’s term −e∇� , where � is the elec-
trostatic potential, is omitted in view of the absence of the 
applied electrostatic field34.

Here we need to make a brief stop. As known (see, 
e.g., [10, 43]), the field � is a potential-like field. It can be 
described using the magnetic scalar potential Ψ and “mag-
netic charges” resided on the sample boundary; a surface 
density of these charges equals the normal component of 
magnetization �n . Respectively, if one considers a volume 
element dV which includes a piece of the boundary with 
�n ≠ 0 , the total flux of the field � through its surface is 
not zero. This implies that ∇ ⋅� ≠ 0 and hence the concept 
of the vector potential is inapplicable to the field � in this 
region. However, if dV is totally inside the sample (it can 
touch but not cross its boundary), than � becomes diver-
gence-less field and therefore it can be described by a vec-
tor potential � defined through the relationship ∇ × � = � . 
Note that, unlike � , the induction � is a divergence-less 
field everywhere.

One more thing: since inside real bodies, including sam-
ples in our model, � and � are different, one has to distin-
guish the vector potential for � and for � . So in our notations 
� is the vector potential of the field � inside the sample. 
Below we will see how � is related to the vector potential 
�B defined by the relationship � = ∇ × �B . As usual, we 
presume the supplementary condition Eq. (17) for � and �B.

The first term in the right-hand side of Eq. (28), referred 
to as the electric force �E , is a component of the Lorentz 
force due to the vortex electric field defined as

The force �E (existing while the magnetic field is chang-
ing) does the work resulting in the change of kinetic energy 
of electrons and in the appearance of the induced magnetic 
moment in each pair. This is pretty much the same as the 
familiar phenomenon of magnetization in regular diamagnet-
ics (see, e.g., [42, 46, 54, 55]).

(29)� ≡
�E

e
= −

1

c

(
��

�t

)
.

When the vector potential changes from zero to � , which 
corresponds to the change of the field intensity from zero35 
to � , the force �E changes velocity of electrons in the 
pair from �0 to �′ . The difference �i = �� − �0 (the veloc-
ity induced due to the applied magnetic field), according to 
Eq. (29), is36

There are two things in Eq. (30) to be pointed out: (i) like 
in regular diamagnetics [54], the time dropped out, which 
means that the induced velocity �i is the same regardless on 
the rate of the field change; (ii) �i is parallel to � , imply-
ing that �i is tangential to the line of vector potential laying 
by definition in the plane perpendicular to � . Since e < 0 , 
the latter means that the magnetic moment induced in each 

(30)�i = −e
�

cm
.

Fig. 4  Schematics of the Cooper pair precession in the magnetic 
field � . Vectors �0 and �0 are, respectively, the angular and magnetic 
moments of the pair caused by the the circular current J0 formed 
by the coupled electrons in zero field; this current is caused by the 
orbital motion of the paired electrons about their center of mass (the 
red dot); R0 is the orbit radius. A dot-dashed circle designates the 
path of the tip of the precessing �0 . A dashed circle depicts the field-
induced current Jcp ; it is also a line of the vector potential directed 
opposite to the current Jcp . � and �i designate the vector potential and 
the induced velocity of one electron, respectively; r is the radius of 
the induced current; and �cp is the induced magnetic moment of the 
pair. Depicted by a single arrow vectors � and �i are proportional but 
not equal to each other (colored online)

33 The maximum difference between vF and v is 
Δvcond = vF − v0 ≈ vF(Eg∕EF)

0.5 ≲ 10−2vF , where v0 is velocity of 
the condensed (superconducting) electrons at zero field and tempera-
ture, and Eg and EF are the energy gap at T = 0 and the Fermi energy, 
respectively; the numbers are taken from [52].
34 In the London theory, the applied electrostatic field penetrates the 
superconductor following the same law as that for the magnetic field. 
An experimental attempt undertaken by H. London to reveal this 
effect yielded zero result [53].

35 We choose A = 0 at H = 0.
36 Note that �i in this formula is identical to � in the London theory 
(Eq. (19)). This is the reason of the equality of the sample magnetic 
moment in our model (calculated below) and that in the London the-
ory.
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Cooper pair is always diamagnetic, in accord with require-
ments of electrodynamics [42] and thermodynamics [10].

The second term in the right hand side of Eq.  (28), 
referred to as the magnetic force �M , is a component of the 
Lorentz force perpendicular to the electron velocity. Hence, 
�M does no work and therefore it does not affect the electron 
kinetic energy and the magnitude of its magnetic moment. 
Then, what does �M do?

To answer this question, we note that, (i) since the uni-
form magnetic field cannot change position of the pair’s 
center of mass, �M1 = −�M2 (those are the magnetic forces 
acting on the 1st and 2nd electron in the pair), and (ii) �M1 
and �M2 are non-central forces. Hence, they make a couple 
resulting, due to non-zero �0 , in precession of �0 relative to 
the vector � , as schematically shown in Fig. 4.

The angular velocity of precession, referred to as Larmor 
frequency, is

where � is the gyromagnetic ratio and gL is the Lande factor.
In superconductors � was measured in the experimental 

masterpiece of I. Kikoin37 and Goobar [56]; detailed report 
was published in [57]. The measurements were performed 
on a high-purity ZFC lead spherical samples of 3–4 mm in a 

(31)� = −�� = −
egL

2mc
�,

diameter. To ensure the absence of the frozen flux, the earth 
field was compensated down to ≲ 5 ⋅ 10−4 Oe. The measured 
Lande factor is 1 ± 0.03 . I. K. concluded that (1) “the mag-
netization of superconductors, in any case, is caused not by 
electron spin, but by closed electron currents”, and (2) this 
“can be due to microscopic closed currents, although their 
origin so far is unknown” [57].

As follows from the Larmor theorem, if magnitude of 
the induced electron velocity vi is much less than v0 , preces-
sion of the electron orbit is equivalent to undisturbed orbital 
motion in the field absence (i.e., with fixed �0 ) plus an addi-
tional (field induced) circular motion with the angular veloc-
ity � and radius r proportional to R0 , which leads to appear-
ance of the diamagnetic moment �i [42, 46]. The same result 
can be obtained without direct involvement of the Larmor 
theorem [54, 55, 58]. The latter approach explicitly shows 
that the diamagnetism results from the changing magnetic 
field, in full accordance with the Faraday Law. On the other 
hand, the invariability of �0 means that condition Eq. (27) 
holds both in the absent and presence of the magnetic field38.

Thus, we arrive to conclusion that the net effect of the 
magnetic field is the induced circular motion of the paired 
electrons in the plane perpendicular to � . On the other hand, 
since changing |�| changes only the magnitude of �i , the 
radius of the induced motion r does not depend of the field.

This is very close to the picture of induced bound currents 
in regular diamagnetics schematically shown in Fig. 5. In 
our case, like in normal diamagnetics, the induced currents 
mutually compensate each other in the sample bulk, leav-
ing an uncompensated surface current caused by electrons 
bound in Cooper pairs. Then the magnetic moment of the 
sample is exactly the same as the moment produced by a 
continuous (circumferential) surface current [10, 42, 46, 54, 
55].

Now let us check what happens to �̃cp in the field. For 
that we go back to the quantization condition (24) and 
look what is going on when the field �0 is turned on, i.e., 
it changes from zero to �0 over some time interval. Then, 
inside the sample the field intensity changes from zero to 
� and, correspondingly, the vector potential changes from 
zero to � over the same time (more correctly to say that in 
the reversed order). From Eq. (28), we find that the kinetic 
linear momentum changes for −e�∕c + ∫ �Mdt and there-
fore the generalized linear momentum of the single Cooper 
pair in the field is

Fig. 5  A cross-sectional view of a conventional diamagnetic sample 
showing induced bound currents caused by precession of the atomic 
electron orbits; the field is directed into the page (copied from [42]). 
This picture is identical to the induced currents caused by precession 
of Cooper pairs in a superconducting sample in the Meissner state

37 Academician Isaak Konstantinovich Kikoin was a brilliant physi-
cist, the deputy of Kurchatov in the Soviet atomic project, founder 
and director of the Division of molecular physics of the Kurchatov 
institute, in which the author was working for many years.

38 This can be also viewed as follows. In the uniform magnetic field, 
all pairs precess synchronously because precession is a motion (the 
only one of a kind) occurring without inertia. Then, since �0 stays 
unchanged, orientations of the pairs’ magnetic momenta with respect 
to each other stay unchanged either, meaning that 

∑
�0 remains zero.
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where �1 and �2 are the vector potentials experienced by the 
first and second electron in the pair, respectively.

Thus we see that, as predicted by F. London for super-
conducting electrons, �̃cp = 0 regardless on the presence or 
absence of the magnetic field. Q.E.D.

Now let us calculate magnetic proprieties of samples in 
the MS, i.e., of the ellipsoidal bodies in which �̃cp of the 
paired electrons is zero. For that we have to choose an appro-
priate form of A and to link it with �0.

A uniform field � = H�̂ ( ̂� is unit vector along the z-axis) 
can be described by � of the following forms or gauges (see, 
e.g., [59])

and

where �̂ and �̂ are unit vectors in the x- and y-direction, 
respectively; and � is the radius vector lying in the xy plane 
perpendicular to � with an origin in an arbitrary point of 
this plane.

(32)

�̃cp = �̃1 + �̃2 =

[(
�10 −

e

c
�1 + ∫

�M1dt

)
+

e

c
�1

]

+

[(
�20 −

e

c
�2 + ∫

�M2dt

)
+

e

c
�2

]
= �10 + �20 = 0,

(33)� = −Hy�̂,

(34)� = Hx�̂,

(35)� =
1

2
(−Hy�̂ + Hx�̂) =

1

2
� × �,

The vector potentials Eqs. (33)−(35) are equivalent39 in a 
sense that they represent the same field � . However, as seen 
from Eq. (30), in superconductors � of different gauges lead 
to different �i and, therefore, to different magnetic moment 
of the sample. This implies that the vector potential in super-
conductors is not gauge-invariant, as it also takes place in 
the London and BCS theories40 [25]. This is an additional 
confirmation of the fact that the vector potential is not just a 
mathematical fiction but a real and primary characteristics of 
the magnetic field, as demonstrated by the Aharonov–Bohm 
effect [46, 60].

