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Abstract
Water, being an essential element for the survival of living organisms, requires to be free from contaminants and pollutants. These  
contaminants are generally of organic, biological, microbial or inorganic nature, and all these contaminants pose severe hazards  
to human health upon consumption through the water. The high concentration of heavy metal ions is being found in water 
resources owing to the ever-increasing anthropogenic as well as industrial activities. Some of the heavy metals are crucial for the  
development and functioning of the human body, whereas some are toxic. In any case, consumption of any heavy metal beyond 
the accepted guideline values can lead to the rise of health complications. Researchers are effectively using magnetic nanoferrites  
as nanoadsorbents for water treatment. Specially designed magnetic nanoferrites have been found to provide as high as 99% 
elimination of selective heavy metal ions from the contaminated water. The present study reviews the recent researches con-
ducted in the last two decades in the area of health hazards posed by prolonged consumption of heavy metal ions through  
consumable water and about using magnetic nanoferrites, their composites and derivatives for efficient removal of different kinds  
of heavy metal ions.
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1  Introduction

1.1 � Water Pollution

Water is, undoubtedly, the foundation of human civilization as  
in the absence of water the life on earth will cease to exist. 
Water is one of the most vital elements essential for the exist-
ence and survival of humans and animals as well as plants. 
Water acts as the building material for cells, tissues and organs. 
Water accounts for 70% of the human’s body weight and is the  

critical constituent of blood and other bodily fluids. Water 
maintains the balance of bodily fluids in the human body as 
these fluids assist in numerous biological processes such as 
digestion, circulation, transportation and absorption of nutri-
ents, along with maintaining the body temperature. Water also 
contributes to the production of lubricating fluid for joints 
and acts as a shock absorber due to its tendency to combine 
with viscous molecules and maintain its cellular shape [1, 2]. 
According to The National Academies of Sciences, Engineer-
ing, and Medicine, US, the adequate daily fluid intake for men 
and women is around 3.7 l and 2.7 l, respectively [3]. Out of all 
of the water present on earth, merely 0.014% is fresh and easily 
accessible for consumption. Humanity is currently using only 
around 36% of the total 14,000 km3 of available freshwater. 
Such a considerable availability of consumable water is sig-
nificant enough to meet the requirements of the world’s total 
population [4]. But due to uneven geographical distribution 
and unequal conditions, some parts of the world and people 
living in them face moderate to severe consumable water scar-
city. Factors such as exponential increase in human population, 
spontaneous urbanization and fast industrialisation have also 
contributed to the escalation of the problem of water scarcity. 
The ever-increasing anthropogenic activities have resulted in a  
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considerable increase in the demand of consumable water in 
recent decades [5].

Along with the present scarcity of consumable water, the 
issue of water pollution is an area of grave concern. The aug-
mented anthropogenic activities and industrial growth have not 
only resulted in a heightened demand for consumable water, 
but these also contribute majorly to water pollution. Surface 
runoff water from agricultural and domestic activities and 
wastewater discharge from industrial establishments lead to 
the contamination of neighbouring water resources as well  
as groundwater [6].

Various types of contaminants, i.e. heavy metals, patho-
gens, dyes, surfactants and radiological substances, are known 
to severely pollute the water bodies, and consumption of con-
taminated water is proven to be harmful to the health of living 
organisms. Many underdeveloped and developing countries 
have observed that around 70–80% of problems in women 
and children are related to the consumption of contaminated  
water [7].

1.2 � Heavy Metals as Water Contaminants

Heavy metal is a general term given to any metal and met-
alloid whose atomic density is higher than 4000 kg/m3 [8]. 
Some of the heavy metals such as iron, zinc, nickel and molyb-
denum are essential for the growth of plants and animals but 
within permissible limits. Few of the heavy metals such as 
arsenic, mercury, lead and cadmium are not crucial for plants 
and animals, and their consumption beyond permissible limits 
tends to cause severe health problems [9–12]. Most of these 
heavy metals do not biodegrade and therefore are difficult to  
eliminate through conventional techniques.

The concentration of heavy metals in the water bodies 
can increase through natural processes along with anthro-
pogenic activities [13]. Industrial wastewater discharge con-
taining heavy metals by chemical-based industries producing 
pharmaceuticals, paints, fertilizers, pesticides and speciality 
chemicals are known to contaminate groundwater and water 
bodies [14]. Modern manufacturing processes such as electro-
plating, metal smelting, printed circuit board manufacturing 
and battery recycling are few of the major industrial activi-
ties that contribute largely in the release of heavy metals in 
the surroundings [15, 16]. Also, combustion exhaust from 
automobiles as well as various industries can lead to the 
deposit of few heavy metals such as lead, arsenic, chromium 
and mercury in the soil that can then reach water bodies and 
groundwater through surface runoff of water [17]. In a given 
area, an increase in agricultural and/or industrial activities can 
significantly pollute the neighbouring water sources. It is seen 
that the corrosion of plumbing pipes and the various compo-
nents of water distribution systems can also lead to the addi-
tion of heavy metals in the water supply. The degree of heavy 
metal contamination in such cases is generally governed by  

the water source, treatment technology employed, length, pipe 
coating and material of the supply pipes and water tanks [18, 
19]. Geogenic contamination and natural anoxic conditions in 
the aquifers are also significant sources of heavy metal con-
tamination in water sources in some areas of the world [20].

