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Abstract
One novel arena for designing superconductors with high TC is the flat band system. A basic idea is that flat bands, arising
from quantum mechanical interference, give unique opportunities for enhancing TC with (i) many pair-scattering channels
between the dispersive and flat bands, and (ii) an even more interesting situation when the flat band is topological and highly
entangled. Here, we compare two routes, which comprise a multi-band system with a flat band coexisting with dispersive
ones, and a one-band case with a portion of the band being flat. Superconductivity can be induced in both cases when the
flat band or portion is “incipient” (close to, but away from, the Fermi energy). Differences are, for the multi-band case, we
can exploit large entanglement associated with topological states, while for the one-band case a transition between different
(d and p) wave pairings can arise. These hint at some future directions.
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1 Introduction

In the long history of studies of correlated electron systems,
superconductivity in repulsively interacting electrons is
known to sensitively depend on the underlying band
structures. Indeed, this is a first point discerning different
classes of superconductors exemplified by the cuprates,
iron-based, organic, etc. Then, a question is how we can
engineer them for (i) favouring superconductivity (SC)
and (ii) controlling the pairing symmetry, with different
symmetries possibly coexisting. The thesis of the present
paper is that the flat band systems provide an interesting and
unique arena for those.

Let us start with a very general question: Which is
most favourable for SC, one-band systems or multi-band
systems (comprising either multi-orbitals or single-orbital)?
As far as the ordinary (dispersive) bands are concerned,
Sakakibara et al. have theoretically shown, for the case of
multi-orbital multi-band systems, that the farther the second
band (with e.g. dz2 orbital character) the higher the TC , and
that this trend holds for various compounds in the cuprate
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family [1–4]. Namely, the strength of the one-band character
dominates the superconductivity within this family.

Given this background, the purpose of the present paper
is to compare two cases: a multi-band model in which a flat
band coexists with a dispersive one [5], and a single-band
case in which a portion of the band dispersion is flat [6].
For the single-orbital multi-band system, the existence of
the second band can actually induce the superconductivity
especially when the second band is close to, but away from,
the Fermi energy. For the single-orbital one-band system
with a flat portion in the dispersion, SC can also be induced,
in a manner very sensitive to the position of the Fermi
energy. We shall compare these to give some hints for
various factors dominating the flat band SC.

2Multi-band Systems Containing Flat Bands

As the simplest possible one-dimensional flat band model
that contains a flat band, we take the diamond chain,
where diamonds are connected into a chain (Fig. 1a).
This model is intimately related with the narrow-wide
band model considered by Kuroki and coworkers [7].
If we consider the repulsive Hubbard model on such
lattices, the basic idea is this: when the Cooper pairs
are formed on the dispersive band, there exist quantum
mechanical virtual pair-scattering processes in which pairs
are scattered between the dispersive and flat bands. This
should especially be important when the flat band is
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Fig. 1 a Diamond chain, which
is a quasi-1D flat band model,
and its dispersion. b t-t ′ model
with the second-neighbour
hopping (blue lines) t ′ � −0.5t
, and its dispersion. Arrows
represent typical position of
Cooper pairs

(a)                                              (b)

t
t'

“incipient” (i.e. away from, but close to, the Fermi energy).
We have employed DMRG (density-matrix renormalisation
group), since the system is quasi-1D, and have shown that:
(i) we do have enhanced pairing when the flat band is
incipient for intermediate repulsion U � 4t (t , nearest-
neighbour one-electron hopping), where the pair is spin-
singlet and formed across the outer sites, and (ii) in that
regime we have to take an unusually large number of states,
m ∼ 1500 in DMRG for convergence, which signifies an
anomalously large entanglement [5]. In the phase diagram
against band filling (Fig. 2), the superconductivity (SC) sits
just below the topological insulator (TI) that occurs when
the dispersive band is just completely filled and the flat band
is just empty. TI is detected from entanglement spectra and
topological edge states, and the situation is similar to the TI
in the celebrated Haldane’s S = 1 antiferromagnetic chain.

If we actually look at the pair correlation function against
real space [8] in Fig. 3, we can see the following: (i)

The dominant (longest-tailed) correlation is between the
pairs, each of which comprises top and bottom sites in the
diamond chain (blue curve in Fig. 3), while the subdominant
correlation is between a pair along y (green). In classifying
pairing symmetries, it is customary in the ladder physics
to call a pair “d-wave” when the correlation between a
pair along x direction and another along y has negative
values [9]. In this sense, the diamond chain also has a “d-
wave”, which is expected to tend to the d-wave in two
dimensions. If we look at the pair correlation at distances
1 ≤ r ≤ 6, the functions are seen to oscillate wildly,
which should indicate some structure extended in real space.
(ii) If we compare the diamond chain with the ordinary
ladder system, the pair correlation function in the latter
obtained with the quantum Monte Carlo (QMC) shows a
long-tailed behaviour, with some wiggles related with the
Fermi point effect involving the Fermi wavenumber kF [10].
By contrast, the present result for the diamond chain has

Fig. 2 Schematic phase diagram
against the band filling for the
diamond chain obtained with
DMRG. Bottom panels
schematically show the band
filling
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Fig. 3 DMRG result for the pair correlation function against real-
space distance, r , between various spin-singlet pairs as colour-coded

a smooth behaviour at large distances, which should be an
effect due to the flat band.