In our case, the choice of � is quite obvious: due to uni-
formity of � , all directions in planes perpendicular to � are 
equivalent, so an appropriate � is that in Eq. (35), which is 
referred to as the vector potential of the circular gauge. This 
also follows from the fact that the induced currents and lines 
of the vector potential � must make closed loops. The later 
is consistent with the condition ∇ ⋅ � = 0 . The lines of the 
vector potential of the circular gauge are shown in Fig. 6.

After turning on the applied field �0 , the field inten-
sity and the vector potential inside the sample after a short 
relaxation time become � and � , respectively. Then, using 
Eq. (30), we write

In the scalar form, taking into account that e < 0 , Eq. (36) 
reads

(36)m�i = −
e

c
� = −

e

2c
� × �,

Fig. 6  Lines of the vector potentials � in the circular gauge for a 
uniform magnetic field � (Eq.  (35)). � is directed along the z-axis 
(toward the reader). As always, the line of � is the directional line 
tangential to the vector � in each of its point

Table 1  The root mean square radius ri of the induced current in 
conventional diamagnetics calculated from Langevin’s formula for � 
[42]. The values of � are taken from [61]; � for pyrolytic graphite is 
taken from Wikipedia. For metals (Cu, Bi and graphite) it is assumed 
that one electron of each atom is unbound (is in the conduction zone)

Substance Formula 106� ri , Å

Copper Cu -0.771 0.68
Sodium chloride NaCl -1.121 1.60
Sulfur S -0.956 1.52
Diamond C -1.543 1.52
Graphite C -10.81 4.13
Pyrol. graphite C -31.8 9.51
Nitrogen (liq) N2 -0.410 1.55
Bismuth Bi -19.951 3.53
Water H2O -0.720 1.96

39 They differ from each other by a gradient of a function of coor-
dinates. For example, � in Eq. (35) differs from � in Eq. (33) by 
∇(xyH∕2).

40 F. London admits this fact noting that due to this reason Eq. (16) 
cannot be generally valid [8]. In the BCS theory, lack of the gauge 
invariance is attributed to the approximate character of the theory 
[25]. At the end of his book [8] F. London shows that in a quantum 
theory the gauge invariance can be preserved if the gauge transforma-
tion is accompanied by a corresponding transformation of the wave 
function of superconducting electrons.
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where e is the absolute value of electron charge.
Hence, magnitude of the angular velocity of the induced 

circular motion is

We see that the angular velocity is equal to the classi-
cal Larmor frequency ( gL = 1 ). This confirms that we really 
deal with the precession of paired electrons with zero total 
spin, since non-paired electrons (as any other charges) in a 
magnetic field circulate with a so called cyclotron frequency 
�c = (e∕mc)H [50, 51, 54].

The induced current per one electron in the pair Ji is

From Eqs. (38) and (39), we see that neither induced 
angular velocity � , nor the induced current Ji depends on r. 
However, it is not the case for the induced magnetic moment 
and the corresponding change of kinetic energy of the paired 
electrons: they both depend on r2 . On the other hand, r for 
Cooper pairs with different orientation of �0 should be dif-
ferent. So what we want to know is the mean square ⟨r2⟩ , 
which we will denote as r2

i
.

In conventional diamagnetics ri is calculated from the 
Langevin formula for the magnetic susceptibility � and cor-
responding experimental data [45]. Calculated in this way 
values of ri are shown in Table 1. We see that in many sub-
stances the values of ri are quite close, between 1.5-2.0 Å, 
however in some materials, e.g., copper, it is less than 1 Å, 
whereas in bismuth and graphite it is significantly greater. 
In superconductors ri can be found as follows.

An average induced magnetic moment per one electron 
in Cooper pairs is

For simplicity, let us consider a sample of cylindrical 
geometry ( � = 0 ). For this geometry (i) the demagnetizing 
field �d(= 4��� ) is zero and therefore � = �0 −�d = �0

41; 
(ii) the outside magnetic field produced by the magnetized 
sample is absent and therefore, as was already mentioned, 

(37)mvi =
e

2c
Hr,

(38)� =
vi

r
=

e

2mc
H.

(39)Ji =
e

2�
� =

e2

4�mc
H.

(40)
�i =

1

c
Ji�r

2

i
=

e2r2
i

4mc2
H =

e2ns4�

mc2

( ri
2

)2 H

4�ns
=

(ri∕2)
2

�2
L

H

4�ns
.

the sample magnetic energy Em equals the field induced 
change of kinetic energy of the paired electrons ΔT  [10].

Since magnetic moments induced in all Cooper pairs are 
parallel, the magnetic moment of our sample is

where ncp(= ns∕2) is number density of the pairs.
Referring Eq. (20), we know that magnitude of the mag-

netic moment of the cylindrical sample in the MS is

Hence we see, that our model meets thermodynamics 
and the experiment provided the radius ri(≡

√
⟨r2⟩) of the 

induced circular motion of the coupled electrons is

Since r does not depend on the field, ri does not depend 
on the field either. Hence, as was assumed in the London 
theory, �L in our model does not depend on the field at con-
stant temperature.

(41)
M = ncpV�cp = nsV�i =

(
(ri∕2)

�L

)2
V

4�
H =

(
(ri∕2)

�L

)2
V

4�
H0,

M =
V

4�
H0.

(42)ri = 2�L.

Fig. 7  A photonmagnetic image of superconducting domains (dark 
areas) in a 2.5-�m-thick indium film sample in the intermediate state 
at temperature 3 K in the tilted field. The sample (outlined by the red 
lines) represents a stripe of 0.3 mm in width and 1 mm in length. An 
out-of-plane component of the applied field H0⟂ = 0.5 Oe and the in-
plane component H0∥ = 50 Oe. As one can see the central S domain 
has a huge ratio of the lateral size to the thickness ( ∼0.3 mm/2.5 � m) 
and its shape has nothing in common with the ellipsoid of revolution. 
Other images obtained with this sample are available in [63] (colored 
online)

41 As mentioned above, this also follows from the boundary condi-
tion for the tangential component of the field � and from the Poison 
theorem [10].
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Next, one can show that like in regular diamagnetics [10] 
the change of kinetic energy of the superconducting elec-
trons ΔT  is the sum of the field induced kinetic energies of 
each such electron42 �i = mv2

i
∕2 , i.e.

where �cp = 2�i is the average kinetic energy of the induced 
motion of electrons in one pair.

Using Eq. (37), we write

Thus, the change of kinetic energy of the paired electrons 
is

In our sample H = H0 , and according to the energy con-
servation, ΔT = Em = H2

0
V∕8� (see Eq. (21)). This confirms 

that ri = 2�L.
Next, we calculate the gyromagnetic ratio coming from 

its definition. Using Eqs. (37), (40) and (42), we write

where Mi and Li are magnitudes of the induced magnetic and 
angular momenta of the sample, respectively; and �i is an 
average field-induced angular momentum per one electron.

We see that � is fully consistent with the experimental 
result of I. Kikoin and Goobar [56, 57]. Q.E.D.

After all, let us calculate the induction in the sample inte-
rior. Using Eqs. (40) and (42), and the fact that �i is negative, 
we obtain

Q.E.D.
Correspondingly, the magnetic permittivity �m ≡ B∕H 

and susceptibility per unit volume � of the S phase are zero 
and −1∕4� , respectively, as it should [11, 12].

Naturally, due to microscopic character of the induced 
currents, there is no problem in establishing the Meissner 
condition ( B = 0 ) in samples/domains of any shape, as 
soon as the field � is uniform. The latter is indeed so in 

(43)ΔT = Ek = �insV = �cpncpV ,

(44)
�i =

mv2
i

2
=

(mvi)
2

2m
=

e2H2r2
i

8c2m
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4�e2ns

mc2

)( ri
2

)2 H2

8�ns
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(45)ΔT = �insV =
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�insV
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=

�i

mviri
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i
H

4mc2
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i
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=
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2mc
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(47)� = � + 4�� = � + 4�(�ins) = � − 4�
�

4�ns
ns = 0.

ellipsoidal samples [10], regardless whether they are in the 
MS or in the inhomogeneous equilibrium states, i.e., in the 
mixed state of type-II and in the intermediate state of type-I 
superconductors.

This explains why the Meissner state is observed only 
in the ellipsoidal bodies and, on the other hand, a vast vari-
ety of (never spheroidal!) shapes of the S domains in the 
intermediate state [62], one example of which is shown 
in Fig. 7. Note that the specific shape of domains in both 
in-plane and out-of-plane cross sections of a pinning-free 
sample is dictated by the thermodynamic profitability (i.e., 
by the minimal free energy) for the entire sample which 
may include quite a large space (as compared to the sample 
volume) adjacent to it [14].

The above consideration applies to the samples cooled 
in zero field, whereas the Meissner effect is about the 
field-cooled (FC) samples. So, what happens with the FC 
samples?

Upon lowering temperature below Tc(H0) in the fixed field 
H0 < Hc1(1 − 𝜂) , a temperature-dependent fraction of con-
duction electrons condenses forming stable Cooper pairs. 
This means that speed of these electrons drops from vF to v0 , 
each pair starts orbiting its center of mass and, being in the 
field, the pairs precess43. Like in regular diamagnetics, the 
latter leads to establishing magnetization � , the field inten-
sity � = �0 − 4��� and the induction � = ⟨�⟩ = � + 4�� , 
where ⟨�⟩ is the average microscopic field. Hence, after the 
short relaxation time needed to establish the field � , the 
environment inside the FC sample becomes the same as that 
in the ZFC sample. Thus, this model meets the Meissner 
effect indeed44.