1.3 � Health Hazards of Consumption of Heavy Metals

Out of the thirty-five metals that are defined by regulatory 
authorities and are known to pose dangers and threats to human 
health upon exposure, twenty-three of them are heavy metals 
[21]. Heavy metals can reach in the human body through oral 
ingestion, inhalation and dermal exposure. Use of heavy metals 
contaminated water is one of the most common sources through 
which these toxic heavy metals can be orally consumed by 
humans [22]. Though consumption of few heavy metals within 
a permissible limit has been declared essential for the develop-
ment of human body, excess consumption of any one or multiple 
of the heavy metals through drinking water can lead to severe 
consequences to the human health [23]. It has been observed 
that prolonged consumption of few of the heavy metals can 
cause severe complications such as cancer, heart diseases, liver 
and kidney problems, lung and bladder disorders, gastrointes-
tinal disorders, changes in blood composition and damage to 
fundamental organs [24–26]. The unchecked consumption of 
heavy metals has also been found detrimental to the cognitive 
development and central nervous system growth in children 
along with the improper brain and bone development [27, 28]. 
These heavy metals are also found to bioaccumulate in lipids or 
the gastrointestinal system of the human body and are known 
to give rise to fatal problems like cancer [29, 30]. In pregnant 
women, over-consumption of heavy metals contaminated 
water has been observed to increase the risk of stillbirth and 
congenital disabilities [31, 32]. Table 1 represents the guide-
line values, various health hazards and contamination sources  
of various common heavy metal contaminants.

Various types of physical, biological and chemical 
water treatment techniques are employed globally to obtain 
water that is fit for consumption. Different techniques like 
adsorption, electrochemical treatments, ion exchange, 
flotation, reverse osmosis, oxidation precipitation, mem-
brane filtration, evaporation and biosorption processes are 
extensively used for wastewater treatment [52–56]. The 
efficacy of a technique to successfully remove the heavy 
metal contaminants depends on the type of the method. 
Some of these techniques are highly effective in eliminat-
ing pathogens but are not similarly effective in reducing 
heavy metal contaminants and vice versa. The use of nano-
materials is one such technique which has drawn extensive 
attention in the area of water treatment. The nanoscale 
size of these materials provides exclusive properties such 
as availability of large surface areas, more active sites for 
sorption process, high reactivity and strong adsorptions  
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Table 1   Guideline values, impacts and contamination sources of heavy metals

S. no. Heavy metal Heavy 
metal ion

Guideline 
value

Impacts on human health Contamination sources Ref.

1 Aluminium Al(III) 0.9 mg/l • Anaemia
• Cardiac arrest
• Nervous system disorders
• Osteomalacia
• Glucose intolerance

• Water treatment processes
• Water purification chemicals

[33]

2 Antimony Sb(III) 0.02 mg/l • High cholesterol
• High glucose in the blood

• Occurs naturally in ground
• Manufacturing of Flame retardants
• Manufacturing processes
• Natural weathering of rocks
• Industrial and municipal waste

[11, 34]

3 Arsenic As(III) and 
As(V)

0.01 mg/l • Arsenicosis
• Thickening of the skin
• Stomachache
• Numbness of hands and feet, partial paralysis
• Nausea, vomiting and diarrhoea
• Blindness
• Skin, lungs, kidney, bladder, liver, nasal pas-

sages, or prostate cancer

• Natural deposits
• Agricultural activities
• Industrial practices
• Volcanic emissions

[10, 11, 
35]

4 Barium Ba(II) 1.3 mg/l • Vasoconstriction
• Peristalsis
• Convulsions
• Paralysis
• Atherosclerotic heart disease
• Total cardiovascular disease

• Natural sources
• Industrial emissions
• Anthropogenic activities

[36]

5 Cadmium Cd(II) 0.003 mg/l • Chronic renal failure
• Kidney failure
• Anaemia
• Anosmia
• Cardiovascular diseases
• Osteoporosis
• Hypertension
• Acute and chronic intoxications

• Naturally present in the soil
• Atmospheric deposition
• Industrial or agricultural activities
• From leaching, erosion and harvested 

crops

[9, 12, 37, 
38]

6 Chromium Cr(VI) 0.05 mg/l • Liver and kidney disorders
• Dermatitis
• Respiratory issues

• Occurs naturally in ground
• Old mining operations
• Industrial waste disposal

[11, 39, 
40]

7 Cobalt Co(II) 0.05 mg/l • Trouble in breathing
• Asthma
• Respiratory issues
• Pneumonia
• Wheezing

• Natural occurrences
• Anthropogenic activities

[41]

8 Copper Cu(II) 2.0 mg/l • Mild gastrointestinal distress
• Permanent liver or kidney damage

• Natural deposits in rock and soil
• Corrosion in household plumbing

[12, 42]

9 Iron Fe(III) 0.2 mg/l • Dizziness
• Low blood pressure
• Headache and fever
• Shortness of breath
• Fluid in the lungs
• Jaundice
• Seizures