Recently, Matsumoto et al. have shown for various flat
band models that we do have a general trend for enhanced
SC as the Fermi energy EF approaches the flat band energy,
with a sharp dip when EF is too close to the flat band [11].
The width of the dip depends on the Hubbard repulsion U ,
the degree of warping of the flat band due to many-body
effects, and also the lattice structure, which is considered to
be related with the self-energy effect in the flat band system.
Incidentally, while the terminology “incipient” is also used
in the community of the iron-based FeSe superconductor
for the incipient s± pairing involving the hole band below
EF , the concept of the incipient situation was originally
introduced by Ref. [7], and we have indeed a drastic effect
when we have a flat band instead of dispersive bands. We
can also extend the flat band models to two-dimensional
lattices, where we can make a flat band pierce a dispersive
one [12]. As for candidates for realising the flat band
models, they include the mineral azurite [13, 14], and
“hidden ladders” in Ruddlesden-Popper compounds such as
Sr3Mo2O7 [15] or herbertsmithite.

3 Partially Flat One-Band Superconductivity

Having looked at a multi-band, quasi-1D model, let us move
on to partially flat band models that are one band and two-
dimensional (2D) [6]. A starting point is that, even within
one-band models, we can have a flat portion coexisting
with dispersive portions in the band structure (Fig. 1b). An
important question then is this: can we still have flat-band
superconductivity, and, for 2D systems, how would be the

pair-scattering channels in 2D? For such a model, Huang
et al. [16] have studied superconductivity for attractive
interaction U and Mott insulation for repulsive U in the
Hubbard model with the determinantal quantum Monte
Carlo (DQMC) method. They have detected an electron
correlation effect for less-than-half-filled cases unlike in the
ordinary bands.

Here, our interest is superconductivity for repulsive inter-
action. For that we take two models (Fig. 4): one is a t-t ′
model on a square lattice with a second-neighbour hopping
t ′ � −0.5t to have a flat portion along kx � 0 and ky � 0.
The other model is a partially flat band (PFB) with a trun-
cated flat bottom. We employ the FLEX+DMFT method,
where we combine the fluctuation-exchange approximation
and the dynamical mean-field theory [17]. The result for the
double occupancy shows that the correlation effect indeed
emerges well below half-filling and even for small repulsive
U in both models. If we look at the momentum distribution,
we can see that electrons are crammed into the flat portion,
which should be the reason for the early onset of the dou-
ble occupancy. The result for the spin susceptibility, χS ,
exhibits that, for the t-t ′ model, we have large amplitude of
χS along some ridges in k-space that becomes wider as we
approach the half-filling, or, for the truncated model, wide
plateaux for χS that move from around the � point towards
the AF points, (±π, ±π), as we approach the half-filling. If
we turn to the eigenvalue, λ, of the Eliashberg equation in
Fig. 4, in the t-t ′ model, the spin-singlet pairing dominates,
where λ exhibits a double-dome structure. We can identify
its origin: the peak on the smaller-filling side represents
a complicated gap function that have a larger number of
nodes than in the usual d-wave, while the peak on the larger
filling represents a pairing close to the d-wave. For the trun-
cated model, on the other hand, triplet pairing dominates
over an unusually wide filling region with a p-wave-like
gap function, which is sharply taken over, as the half-filling
is approached, by singlet pairing with a gap function having
a larger number of nodes than in the d-wave. If we look
at the pairing in real space, the case of large numbers of
nodes exhibits unusually extended pairing in real space.
We have also detected non-Fermi liquid properties from the
frequency dependence of the self energy [6].

All these are considered to come from the flat portions
in the band dispersion. As summarized in Fig. 5 for
electron-mechanism superconductivity, usually, we have
well-defined nesting vectors that connect “hot spots”,
which are the anti-nodal regions in single-orbital, one-band
systems as in the d-wave in the cuprates, or the electron and
hole pockets in multi-orbital, multi-band systems as in the
s±-wave in the iron-based [18]. By contrast, in partially flat
band systems we have a bunch of pair-scattering channels,
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Fig. 4 For t-t ′ model (top left
inset) and truncated model
(right), the eigenvalue, λ, of the
Eliashberg equation versus the
band filling 〈n〉 is shown for the
singlet (filled symbols) and
triplet (empty) pairings for t-t ′
(triangles) and truncated
(squares), and cosine-band
(circles) models for
U = 3, 1/(kBT ) = 33. A
vertical line for the t-t ′ singlet
indicates a change in the pairing
symmetry as shown by panels
next to it

(a) (b)

t-t’ PFB

which should be the cause for the peculiar spin structures
and the ensuing gap functions there.

4 Discussions

Can flat bands really favour SC? We can raise several points
on this.