One more remark. As mentioned above, radius of the 
electron orbit R0 in precessing Cooper pairs is fixed (i.e., it 
does not depend on the field) or the Larmor theorem is exact 
if vi ≪ v0 [42, 54]. Taking typical value of Hc1 ∼ 100 Oe and 
�L ∼ 10−6 cm, from Eq. (37) one finds vi ∼ 102 cm/s, which 
is six orders of magnitude less than v0 ≈ vF ∼ 108 cm/s [52]. 
So, there is no doubt that R0 is the field-independent quantity 
at constant temperature.

Now, when we worked out with the current induced in a 
single Cooper pair, let us try to reconstruct the current struc-
ture of the Meissner state. We understand that all induced 
currents form identical circular loops with the rms radius ri 
laying in parallel planes perpendicular to the field � . How 
these currents are arranged with respect to each other45?

42 This follows from the validity of Eq.  (27) at �0 ≠ 0 and the uni-
formity of the field � within the sample.

43 Recall that precession is the motion occurring without inertia.
44 In the London theory the Meissner effect is achieved by postulat-
ing B∞ = 0 (Eq. (12)).
45 We remind that Cooper pairs strongly overlap [25], which, never-
theless, makes no effect on either stability or mobility of each pair. 
Recalling the quantum mechanical nature of electrons, this is similar 
to the fact that overlapping myriads of electromagnetic waves around 
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Coming from symmetry, one can expect two options: 
either complete chaos or complete order. Thermodynam-
ics suggests that the second option is more preferable since 
the system of the ordered currents has lesser free energy. 
This is consistent with experimental facts that entropy of the 
sample in the S state is less than that of the N state (see [9] 
for references), and that Abrikosov’s vortices in the mixed 
state form an ordered 2D structure of the maximal symmetry 
(hexagonal lattice)46 [64].

So, the induced currents of the MS can be modeled as 
an ordered 2D structure of cylindrical micro-whirls (similar 
to the quantized vortices in superfluid helium [65]) resem-
bling densely packed and (as we will see next) very tightly 
“wound” micro-solenoids aligned with � . Length of each 
whirl/solenoid equals the sample size along direction of � 
and its rms diameter is 2ri = 4�L . Since the solenoids are 
parallel to each other, they do not interact. This is consist-
ent with the fact that the internal energy of a sample in the 
MS is just the sum of kinetic energies �i (Eq. (45)) and it 
does not contain the term(s) responsible for interaction [10]. 
This is also consistent with experimental data evidencing 
that the Abrikosov vortices do not interact with each other 
[41]. After all, this is consistent with the NMR experimen-
tal data (see, e.g., [66–68]) showing that the Knight shift 
in superconductors when extrapolated to T = 0 is not zero, 
in contrast to what is expected in the BCS theory [24, 25].

Note that the picture of ordered currents corresponds to 
the long-range ordering of superconducting electrons, which 
follows from the postulate of zero entropy of the two-fluid 
model of Gorter and Casimir and was expected by F. Lon-
don, based on his discovery of the rigidity principle. On 
the other hand, the fact that r2

i
 is the average quantity (over 

possible angles � ) means that electrons in precessing Cooper 
pairs experience action of the vector potential averaged 
over a space with dimension on the order of the pairs’ size 
� = 2R0 . This corresponds to the Pippard/BCS non-locality 
principle [25, 32].

Now let us ask what is the spacing between the solenoid’s 
turns or between the induced current loops in direction of 
� ? One can estimate it as follows.

Consider the cylindrical sample in the Meissner state in 
the field H0 (like, e.g., one shown in Fig. 1). The magnitude 
of the linear density of the surface current47 g, calculated 

from the boundary condition for the tangential component 
of the induction Bt (see, e.g., [10]), is

where J is the surface current and L is the length of our 
cylinder.

Since I = �ins , we write

where Jcp = 2Ji is the induced current per one Cooper pair, 
and Ac and V are the cross-sectional area and the volume of 
our sample, respectively.

Let us denote the number of loops in the sample cross 
sectional area Ac (perpendicular to � ) as N⟂ = Ac∕�r

2

i
 and 

the number of loops along L (parallel to � ) as N∥ . The total 
number of the loops is equal to the number of pairs Ncp , 
which is Ncp = ncpV = N⟂N∥ . Then,

The last fraction is the number of the loops per unit 
length. Denoting N∥∕L = n∥ and using Eq. (39) we find that 
the distance between the loops along direction of � or the 
spacing between the induced current loops Δ is

So, the loops are very tightly packed and Δ is a universal 
number, about three times the size of a proton (1.7 fm). In 
terms of �L the spacing is

Next, what is the penetration depth � (the width of the 
surface layer with B ≠ 0 ) in this model: is it �L , 2�L or some-
thing else? It should be a combination of ri and R0 each of 
which is proportional to �L , but this question is so far open. 
However, in any case one can state that � is proportional to 
�L . On that reason, since �L does not depend on the field, � 
does not depend on the field either, in accord with results 
of the microwave measurements of Pippard48 [69] and our 
LE-� SR data [70] (see Sec. VI).
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us do not prevent us from clearly seeing different objects and enjoy-
ing music broadcast by various radio stations.

Footnote 45 (continued)

46 Below we will see that Abrikosov vortices are holes in the network 
of the ordered induced currents of the Meissner phase.
47 Unlike the surface current in the London theory, in our case this 
current is formed by electrons bound in stationary Cooper pairs, so 
there are no either electrons or pairs running along the surface.

48 In [69] Pippard reported results of measurements Δ�L∕�L , the rel-
ative variation of the effective penetration depth �L vs applied field 
changing from zero to Hc at different fixed temperatures. The experi-
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All what was discussed so far is related to the samples 
at T = 0 . But if T ≠ 0 , how will this affect the considered 
properties? The short answer is nohow.

Indeed, like in regular diamagnetics (see problems 2.2 
and 2.3 in [10]), the entropy Scp of the S-fraction of the con-
duction electrons, i.e., of the ensemble of Cooper pairs, in 
our model (below we will call it micro-whirls (MW) model) 
is zero due to condition Eq. (27) and complete ordering of 
the field induced magnetic moments of Cooper pairs. But 
according to the Third law (Nernst’s theorem), temperature 
of a statistical ensemble with zero entropy is zero. There-
fore, the temperature of the ensemble of Cooper pairs Tcp 
is zero regardless on the sample temperature T. Hence, all 
results obtained in this section hold in the whole tempera-
ture range of the existence of Cooper pairs. Respectively, all 
calculations and formulae of this section hold at 0 ⩽ T < Tc . 
In other words, the paired electrons are in the ground state 
in the entire temperature and field range of the S phase 
existence.

Referring back to the zero-entropy postulate of Gorter 
and Casimir, we see that the MW model justifies the validity 
of this postulate and shows that it stems from the quantiza-
tion condition Eq. (23).

However, it is obvious that Tcp = 0 does not mean that 
the sample temperature has no effect on the properties of 
the paired electrons, since otherwise Tc would be infinite. 
Indeed, changing T changes ncp49, as it was shown in the 
two-fluid model (Eq. (2)). Therefore, the change of T leads 
to the change of �L and, correspondingly, to the change of 
ri , the rms radius of the field induced motion of electrons 
in the pairs. On the other hand, ri is proportional to R0 with 
the proportionality coefficient determined by the supercon-
ducting material, which does not depend on T due to the 
constancy of Tcp(= 0).

Thus, both ri and R0 depend on the sample temperature in 
the same way (similar as �0 and �L in the non-local theory of 
Pippard [32]). Therefore, for a given material the ratio ri∕R0 

is the same as that at T = 0 , and, since both R0 and ri do not 
depend on the field, ri∕R0 dependents on neither T nor H0.

Below we will use a slightly different ratio: the parameter 
ℵ (aleph) defined as

where R⟂ is the root mean square projection of R0 on the 
transverse plane or this is the rms distance (averaged over 
all possible angles � ) of the orbiting paired electrons from 
the axis passing through the pair center of mass and parallel 
to � . Important that ri and R⟂ are radii of concentric circles 
laying in the same plane.

In Langevin’s theory r2
i
= R2

⟂
= 2∕3R2

a
 , where Ra is the 

rms radius of the electron orbits in atom [42]. Correspond-
ingly, ℵ is a universal constant equal to 1. Below we will see 
that in the MW model ℵ is a material constant close in its 
essence to the GL parameter �.

One more thing. According to thermodynamics, 
ΔS = Ss − Sn(= (V∕8�)(dH2

c
∕dT)) , a difference of entropies 

of the sample in the MS ( Ss ) and in the N state ( Sn ), does 
not depend on the field [9, 10]. The MW model explains 
this fact by the complete ordering of the induced magnetic 
moments in Cooper pairs, similar as it takes place in regular 
diamagnetics. On the other hand, since the N phase is indif-
ferent to the field by definition, the field independence of 
ΔS implies that ns and therefore �L does not depend on the 
field as well (see Appendix for more details). Thus, the field 
independence of the London penetration depth, following 
from the Bohr–Sommerfeld quantization condition in the 
MW model, agrees with the requirement of thermodynam-
ics, as it should.

Completing this section, we note that in the MW model 
the penetration depth � is the distance in direction perpen-
dicular to the axis of the whirls, i.e., to the field � . There-
fore, in non-cylindrical ellipsoidal samples in the MS, the 
penetration depth in the direction perpendicular to the sur-
face (i.e., to the external field near the surface �ext ) is equal 
to � sin� , where � is the angle between � and the normal 
to the surface � (see Fig. 2). Hence, this model naturally 
resolves the aforementioned dilemma of the London theory.

