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Abstract
This paper addresses the applicability of the “additive approximation” of total thermal conductivity in heat transfer and in superconductor
stability calculations. If cases (a), (b) and (c) denote total (conductive plus radiative), or only conductive or only radiative heat flux,
respectively, each flux q̇ calculated with Fourier’s conduction law using the corresponding thermal conductivity (λa, λb, λc), the additive
approximationwould be confirmed if the heat flux differenceΔq̇ = q̇a�q̇b�q̇c, at any position of an investigated object, and at any time,
converges to zero. This is not trivial because of the strong, non-linear temperature dependence of the radiation component. Heat transfer
calculations including radiative transfer are presented in this paper, first for simple, homogeneous, thin film test samples and later for a
multi-filamentary BSCCO2223 superconductor. The simulated heat sources either result from a sudden increase of conductor boundary
temperature or from flux flow and Ohmic resistances in the superconductor under a disturbance (like transport current exceeding critcal
current density). The conductors, though very thin, are non-transparent to mid-IR radiation. Validity of the additive approximation is
critical for superconductor stability against quench. Based on the applied numerical scheme, a hypothesis is suggested concerning
correlation of the results of the simulation (the “numerical space”) with the experimental situation (the “physical reality”): Non-
convergence of the numerical scheme might tightly be correlated with occurrence of a quench in the simulated superconductor.
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1 Introduction

This paper addresses the validity of the “additive approxima-
tion” of total thermal conductivity in analytic and numerical
calculations of heat transfer. Assume that there is more than
only one heat transfer mode, like conduction, radiation or
convection, all parallel to each other, in any compact or dis-
persed, solid or liquid medium: Is it then allowed to calculate
heat flux with Fourier’s conduction law simply by addition of
the corresponding thermal conductivities to a total value? It is
not clear that a radiative conductivity would exist in all heat
transfer problems; this will be explained later. But if it exists,
is it then permissible to apply this conductivity and the addi-

tive approximation in analytic or numerical (finite element)
simulations of heat transfer in a solid?

At first sight, the problem (why not simply add conductiv-
ities?) seems to be trivial. However, verification of the addi-
tive approximation turns out to be quite complicated if radia-
tive heat transfer, parallel to conduction, becomes involved.
The same problem would come up if there are, all in parallel,
other pairs or combinations of heat transfer modes.

Numerous investigations reported in the literature have as-
sumed that the applicability of the additive approximation is
justified under the strict condition that the objects, besides
being non-transparent, are homogeneous and have simple
geometrical (mechanical) structure. See the results reported
in traditional volumes like Sparrow and Cess [1], Chap. 9.2,
or Siegel and Howell [2], Chap. 19–3, in particular Eq. (19–
23). These volumes include citations to original work, fre-
quently to the contributions by Viskanta and Grosh wherein
the same assumptions were made.

The number of papers that apply the additive approxima-
tion in superconductivity is large, too, but it is not clear that
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applicability of this approximation always has been checked.
It is even not clear that available computer codes (usually
black boxes to the users) always would check the pre-
condition (large optical thickness, homogeneity) for success-
ful application of this approximation.

There are many objects composed of materials of which
their structural and their thermal transport properties are
strongly inhomogeneous. But the most critical problem with
application of the additive approximation arises when model-
ling multi-mode heat transfer in thin films. Besides the large
variety of thin film applications (electronic devices, protective
coatings, photo-voltaic cells), examples are multi-filamentary
or thin film, coated superconductors. A challenging example
is the BSCCO 2223 superconductor tape. This “first genera-
tion” (1G) superconductor consists of filaments of supercon-
ductor material embedded in a metallic (Ag) matrix. A cross
section of this conductor will be shown later (Figs. 1 and 2a, b
in Sect. 2).

The BSCCO 2223 superconductor roughly can be consid-
ered a thin film (thickness about 250 to 300 μm) but with
strongly different geometrical dimensions of its filaments
and Ag matrix inter-layers. Not only is the solid thermal con-
ductivity of the BSCCO 2223 material strongly different from

Fig. 1 a–c Microstructure of a multi-filamentary superconductor tape
showing filaments and grains (schematic, all dimensions are in
micrometres; overall tape dimensions are given in Fig. 2a, b for the
Long Island Cable Superconductor). The superconductor part of the
tape is embedded in a metallic matrix. Part (a) shows a section of the
tape with several filaments (black rectangles of 20 to 30-μm thickness
and 300- to 400μm width) that are composed of grains (flat, thin plate-
like objects, schematic, not to scale). Matrix material (Ag) is
schematically indicated by light-green background. Part (b) is an
enlarged section of a filament (the uppermost filament in part (a), for
identification enclosed in a blue rectangle) showing grains as solid

black lines; the light-grey part of the filament cross section is empty.
Part (c) The real layer structure of the slightly curved, plate-like grains
compressed to almost horizontal orientation in a single filament, a result
typically achieved after a series of powder in tube manufacturing steps.
Because of the large anisotropy ratio of the grains, they can be considered,
from a pure thermal transport aspect, as roughly flat (the better the
orientation, the larger the critical current density of the tape). Length of
the bar (to the lower-right of the figure, part c) indicates 5 μm. The Ag
matrix material is removed from this sample. This figure, already used in
[14], is copied from [24]

Fig. 2 a Cross section of the BSCCO 2223/Ag Long Island Cable
superconductor tape [3]. A number N = 91 identical filaments is
integrated in the total cross section of one multi-filamentary tape, and a
large number of tapes is switched in parallel to yield total superconductor
cross section (10−4 m2). Dimensions of filaments and tape in x
(horizontal) and y (vertical) directions are as follows: x = 280 μm
(filament) and 3.84 mm (total tape width), and y = 20 μm (filament) and
264 μm (total tape thickness), respectively. b Finite element model of the
left half of the conductor cross section showing superconductor filaments
(black) and matrix material (Ag, light-grey). The thick dashed line
denotes axis of symmetry, x = 1.92 mm. Thin white lines indicate
details of the finite element, mapped meshing (with a total number of
elements NEl between 4032 and 29580). This scheme is the same as
used in previous reports [19–21]
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the conductivity of the Ag matrix, but its solid conductivity
also is highly anisotropic. Calculation of heat transfer within
this object (tape) is a challenging task, in particular under
transport current and magnetic field. Yet heat flux, tempera-
ture and current distributions and conductor stability calcula-
tions by the finite element method, in this conductor and its
multiples arranged to a cable, have been reported recently by
the present author (see later for citations). These papers inves-
tigate superconductor stability against quench under distur-
bances (conductor stability and disturbances will be defined
in the next sections). All these simulations have applied the
additive approximation. It is thus important to confirm its
applicability since the results of the reported stability calcula-
tions strongly rely on the validity of this approximation.

The paper is organised as follows: We will first explain the
overall modelling problem: Radiative transfer in a particulate,
thin-film superconductor and how to determine a radiative
conductivity in this material. Then, a short description of su-
perconductor stability is given. The numerical calculations, in
the then following sections, apply a multi-step approximation
approach: We start with simple heat transfer calculations as-
suming homogeneous conductor properties and simple distur-
bances (heat pulses applied to the upper surface of a tape).
Subsequently, the proper problem (multi-filamentary cross
section, with its strongly inhomogeneous structural and
thermal transport properties) will be studied, again under sim-
ple disturbances. Finally, realistic, distributed disturbances
within the conductor cross section resulting from internal heat
sources (thermal losses generated from transport current ex-
ceeding critical current, including magnetic field and heat
transfer to the coolant) will be applied in the finite element
simulations.