• Iron coagulants
• Corrosion of steel and cast iron pipes

[43]

10 Lead Pb(II) 0.01 mg/l • Neurodevelopmental effects
• Renal disorders
• Cardiovascular diseases
• Hypertension
• Adverse pregnancy outcomes and infertility

• Corrosion of household plumbing and 
water distribution systems

[12, 44]

11 Manganese Mn(II) 0.1 mg/l • Neurological, cognitive and neuropsychologi-
cal effects

• Occurs naturally
• Under low oxygen conditions in the 

depth of water bodies

[45, 46]

12 Mercury Hg(II) 0.006 mg/l • Impaired brain functions and neurological 
disorders

• Agricultural runoff
• From seepage from landfills

[47, 48]
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capabilities [57]. Owing to their strong adsorption charac-
teristics and inherent anti-microbial tendencies, some of the 
nanomaterials have known to eliminate a range of contami-
nants from the polluted water. Numerous types of nanoma-
terials and their derivatives have been explored to treat con-
taminated water [58]. One such class of these nanomaterials 
is magnetic nanoferrites which, along with other crucial char-
acteristics, also exhibit magnetic properties. The separation 
and recovery of nanomaterials from the treated water after 
the treatment process are generally the significant challenges 
involved. This magnetic property of magnetic nanoferrites 
makes this special class of nanoparticles a preferred choice 
as the separation and recovery of these nanoparticles can be 
easily and quickly achieved just by the application of external 
magnetic field [59, 60]. In the best knowledge of the authors, 
it is understood that a detailed report on the application of 
usual and innovative magnetic nanoferrites and their deriva-
tives in the treatment of heavy metal contaminated water is 
not available. The present study thus aims to provide a com-
prehensive review of the research published, particularly in 
the last two decades, about the application and potential of 
conventional magnetic nanoferrites and their standard as well 
as novel derivatives for the elimination of toxic heavy metal  
pollutants from the contaminated or wastewater.

2 � Magnetic Nanoferrites and their Properties

Nanotechnology is the study and research of matter at dimen-
sions of nearly 1–100 nm, where extraordinary phenomena 
allow novel applications [61]. Ferrite is a ceramic material 
and falls within the group of compounds that have iron oxide 
as its vital component [62, 63]. Nanoscale ferrites, also called 
as nanoferrites, exhibit superior magnetic properties when 
compared to the bulk and pure metal [64]. Ferrites can be  

categorized into three categories depending on their chemi-
cal structure, namely (a) Spinel Ferrite (MFe2O4) (where M 
stands for divalent metal ions, i.e. Co, Ni, Cu, Mn, Zn, Cd and 
Mg, with an ionic radius approximately between 0.6 to 1 Å), 
(b) garnet ferrites (R3Fe5O12) (where R stands for trivalent 
ion, i.e. rare earth (Nd, Pr, Dy, Gd, etc.) and (c) hexagonal 
ferrites (MeFe12O19) (where Me stands for the divalent ion of 
a large ionic radius, such as Ba2+, Sr2+ or Pb2+ or the trivalent 
ion such as La3+, Al3+, Ga3+ and Cr3+). The ferrites under 
these categories show exclusive characteristics and distinctive 
magnetic properties [65, 66]. Magnetic nanoferrites can be 
synthesized through various synthesis routes, and the features 
of the prepared nanoferrites depend upon multiple factors and 
reaction conditions such as annealing temperature, composi-
tion, purity of the ingredients and pH of the solution [67, 68]. 
Nanoferrites offer several specific and exclusive advantages 
that facilitate them with the close attention of the researchers 
from the domain of water purification and treatment. Spinel 
ferrites, also called as soft ferrites, exhibit superparamagnetic 
properties and thus have been under extensive research for 
assessing their potential and applications in different domains  
of science and technology [69, 70].

Chemically speaking, a single unit cell of ferrite comprises 
a total of 64 tetrahedral and 32 octahedral locations which 
are available for cations [71, 72]. Ferrites are prepared by 
systematically mixing iron oxide Fe2O3 and the given divalent 
or trivalent ion, depending on the class of ferrite being syn-
thesized. The mixture is then annealed and sintered at a high 
temperature. The temperature is generally less than that of the 
melting point of any of the ingredients of the mixture. In the 
process of heating, the elements fuse and form a spinel, garnet 
or hexagonal crystal structure [73]. The atoms of oxygen dis-
perse in parallel layers, whereas the metallic atoms get scat-
tered at the octahedral and the tetrahedral locations in between 
the layers. Figure 1 represents the crystal structure of an  

Table 1   (continued)

S. no. Heavy metal Heavy 
metal ion

Guideline 
value

Impacts on human health Contamination sources Ref.

• Growth retardation in infants
• Complications in pregnancy
• Endocrine system disruption

• Industrial activities

13 Nickel Ni(II) 0.07 mg/l • Nausea, vomiting and diarrhoea
• Giddiness and physical tiredness
• Headache and exhaustion
• Improper breathing

• From fittings such as chromium-plated 
taps

• From stainless steel well materials

[49]

14 Silver Ag(I) 0.05 mg/l • Potential to damage DNA
• Lowered blood pressure
• Vomiting and diarrhoea
• Stomach problems
• Respiration issues

• Through natural processes
• Weathering of rocks
• Erosion of soils

[50, 51]

15 Zinc Zn(II) 5.00 mg/l • Stomach cramps
• Nausea and vomiting

• Corrosion of piping and fittings [12]
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ideal spinel-type unit cell as a whole as well as the view of 
tetrahedral and orthogonal segments [74].