5.2  Flux Quantization

Take a sample in the MS, e.g., a cylinder in the parallel field 
H0 ≤ Hc1 , and consider the quantization condition Eq. (23) 
but for an arbitrary macroscopic closed loop l laying, for 
simplicity, in a transverse (perpendicular to � ) plane. Mov-
ing along such a loop, we will pass through lots of pairs, so 
to calculate the circulation over the loop l we should con-
sider the average generalized linear momentum ⟨p̃cp⟩ and the 
average quantum number ⟨n⟩ . Since all Cooper pairs are in 

(53)ℵ =
ri

R⟂

,

49 Loosely, this is due to the temperature dependence of the polariza-
tion of the ionic lattice responsible for the electron pairing.

ment was conducted using microwave resonator with wavelength 3 
cm (10 GHz). A small and non-monotonic temperature-dependent 
increase (between about 0.002 and 0.03) of Δ�L∕�L was found. Pip-
pard noted that due to assumptions made the true variation of �L is 
probably smaller, so he concluded that �L can be considered as being 
independent of the field. Later it was demonstrated that the high-
frequency radiation in the Pippard’s resonator disturbs equilibrium 
distribution of the current carriers near the sample surface thus lead-
ing to an additional error not accounted by Pippard. More about this 
experiment will be said in Appendix.

Footnote 48 (continued)
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identical conditions (H is uniform throughout the sample) 
⟨n⟩ = n . Therefore,

where l is the loop length.
Now, open ⟨�̃cp⟩ and take into account that in the MS 

n = 0 . Then, Eq. (54) becomes

The first two integrals are zero due to mutual compensation 
of the induced kinetic liner momenta of electrons in neigh-
boring pairs, like it takes place in the regular diamagnetics.

Now, what is ⟨�⟩ , the average of the vector potential of 
the �-field? To answer, we apply Stokes’ theorem; then 
Eq. (55) is rewritten as

here Fl is the area of a surface bounded by the loop l and d� 
is a vector element of this surface.

From Eq. (56) we see that the integral over the area Fl 
is the flux of a vector [∇ × ⟨�⟩] and this flux equals zero. 
Therefore, since ∇ × � ≡ � ≠ 0 , ⟨�⟩ ≠ �.

On the other hand, inside our sample the induction � and 
therefore its flux is zero (Eq. (47)). Therefore, Eq. (56) sug-
gests that ⟨�⟩ is the vector potential of the magnetic flux 
density (induction) �B defined as � = ∇ × �B . In other 
words, the vector potential of the flux density �B is a macro-
scopic average of the vector potential � determining the field 
induced microscopic currents Ji50. So, putting ⟨�⟩ = �B , we 
rewrite Eq. (56) as

where � is the magnetic flux through the area Fl.
Now, take a tube-like hollow thick-wall long cylinder, 

apply the field H0(< Hc1) parallel to its longitudinal axis 
and cool the cylinder below Tc . Next, consider the closed 
loop l encircling the cylinder’s opening and laying inside the 
wall far (compare to � ) from the inner and outer surfaces of 
the cylinder. The induction inside the wall is zero, implying 
that, as in Eq. (55), ⟨m�i⟩ = 0 . On the other hand, the flux 

(54)∮l

⟨�̃cp⟩ ⋅ d� = nh,

(55)
∮l

⟨�̃cp⟩ ⋅ d� =∮l

⟨m�i1⟩ ⋅ d� + ∮l

⟨m�i2⟩ ⋅ d�

+
2e

c ∮l

⟨�⟩ ⋅ d� = 0.

(56)
2e

c ∮l

⟨�⟩ ⋅ d� = 2e

c ∫Fl

(∇ × ⟨�⟩) ⋅ d� = 0,

(57)
2e

c ∫Fl

(∇ × ⟨�⟩) ⋅ d� = 2e

c ∫Fl

� ⋅ d� =
2e

c
� = 0,

� inside our hollow cylinder is frozen [9] and therefore it is 
not zero. Then Eq. (54) yields

Hence, the magnetic flux passing through the opening 
(plus surrounding it penetration area) in a multiply con-
nected superconductor is

This is the famous London’s flux quantization but for 
the paired electrons. Hence, the origin of the superconduct-
ing flux quantization is the quantization condition Eq. (23), 
which also justifies existence of the field induced persistent 
currents in the MS, as it must.

Equation (59) indicates that the superconducting flux 
quantum and therefore the flux passing through each so-
called Abrikosov vortex in type-II superconductors in the 
mixed state [10] is

As well known, the flux quantization Eq. (59) and the 
single flux quantum in the Abrikosov vortices Eq. (60) are 
in full agreement with experiment [37, 41, 64].

Thus, inside the S phase the vector potential �B = ⟨�⟩ , 
where � is the vector potential of the field � . Now, what is 
the value of �B inside the sample in the MS?

In the plane perpendicular to � we have uniformly dis-
tributed identical induced circular currents, i.e., in-plane cur-
rents with the same magnitude Jcp and the same rms radius 
ri circulating clockwise relative to � . Therefore, exactly as 
it takes place in regular diamagnetics [42], equal amount of 
electricity flows in opposite directions throughout an out-of-
plane cross section of an arbitrary chosen volume element 
dV. Therefore an average current density ⟨�⟩ = ens⟨�i⟩ is zero 
in any volume element of the sample interior or inside the S 
phase. Hence, taking into account Eq. (30) we obtain

Thus, in the MW model all but one (the incorrect assump-
tion H∞ = 0 ) assumptions of the London theory (the 
assumptions in Eq. (12) plus (13) and �∞ = 0 ) follow from 
the quantization condition Eq. (23) provided that �∞ and 
�∞ are average of the corresponding microscopic quanti-
ties. At the same time, the highly questionable assumptions 
in Eq. (11) as well as the assumption about circumferential 
surface current in the MS can be safely ruled out.

(58)
∮l

⟨�̃cp⟩ ⋅ d� =
2e

c ∮l

⟨�⟩ ⋅ d� = 2e

c ∫Fl

∇ × ⟨�⟩ ⋅ d� =

2e

c ∫Fl

� ⋅ d� =
2e

c
� = nh.

(59)� =
c

2e
nh =

�cℏ

e
n.

(60)�0 =
c

2e
h =

�cℏ

e
.

(61)�B ≡ ⟨�⟩ = ⟨�i⟩ = ⟨�⟩ = 0.

50 Note the exact match with the classical definition of �B as a mac-
roscopic mean of the vector potential [42].
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5.3  Other Properties

The Hall Effect In one of the first experiments on super-
conductivity, Onnes and Hof revealed a non-existence of 
the Hall effect in Sn and Pb samples [71]. More specifically, 
they observed a sharp drop of the Hall voltage at crossing the 
critical temperature from above. Later Onnes conducted a 
carefully designed and long lasting experiment (see footnote 
( 1)), from which he concluded that in superconductors the 
Hall effect is absent [6]. These experiments were discussed 
by Lorentz [28] and Hall [29]; their conclusions are diamet-
rically different51. As of today, no convincing explanation 
of the non-existence of the Hall effect in superconductors 
is known.

In the MW model the absence of the Hall effect naturally 
follows from the fact that the only action of the external 
magnetic field on the superconducting (paired) electrons 
(exerted through the field H) is the change of magnitude 
of the angular velocity � of their induced circular motion 
caused by precession of the pairs, regardless on specific 

path of the transport current. Therefore, the magnetic field 
cannot affect this path. Interesting to note that discussing 
Onnes’ experiments Hall raised what he called a “heretical” 
question: “Is there conclusive evidence that the persistent 
currents which Onnes and others have observed are any-
thing more than the aggregate of microscopic electric whirls 
within the metal?” [29]. Needless to say that this is exactly 
the case in the MW model.

Paramagnetism of the Abrikosov Vortices As known, 
the magnetic moment of type-II superconductors in the 
mixed state52 being negative increases (decreasing in mag-
nitude) with increasing applied field (see, e.g., [41, 72]). 
This implies that each flux line, referred to as Abrikosov’s 
vortex, carries a positive (paramagnetic) magnetic moment.

The standard picture of the Abrikosov vortices is shown 
in Fig. 8. According to this picture, the induced current in 
each vortex runs about the vortex core counterclockwise, 
when viewed from the tip of the field, i.e., it is paramag-
netic. However, as known from electrodynamics [42, 54] 
and thermodynamics [10] currents induced by magnetic field 
in a singly connected sample (regardless superconducting 

Fig. 9  Abrikosov’s vortex in the MW model. Blue solid circles with 
arrows represent the currents in the cross section of the micro-whirls 
(solenoids) colored in light-blue; ri is the rms radius of the induced 
currents. A central not colored circle, the core of the Abrikosov vor-
tex, is a hole in the network of the diamagnetic micro-whirls. An 
effective paramagnetic current surroundings the core is shown by the 
dashed line. It is formed by the diamagnetic currents induced in the 
pairs surrounding the core (colored online)

51 Lorentz: “...motion of the electrons is to a great extent insensible 
to the transverse forces exerted by the field”. Hall: “... electric cur-
rents have in one respect less freedom of motion in the supraconduc-
tive state than in the normal state.”

52 Recall that the mixed state is an equilibrium (thermodynamic) 
state [10]. This implies that magnetization curve of the samples in the 
mixed state is reversible and correspondingly the samples are pinning 
free.

Fig. 8  Standard picture of Abrikosov vortices copied from Google’s 
images of vortices in superconductors. Persistent current with the 
volume density � flows counterclockwise inside the field penetration 
layer along circles centered at the vortex core, i.e., it is paramag-
netic. The current charge carriers are Cooper pairs not experiencing 
resistance. As one can notice, the magnetic Lorentz force driving the 
pairs is directed out from the center, and therefore such a current is 
possible only if either the charge of Cooper pairs is positive or their 
mass is negative. Alternatively, this current increases the field passing 
through the vortex, and therefore it increases the sample free energy, 
which is contrary to thermodynamics
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or not) are always diamagnetic. So the standard picture of 
the Abrikosov vortices is questionable. On the other hand, 
numeral experiment confirm the vortex structure of the 
mixed state [49, 64].