2 The Overall Radiative Transfer Problem
in a Particulate Superconductor

Figure 1a–c show the microstructure of a multi-filamentary
superconductor tape showing filaments and grains (schematic,
all dimensions are in micrometres). The tape usually consists
of a large number of filaments that are composed of grains
(flat, thin plate-like objects). Note the hierarchy, ordered by
dimensions: grains, filaments, tapes, cables; deviations from
this sequence or other designations occasionally appear in the
literature, like a single tape assigned “a conductor” to wind a
magnet. Matrix material (Ag) in the tape is schematically in-
dicated by light-green background. The real layer structure of
the slightly curved, plate-like grains is shown in part (c) of the
figure. The grains are arranged in almost horizontal orienta-
tion in a single filament, a result typically achieved after a
series of powder in tube manufacturing steps (a standard
method in metallurgy).

Because of the large (x,y) anisotropy ratio of the grain solid
thermal conductivity, the grains can be considered, from a
pure thermal transport aspect, as roughly flat (the better their
uniform, horizontal orientation, the larger the critical current
density of the tape). The Ag matrix material is removed from
the micrograph sample in part (c).

Figure 2a and b show a successful realisation of this pow-
der in tube manufacturing concept, the cross section of a tape
of the BSCCO 2223/Ag Long Island Cable superconductor
[3]. The multi-filamentary tape of this conductor consists of
N = 91 identical filaments (black in Fig. 2a) all embedded in
the metallic (Ag) matrix (light-grey) and switched in parallel.
Several tapes, again switched in parallel, yield a superconduc-
tor cable.

For comparison, the finite element (FE) scheme for calcu-
lation of transient temperature fields and heat flux in this tape
is roughly shown in Fig. 2b (here using mapped 2D meshing;
details of the calculations will be explained later, Sect. 5).

Thickness of filaments and tape is about 20 to 30 and 250
to 300 μm, respectively. Thickness of the grains is very small
in relation to thickness of the filaments, compare Fig. 1 part
(c).

In the following, we do not model the radiation contribu-
tion of the filaments in a Ag-environment (the Ag matrix).
Instead, it is the radiative conductivity of the grains within in
a filament that has to be modelled to calculate the radiative
conductivity of the filaments from the result obtained for the
grains.

Likewise, a solid conductivity of the filaments hardly can
be measured with sufficient accuracy. Therefore, on the same
level within the said hierarchy (grains, filaments, tapes and
cables), we apply the conductivity measured with continuous
superconductor material to calculate the conductivity of the
grains, and from the result the conductivity of the filaments.
This has to be done taking into account anisotropy, porosity,
orientation of the grains and contact resistances.

In engineering heat transfer problems like heat transfer in
packed beds, radiative and solid conductivity can be calculat-
ed by the well-known procedures described by Tsotsas and
Martin [4], Vortmeyer [5], Wakao and Kato [6]. These and
many other references explain cell models applied for these
calculations.

For the calculation of a radiative conductivity, cell models
of course could be directed onto the superconductor filaments
embedded in a continuum. Radiation propagation then would
be modelled by geometrically defined radiation exchange fac-
tors that take into account particle (filament) size and shape
and its surface properties. Classical cell models usually as-
sume a highly symmetric arrangement of constituents in 3D
space.

However, neither do we have a continuum transparent to
radiation nor are the filaments superconductors per se, or the
filaments themselves a homogeneous material. Also, cell
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models assume that the wavelength of incoming radiation
should be small against particle dimensions. Like the tiny
ceramic particles in thermal super-insulations (evacuated
powders, fibres), grains in the 1G multi-filamentary, high-
temperature superconductors (Fig. 1c) are small against wave-
length. Their dimensions thus are not very suitable for appli-
cation of the relations from standard cell models between par-
ticle dimension and radiative conductivity (the minute particle
dimensions in thermal super-insulations and of the grains in
superconductors then might eventually result in zero radiative
conductivity).

A better solution is provided by approximation of the grains
not as a material but as a radiation continuum, a method well
established in thermal super-insulations. There, the analysis is not
based on geometrically defined radiation exchange factors and
surface properties but on classical radiative transfer methods
[7–9], and in particular, on radiation as a diffusion process.

The diffusion model [10] can be applied provided the optical
thickness of the continuum is large. Large optical thickness indi-
cates that the object under study is non-transparent to incoming
radiation.

The diffusionmodel of radiative transfer applies themean free
path of photons between successive collisions of radiation and
IR-optical inhomogeneities like solid particles, variation of re-
fractive index (or bubbles in a liquid). In the present case, i. e.
operation of themulti-filamentary, BSCCO2223 superconductor
below its critical temperature (about 108 K), these are mid-IR
photons with wavelength of about 30 μm. This is not very small
against grain particle (or even filament) dimensions.

The mean free path relies on the extinction properties of the
superconductor material (these depend on particle geometry, the
ratio of particle radius to incoming wavelength, the refractive
index and the clearance between neighbouring particles). The
calculations provide also the Albedo of single scattering to come
to a decision whether there are overwhelming absorption/
remission or scattering (radiation/solid particle) interactions.

Calculation and measurement of extinction cross sections
of standard materials (dispersions of solid particles, gases,
liquids) have frequently been reported in the literature; besides
classical volumes [11, 12], there is a large variety of papers,
see e. g. the citations in [13]. But their application to particu-
late superconductors apparently has never been reported. This
application has only very recently been described [14] using
three different methods that include application of rigorous
scattering theory.

3 Survey: Stability of Superconductors

A superconductor is stable if it does not quench under a dis-
turbance, which means if the correlation of electrons to elec-
tron pairs is strong enough to compensate increase of internal
energy arising from conductor movement (with immediate

transformation of mechanical into thermal energy), fault cur-
rents, absorption of radiation or momentary cooling failure.
Even a small decrease of local critical current density, from a
corresponding local increase of superconductor temperature,
can initiate losses, lead to further temperature increase and, as
a consequence, to a quench.

Quench proceeds on very small timescales (milliseconds or
less) and frequently leads to local damage or even to destruction
of the conductor. Quench can be avoided by appropriate design
of superconductors (filaments, thin films) using stability models.

Stability models yield predictions on permissible conductor
geometry and dimensions. Traditional stability models as-
sume homogeneous superconductor temperature, compare,
e. g. [15, 16]. It appears this assumption is approximately
fulfilled only in exceptional cases, like in LHe-cooled super-
conductors, but not in high temperature, multi-filamentary or
thin film, coated superconductors. Improved stability calcula-
tions accordingly rely on local temperature fields in the super-
conductor cross sections.

A significant step into this direction was presented by Flik
and Tien [17]. This step is important since superconductor
critical current density and critical magnetic field strongly
depend on conductor temperature. A 3D finite element simu-
lation of temperature, electric field and current density evolu-
tion in a current limiter was presented in [18], with analysis of
current flow in superconductors and their response to magnet-
ic fields. In each element of our BSCCO 2212 and YBaCuO
123 at typical inhomogeneities like geometrical obstacles to
current flow or regions of poor materials quality. These inves-
tigations again stress the importance of the temperature distri-
bution within the conductors and the thus resulting non-
uniform critical current density and transport current distribu-
tion. Fine agreement between simulations and experiment was
reported in [18].

However, we in the present paper as well as in previous
work [19–21] do not present design calculations, e. g. of a
current limiter, but focus has been on materials aspect, behav-
iour of superconductors under transport and fault currents and
their response to magnetic fields. In each element of our finite
element model, the Meissner effect is simulated. Focus is also
on the physics behind quench, i. e. the time scales under which,
at superconductor temperature very close to TCrit, decay of
coupled electron states and recombination proceed [22].