2.1 � Critical Properties of Magnetic Nanoferrites 
for Contaminated Water Treatment

Magnetic nanoferrites, their derivatives and composites 
find extensive applications in contaminated water treatment 
owing to a few of the vital properties, i.e. (a) adsorbent for 
contaminant removal, (b) extraction of the adsorbate and 
adsorbent and (c) sensing and detection of heavy metal ions 
present in the contaminated water. These properties are 
briefly summarized as follows:

2.1.1 � Adsorbent for Contaminant Removal

Numerous types of nanoparticles have been considered and 
researched for their potential as adsorbents. The nano-sized 
adsorbents have been highlighted because of the two principal 
properties, i.e. elemental surface and extrinsic functionalisa-
tion [75]. The capability of magnetic nanoferrites to eliminate 
several contaminants has been established in both laboratories 
and on-site field testing [76]. Along with dyes, phenols, pes-
ticides, detergents and an extensive range of aromatic com-
pounds, heavy metal ions are the most common pollutants 
existing in the contaminated water. Treatment of contaminated 
water to eliminate or significantly reduce the concentration  

of the heavy metal contaminants by utilising a ferrite-based 
magnetic nanoadsorbent is considered as one of the most effi-
cient and cost-effective approaches. The simplicity of syn-
thesising and application make ferrous oxides an inexpensive 
alternative for heavy and toxic metals adsorption from its 
liquid form [77]. The metallic ions have been regarded as the 
contaminants causing pollution due to their harmful influence 
on humans. Magnetic nanoferrites are particularly suitable 
for the adsorption of the metallic ions because of their innate 
characteristic enabling the elimination of metals.

Moreover, their suitability is enhanced by the non-toxicity, 
recyclability and easiness in the dissolution of magnetic nanofer-
rites [61]. They are favoured for contaminated water treatment 
since they have higher adsorption capability and better dynamic 
locations for an interface with the contaminants [78, 79]. Their 
superparamagnetic behaviour dramatically assists them in dis-
solution from the solution by the peripheral magnetic field. Most 
of the existing applications of magnetic nanoferrites in contami-
nated water treatment depend upon the adsorptive technologies 
or photocatalytic technologies. The adsorptive technologies 
use magnetic nanoferrites either as a type of immobilisation 
bearer or as a nanoadsorbent for improving the efficiency in the 
removal of contaminants. While on the other hand, photocata-
lytic technologies utilize magnetic nanoferrites as semi-conduc-
tor photocatalysts for transforming the pollutants into a lesser 
toxic compound [80]. It is evident that magnetic nanoferrites are 
very useful in the removal of heavy metal contaminants because 
of (i) the ability to remove contaminants even at low concentra-
tion of the adsorbent, (ii) excellent adsorption characteristics, 
(iii) the ability to reduce the toxicity of various harmful metal 
contaminants by changing their oxidation state, (iv) the tendency 
to furnish adjustable reactive surface, (v) the more facile desorp-
tion of the adsorbed contaminants from the adsorbent’s surface 
and (vi) cost-effectiveness and reusability [81, 82].

2.1.2 � Extraction of the Adsorbate and Adsorbent

When other stable compounds are used as adsorbents for the 
adsorption process of heavy metal pollutants, the easiness 
and cost-effectiveness of the process are always the major 
challenges [83, 84]. The use of magnetic nanoferrite provides 
the most recent, most accessible and cost-effective way for 
the extraction of the adsorbate as well as of the adsorbent 
via the magnetic solid-phase extraction [85]. This extraction 
technique is dependent on various properties of magnetic 
nanoferrites such as high adsorption capacity and super-
paramagnetic properties. In this technique, a slight amount 
of magnetic nanoferrites is added in contaminated water 
holding the contaminants so that the adsorbate gets adsorbed 
onto the surface of the magnetic adsorbent. Then, the mag-
netic adsorbent and the object adsorbate are generally iso-
lated by utilising appropriate eluent such as acids, base or  

Fig. 1   Crystal structure of a single-cell unit of ideal spinel-type (a) 
full unit, (b) isolated tetrahedral (A-side) segment and (c) isolated 
octahedral (B-side) segment (reproduced by permission from Ref. 
[74], License Number 4861770977901, Copyright 2019, Elsevier)
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alcohols. The obtained magnetic adsorbent could be reuti-
lized, which makes the use of magnetic solid-phase extrac-
tion technique as one of the most profitable and efficient 
sample preparation techniques. The extraction time is very 
swift, highly sensitive and efficient [86, 87]. One of such 
examples is the soft ferrite nanoparticles which are often 
utilized in the development of magnetic-based solid-phase 
extraction adsorbents, which are quite easy to synthesize and  
possesses non-toxicity.