Schematics of the Abrikosov vortex in the MW model 
is shown in Fig. 9. In this model, the minimum magnetic 
flux �0 passes through the sample when superconductivity 
is suppressed in the volume of one micro-whirl. Thus, there 
will be a normally conducting “hole” (not colored circle) in 
the network of the superconducting micro-whirls (shown 
in blue).

Current around this normal hole (the core of Abrikosov’s 
vortex) is an effective paramagnetic current (shown by the 
dashed line) formed by the induced diamagnetic currents in 
precessing Cooper pairs. Correspondingly, contribution of 
each such a hole into the sample magnetic moment is para-
magnetic in agreement with experiment and general physics.

One can also note that, due to symmetry, in sufficiently 
pure samples the first Abrikosov vortex (the vortex at 
H = Hc1 ) should appear close to the sample geometrical 
center in the plane transverse to � . This has indeed been 
observed [73].

On the other hand, in the case of a multi-flux-quantum 
N domain in type-I superconductors or a set of the single-
flux-quantum vortices in type-II ones, the total flux passing 
through the sample is an integer of the flux associated with 
one hole, i.e., �0 . This is an alternative justification of the 
flux quantization in superconductors.

Surface Tension The most important equilibrium proper-
ties of superconductors in the states other than the MS are 
associated with the energy of the S/N interphase boundaries 
inside the sample, also referred to as the S/N surface tension.

As known [10, 49, 74], to construct the S/N surface 
tension a theoretical model should have two microscopic 
parameters with dimension of length. In the MW model such 
parameters are R0 and ri . The wall-energy parameter � [10, 
49] in this model is � = (R⟂ − ri).

In Eq. (53) we introduced the parameter ℵ . The only what 
we know so far about ℵ is that it is positive. On the other 
hand, it is clear that properties of superconductors with ℵ 
greater and lesser than unity are different. Let us briefly look 
at what this difference is.

For simplicity, we will again consider the cylindrical sam-
ple. Cross sections of the current structure of the MS in the 
MW model for samples with ℵ < 1 and ℵ > 1 are schemati-
cally shown in Fig. 10a, b, respectively. The pink areas there 
(those with radius R⟂ ) represent cross sections of the cylin-
drical volumes filled with Cooper pairs. And the blue areas 
are cross-sections of the cylindrical volumes (with radius ri ) 
of the micro-whirls/solenoids. We remind that both ri and R⟂ 
are root mean square radii, i.e., the edges of the cylinders 
in Fig. 10 are not sharp implying that the cylinders overlap 
not leaving voids.

The field can pass through the sample via the hole in the 
network of the induced micro-whirls. An elementary hole 
(the one carrying the single flux quantum �0

53) represents an 
“opening” in the transverse cross section of the 3D network 
of these currents. The hole volume equals the volume of the 
blue cylinder �r2

i
L , where L is the length of our sample. To 

create such a hole superconductivity must be suppressed in 
the corresponding pink cylinder (the one with radius R⟂ ). 
By definition, the magnitude of the minimal field H when 
it happens is Hc1.

Now, referring to Fig. 10a, the magnetic energy of the 
elementary hole Θn , where the subscript n stands for “nor-
mal”, at H = Hc1 is

On the other hand, in the absence of a hole its space is 
taken by the cylinder, which magnetic energy Θs (the sub-
script s stands for “superconducting’) at H = Hc1 is

(62)
Θn = �R2

⟂
L
H2

c1

8�
= �r2

i
L
H2

c1

8�

+ �(R⟂ − ri)(R⟂ + ri)L
H2

c1

8�
.

Fig. 10  Schematics of the current structure in the transverse cross 
section of the samples of type-I (a) and type-II (b) superconductors. 
In (a) ri < R⟂ or ℵ < 1 ; in (b) ri > R⟂ or ℵ > 1 . The induced currents 
are designated by arrows. Areas filled with Cooper pairs are colored 
in pink; the cross-sectional areas of the induced micro-whirls are 
colored in blue. R⟂ is the projection of the rms radius of the orbital 
motion of the paired electrons R0 onto the plane perpendicular to � ; 
ri is the rms radius of the induced motion of the paired electrons. The 
field � is directed toward the reader (colored online)

53 The flux associated with each elementary hole is the flux pass-
ing through an “empty” blue cylinder plus an area around it where B 
decays from B = H to zero.
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Therefore, the difference �  of the magnetic energies 
of the non-superconducting hole and the superconducting 
“insert” into this hole is

where � = R⟂ − ri , the radial width of the space between 
the pink and blue cylinders, is the wall energy parameter 
[10, 49]; b = 2�[(R⟂ + ri)∕2] is the length of a notional S/N 
interphase boundary in the plane perpendicular to � ; and 
Ab = bL is the area of this boundary.

We see that �  is the excess energy caused by the pres-
ence of the S/N interface at the hole boundary and therefore 
�b = �∕Ab , the excess energy per unit area of this boundary, 
is the surface tension. Note that this is close to that how the 
S/N surface tension was for the first time introduced by H. 
London [75] and used by Landau in his laminar model of the 
intermediate state [76]. On the other hand, the wall energy 
parameter � = R⟂ − ri is close to that proposed by Pippard: 
� = � − �L [74].

Now, the total free energy (see [10]) of the sample with 
one “hole” (the N domain carrying the single flux-quantum) 
is

where F̃(T ,Hc1) is the total free energy of the sample with-
out the hole at H0 = Hc1 , i.e., of the sample in the MS, and 
N⟂ is the number of micro-whirls (see Eq. (50)).

Thus, we see that if ℵ < 1 , or 𝛿 > 0 , or the surface ten-
sion �b and, correspondingly, Γ is positive, the free energy 
of the cylindrical sample without the hole (N domain) is 
always (i.e., for any Hc1 ) less than that with the hole. There-
fore, such a sample stays in the MS all the way up to the 
thermodynamic critical field Hc , or Hc1 = Hc . At H0 = Hc 
the magnetic energy of this sample Em = H2

c
V∕8� = Ec and 

therefore superconductivity collapses all over the sample 
volume meaning that the sample converts to the N state via 
the phase transition of the first order. Therefore, in the MW 
model materials with ℵ < 1 represent type-I superconduc-
tors, as it should be the case when the S/N surface tension 
is positive [10].

(63)Θs = �r2
i
L
H2

c1

8�
.

(64)
� ≡ Θn − Θs = �(R⟂ − ri)(R⟂ + ri)L

H2

c1

8�
=

�bL
H2

c1

8�
= �

H2

c1

8�
Ab = �bAb,

(65)

F̃(T ,H0)1h ≡ F̃s0 − �

Hc1

0

MdH0 =

F̃n −
Hc

2

8�
V + (N⟂ − 1)Θs + Θn =

[F̃n −
Hc

2

8�
V + N⟂Θs] + � = F̃(T ,Hc1) + � ,

The same steps as above for the case depicted in Fig. 10b 
where R⟂ < ri lead to Eq. (64), but now 𝛤 < 0 , or the surface 
tension is negative, or ℵ > 1 . Then from Eq. (65) we see 
that the free energy of the sample with the hole is always 
less than that without the hole. This means that the sample 
should be in the mixed state at any H0 regardless how small 
this field is. Apparently, however, that the flux quantization 
prevents the appearing of the first hole until H(= H0 in the 
cylindrical sample) reaches a finite value Hc1 . At this field 
the flux passing through the first hole equals �0 . The same 
conclusion can be drawn from purely thermodynamic rea-
soning [10].

To create the second hole, the applied field H0(= H in our 
sample) should be increased so that the total flux passing 
through the sample equals 2�0 , and so on. At the same time, 
it is easy to show that separate holes with the flux �0 passing 
through each are thermodynamically more profitable than 
one hole with the total flux in it [49, 77]. As known, this pic-
ture is fully consistent with the experiment (see, e.g., [41]).

Therefore, above Hc1 the number of holes (Abrikosov vor-
tices or the flux lines) gradually increases with increasing 
H0 and the transition to the N state is continuous (second 
order) phase transition occurring at H0 = Hc2 > Hc . In the 
MW model Hc2 is54

Thus, we see that materials with ℵ > 1 represent type-II 
superconductors and the significance of the parameter ℵ is 
similar to that of the GL parameter � . We remind that the 
range of applicability of the GL theory is limited to the close 
vicinity of the critical temperature [79].

Applying thermodynamics and taking into account that 
the governing field inside superconductors is the field inten-
sity � one can extend the above consideration to arbitrary 
ellipsoidal samples, i.e., to both homogeneous (Meissner) 
and non-homogeneous (intermediate and mixed) states.

Type‑I to Type‑II Conversion As known, the addition of an 
impurity to a flawless elementary type-I superconductor 
(e.g., alloying with another metal) converts it to a type-II 
superconductor and, correspondingly, leads to an increase 
of the critical field of the S/N transition denoting in this case 
as Hc2 [32, 72]. The same effect takes place at decreasing 
the sample dimensions, in particular the thickness of suf-
ficiently thin films (see, e.g., [9, 49] and references therein). 
Shubnikov et al.55 [72] reported that the higher the alloying 

(66)Hc2 = ℵHc.

54 Eq.  (66) is derived assuming that superconductivity vanishes 
completely at Hc2 , i.e., neglecting the filamentary state occurring at 
Hc2 < H0 < Hc3 [10, 78].
55 In this work the type-II superconductivity was solidly established 
for the first time.
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percentage, the higher Hc2 . And Pippard reported [32] that 
the alloying increases �L and reduces the mean free path 
length.