4 Numerical Tests of the Additive
Approximation

4.1 Survey: the Radiative Diffusion Model

The literature generally believes high-temperature supercon-
ductors are materials non-transparent to mid-infrared radia-
tion. This is certainly correct for bulk materials. But recent
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investigations [16] with multi-filamentary BSCCO 2212 and
2223 and with thin film, coated YBaCuO 123 superconduc-
tors have shown that these materials, too, are non-transparent,
because of their large extinction coefficients that overcompen-
sate small conductor thickness.

In a non-transparent object, the radiative contribution to
total heat transfer trivially is very small; this matter of fact
shall strongly be emphasised here. But it has been demonstrat-
ed in [19–21] that inclusion of radiative transfer may become
important in case it is a multi-filamentary or thin film super-
conductor and the superconductor temperature under a distur-
bance is already close to its critical value. Thermal fluctua-
tions near critical temperature will not be discussed, however.

With the well-known strong non-linear dependence of super-
conductor states (electron pair density, current and thermal trans-
port properties, critical current, field penetration) on temperature,
then even tiny temperature fluctuations can drive the supercon-
ductor locally into flux flow or Ohmic resistive states (flux flow
resistive states will be described later). These local resistive states
may quickly spread over the total conductor cross section, by
conduction and radiation propagation.

Inspection of the results reported in [19–21] (or of Fig. 11a of
the present paper, see later) shows local conductor temperatures
already close to critical temperature, whichmeans even a temper-
ature increase of just 1 K could initiate a local phase transition.
Taking into account radiative transfer in thin film or filamentary
superconductor material then is indispensable.

Calculation of temperature fields in these materials, if
interpreted as a radiative continuum, therefore requires simulta-
neous solution of (a) the equation of radiative transfer (ERT) and
(b) the equation of conservation of energy:
a. Neglecting for simplicity the wavelength, the ERTwithout

internal and external radiation sources reads (see the
above cited volumes on Radiative Transfer)

di
0
=dτ ¼ i

0
τð Þ þ ib

0
τð Þ þ ∫Φ ωi;ω; τð Þ i 0 τð Þ dω

h i
ð1Þ

with i′ the directional radiation intensity, τ the optical thick-
ness, dτ = E ds, ds the length of an infinitesimal small step in
the conductor, E the (local) extinction coefficient of the mate-
rial, i′b the black body intensity, Φ the scattering phase func-
tion and ωi (incident radiation) and ω the solid angles.
Because of anisotropic (forward, backward) scattering, the
integral is to be taken over the total 4π unit sphere.
b. Conservation of energy requires Eq. (1) to be supplied

with solutions of the following:

ρ cp ∂T=∂t þ div q
⋅
Cond þ q

⋅
Rad

� �
¼ q

⋅
s ð2Þ

in which the q̇Cond + q̇Rad denote heat flux vectors due to
conduction and radiation that proceed in parallel to each other,

respectively, with q̇Rad the integral, taken over the solid an-
gles, of the intensity i′. The (local) intensity, i′ = i′ (τ), obtained
from solution of Eq. (1), is needed for q̇Rad in Eq. (2) while,
conversely, temperature, T, calculated from Eq. (2) serves for
calculation of the (directional) black body intensity, i′b, in Eq.
(1). In a superconductor, the term q̇s indicates an energy
source (for example, internal disturbances like flux flow or
Ohmic resistance losses), or a sink (heat transfer to coolant,
to a matrix material, metallic protective coatings or to other
components that could stabilise the zero-loss current state
against disturbances).

Since temperature dependence of q̇Cond and q̇Rad (and also of
q̇s ) usually is quite different, Eq. (2) is a strongly non-linear
integro-differential equation for the temperature field in theobject.

Derivation of Eqs. (1) and (2) is described in the standard
literature on radiative transfer, see the cited volumes. Among
various approximations, a diffusion solution of the radiative
transfer problem can be applied if optical thickness of an ab-
sorbing object under study is large. In this case, the radiative
flux, q̇Rad , can be written in terms of a “radiative conductiv-
ity”, λRad. Like in the standard Fourier conduction law,

q˙ ¼ −λ grad T ð3aÞ

derivation of the diffusion solution of radiative transfer yields

q˙ Rad ¼ −λRad grad T ¼ −λRad dT=ds ð3bÞ

For details of the derivation of the diffusion solution in
general and of Eq. (3b), the reader might perhaps be interested
in the original publication [10].

In the continuum radiation transfer model, it is solely this
exceptional case, under strict non-transparency, that λRad re-
ally exists and is allowed to simply be added to the solid
conduction conductivity, λCond, to yield the total thermal con-
ductivity, λTotal, of the superconductor that formally can be
used in the Fourier conduction law. Only in this case, and in
the rather unrealistic case that the material is solely scattering
(no absorption/remission) are the heat fluxes q̇Cond + q̇Rad
uncoupled from each other. If λTotal would be calculated in
this way in transparent samples, conservation of energy could
strongly be violated.

In (discrete) cell models, the question is whether a gradient
dT/ds really exists since its existence relies on a differentiable
temperature profile, T = T(s,t).

In the continuummodel, thepoint is eachof the components of
λTotal, in the additive approximation (and solely in this case),

λTotal ¼ λCond þ λRad ð4Þ

can be estimated independently of the other modes of heat
transfer. The conductivities of the different components are
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estimated as if the other components would not be present at
all. One can also say: if the different components are not
coupled by temperature profiles in the superconductor solid.

If q̇Rad depends on temperature (which it strongly does)
and if also q̇Cond is a function of temperature, which is the case
with almost all existing solid substances, then q̇Cond directly
responds to the temperature profile, and vice versa.

Even if q̇Cond would be constant (independent of tempera-
ture), it would still have to respond, now indirectly, to varia-
tions of q̇Rad and thus to variations of temperature.

The literature treats the radiation diffusion problem almost en-
tirely in absorbing media. Problems may come up if the medium
has strong radiation scattering properties. Radiative transfer in the
medium then splits into absorption/remission and scattering inter-
actions that proceed by strongly different propagation velocity.
Thegrains canbemodelledusingvery small, virtual sub-particles,
the extinction cross sections are added, and corrections for depen-
dent scattering are taken into account.

A check of the scattering properties of BSCCO 2212 and
2223 by application of rigorous scattering theory shows [14]
that absorption/remission is the much larger radiation transfer
process in these materials (while solid conduction dominates).
Albedo of single scattering then is close to zero.

4.2 Solid Conductivity and its Anisotropy

The solid thermal conductivity of theproper superconductorgrain
material used in the finite element (FE) calculations is taken from
experiments (Fig. 3). It reflects

i. The transport properties of the specific crystallography of
the superconductor solid material. Transport properties
(current, heat) are anisotropic, with large values in the
crystallographic ab-planes and much smaller values in
the vertical, c-axis directions. Thermal transport in the su-
perconductor material is mostly by phonons. The solid
thermal conductivity reflects also

ii. The powder in tube manufacturing process, like mechanical
treatment interleaved with repeated thermal treatment of the
superconductor material that results in filaments, embedded
in the Ag-matrix. Rolling or hammering and other standard
metallurgicalmethods aligns thegrainshorizontally (Fig. 1c),
and the better the alignment (the crystallographic ab-plains
parallel to the horizontal grain axis), the better the current
transport properties (in particular the critical current density)
of grains and, consequently, of filaments, tapes and cables.
Uniformhorizontalorientationofallgrainsstrongly improves
also thermal transportproperties in the sameplane. Invertical,
c-axis direction, current and thermal transport properties are
much smaller because of a large number of electrical resis-
tances (quasi Josephson resistances in the crystals) and inter-
facial thermal resistances between neighbouring grains.