2.1.3 � Sensing and Detection of Heavy Metal Ions Present 
in the Contaminated Water

Easier and accurate sensing and detection of different metal 
ions present in contaminated water is a significant area of con-
cern [85]. Magnetic nanoferrite-based sensors have proven to 
be advantageous in many ways due to their faster response rate, 
high sensitivity and highly efficient in the selection of the detec-
tion of various chemical items than single oxides [88]. Since 
there are many toxic metal ions generally present in the con-
taminated water in different concentrations where each of these 
metal ions possesses their specific properties, the enhanced 
capability of magnetic nanoferrites in sensing and detecting 
these metal ions is highly appreciated. For example, Fe3O4/SiO2 
core-shell nanoparticles are capable of delivering extremely 
discriminatory detection for Zn(II) with a detection limit of 
10−4 M [89]. Sensing and detection of the heavy metal ions 
present in the contaminated water is an indispensable require-
ment which could be best fulfilled by the use of magnetic  
nanoferrites as is seen from the works of various researchers.

3 � Heavy Metal Removal by Magnetic 
Nanoferrites and Their Derivatives

Aluminium is the most extensively utilized non-ferrous inor-
ganic metal and also considered as an extremely toxic metal in 
the water at high concentrations, especially for drinking purposes. 
Utilization of aluminium-based coagulants, i.e. Al2(SO4)3 or poly 
aluminium chloride (PACL), at times increases the aluminium 
concentrations in addition to the naturally occurring aluminium 
content in the water. Acid rain also leads to the rise in the alumin-
ium level in various sources of freshwater [90]. A high concentra-
tion of aluminium ranging from 3.6 to 6 mg/L in the water leads 
to turbidity, decreases efficiency for disinfection and may precipi-
tate as Al(OH)3 during the distribution time. In very high doses, 
aluminium causes neurotoxicity, followed by a transformed 
function of the blood-brain barrier. Several procedures have 
been extensively used for the removal of aluminium ions such 
as sedimentation, chemical precipitation, coagulation method, 
filtration, reverse osmosis, electrodialysis and cation exchange 
but nanotechnology has the best potential for removal of the  

aluminium heavy metal ions from the contaminated water. 
The aluminium(III) ions present in the contaminated water 
can be removed using magnetic nanoferrites via the batch 
procedure. A fast, specific and cost-effective magnetic solid-
phase removal of aluminium(III) ions from water has been 
developed with magnetic nanoferrites, and the whole adsorp-
tion process can be completed in just 4 min [91]. In recent 
times, the removal of antimony(III) contaminant from con-
taminated water has been of great concern. In nature, the 
antimony(III) is much less predominant, but its influence on 
human health as well as the environment is of great impor-
tance. The speciation and distribution in freshwater related to 
antimony(III) have not yet been extensively studied. Differ-
ent technologies have been used and proposed for the removal 
of antimony(III) from aqueous media. Not much literature is 
available related to antimony(III) as it has recently come into 
the limelight, and the researches are still in the commence-
ment phase [92]. Two magnetic nanoferrite-based absorbents 
have been successfully developed to remove antimony(III) 
from water, i.e. Fe3O4@Fe2O3@CNs and Fe2O3@CNs, and 
these have the capability of magnetic separation and high  
removal capacity for removing antimony(III) [93].

Spinel ferrites such as CoFe2O4, MnFe2O4 and Fe3O4, 
when used as nanoadsorbents, are capable of successfully 
removing arsenic(V) from contaminated water within a con-
tact time of 48 h even when the arsenic(V) concentration in 
the water is as high as 1000 μg/L. Around 40 mg/L of these 
adsorbents are sufficient to bring down the concentration of 
arsenic(V) in the water below the permissible limit of 10 μg/L. 
Figure 2 depicts the XRD patterns of CoFe2O4 nanoferrites 
pre-sintered at 700 °C and sintered at 900 °C, 1000 °C and  
1100 °C for 3 h [73].

An innovative magnetic composite comprising of chi-
tosan, clay and nano-magnetite in the mass ratio of 1:1:2 can 
also be employed as a nanoadsorbent to eliminate arsenic(V) 
from contaminated water. This novel composite can provide 
an arsenic(V) removal efficiency of around 26% at nano-
magnetite’s relative mass ratio of 4, water’s pH level of 5, for 
a contact period of 10 h at 23 ± 2 °C and 150 rpm. Figure 3 
represents the FE-SEM images and EDX analysis of chitosan,  
clay and nano-magnetite particles [94].

Novel synthetic nanoferrite (Fe3O4) of size ~ 12 nm, 
prepared by co-precipitation method, exhibits potential as 
a nanoadsorbent to eliminate arsenic(V) from the aqueous 
solution of arsenic(V) ions when maintained at pH value of 
5.0. Only 0.2 g of the nanoadsorbent is capable of removing 
arsenic(V) from the aqueous solution after the contact and 
stirring time of 24 h. The synthesized magnetite exhibits 
the maximum adsorption capacity of 66.53 mg/g. Figure 4 
shows the SEM images of these synthetic nFe3O4 and mag-
netite samples [95].