Pippard explained the type-I/type-II conversion by 
decreasing the coherence length �(= (1∕�0 + 1∕lm)

−1) , 
assumed to be a function of the mean free path lm . Recall 
that according to Pippard � = � − �L , and � is a spacial scale 
over which a change of F. London’s ordering of the elec-
tron structure with the rigid �̃ can take place (“spreading 
tendency of the state of order” [80]). Correspondingly, the 
decreasing mean free path (which can also be expected in 
thin films) results in decreasing � and therefore can lead to 
the sign change of � [32].

For the thin films an alternative explanations of the 
increase of the critical field was given by H. London [75] 
and by Ginzburg and Landau near Tc [27].

In the MW model �(= 2R0) is the size of Cooper pair, a 
temperature-dependent constant of material determined by a 
polarization ability of its ionic lattice. At alloying, atoms of 
the other metal locally disturb the polarization of the lattice 
of the host material thus preventing the formation of pairs, 
which otherwise would exist at that locations. Apart from 
these places, the polarization stays unchanged. Correspond-
ingly, the number density of Cooper pairs ncp decreases, but 
� is not altered. This leads to increase of �L , ri and ℵ . The 
latter, being originally lesser than unity, at sufficient alloying 
(in PbTl alloy it can be as small as 0.8% of Tl [72]) becomes 
greater then one, meaning that the sample material converts 
from type-I to type-II.

This picture is consistent with Pippard’s observation of 
the increase of penetration depth at the alloying and with 
the fact that pure type-I superconductors can be converted 
to type-II ones, but not vice versa56.

A similar in its essence process leads to an effective type-
I/type-II conversion of the film material at decreasing the 
film thickness d. When d becomes less than about 2R0 only 
Cooper pairs oriented so that 2R0 sin𝜙 < d , where � is the 
angle between �0 and the normal to the film surface, can sur-
vive. Respectively, the lesser d the lesser ncp and the greater 
ℵ . This implies that at a definite thickness ℵ becomes larger 
than unity and therefore the film behaves as though it is 
made of a type II superconductor. Correspondingly, with a 
further decrease of the thickness the critical field becomes 
progressively greater than Hc.

The outlined interpretation is consistent with the well 
known fact that even very thin films of type-I materials 
remain superconducting and that these films always behave 

as type-II superconductors, as for the first time was revealed 
in the classical experiment of Shalnikov [81] and confirmed 
in many other experiments afterwards.

Total Current Finally, let us briefly consider one more very 
important property of superconductors not directly related 
to the MS, a so called total current.

In the MW model the equilibrium magnetic properties of 
superconductors are qualitatively similar to the properties of 
conventional diamagnetics. In both cases these properties are 
due to magnetization arising from precession of the micro-
scopic magnetic moments caused by the orbital motion of 
electrons bound either in atoms (conventional diamagnetics) 
or in Cooper pairs (superconductors). A colossal quantitative 
difference in the magnetic susceptibilities in these materials 
(up to 5 orders of magnitude!) is due to the differences in 
the size of the orbits and correspondingly in the radii of the 
induced microscopic currents of the bound electrons.

However, there is also an important qualitative difference 
in these induced currents. Namely, in conventional diamag-
netics the orbiting electrons are bound in motionless atoms 
(fixed in the crystal lattice), while in superconductors - in 
movable Cooper pairs. Therefore, since the pairs have elec-
tric charge, they can form an electric current, referred to as 
the total current [9]. It includes the transport current and 
the field-induced current encircling the opening in multiply 
connected bodies57. In the latter case, as is observed in the 
experiment [37], the total current is quantized due to the 
flux quantization.

The total current in superconductors plays a role simi-
lar to that of the transport current in conventional metals, 
where it is executed by conduction electrons. The latter obey 
Fermi-Dirac statistics and their energy equals the Fermi 
energy EF . This implies that the carriers of the transport 
current in normal metals, or in the N phase of supercon-
ductors, are “very hot”: their temperature (the temperature 
of the ensemble of conduction electrons) equals the Fermi 
temperature TF = EF∕kB ∼ 104 K, where kB is the Boltzmann 
constant [52].

In striking contrast, the charge carriers (Cooper pairs) of 
the total current in the S phase are “deadly cold”. Since their 
spins are zero, the pairs obey Bose-Einstein statistics and, 
since the temperature of the ensemble of the paired electrons 
Tcp is zero, they form the Bose-Einstein condensate (BEC). 
This (zero temperature) naturally leads to the disappearance 
of the thermoelectric effects, as observed in experiments 

56 Type-I to type-II conversion can be also achieved by introducing 
structural defects. In such case the opposite conversion is possible by 
annealing.

57 The current in closed circuits, like, e.g., superconducting magnets, 
as well as the current encircling the flux trapped in so called pinning 
centers in insufficiently pure superconductors has the same nature as 
the total current in a superconducting ring. A perfect discussion of 
the latter is available in [9].
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(see [9] for references). This amazing transformation of the 
“very hot” single electrons to the “zero-temperature” elec-
tron pairs can be compared with the fact known from the 
relativity theory: two flying apart massless photons form a 
massive pair located in their center of mass [82].

Therefore, the total current in superconductors represents 
the transport current in BEC, known on the properties of 
superfluid helium (see, e.g., [77]). Correspondingly, the total 
current set in a closed superconducting circuit continues run-
ning without energy dissipation provided speed of the charge 
carriers (density of the total current) is lesser of a definite 
critical value.

Thus, in the MW model the electromagnetic properties of 
superconductors associated with the total current58 resemble 
the properties of hypothetical perfect conductors.

As mentioned, the hell-mark of the perfect conductors 
is irreversibly of the sample magnetic moment induced by 
the changing applied magnetic field [9, 10]; its direction is 
determined by the Lenz law whereas the magnetic moment 
caused by magnetization is always diamagnetic. One more 
important feature distinguishing the bound and total currents 
in superconductors is that energy of the former comes from 
internal resources, i.e., condensation energy [10], whereas 
energy of the latter is supplied by an external source59. For 
this reason the multiply connected superconductors can 
never be in the thermodynamic equilibrium implying that 
for such bodies the principle of the free energy minimum 
is inapplicable.

However, it should be stressed that even in the presence 
of the total current, magnetic properties of superconductors 
in the MW model are different from those of the perfect 
conductors. Since the total current is accompanied by its 
own magnetic field, it represents a combination of the whirl 
and translational motion of the paired electrons regardless 
of the presence or absence of the applied field. So in the 
MW model the total current is, in fact, similar to the super-
fluid current in He-II [65]. This is consistent with magnetic 
properties of the superconducting ring60 [9] and with the 
aforementioned observation of Meissner and Ochsenfeld in 
the fourth arrangement of the samples, namely “When the 
parallel superconductors are connected end-to-end in series 
and an external current is connected to flow through them 
above the critical temperature the magnetic field between the 
superconductors is increased below the transition tempera-
ture the external current being unchanged.” [11].

6  Experiment

Above we have already mentioned sufficiently many exper-
imental facts supporting the MW model. Some of them, 
being known for many decades, are explained in the new 

Fig. 11  Induction profile near the surface of the indium (upper panel) 
and niobium films at indicated values of the applied field directed 
parallel to the film. E is the initial kinetic energy of the implanted 
muons; an average implantation depth is directly proportional to 
E (colored online)

58 We are talking about dc total current. Consideration of the ac cur-
rent must include contribution of the unpaired electrons, which is sig-
nificant at frequencies ≳ 103 MHz [9, 49].
59 This can be a battery, which is needed to maintain the transport 
current in the non-superconducting parts of the circuit and/or to set 
the current in the superconducting magnet, or e.m.f. caused by a 
change of the applied magnetic field in the case of multiply connected 
bodies.
60 Interpreting the magnetization curve of the ring Shoenberg distin-
guishes the total current and what he calls “surface” current.
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model for the first time. In this section we will briefly stop 
at yet preliminary results of our recent Low Energy muon 
Spin Rotation (LE-�SR) experiment [70]. The endeavor to 
understand these results was the immediate reason of the 
appearance of the presented model.

This experiment was targeted to verify a possible field 
dependence of the penetration depth near the sample surface. 
Such a possibility follows (i) from the GL theory, where the 
field dependence of the order parameter is the main feature 
distinguishing the electromagnetic properties of the MS 
from those in the London theory; (ii) from reported � SR 
and SANS (Small-Angle Neutron Scattering) data obtained 
on the samples in the mixed state and treated using the GL 
and London theories; (iii) from the standard diagram of the 
Abrikosov vortices; and (iv) from a thermodynamic argu-
ment of H. London following from the assumption of the 
circumferential screening current of the London theory (see 
Appendix). Earlier �(H0) was measured by Pippard using a 
microwave resonator; Pippard concluded that � can be con-
sidered as independent of H0 [69]. Later Sridhar and Mer-
cereau demonstrated [83] that Pippard’s data could be sub-
ject to non-equilibrium effects caused by the high-frequency 
radiation, although the magnitude of these effects is not clear 
(see footnote ( 48)).

So we set up an experiment to verify the field dependence 
of the penetration depth near the surface of samples in the 
MS with � = 0 using the LE-� SR spectroscopy. The samples 
were very pure In and Nb films61 with the thickness about 3 
� m each in the field H0 applied parallel to the films.

Data for the induction near the samples surface obtained 
at temperature near 2 K are shown in Fig. 11. For the nio-
bium sample similar data were obtained also at 8 K. As 
one can see, the induction profiles do not depend on the 
applied field62 and therefore the penetration depth � is field 
independent in both samples. This result is consistent with 
Pippard’s data [69]. The fact of the field independence of 
� is inline with the assumption (see Eq. (9)) of the London 
theory and with the derivation of the MV model.