All these suppress electrical and thermal currents in the
vertical direction. Grains and filaments, and because of their
orientation, also tapes are bodies with strongly anisotropic
transport properties of current and heat. The situation is sim-
ilar to the transport properties of graphite.

Because of the large anisotropy ratio of thermal transport prop-
erty, the grains (though of some curved geometry) can be consid-
ered, fromapure thermal transport aspect, as roughly flatprovided
the mechanical treatment (rolling, hammering in the powder in
tube process) leads to almost perfect horizontal orientation.

5 Investigation of the Additive
Approximation by Numerical Calculations

5.1 Test Procedure for its Applicability in Coupled
Conduction/Radiation Problems

Figure 3 shows the radiative conductivity calculated from the
diffusion model
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Fig. 3 Solid and radiative conductivity of BSCCO 2223 used for
calculation of temperature distributions and heat fluxes, as explained in
Sect. 4. The radiative conductivity is calculated using Eq. (5) and different
extinction coefficients, E. Results are plotted vs. radiative temperature,
TRad. If in an experiment the local temperature, T(x,y,t), is not available,
the radiative temperature, TRad, can be approximated by expressions like
TRad = [(T1

4 – T2
4)/(T1 – T2)]

1/3, with T1 and T2 the boundary temperature
of a slab. The local TRad is the better approximated by this expression the
smaller the thickness of the slab (or the larger the extinction coefficient or
the optical thickness). Data for the solid thermal conductivity of the
superconductor material are taken from Gmelin, E.: Thermal Properties
of High Temperature Superconductors, in: Narlikar A. V. (Ed.): Studies of
High Temperature Superconductors, Vol. 2, Nova Science Publ. (1989)
95–127. The experimentally determined anisotropy ratio of the solid
conductivity was reported in Fricke, J., Frank, R., Altmann, H.,
Wärmetransport in anisotropen supraleitenden Dünnschichtsystemen,
Report E 21–0394 - (1994), in: Knaak, W., Klemt, E., Sommer, M.,
Abeln, A., Reiss, H.: Entwicklung von wechselstromtauglichen
Supraleitern mit hohen Übergangstemperaturen für die Energietechnik,
Bund e sm i n i s t e r i um f ü r Fo r s c h u ng und Te chn o l o g i e ,
Forschungsvorhaben 13 N 5610 A, Abschlußbericht Asea Brown
Boveri AG, Forschungszentrum Heidelberg (1994)
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λRad ¼ 16n2σ T3=3E ð5Þ

using the extinction coefficient, E, of BSCCO 2223.
Approximately, a value E ≥ 106 1/m is expected for BSCCO
2212 and 2223 from Fig. 19a, b in [14]. In Eq. (5), n denotes
the real part of the refractive index of the sample material, and
σ is the Stefan-Boltzmann constant.

The radiative conductivity, λRad, as is expected, is much
smaller than the solid conductivity, λCond, of this material,
even when compared in c-axis direction.

How then can the validity of Eq. (4) be confirmed numer-
ically? We insert into Fourier’s equation the following three
different expressions, with indices (a), (b) and (c), of the total
conductivity,

a. The λTotal of an object (a solid or a completely evacu-
ated, compacted aggregate, like powders or fibres) with
its λTotal expressed by the components solid conduction
(λCond) and radiation (λRad), the latter in its diffusion
approximation (and if it really exists); this yields, with
conduction and radiation resistances switched in
parallel,

λTotal ¼ λCond þ λRad ¼ λa;

b. Solely the component λCond yielding

λTotal ¼ λCond ¼ λb;

c. Solely the component λRad (again in its diffusion ap-
proximation and if it exists) yielding

λTotal ¼ λRad ¼ λc

The total conductivity, λTotal, is introduced, separately
in each case, into the finite element calculation proce-
dure to solve Fourier’s differential equation for given
conductor geometry, boundary conditions and for calcu-
lation of the corresponding heat flow densities, q̇a, q̇b
and q̇c, respectively (the same procedure of course can
be applied, though not in the same detail, by analytical
calculation of the heat flow densities).

The additive approximation then is confirmed if, with in-
creasing optical thickness, τ0, the heat flux differences Δq̇
= q̇a�q̇b�q̇c, at any arbitrary time and at any arbitrary inner
position in the object converges to or equals zero. Trivially,
this is fulfilled wtih τ0→∞ because then the component λRad
disappears completely.

If the object is a superconductor, all thermal transport prop-
erties of other than the superconductor components of the tape
are kept unchanged in the simulations, but the effect resulting

from the cases (a) to (c) on temperature distribution and heat
flux in the filaments will become obvious in also the Ag-ma-
trix, see later.

In a superconductor, assumption (c) is hypothetic: There is
no real solid material, the thermal transport properties of
which would be based solely on radiation (absorption/remis-
sion plus scattering). Also the case “pure scattering”, parallel
to solid conduction, probably arises in only very rare situa-
tions in superconductors (an example has been identified in
[14]).

Can Eq. (4) be confirmed also experimentally? This is re-
ally the case, compare the results reported in the very recently
published 12th Ed. of the German VDI Heat Atlas [23], Chap.
K6: See λCond in its Fig. 14b and the comparison of the ex-
tinction coefficients in Tab. 6.

5.2 Application to Layered Temperature Distribution

As a first step of the analysis, we for simplicity assume the
tape consists of only the BSCCO 2223 material, with no Ag
matrix material at all, no interfacial thermal resistances and
with no transport current and magnetic field (this conductor
hardly would be stable against quench).

As a disturbance, the surface temperature of the tape, with-
in a time interval ofΔt = 8 ns, is quickly raised by absorption
of a heat pulse directed onto the nodes of the applied FE
scheme on its upper boundary, y = 296 μm. Magnitude of
the heat pulse, 1010 to 1012 W/m2, applied to the target sur-
faces defined below, is chosen to yield within the tape cross
section approximately consistent (not diverging) temperatures
during the test calculations.

The finite element simulation scheme is indicated in
Fig. 2a, b. The same scheme will later be used for
calculations with the proper materials composition (su-
perconductor filaments and Ag matrix). Details of the
numerical procedure (application of Ansys 16 as the
finite element program, selection of element type, key
options, time steps of integration, convergence criteria)
have been reported previously [19–21]. The calculations
are restricted to 2D geometry.

In the first set of calculations, the heat pulse is deposited
onto all nodes within 0 ≤ x ≤ 1.92 mm (the target; in this case
over the total width of the tape). For the extinction coefficient,
we apply E = 106 1/m const including corrections to anisotrop-
ic and dependent scattering.

In the calculations for Fig. 4, heat transfer to coolant is not
simulated. The calculations cover only very small time inter-
vals. No substantial contribution to upper and lower tape sur-
face temperatures can be expected from solid/liquid heat trans-
fer within the simulated periods (the time needed to generate a
gas bubble in LN2 on the flat surface is in the order of 10 ms,
under standard pool boiling conditions). Temperature varia-
tion of the target surface and at inner positions of the object
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thus is due to solely absorption of the pulse and internal ther-
mal transport properties. Boundary temperature at the lower
and upper tape surfaces, y = 0 and y = 264 μm, respectively, at
time, t = 0, are T = 77 K constant, and adiabatic condition at
the lower surface. Specification of the emissivity of the tape
surfaces is not needed (in view of the large optical thickness of
the sample, see below).