Arsenic(III) and arsenic(V) can be removed from the 
contaminated water by the use of magnetic nanohybrid 
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nanoparticles comprising of graphene oxide and manganese 
ferrite nanoparticles (GO-MnFN). These magnetic nanohy-
brid nanoparticles can successfully remove arsenic(III) and 
arsenic(V) from an aqueous solution of 400 mg/L of arsenic 
concentration. The usual manganese ferrite nanoparticles 
(MnFN) exhibit a maximum adsorption capacity of 97 mg/g 
whereas (GO-MnFN) exhibit the maximum adsorption 
capacity of 146 mg/g for arsenic(III) under similar condi-
tions. In the case of arsenic(V), the maximum adsorption 
capacity of 137 mg/g and 207 mg/g can be achieved using 
MnFN and GO-MnFN, respectively, with pH ranging from 2  
to 7 [96].

Magnetic hydroxyapatite nanoparticles can be employed 
for the removal of cadmium(II) ions from the aqueous solution 
where it can deliver the maximum adsorption capacity of ~  

1.964 mmol/g. A small quantity of 0.002 g of magnetic 
nanoadsorbent can be used in 20 mL of cadmium(II) solu-
tion when the pH value of the solution is around 5 [97]. 
Chromium(VI) is also carcinogenic and irritates tissues 
when present, even in small concentrations. The hexa-
valent chromium is a strong oxidant, behaves like a tis-
sue poison and thus can lead to severe health issues [98]. 
Chromium(VI)-contaminated water is put to ferrite process 
where the present chromium(VI) binds with ferric oxide and 
forms Cr-ferrite [99]. Novel hybrid nanoparticles prepared 
by combining sodium-rich montmorillonite (MMT) with 
magnetite and coated with polyethylenimine polymer (PEI 
800 g/mol or PEI 25000 g/mol) exhibit potential in remov-
ing chromium(VI) from the chromium solution of 12 mg/L 
at pH value of 3. The adsorption capacity of 8.77 mg/g and  

Fig. 2   XRD patterns of 
CoFe2O4 nanoferrites at differ-
ent pre-sintering temperatures 
(reproduced by permission from 
Ref. [73], License Number 
4861670455830, Copyright 
2015, Elsevier)

Fig. 3   FE-SEM images and 
EDX analysis of chitosan, clay 
and nano-magnetite particles 
(reproduced by permission from 
Ref. [94], License Number 
4860290781940, Copyright 
2012, Elsevier)
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7.69 mg/g can be achieved by using MMT-PEI800-Magnetite 
and MMT-PEI25000-Magnetite nanoparticles, respectively. 
Figures 5 and 6 show the TEM images of MMT-PEI800-
Magnetite and MMT-PEI25000-Magnetite nanoparticles, 
respectively. [100].

Tetraethylenepentamine functionalized magnetic polymer 
nanoadsorbents (TEPA-MPN) deliver the maximum adsorp-
tion capacity of 370.4 mg/g when the solution is maintained 
at 35 °C having a pH value of 2.0. Only 0.05 g of TEPA-MNP  

delivers such high adsorption capacities and with a contact 
time of 3 h [101]. Cobalt-zinc magnetic nanoferrites with 
chemical composition as Co0.6Zn0.4Fe2O4, when used as 
nanoadsorbent, deliver a maximum adsorption capacity of 
~ 16.0 mg/g when the chromium(VI) solution of the initial 
concentration of 4.0 mg/mL and pH value of 2.0 is treated. 
For an acidic aqueous solution of chromium(VI), the equi-
librium time ranges between ~3 min and ~ 120 min with the 
adsorbent dose of 4.0 g/L. In contrast, the concentrations of  

Fig. 4   SEM images of a syn-
thetic nFe3O4 and b magnetite 
samples (reproduced by permis-
sion from Ref. [95], License 
Number 4860290994370, Copy-
right 2016, Elsevier)

Fig. 5   TEM images of MMT-
PEI800-Magnetite nanoparticles 
(reproduced by permission from 
Ref. [100], License Number 
4860280733120, Copyright 
2012, Elsevier)
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chromium(VI) solution varies between 20 and 100 mg/L 
[102]. Cobalt nanoferrites, synthesized by co-precipi-
tation method, can be successfully employed to remove 
chromium(VI) from tannery wastewater and ~ 23.75% of 
removal efficiency can be achieved with using between 0.1 g 
and 0.3 g of cobalt ferrite in 50 mL of the Cr(VI) solution 
[103]. Maghemite nanoparticles of size 10 nm, prepared by 
the sol-gel method, can effectively remove the chromium(VI) 
from electroplating wastewater. 1.0 g of maghemite nano-
particles can be added to 40 mL of 100 mg/L concentration 
of acidic chromium(VI) solution with a pH value of 2.5, and 
adsorption equilibrium can be achieved within 10 min of 
duration, and ~ 17.0 g of chromium(VI) can be removed under  
given conditions [104].

The magnetic composite of chitosan/clay/nano-magnet-
ite can remove copper(II) from a copper(II) ion solution of 
1000 mg/L concentration, maintained at pH 5. It is to note 
that increase in the mass ratio of nano-magnetite in the com-
position results in a decrease in the copper(II) removal effi-
ciency since chitosan is the key ingredient that facilitates 
copper(II) removal [94]. Maghemite nanoparticles can also be 
used to remove copper(II) from copper(II) ion solution, and 
adsorption equilibrium can be achieved within 10 min. 0.1 g 
of maghemite nanoparticles can successfully remove ~ 26.8 g 
of copper(II) ion from the 40 mL solution with an initial 
concentration of 100 mg/L and with a pH value of 6.5 [95].  