Important to stress that in both samples for all H0 (but 
30 Oe) B measured with high-keV muons is zero (it is not 
so in Nb at 8 K). Specifically, in the In sample B = 0 when 
measured using muons with the energy E ≳ 20 keV, which 
corresponds to the average muon implantation depth z ≳ 90 
nm. In the Nb sample B = 0 when E ≳ 16 keV ( z ≳ 50 nm). 
This indicates that in both samples B is homogeneous in a 
statistically significant number of the sites of muons with 
energy E = 24.6 keV, the maximal energy of muons in this 
experiment. In Fig. 12 we show the muon stopping profiles 
in Nb (see [14] for In). As one can see, at low temperature 
nearly all muons with E = 24.6 keV stop at the depths where 
the induction B(= 0) is homogeneous. Therefore, like in the 
normal state, the stopping distribution of these muons is 
inconsequential for the data retrieved from their spectra.

Fig. 12  The stopping distribu-
tions of muons of different 
energies E in niobium, as cal-
culated from the Monte-Carlo 
code TRIM.SP. The vertical 
dashed lines denote the mean 
stopping distances at corre-
sponding energies. A shadowed 
area designates the depths 
range where B = 0 at T = 2.3 
K (colored online)

61 See [14, 41] for characterizations of the films used.

62 In both films there is a strange deviation from the common trend 
of the B-points measured by high-keV muons at H0 = 30 Oe. Similar 
deviation takes place in the B-data for Nb at 8 K. This may be an arti-
fact (e.g., due to the frozen-in Earth field) requiring verification.
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On the other hand, if it is so, the spectra of the micro-
scopic fields probed by these muons (again, like in the N 
state) should be Gaussian. In Fig. 13 we show the time spec-
tra taken on the Nb sample using the high-keV muons and 
the spectra taken in the N state (at T = 11 K). The Fourier 
transforms of these spectra, shown in the inserts, represent 
the spectra of microscopic fields. We see that these spectra 
are Gaussian in all three data-points. This confirms that the 
stopping distribution of the high-keV muons does not affect 
the data obtained on this sample at low temperature. Similar 
conclusion can be drawn for the In sample.

After all, the Gaussian spectra of the microscopic fields 
implies that the Gaussian approximation, which was used 
to fit the spectra, is completely adequate and therefore the 
high-keV muons deliver correct information not only on B 
(as they always do [33]) but also on the muon depolariza-
tion rate � , the damping coefficient of the � SR signal. The 
latter characterizes the inhomogeneity of the microscopic 
field over the muon sites (see [14] for details).

Data for the induction B and for the rate � in the pure 
S phase (i.e., at the depths where B = 0 ) for In sample are 
shown in Fig. 14. These data provide the most direct support 
for the MW model.

The point is that, as was just shown, in both our sam-
ples at low temperature a statistically significant fraction of 
muons with E = 24.6 keV stop beyond the penetration layer. 
According to the standard theories, at these depths the super-
conducting material is totally inert (no fields, no currents). If 
so, the muon depolarization rate must be the same as �(0) , 
the rate in the S phase at H0 = 0 . The latter should be close 
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Fig. 13  LE-� SR time spectra taken on the Nb sample. The Fourier 
transforms of these spectra, representing the microscopic field distri-
butions over the muon sites, are shown in the inserts. The spectra in 
(a) and (b) were obtained on the sample in the Meissner state (MS) 
at T = 2.3 K using muons with energy E = 24.65 keV. The spectra in 
(c) were obtained on the sample in the normal state (NS) at T = 11 K. 
H0 is the applied field in Oe; � is the depolarization rate. See [14] for 
methodical details about the measured spectra (colored online)

Fig. 14  The muons’ depolarization rate (red symbols) and the induc-
tion (blue symbols) versus the applied field H0 in the In film at tem-
perature 2.0 K (the film is in the MS) measured with muons of energy 
24.65 keV. Corresponding average implantation depth is about 120 
nm. Solid circuits are the data obtained in field scans with muons of 
fixed energy; triangles are the data obtained in energy scans at fixed 
fields 30 Oe (solid triangle), 75 Oe (open triangle up) and 170 Oe 
(open triangle down). Hc is the critical field (colored online)
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to �N , the rate in the N state, since �(0) and �N are mostly 
determined by the nuclear damping. Indeed, as seen from 
Fig. 14, �(0) ≈ �N (extreme left and right red data-points).

On the other hand, according to the standard theories 
at 0 < H0 < Hc1 the rate should be the same as �(0) , i.e., 
it should not depend on H0 because the latter is supposed 
to be completely screened at that depth. The situation is 
right opposite in the MW model: the greater H0 , the greater 
H(= H0 in the given geometry) and therefore the greater 
the induced currents Ji circulating all over the sample 
volume.Correspondingly, inhomogeneity of the microscopic 
fields increases with increasing H. If so, the depolarization 
rate of muons stopped at the depths where B = 0 should be 
increasing with increasing H0 . This is exactly what we see 
in Figs. 13a, b, and 14.

7  Summary and Outlook

Historical experiments of Meissner and Ochsenfeld and of 
Rjabinin and Shubnikov, in which the Meissner effect was 
established, are reviewed. Theories of Gorter and Casimir 
and of F. and H. London addressing, respectively, thermody-
namic and electromagnetic properties of superconductors in 
the Meissner state are reviewed as well. It is shown that due 
to significant difficulties in Londons’ theory, the standard 
description of the electromagnetic properties of supercon-
ductors is inadequate and requires revision.

A novel semi-classical micro-whirls model targeted to 
address this issue is developed and presented. The model 
is based on the concept of paired electrons obeying the 
Bohr–Sommerfeld quantization condition. Accordingly, 
each Cooper pair represents a microscopic circular current 
like the current due to orbiting electrons in atoms.

The model is valid in the whole range of the supercon-
ducting state for samples of any shape and at any orienta-
tion of the applied field. A fundamentally new prediction of 
the model is that the S phase of superconducting ellipsoidal 
bodies in a static magnetic field is filled with ordered micro-
scopic whirls of field induced currents caused by precessing 
Cooper pairs. The model is free from disadvantages of the 
standard theories, simultaneously reproducing their achieve-
ments. All properties predicting by the model can be verified 
experimentally.

The model consistently describes equilibrium properties 
of superconductors, which includes the Meissner effect, 
persistency of induced currents, zero entropy of “super-
conducting” electrons (i.e., of the ensemble of Cooper 
pairs), the London rigidity principle for Cooper pairs, the 
flux quantization, the S/N interface energy of two signs and 
hence two type of superconductivity, and others. Some well-
known experimental facts, such as the Meissner state in non-
spheroidal samples and paramagnetism of the Abrikosov 

vortices, are consecutively described in the new model for 
the first time. Non-equilibrium properties of superconduc-
tors, e.g., the non-existence of the Hall effect and other prop-
erties associated with the total current are explained by the 
model as well.

According to the new model, there are two kinds of non-
dissipating currents in superconductors. (1) The current 
formed by electrons bound in stationary Cooper pairs; it 
arises due to precession of the magnetic moments of the 
pairs caused by the orbital motion of the coupled electrons 
about their center of mass; these microscopic currents dic-
tate thermodynamic (equilibrium) properties of the singly 
connected isolated ellipsoidal samples, i.e., properties of the 
Meissner, intermedium and mixed states. (2) A dissipation-
free flow of Cooper pairs forming the total current leading to 
the non-equilibrium properties resembling the properties of 
hypothetical perfect conductors. Both equilibrium and non- 
equilibrium properties follow from the single Bohr–Sommerfeld  
quantization condition for the paired electrons (Eq. (23)).

There was a long lasting discussion about what is the 
prime property of superconductors, i.e., of the supercon-
ducting fraction of conduction electrons or the ensemble of 
Cooper pairs, either it is zero resistivity or zero induction 
[9, 19, 84]. For some reason, this discussion often over-
looks the third fundamental property postulated by Gorter 
and Casimir: zero entropy [21]. In the micro-whirls model 
these three key characteristics of superconductivity are on 
an equal footing and share the same root: quantization of the 
orbital motion of the paired electrons.

Contrarily to the standard theories, the model predicts 
a strong field-dependent inhomogeneity of the induced 
microscopic currents in the bulk of the samples in the Meiss-
ner state. The existence of such currents follows from the 
requirement of the First law of thermodynamics and were 
foreseen by Hall [29] coming from the disappearance of the 
Hall effect first observed by Onnes and Hof [71], and by I. 
Kikoin [57] based on his and Goobar measurements of the 
gyromagnetic ratio [56]. Available LE-� SR data support this 
prediction. However these data were obtained in the experi-
ment aimed to another task and therefore require a targeted 
verification. It can be also interesting to perform the SANS 
experiment with samples in the Meissner state. Potentially, 
such an experiment can make it possible to measure the 
diameter of micro-whirls.

One more way to verify the model can be as follows. 
According to the model, the sample in the Meissner state 
is filled with the ordered and parallel to � whirls of the 
field-induced microscopic circular currents with a fre-
quency � = eH∕2mc , where � is the field intensity inside 
the sample (Eq. (38)). Therefore, if it is so, a weak ac trans-
verse field (with respect to � ) should experience a reso-
nance absorption at the linear frequency �s = �∕2� = 1.8H 
MHz, where H is in Oe (numerically the same as G). The 

2005Journal of Superconductivity and Novel Magnetism (2021) 34:1979–2009



1 3

frequency �s equals half the standard frequency of the elec-
tron paramagnetic resonance (EPR). Important to stress that 
the sample should not be small. For example, it can be a 
piece of straight superconducting wire with a diameter of 0.5 
mm and a length of 5-10 mm or longer. In such case � = �0 
if the applied field �0 is parallel to the sample longitudinal 
axis, and � = 2�0 , if �0 is perpendicular to this axis. For 
a spherical sample (e.g., 4 mm in diameter like the sample 
used in the experiment of I. Kikoin and Goobar) � = 3�0∕2 . 
To ensure unambiguity, the sample should be pure and free 
of frozen-in flux.