All these assumptions enormously reduce the numerical
problems (convergence of the results) and the calculation time
that has been encountered in previous investigations of super-
conductor stability.We could of course extend the calculations
to a 3D scheme; strongly increased computation time but little
additional information would be result from this extension.

In case (a), conduction in parallel to radiation, and
with the heat pulse deposited onto the total (left-half)
upper surface of the tape, the finite element solution
trivially yields strictly stratified, layered in parallel to
the tape surface, temperature distributions in the con-
ductor cross section (Fig. 4, upper diagram). These re-
flect the large anisotropy of the BSCCO 2223 solid
thermal conductivity (Fig. 3) and the applied boundary
conditions (uniform heating of the upper, adiabatic con-
dition at the lower tape surface).

The temperature distribution in case (b), solely conduction,
not shown, is very similar to case (a) because of the strong
solid conduction contribution to the total conductivity. The
fictitious case (c), only radiation, with the then strongly re-
duced total thermal conductivity, λTotal = λRad, yields much
larger conductor temperature (again not shown). It is clear also
that this distribution is strictly (horizontally) stratified.

In all cases, (a) to (c), temperature gradient is positive so
that the corresponding heat fluxes, q̇, are negative (Fig. 5a).

If size of the irradiated target is reduced to a quasi-point-
like area (including all nodes at positions 1.87 ≤ x ≤ 1.92 mm,
again at y = 264 μm), the strictly horizontally stratified tem-
perature distribution partly gets lost (Fig. 4, lower diagram),
again calculated with E = 106 1/m const; the result is shown
for case (a) λTotal = λCond + λRad.

In this preliminary step, with the assumed homogeneous, ma-
terials composition of the tape and because of the approximately
stratified temperature distributions, it is sufficient to consider only
directional components of the heat fluxes. From these, the differ-
ences Δq̇ = q̇a�q̇b�q̇c, at the tape centre, x = 1.92 mm, are
shown in Fig. 5b (y direction). Using the q̇ of Fig. 6a, b, the
differences in x and y-directions are plotted in Fig. 7a, b).

The extinction coefficient, E = 106 1/m, is responsible for the
large optical thickness, τ. From the ratio of directional radiation
intensities, i′(x =D)/i′ (x = 0) = exp (−ED), we at least have τ =E
D = 20, so that i′ (x=D)/i′ (x = 0) is in the order of 10−9. This
fulfils the diffusion approximation and explains the very
small differences Δq̇ (far below 0.01% of the value q̇a Fig.
7a, b). It confirms that application of the additive approx-
imation at least in this simple case is successful (homoge-
neous material, stratified temperature, strictly in parallel or
only slightly curved temperature distributions if there is
only the point-like disturbance).

But if the extinction coefficient is reduced to E = 103 1/m,
which indicates the sample now would be transparent to radi-
ation, τ < 1, the additive approximation fails, compare in
Fig. 5b the increase of the light-green diamonds,Δq̇, to about
100% deviation, again given as percentage of the flux
resulting from case (a). It should be zero, or at the most be
very small, for the additive approximation to be applicable to
heat transfer calculations also in this sample.

Fig. 4 Transient temperature fields (nodal temperatures), T(x,y,t),
calculated using E = 106 1/m const and solely case (a) λTotal = λCond +
λRad. Both diagrams assume uniform materials composition (only
superconductor, no Ag matrix material). Upper diagram: As a
disturbance, a heat pulse of 1.08 1010 W/m2 during a period of 8 ns is
directed onto all nodes located at 0 ≤ x ≤ 1.92 mm (left half of the upper

tape surface, y = 264 μm); the exactly stratified temperatures are shown at
time t = 100 ms after start of the disturbance. Lower diagram: Heat pulse
of 2.16 1010 W/m2 during 8 ns directed onto a point-like target (all nodes
between 1.87 ≤ x ≤ 1.92 mm, again at y = 264 μm); results are shown at
time t = 35ms. In both diagrams, results for simplicity are calculated with
no inclusion of heat transfer to a coolant
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In the next step, we again assume as a disturbance a
heat pulse directed onto the small, quasi-point-like target

on the upper tape surface but the internal structure of the
tape now is that of the proper multi-filamentary BSCCO
2223/Ag superconductor.

From technical and manufacturing aspects, and because
of their improved current limiting properties, thin film,
coated YBaCuO 123 superconductors presently are con-
sidered more attractive than multi-filamentary BSCCO
2223/Ag tapes. But the results reported so far in this paper
apply also to the coated superconductor provided it can be
understood as perfectly homogeneous.

Simulation and check of the additive approximation in a
multi-filamentary superconductor are the more targeted
and challenging task. The calculations for this reason have
been confined to the multi-filamentary conductor.
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Fig. 5 a Directional (vertical in Fig. 2a, b) heat flux, q̇y, all negative
(temperature gradient dT/dy positive), given at vertical nodal positions,
y, calculated for the cases (a) λTotal = λCond + λRad, (b) λTotal = λCond and
(c) λTotal = λRad, all at E = 106 1/m, at tape centre, x = 1.92 mm, and all
obtained at t = 100 ms. The figure serves for calculation in Fig. 5b of the
difference of the heat flux results obtained for the cases (a), (b) and (c)
assuming homogeneous tape composition (only superconductor, no
matrix material). The applied heat pulse is described in the caption of
Fig. 4 (upper diagram, all nodes within 0 ≤ x ≤ 1.92 mm at y = 264 μm).
Results are obtained without inclusion of heat transfer to a coolant
(adiabatic conditions on the lower tape surface; only the inner nodes are
considered). b Deviation Δq̇ from zero of directional (vertical in Fig.
2a, b) heat flux differences when the results, q̇y, calculated with (b)

λTotal = λCond and (c) λTotal = λRad are subtracted from the q̇y obtained
with (a) λTotal = λCond + λRad, with extinction coefficients, E = 103

(tentatively, for a test) and for a realistic E = 106 1/m. Homogeneous
tape composition (superconductor, no matrix material). Again, the
applied heat pulse is described in the caption of Fig. 4 (upper diagram,
all nodes within 0 ≤ x ≤ 1.92 mm at y = 264 μm). The deviation is
calculated as percent of the flux resulting from case (a), at vertical
nodal positions, y, and at t = 100 ms. Near the lower surface, results are
given for only the inner nodes of the tape. Note the strongly increasing
deviation ofΔq̇ from zero at y ≥ 200 μm, when E is reduced to 103 1/m, a
clear indication that the additive approximation no longer can be
confirmed
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Fig. 6 a Directional vertical heat flux, q̇y (see Fig. 2a, b), again all
negative (gradient dT/dy positive), at tape centre and given at vertical
nodal positions, y. Same calculation as in Fig. 5a for (a) λTotal = λCond +
λRad, (b) solely λCond and (c) solely λRad, but a heat pulse of 2.16 10

10W/
m2 during a period of 8 ns is directed onto only the point-like target (all
nodes located at 1.87 ≤ x ≤ 1.92 mm on the upper tape surface, y =
264 μm). All results are obtained with E = 106 1/m const and at t =
35 ms. b Directional horizontal heat flux, q̇x, again all negative
(gradient dT/dx positive), at tape centre, at vertical nodal positions, y;
same calculation as in Fig. 6a, for (a) λTotal = λCond + λRad, (b) solely
λCond and (c) solely λRad, all with E = 106 1/m const; results are shown
at t = 35 ms.
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5.3 Single (Dirac-Like) Heat Pulse
on a Multi-filamentary Superconductor

Figure 8 shows the temperature distribution, T(x,y), at t =
8.6 ms, for cases (a) and (c), upper and lower diagram, respec-
tively, calculated for E = 106 1/m. Selection of the time t =
8.6 ms will be explained later, Sect. 5.4.