The maximum adsorption capacity of around 488 mg/g 
and 673 mg/g can be achieved when an aqueous solution of 
lead(II) is treated using MnFN and GO-MnFN, respectively. 
The adsorption of lead(II) ions increases with an increasing 
pH value of the aqueous solution, i.e. from 2 to 6 and having a 
lead(II) ion concentration of 100 mg/L [96]. The novel mag-
netic nanoadsorbent, synthesized by sequential modification 
of SiO2-coated Fe2O4 with (3-Chloropropyl) trimethoxysilan, 
polyetherimide, epichlorohydrin and thiourea, shows promis-
ing capabilities for the removal of lead(II) from aqueous solu-
tions. The maximum adsorption capacity of ~ 110.13 mg/g 
can be achieved with 10 mg of adsorbent in a lead(II) solu-
tion of 100 mg/L of concentration with a contact time of 
10 min. The synthesized nanoadsorbent retains its reactiv-
ity and adsorbing potential even after six cycles. Figure 7 
depicts the TEM images of (a) Fe3O4@SiO2 and (b) Fe3O4@
SiO2-PEI-SH and XPS spectra of (c) Fe3O4@SiO2 and (d)  
Fe3O4@SiO2-PEI-SH [105].

When single Fe3O4 magnetic nanoparticles are employed 
for the removal of lead(II) through the batch-adsorption pro-
cess, the equilibrium can be achieved within 30 min. For Fe3O4 
as magnetic nanoadsorbent, the initial concentration, pH value 
of the solution and operating temperature are the key factors 
governing the adsorption capacity. Figure 8 represents the 
graph showing the effect of pH on lead(II) adsorption onto 
Fe3O4 nanoadsorbents for an initial lead(II) concentration of 

Fig. 6   TEM images of MMT-
PEI25000-Magnetite nanoparti-
cles (reproduced by permission 
from Ref. [100], License Num-
ber 4860280733120, Copyright 
2012, Elsevier)
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220 mg/L while using an adsorbent dose of 10 g/L for a contact 
time of 24 h and at room temperature [106].

The magnetic Fe@MgO nanocomposites, synthesized by 
the facile precipitation-calcination method, show maximum 
adsorption capacity of ~ 1476.4 mg/g in removing lead(II) 
from lead(II) ion from aqueous solution. Ten milligrams of 
magnetic Fe@MgO nanocomposites in 100 mL of the aque-
ous solution with the initial concentration of 100 mg/L to 
adsorb lead(II) within 60 min of duration. Figure 9 shows the 
SEM and TEM (inset) image of Fe@MgO nanocomposites 
[107].

Surface-functionalized nano-sized Fe3O4@SiO2 core of 
~ 15 nm coated with Zr-based magnetic metal-organic frame-
works shows potential in removing lead(II) from contaminated 
water, and maximum adsorption capacity of 102 mg/g can be 
achieved. Ten milligrams of the adsorbent can successfully 
remove lead(II) from 10 mL of lead(II) ion solution with a 
pH value of 6 and after a contact time of 60 min [108]. Ten 
milligrams of humic acid-coated Fe3O4 nanoparticles of size 
~ 10 nm, prepared by co-precipitation method when added to 

Fig. 7   TEM images of a Fe3O4@SiO2 and b Fe3O4@SiO2-PEI-SH and XPS spectra of c Fe3O4@SiO2 and d Fe3O4@SiO2-PEI-SH nanoparticles 
(reproduced by permission from Ref. [105], License Number 4860660508678, Copyright 2019, Elsevier)

Fig. 8   Effect of pH on lead(II) adsorption onto Fe3O4 nanoadsor-
bents (reproduced by permission from Ref. [106], License Number 
4860660941328, Copyright 2010, Elsevier)
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a 100 mL metal ion solution of 1 mg/L of initial metal con-
centration, can successfully remove over 99% of lead(II) from 
natural and tap water. The adsorption equilibrium is reached 
within 15 min when the pH value of the mixed solution is kept 
as 6 [96].

When humic acid is used as a coating for Fe3O4 magnetic 
nanoparticles, 50 mg of these modified nanoparticles can suc- 
cessfully remove 99% of mercury(II) from the 100 mL of real  
water. The adsorption equilibrium reaches in 15 min and  
agrees well with the Langmuir adsorption model. The adsorp-
tion capacity and metal removal efficiency of these nanopar- 
ticles range between 90 and 99% as it gets influenced by the  
pH of the solution and due to desorption of humic acid by 
Fe3O4 magnetic nanoparticles [109]. Core-shell magnetic 
Fe3O4@C nanoparticles can be functionalized with sulfonic 
and carboxylic acid groups, and these can facilitate easy and 
complete removal of the mercury(II) ions from the contami-
nated water. The experimental procedure involving these  
nanoparticles can achieve equilibrium within 5 min. The max- 
imum adsorption capacity of 83.1 mg/g with the removal ef- 
ficiency of 98.1% towards mercury(II) heavy metal ions can 
be achieved by using these Fe3O4@C nanoparticles [110]. 
Modified magnetic nanoparticles functionalized with diverse 
organic ligands, such as aminopropyl silane (MNP-APS),  
peptone (MNP-P) and yam peel biomass (MNP-YP), and ob- 
tained by the process of conventional co-precipitation method 
show the potential to remove mercury(II) ion from the con- 
taminated water. The adsorption equilibrium can be achieved 
within 5 h. Mercury adsorption evaluation as a function of the 