Note that a possible existence of such a diamagnetic reso-
nance can be traced from measurements of the gyromagnetic 
ratio in superconducting samples by I. Kikoin and Goobar 
[56, 57] similar as the existence of EPR is traced from meas-
urements of the gyromagnetic ratio in ferromagnetic samples 
by Einstein and de Haas63 [85].

Regarding the model itself, its story is not complete yet, 
of course. One of remaining questions is the penetration 
depth at the surface of the samples in the MS and at the S/N 
interphase boundaries within the samples in the intermediate 
and the mixed states.

Perhaps the main feature of the new model is its striking 
simplicity. As cited above, a model of such kind was antici-
pated by Fritz London based on his discovery of the rigidity 
principle. On the other hand, being semi-classical, the model 
cannot and does not address specifics of the lattice polariza-
tion responsible for Cooper pairing.

Finishing, we cite one more excerption from the book of 
F. London [8]: “Thus we may conclude that it ought to be 
sufficient [for construction of the model] to derive the rigid-
ity of the average momentum for simply connected isolated 
superconductor”. It seems we have strong reason to say that 
the presented model copes with this task.

Appendix

Thermodynamic Argument of H. London

In 1947 Heinz London suggested a thermodynamic argu-
ment according to which the London penetration depth �L 
should depend on the applied field H0 [9, 69, 86]. This argu-
ment has played an important role in the history of super-
conductivity, but is rarely mentioned in textbooks. Let us 
recall and discuss it.

Consider a long superconducting (for definiteness type-I) 
rod of radius ℜ ≫ 𝜆L in a parallel field �0 , i.e., a cylindrical 
sample in the MS. A strict thermodynamic relationship reads 
for this sample64 (see, e.g., [10])

where S and M are the entropy and magnetic moment of the 
sample, respectively, and T is its temperature.

In the London theory the magnetic moment of the chosen 
sample is (see footnote ( 20 ) above)

where Vp and Asm stand for the volume of penetration layer 
and the sample surface area, respectively.

Note that Vp represents a kind of “excluded” volume pos-
sessing pretty peculiar properties: it does not contribute into 
the sample magnetic moment, but the current in this very 
volume sets this moment.

Next, neglecting thermal expansion and taking into 
account that �L depends on T, from Eq. (68) it follows

(67)
(

�S

�H0

)

T

=
(
�M

�T

)

H0

,

(68)M = −
H0

4�
(V − Vp) = −

H0

4�
(V − �LAsm),

(69)
(

�S

�H0

)

T

=
AsmH0

4�

(
��L
�T

)

H0

.

Fig. 15  A cross section of the field-induced currents in Cooper pairs 
Jcp inside a thin traverse (with respect to � ) slice of a sample in the 
MS as follows from the MW model. The sample is a film with thick-
ness d, like the film in Fig. 3. The slice contains currents induced in 
one Cooper pair of each micro-whirl of the sample; �cp is the mag-
netic moment induced in one pair. The whirls represent identical 
solenoids parallel to the field �(= �0 in this geometry); their rms 
radius ri = 2�L . The graph schematically shows the distribution of 
the induction B along the z axis perpendicular to the sample surface; 
�(≠ �L) is the width of the surface layer in which B decays from H0 to 
zero (colored online)

63 In both works the gyromagnetic ratio was measured using a reso-
nance technique, in which the sample oscillates in resonance with the 
oscillating applied field.

64 In general case, i.e., for any ellipsoidal sample in an arbitrary ori-
ented field this relationship is (∇�S)T = (��∕�T)H.
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Therefore, since (��L∕�T)H0
≠ 0 [9], the sample entropy 

S depends on H0 at constant temperature. Important to point 
out that this entropy is contained entirely within the penetra-
tion layer65 (if Vp = 0 then there is no the entropy change 
with the field) and its density (calculated as (S − S0)∕Vp , 
where S0 is the entropy at zero field) is  not small [8, 9, 69].

According to the two-fluid model, the entropy of a super-
conductor in the MS is caused by the change of ns . Hence, 
the field dependence of S implies that ns depends on the field 
at constant temperature. Therefore, �L(∼ 1∕

√
ns) depends 

on the field. This is the essence of H. London’s argument. 
Recall that the field-independence of �L is one of the base 
assumptions of the London theory. So, H. London’s argu-
ment poses one more dilemma in this theory.66

This argument was discussed by Pippard [69] who, as 
mentioned above, found experimentally that �L is essentially 
field-independent. Pippard’s discussion is reproduced in [8] 
and [9], therefore here we note only two points. (i) Pippard 
dropped from consideration 70% of his data67 thus admitting, 
in fact, that error bars he provides are not fully adequate. 
Indeed, as it was demonstrated by Sridhar and Mercereau 
[83], Pippard’s data can be subject to non-equilibrium effects 
caused by high-frequency radiation, which have not been 
accounted. (ii) Basing on the remaining data and (although 
not always consequent) interpretation of Eq. (69) Pippard 
concluded that F. London’s idea of a long-range ordering of 
the superconducting phase is consistent with his observa-
tions. Coming from that Pippard arrived at the concept of 
nonlocality [32], which paved the way for the BCS theory.

Now, let us consider what one can say about �L based 
solely on thermodynamics.

By definitions of the condensation energy Ec(T) and the 
thermodynamic critical field Hc(T) , the difference between 
the total free energies of the sample in the superconducting 
( ̃Fs ) and the normal ( ̃Fn ) states in zero field is68

(70)F̃n0 − F̃s0 = F̃n − F̃s0 = Ec(T) = V
H2

c
(T)

8�
,

where subscript 0 designates zero field; for the normal state 
F̃n0 = F̃n since the magnetic permeability in the normal state 
is unity by definition.

Next, by definition of the total free energy [10], F̃s of a 
cylindrical sample in the field �0 at constant T is

Here we also used the Meissner state definition accord-
ing to which � of the sample in the MS does not depend on 
temperature at constant field, as it takes place in all other 
diamagnetics [10]. As known (see, e.g., Fig. 3), this is con-
sistent with experiment.

Now, from Eq. (71) we get

Since none of the terms on the right hand side depend on 
the field, the entropy of the superconducting sample in the 
MS does not depend on the field (like in all other diamagnet-
ics). This implies that ns and therefore �L are independent of 
the field. The same conclusion can be drawn immediately 
from Eq. (67) basing on the MS definition. Following to 
Pippard [69], the field independence of �L means that the 
long-range order of the superconducting phase extends over 
the entire volume of the sample in the MS. This is exactly 
what follows from the MW model.

Thus, thermodynamics applied to the London theory 
requires the field dependence of �L , the agreement of which 
with experiment is, at least, questionable. On the other hand, 
in accordance with experiment, the pure thermodynamic 
approach excludes such a dependence. However, it may look 
like that the latter approach ignores the presence of the pen-
etration layer where B ≠ 0 , which is confirmed in countless 
experiments. Let us now turn to the MW model.

Figure 15 schematically shows a cross section of a thin 
( ≈ 6 fm thick) transverse slice of a sample in the MS, as it 
follows from the MW model. The slice contains the induced 
currents in one Cooper pair Jcp of each micro-whirl of the 
sample.

As one can see, contrarily to the London theory, there is 
no excluded volume. The currents induced in a unit volume 
just next to the sample boundary (at z near 0 and d) make 
the same contribution to the sample magnetic moment as the 
induced currents in the unit volume in any other part of the 
sample. Therefore, the magnetic moment per unit volume � 
is the same everywhere inside the sample. Then, the sample 
magnetic moment is

(71)F̃s(T ,H0) = F̃s0 − ∫

H0

0

�d�0 = F̃n − V
H2

c

8�
+ V

H2

0

8�
.

(72)Ss ≡ −

(
�F̃s

�T

)

H0

= Sn +
VHc

4�

dHc

dT
.

65 This is another strange property of Vp , which is excluded from the 
production of magnetic moment.
66 Actually, as we have seen, this is not quite a lawful extension of 
the two-fluid model, where ns changes only with temperature.
67 Those are the data at 1.5 K ≲ T ≲ 3 K. At these temperatures the 
reported variation of the effective penetration depth ��L = Δ�L∕�L 
at H0 changing from zero to Hc decreases from about 0.023 at 1.5 K 
to 0.002 at 3 K. Above 3 K ��L increases up to 0.027 near Tc . From 
Eq.  (69) (after two more steps) it follows that ��L increases with 
increasing temperature starting from zero at 0 K. On that ground Pip-
pard concentrated on the data at T > 3 K.
68 In zero field �F(T ,�0) = F̂(T ,�) = F(T ,�) , where the last two 
functions are the Gibbs and Helmholtz free energies, which are appro-
priate for samples of the cylindrical and transverse geometries, respec-
tively. The total free energy F̃ is suitable for all geometries [10].
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where H is the field intensity, � is the demagnetizing factor, 
which equals zero for the samples of cylindrical geometry, 
and V is the entire sample volume as it was in the pure ther-
modynamic approach.

Hence, taking into account that ri is the root mean square 
value, implying that the currents in Fig. 15 overlap, we 
arrive at the distribution of the averaged microscopic field, 
i.e., B, as schematically shown in the graph in Fig. 15. Thus, 
the MW model explains both the validity of the solely ther-
modynamic approach as well as the reality of the penetration 
layer.

Finishing our discussion of H. London’s argument or the 
second dilemma of the London theory, we see that its erro-
neousness, as in the case of the first dilemma, stems from 
the assumption of the screening current, which, in particu-
lar, leads to the appearance of an apparently non-physical 
excluded volume in this theory.
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