The disturbance consists of a single heat pulse of 8.64
1011 W/m2 applied during the period Δt = 8 ns to all nodes
at positions 1.87 ≤ x ≤ 1.92 mm on the upper tape surface (y =
264 μm, the point-like target, as before); this is a rough ap-
proximation of a Dirac pulse. Note that the filament tempera-
tures, because of the assumed small (fictitious) thermal con-
ductivity, λTotal = λRad, of the BSCCO 2223 superconductor,
remain below the temperature of the Ag matrix material.
Conduction heat transfer from the Ag matrix into the depth
of the superconductor filaments therefore is partly blocked.

Because of the strong anisotropy of the solid thermal con-
ductivity, λCond, of BSCCO 2223 (Fig. 3), and since the con-
ductor cross section now involves two materials (ceramic
grains and the matrix Ag) with fundamentally different

conductivities, we have to calculate the vector heat flux q̇
(instead of the directional q̇y or q̇x in the previous subsection)

and the corresponding deviations Δq̇. Results are shown in
Figs. 8 and 9.

As a result, heat flux, q̇, in superconductor and matrix sec-
tions is strongly different (Fig. 9). But theΔq̇ (existing in only
the superconductor sections) converge to zero (Fig. 10), as
requested.

5.4 Internal Heat Sources in the Multi-filamentary
Superconductor

We finally consider the conduction and radiation heat transfer
problem if there are only disturbances arising from solely
internal heat sources, in the same conductor as before (no
longer disturbances arising from the heat pulses described in
the previous subsections.) Internal heat sources arise from flux
flow or Ohmic resistances.

Flux flow resistances limit current transport when in an
experiment transport current density exceeds critical current
density; this situation can be understood as a disturbance. Flux
flow resistance happens even if conductor temperature is still
below its critical temperature. Temperature is a thermodynam-
ic variable: With temperature below its critical value, the con-
ductor is still in the superconducting state.

In the literature, the specific flux flow resistance, ρFF, of
ceramic superconductors is considered of in the order
10−7 Ω m. An alternative model to estimate flux flow resis-
tances recently has recently been described in [21]; for
BSCCO 2223 it yields ρFF < 5.7 10−7Ωm at 100 K and under
a field B = 1 mT, clearly above the specific resistance of Ag.
Losses arising from flux flow resistance increase conductor
temperature. If the temperature increases beyond its critical
value, the conductor finally is in the Ohmic resistance state,
which causes even higher losses.

With the internal heat sources arising from flux flow or
Ohmic resistances under transport current, Fig. 11a shows
transient temperature fields, T(x,y,t), in the multi-filamentary
conductor, at t = 7.6, 8.1 and 8.6 ms (from top to bottom)
calculated for case (a) λTotal = λCond + λRad and using E = 106

1/m const. For case (c) λTotal = λRad, the temperature distribu-
tion is shown in Fig. 11b.

Note again that we are not satisfied with the overall tem-
perature field in the BSCCO 2223 tape. We need the temper-
ature distribution within the filaments and thus the tempera-
ture of the grains. Figure 11a and b accordingly shows that:

i. Superconductor temperature in the tape cross section is by
no means homogeneous but strongly depends on materials
composition and thus on position within the tape (also
critical and transport current distribution and magnetic
field distribution, all not shown in Fig. 11a, b, are
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Fig. 7 a Deviation Δq̇ from zero directional (vertical in Fig. 1a) heat
flux differences, q̇y, calculated using E = 106 1/m from the results in

Fig. 6a. b Deviation Δq̇ from zero directional (horizontal in Fig. 1a)
heat flux differences, q̇x calculated using E = 106 1/m from the results
in Fig. 6b
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responsible for the temperature distribution). Trivially,
temperature within the filaments exceeds temperature of
the Ag matrix material,

ii. Also within the filaments, temperature distribution is not ho-
mogeneous. This means the superconductor filaments may
partly (locally) be in zero-resistance, flux flow resistance or
even Ohmic resistive states, within short periods of time.

The results confirm the calculated temperature distributions
of multi-filamentary superconductors reported in [19–21].
Convergence of the results again is achieved at times up to
t = 8.6 ms (2.1 ms after start of the disturbance). At later times,
heat losses from the then mostly Ohmic resistances, and the

increase of local conductor temperature, are so strong that
convergence of the numerical results no longer can be
achieved.

This is the consequence of a run-away of local tempera-
tures, a clear indication of the onset of a quench. It first occurs
at isolated positions within the conductor cross section but
will spread quickly.

It should be the very aim of stability calculations to identify
exactly these positions at this critical instantwhen heat generation
rates, at temperature even below critical temperature, can become
exorbitant, under only flux flow resistance to transport current.

Fig. 8 Transient temperature fields, T(x,y,t), in the BSCCO 2223 tape;
nodal results, calculated using E = 106 1/m const and for cases (a)
λTotal = λCond + λRad (above) and (c) λTotal = λRad (below). Contrary to
Fig. 4, 5, 6 and 7a, b, the diagrams are calculated using the proper
materials composition (superconductor grains and filaments embedded

in Ag matrix material). As a first step, disturbance in this simulation
results from a heat pulse of 8.64 1011 W/m2 during the period of 8 ns
applied to all nodes in 1.87 ≤ x ≤ 1.92 mm, y = 264 μm (a point-like
target). Results are shown at time t = 8.6 ms for all nodes of the tape
(including heat transfer to the coolant)
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Fig. 10 Deviation Δq̇ (flux difference) in the superconductor (SC)
sections from zero when vector heat flux results, q̇, calculated with (b)
λTotal = λCond plus (c) λTotal = λRad are subtracted from the vector heat flux
obtained under case (a) (λTotal = λCond + λRad), all with extinction
coefficients, E = 106 1/m. The diagram is obtained using the proper
materials composition (superconductor grains and filaments embedded
in Ag matrix material). The disturbance by a heat pulse is described in
the caption of Fig. 8. Results are given for all nodes of the tape at x =
1.92 mm (including heat transfer to the coolant). The deviation is shown
at vertical nodal positions, y, at time t = 8.6 ms. Deviations from zero in
the SC layers (red diamonds) are very small, below 0.01% of the vector
heat flux of case (a). It would not be reasonable to calculate deviationsΔq̇
(flux differences) in the Ag sections (the q̇ in these sections indicate solely
solid conduction)
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Fig. 9 Vector heat flux, q̇, at tape centre, x = 1.92 mm, given at vertical
nodal positions, y, for case (a) λTotal = λCond + λRad, (b) λTotal = λCond and
(c) λTotal = λRad (red and blue and light-green diamonds, circles and
triangles, respectively, as before), all with E = 106 1/m const and at t =
8.6 ms. The diagram is calculated using the proper materials composition:
Superconductor (SC) filaments embedded in Ag matrix material. The
applied heat pulse is described in the caption of Fig. 8. Note that all q̇
shown in the Ag sections indicate solely solid conduction (but depend on
heat transfer in the SC filaments, by conservation of energy)
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The disturbance in this case results from nominal transport
current increasing to a fault, like in a short-circuit. The simu-
lated increase of the current starts at t = 6.5 ms, within 2.5 ms
to its 20-fold nominal value in an electrical grid.