(i) Dimensionality: Electron-mechanism SC employing
spin-fluctuation mediated pairing usually uses well-
defined spin structure such as AF fluctuations, and
this results in specific and compact regions in k-
space in which the pairing interaction is strong. From
the phase volume arguments, we can then show that
quasi-2D (layered) systems are much more favourable
for such SC than in 3D systems [19, 20]. This is also
consistent with the empirical fact that most of the new
superconductors have layered structures. By contrast,
the flat band systems have much wider momentum
regions for large spin structure, χS . Another factor
in the spin-fluctuation mediated pairing interaction
is Green’s function G involved in the Eliashberg
equation, and G too exhibits wide regions for the
flat bands. How about the structure of the gap
function? In a multi-band case of the narrow-wide
band model [7], we have an “s± wave” between the
flat and dispersive bands, where each band has more
or less homogeneous amplitude in k-space, which
comes from a featureless χS . The gap function in the
diamond lattice also has an extended structure as seen
from the pair-pair correlation function (Fig. 3) that is
long-tailed and long-ranged structure in real space [5].

So we can expect that 3D systems may be as good as
2D systems in the flat band SC.

(ii) Vertex corrections: In general, the size of TC

in SC arising from electron-electron repulsion is
shown to involve the vertex correction in the pair
scattering [21], which is identified as the main reason
why TC is two orders of magnitude lower than the
electronic energy. Thus, the vertex correction in the
flat band systems is an interesting future problem.
Incidentally, flat bands have also been discussed
where the many-body renormalised mass (which
enters in the Fermi liquid theory) is heavy [22],
whereas we consider here non-interacting bands
that are dispersionless. A heavy renormalised mass
(occurring e.g. when the Fermi energy is right at
the one-electron flat band that makes the self-energy
correction large), which is contrasted with the present
case of incipient flat band or portion that can work
favourably for superconductivity.

(iii) Strong-coupling limit: In the strong-coupling limit,
the Hubbard model is converted into a Heisenberg
spin model. It has been shown that a kind of Creutz
model (with cross-linked interactions) in 2D can
accommodate a supersolid phase where superfluid
and density wave coexist [23].

(iv) Superfluid weight: Törmä and coworkers have shown,
for the attractive electron–electron interaction, that
superfluidity in topological flat bands has a super-
fluid weight lower-bounded by the topological num-
ber [24–27]. So the question of what happens for
repulsive interactions will be another interesting
future problem.
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Fig. 5 We schematically compare ordinary single-orbital, one-band
case (here for a d-wave SC; leftmost column) and multi-orbital, multi-
band case (here for s±; second column from left), where the nesting
vectors (yellow arrows) connecting the specific “hot spots” designate
how pairs (blue and orange arrows) hop. These are contrasted with flat

band systems for single-orbital, one-band case (second from right) and
single-orbital, multi-band case (rightmost), where yellow arrows rep-
resent pair-scattering channels. The top row depicts k-space, while the
bottom row displays pairs in real space

If we summarize the comparison for the flat-band
systems between the multi-band and one-band cases, a
similarity is that superconductivity can be induced in both
cases when the flat band or portion is incipient. The
differences are mainly the different gap function structures
between the two cases, which is caused by different spin
structures as dictated by the band dispersion, and then
results in difference in the pairing symmetries. In the multi-
band diamond chain, the pairing exploits large entanglement
arising from the topological nature of the flat band. Partially
flat one-band systems may accommodate something related
with topological states.

The group velocity vanishes at van Hove singularities,
and there are literatures discussing a possibility of
topological superconductivity involving the van Hove
singularities [28–30]. In the flat band systems, the group
velocity vanishes over a finite area rather than at a point.
There, we have observed a transition between p-wave and
d-wave [6]. It is generally recognized that the boundary
regions between different pairing symmetries are a good
place for looking for topological superconductivity with
broken time-reversal symmetry [31, 32], so there may
be a possibility of topological SC in partially flat band
systems. Also, partially flat bands remind us of the band
structure of the twisted bilayer graphene for which SC was
discovered, and first-principles calculations show partial
flatness [33–36]. However, this material involves various
complications such as a multi-band character, so the present

one-band model will not apply directly. If we go over to
three-dimensional systems, Akashi has recently shown that
“saddle loops” (an extension of van Hove saddle points) can
occur from a general standpoint [37], which may be utilised
for band structure engineering.

In a broader context than the flat band physics, studies
of superconductivity in two-band systems have a long
history, basically starting from Suhl-Kondo mechanism.
For repulsively interacting two-band systems, Kuroki and
the present author have investigated superconductivity with
QMC [38–40] and the bosonisation [41]. For the cuprates
specifically, effects of hydrostatic and uniaxial pressure
for multi-band models [1–4] or strain control of multigap
superconductors [42] have been discussed. For attractively
interacting two-band systems, the effects of the second
band have been studied with the Nozières-Schmitt-Rink
formalism [43], and the multiband Suhl-Matthias-Walker
Hamiltonian [44]. The effect of Lifshitz transitions has also
been examined [45–49] in terms of the Fano resonance
between the flat and dispersive bands in the BCS-BEC
crossover regime [50]. Thus, a future problem is how these
would apply to different realisations of flat band cases.
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