pH shows that 94% of adsorption for samples of MNP-APS, 
87% for MNP-P (both having pH value of 7.0) and 75% for 
samples of MNP-YP (having pH value of 8.0) can be achieved 
using these derivatives of magnetic nanoferrites [111].

Polyrhodanine-coated γ-Fe2O3 nanoparticles can be effec-
tively utilized to remove mercury(II) from wastewater, but 
these nanoparticles follow the Freundlich isotherm model in- 
stead of a Langmuir model. Five milligrams of polyrhodanine- 
coated γ-Fe2O3 nanoparticles are mixed with 10 mL of mer-
cury nitrate solution, and when the mixture is shaken for 2 h, 
the maximum mercury(II) ion absorptivity of 94.5% can be 
achieved with the initial mercury(II) ion concentration of 
around 1.3 mg/L. Figure 10 represents the TEM images of 
the polyrhodanine-encapsulated magnetic nanoparticles [112].

Nickel(II) is one of the heavy metals that is used extensive- 
ly in the manufacturing of stainless steel, alloys, coins and  
batteries. Some nickel compounds are carcinogenic and can 
prove fatal in the cases of prolonged exposure [49]. The hy- 
drothermal reaction-based ferrite process of wastewater can  
treat the nickel(II) and chromium(VI) ions present in contam- 
inated water and convert them into Ni-Cr ferrites. The opti- 
mum conditions to achieve this conversion include managing 
the water with the pH value of 9.0 at 70 °C when the mixture is 
stirred for 40 min at a stirring speed of 120 rpm [99]. 0.1 g of  
nanoscale maghemite particles exhibit superb adsorption char- 
acteristics when allowed to come in contact with 40 mL of 
100 mg/L concentration of nickel(II) ion solution. Within 
10  min, adsorption equilibrium can be achieved, and ~  
23.6 mg of nickel(II) can be removed from the nickel(II) so- 
lution of pH value of 8.5 [104]. In case of the removal of  
zinc(II) ions from zinc(II) ion solution, the magnetic hydroxy- 
apatite nanoparticles deliver a maximum adsorption capacity  
of ~ 2.151 mmol/g with 0.1 g/L of the adsorbent dosage. The  
adsorption capacity of the magnetic hydroxyapatite  

Fig. 9   SEM and TEM (inset) image of Fe@MgO nanocompos-
ites (reproduced by permission from Ref. [107], License Number 
4860661418272, Copyright 2018, Elsevier)

Fig. 10   TEM images of the polyrhodanine-encapsulated magnetic 
nanoparticles (reproduced by permission from Ref. [112], License 
Number 4860651418600, Copyright 2011, Elsevier)
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nanoparticles, having a high surface area of ~ 142.5  m2/g, 
increases with an increasing pH value of the solution from 4 
to 8 [97].

4 � Conclusion and Outlook

Nanotechnology, an emerging field of science, has been find-
ing its applications in almost all branches and domains of 
technology. The inherent characteristics of the nanomaterials 
give them added advantages over the bulk materials. The ever- 
increasing global problem of consumable water scarcity and 
pollution has motivated the researchers to explore novel and 
innovative methods and materials that can be utilized to treat 
contaminated water successfully. The use of nanoferrites and 
the phenomenon of adsorption has been one of the most ef- 
fective techniques to treat contaminated water. The presence 
of heavy metal ions in consumable water poses various types 
of dangers and severe threats to human health, and thus, the 
concentration of these toxic and heavy metal ions should be  
reduced below the set acceptable limits. Various types of 
nanoferrites, their composites and their derivatives have been  
synthesized and explored by researchers to evaluate their po- 
tential in removing heavy metal contaminants from the con- 
taminated water. The magnetic tendency of magnetic  
nanoferrites along with their high reactivity and sizeable avail- 
able surface area makes them the preferred candidates to be  
used as nanoadsorbents. The properties of the magnetic 
nanoferrites can be further enhanced by exploring the sur- 
face-functionalized, core-shell structure design of magnetic  
nanoferrites. The present review concludes that the  
nanoferrites, their composites and their derivatives have been  
widely used in removing a few of the heavy metals such as  
arsenic, lead, mercury and cadmium. Still, their use in removal  
of other heavy metal ions such as antimony, aluminium, bar- 
ium and thallium have not been much explored. There is a  
need to extensively examine and evaluate the potential and 
suitability of different types of nanoferrites and their deriva-
tives in the removal of all kinds of heavy metal ions. There 
exists an untapped and broad scope of conducting meaningful  
research in the area of detection and removal of these less-
explored heavy metal ions.
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