Neither heat capacity of the conductor andmatrixmaterial nor
heat transfer to a coolant would be able to over-compensate the
thermal divergence arising at times later than t= 8.6 ms (in this
conductor and under the given load) if there are no highly con-
ductive components (stabilisers) like Cu-layers or shunts in the
tape or cable cross sections to which the current could be com-
muted, and no external safety measures (interruption of transport
current by conventional equipment) immediately could be taken.

Note from Fig. 11a (mid-position), the enormous rate of local
conductor temperature increases once the disturbance is switched
on. The rate, about 3 103K/s observedwithin the period 6.5 ≤ t ≤
8.1 ms, results from solely flux flow resistance, but finally would
increase to more than 105 K/s when critical temperature of the
superconductor BSCCO 2223 (TCrit = 108 K) is exceeded; com-
pare Fig. 16.

Also, the distribution of the vector heat flux, q̇, is not ho-
mogeneous (Fig. 12, with the strong variations between

superconductor and Ag sections). But the deviations Δq̇
(Fig. 13) fortunately are very small again (below 0.01%).

This confirms the results of the heat transfer and stability
calculations reported in our previous papers and the applica-
bility of the additive approximation.

5.5 Check of the Finite Element Mesh

All available, high-quality finite element computer programs
provide options to automatically check design and suggest
improvements of the mesh. Yet the check of the mesh by
inspection of the results obtained from the simulated transport
processes is indispensable.

Figure 14a and b compare details of the transient tempera-
ture field, T(x,y,t), reported in Figs. 8 and 11a (lower diagram),
both at time t = 8.6 ms. With an external disturbance posi-
tioned in the small target on top of the tape, close to the axis
of symmetry, with uniform start temperature (T = 77 K at t = 0
on all nodes), and if there are no internal heat sources, heat
flow necessarily is in direction into the matrix and from there
into the filaments (Fig. 14a).

Fig. 11 a Transient temperature fields, T(x,y,t), in the multi-filamentary
conductor, at t = 7.6, 8.1 and 8.6 ms (from top to bottom) calculated using
E = 106 1/m const for case (a) λTotal = λCond + λRad. As a second step, the
disturbance in this simulation (contrary to Fig. 8) results from a sudden
increase of transport current to a fault (transport current density exceeding
critical current density, compare text). No heat pulse is applied to the
upper surface of the tape. The diagrams are obtained using the proper
materials composition (superconductor filaments embedded in Ag matrix
material). Details of the calculations are described in [19–21]. Again, only
the left half of the total tape width is shown. Results are given for all
nodes of the tape at x = 1.92mm (including heat transfer to the coolant).

b Transient temperature field, T(x,y,t), at t = 8.6 ms, for E = 106 1/m, for
case (c) λTotal = λRad. The diagram is calculated using the proper materials
composition (superconductor grains and filaments embedded in Ag
matrix material). The disturbance in this simulation like in Fig. 11a
results from a sudden increase of transport current to a fault (transport
current density exceeding critical current density). No heat pulse is
applied to the upper surface of the tape. In comparison with Fig. 11a,
the small (only radiative) conductivity (or the corresponding large thermal
radiations resistances) strongly increases local temperature in grains and
filaments
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The situation becomes different when there are internal
heat sources. Figure 14 b shows transient temperature field,
T(x,y,t), that develops under flux flow and Ohmic resistances
under transport current. Since the generated heat losses enor-
mously increase filament temperature, heat flow in this simu-
lation necessarily is from filaments into the matrix material.

Both situations are confirmed by the conductor temperature
shown in Fig. 15a and b, respectively; this cannot be achieved
if the applied finite element mesh (the same in both situations)
is too coarse. With a much finer mesh, computation time

would strongly increase but without much gain for the success
of the analysis (the calculation for the temperature field shown
in Fig. 11b, for example, takes about 12 h, on a standard PC
with a 4-core processor and under Windows 7).

6 Identification of the Onset of a Quench - A
Hypothesis

Figure 16 shows increase of conductor temperature with time,
∂T(x,y,t)/∂t, given for all elements of the multi-filamentary
BSCCO 2223 tape (including the Ag elements).

The larger the local conductor temperature of the BSCCO
conductor or of the Agmatrix, the larger its increase with time:
At t = 8.4 and 8.6 ms, the variations ∂T(x,y,t)/∂t amount to
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Fig. 12 Vector heat flux, q̇, at tape centre, x = 1.92 mm, given at vertical
nodal positions, y, for case (a) λTotal = λCond + λRad, (b) λTotal = λCond and
(c) λTotal = λRad, all with E = 106 1/m const and at t = 8.6 ms.
Identification of the symbols (red and blue and light-green diamonds,
circles and triangles) is the same as in the previous figures. The
disturbance in this simulation again results from a sudden increase of
transport current to a fault (transport current density exceeding critical
current density, no radiation pulse applied onto the upper surface of the
tape). Large heat flux values appear only in the Ag sections, but the q̇ in
the Ag sections trivially refer to solely solid conduction
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Fig. 13 Deviation Δq̇ (flux difference) in the superconductor (SC)
sections from zero when vector heat flux results, q̇, calculated with (b)
λTotal = λCond plus (c) λTotal = λRad are subtracted from the vector heat flux
obtained under case (a) (λTotal = λCond + λRad, all with extinction
coefficients, E = 106 1/m. The disturbance in this simulation is the same
as in Figs. 11a, b and 12 (sudden increase of transport current to a fault).
Results are given for all nodes of the tape at x = 1.92 mm (including heat
transfer to the coolant). The deviation from zero is shown at vertical nodal
positions, y, at time t = 8.6 ms and is again below 0.01% of the results for
case (a). Calculation of Δq in the Ag sections again would not be
reasonable

Fig. 14 a Detail (enlarged) of Fig. 8 (upper diagram, t = 8.6 ms): Heat
flow into the filaments resulting from the heat pulse applied to the target
area on the upper tape surface close to the axis of symmetry (x =
1.92 mm). No internal heat sources (no transport current, no magnetic
field). Because of the small thermal conductivity, λTotal, of the
superconductor, the filament temperatures are below temperature of the
matrix material (heat transfer into the depth of the filaments is blocked by
the thermal resistance of the ceramic superconductor grains and by
interfacial resistances). b Detail (enlarged) of Fig. 11a (lower diagram,
t = 8.6 ms): Heat flow out of the filaments (due to flux flow and Ohmic
resistance losses). No external heat sources (no pulse onto the tape). Note
there are quite inhomogeneous temperature distributions between and, in
particular, within the filaments
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about 7 104 K/s. At later times, the conductor then in the
Ohmic resistance regime, ∂T(x,y,t)/∂twould increase to values
above 105 K/s.

The curves in Fig. 16 thus suggest we are observing a kind of
self-intensifying effect, locally and immediately before quench:
The larger the local conductor temperature, the larger its increase
with time, ∂T(x,y,t)/∂t. The second-order derivative, ∂2T(x,y,t)/∂t2,
too, then positive, would still more definitely indicate divergence
of the numerical simulations once conductor temperature has
increased to levels close to critical temperature.

The situation probably could be described more precisely
when instead of comparing temperatures [T(x,y,t) larger than

TCrit(x,y,t)?] the dynamical aspect, temperature variations, at
least the increase ∂T(x,y,t)/∂t but possibly also ∂2T(x,y,t)/∂t2,
are inspected. There is possibly a correlation of results of the
simulation (the “numerical space”) with the experimental
space (the “physical reality”). The correlation becomes the
better the more precise the predictions of numerical simula-
tions and the temperature measurements.

This suggests the following hypothesis: A superconductor
will quench immediately when convergence of the corre-
sponding numerical scheme no longer can be achieved.

But origins of non-convergence in Finite Element calcula-
tions can be manifold, like badly defined physical models, too
complicated overall geometry, too strongly differing materials
properties, poor meshing, inadequate selection of element
types, integration time steps, frontal or iterative solvers or of
convergence criteria. The “physical reality” of a superconduc-
tor then might not be correlated with non-convergence of the
numerical results, and vice-versa, and the above mentioned
mapping thus not be defined uniquely.

In the present case, the proper Finite Element calculation
was used just as an iterative core procedure (step a) that is
embedded in a master scheme (steps b to d). The master
scheme serves for calculation of local values of critical param-
eters (current density, magnetic field), ofMeissner effect, local
resistance, fault states and electrical losses of the conductor, all
obtained in each of the Finite Elements and thus in depen-
dence of local temperature obtained in step (a). The whole
procedure, steps (a) to (d), then is repeated (steps (b) to (d)
are not elements of the Finite Element code).
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Fig. 15 a Temperature profile, T(x = 1.92 mm, y), close to the axis of
symmetry, at t = 8.6 ms. Results are shown for the quasi-point-like heat
pulse deposited during 8 ns on the top of the tape (no internal heat
sources). The figure is extracted from the results shown in Fig. 14a (the
detail of Fig. 8, upper diagram). Symbols for cases (a) and (b) are the
same as before. Heat flow into the filaments results from the positive
temperature gradient in the superconductor (SC) sections (small
deviation from strict positive gradient is explained by the large
conductivity of the matrix material). b Temperature profile, T(x =
1.92 mm, y), at t = 8.6 ms, close to the axis of symmetry. The
disturbance results from flux flow and Ohmic resistance losses (no
external heat pulse applied to the tape). The results indicate heat flow
out of the filaments. The diagram includes heat transfer to the coolant
and is calculated from Fig. 14b (the detail of Fig. 11a, lower diagram).
Symbols for cases (a) and (b) are as before. Within the SC sections, at
large coordinates, y, there are positive and negative temperature gradients
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Fig. 16 The self-stimulating effect immediately before quench: The
larger the local conductor temperature, the larger its increase with time.
The figure shows ∂T(x,y,t)/∂t, calculated using the results of the finite
element simulation obtained for 8.1 ≤ t ≤ 8.6 ms after start of the
disturbance (transport current density exceeding critical current
density). Data are shown for all elements of the multi-filamentary
BSCCO 2223 tape (superconductor grains and filaments, and Ag
matrix; compare text). Local quench is expected after critical times,
beginning at tCrit = 8.4 ms or at = 8.6 ms, at the latest, at different
positions (not explicitly specified in this figure) in the conductor cross
sections (red and black diamonds, respectively). Exact positions can be
obtained from comparison of this figure with the cross sections shown in
Figs. 11a and 2a, b
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The solution scheme of the (proper) Finite Element
problem (step a) applied sparse matrix direct solvers
(requests large memory space; alternatives like JCG or
ICG iterative solvers were tested but convergence is not
guaranteed). In the present case, 4-node, plane model
elements have been applied that allow rotation against
axis of symmetry.

The whole simulated period, originally designed to a length
of 20 ms, has been split into periods Δt = 10-4 s. To obtain
convergence, the procedure within each periodΔt was repeat-
ed by up to N = 10 iterations of the steps (a) to (d) because of
strong non-linearity in almost all involved parameters. Within
each Δt, regular or fault currents were kept constant.
Integration time δt within each Δt/N was between 10-14 and
10-7 s. Length of the intervals Δt/N is large in comparison to
characteristic (diffusion) time, τC, of electrical or magnetic
fields and of currents, and of time τR needed to establish
new equilibrium, electron charge distributions.

The procedure is similar to the working steps and the iter-
ative, saw-toothed temperature excursions described in
Figures 4 and 7a, b of [19]: We again look, now within the
intervalsΔt2 =Δt, for converence values of T(x,y,t). In Figure
4 of this reference, these were indicated by the solid black
circles obtained under point-like disturbances, and their
existence, as a result of the calculations, was confirmed
in Figure 7a, b of the same reference. In the present
case, the disturbance results from an AC fault current
that is not point-like but in principle may extend to the
cross sections of all filaments.

Decision on occurrence or non-occurrence of a
quench then is made not with respect to critical loads
of given, fixed safety limits, but by divergence of tem-
perature excursion in any of the integration steps j + 1,
which means, even if local superconductor temperature
in the foregoing step, j, still might be below critical
temperature. Convergence is obtained for all regular
transport currents (DC, AC). Divergence (non-conver-
gence, first observed as local results) appears when un-
der quickly increasing fault current conductive and radi-
ative distribution of the load, and heat capacity and heat
transfer to the coolant, no longer compensate the losses.

The calculations yielded a series of converged, quasi-sta-
tionary solutions. With these solutions, onset of a quench is
considered as the consequence of diverging values of T(x,y,t)
to be expected from ∂T(x,y,t)/∂t or ∂2T(x,y,t)/∂t2 also if
T(x,y,t) is below, but very close to, TCrit(x,y,t). This procedure
covers flux flow losses; we do not wait in the calculations until
T(x,y,t) turns out to really exceed TCrit(x,y,t), and conductor
losses then, almost completely, be caused by Ohmic resis-
tance, the standard (trivial) condition for a quench.

The superconductor stability problem, under fault current,
thus appears to be similar to unstable crack propagation in
fracture mechanics.

Current distribution in step j not necessarily is the
same as obtained in foregoing integration time steps, j
- 1; it may fluctuate and the current percolate through
the conductor, in response to the actual resistances.
Computational efforts to fully cover all these procedures
were enormous.

The trend of the temperature excursions, ∂T(x,y,t)/∂, in
Fig. 16 is very similar in superconductor filaments and Ag
matrix. Temperature measurement in the conductor, by
contacting the Ag matrix, thus could more conveniently be
realised than at the superconductor surfaces (ceramic mate-
rials, surfaces may be rough, irregularly shaped, possibly with
chemical impurities, which means contact measurement of
superconductor temperature might become too difficult).

7 Summary, Conclusion and Outlook

Finite element calculations of cryogenic temperature distribu-
tion and internal heat transfer have been reported for multi-
filamentary superconductor samples with artificial homoge-
neous and, realistically, inhomogeneous materials composi-
tion and under thermal disturbances (resistive states initialised
by flux flow resistance). The additive approximation of ther-
mal conductivity has been shown to be justified not only for
simple geometrical structure of the objects. Even if geometry
and materials composition are highly diversified, like in a
multi-filamentary superconductor, and with internal heat
sources, the additive approximation has been shown to be
successfully applicable if the optical thickness of the super-
conductor conductor materials part is large.

The additive approximation fails if the optical thickness of
an investigated object would be small and the diffusion solu-
tion of radiative transfer then no longer be applicable.

There is another problem to be investigated within the ad-
ditive approximation and the radiative transfer diffusion solu-
tion, even within radiative transfer in general if there are
absorption/remission and scattering obstacles within an irradi-
ated, conducting object. According to Eq. (4), solid conduc-
tion and radiation are switched in parallel. This delivers cor-
rect results under the energetic viewpoint. But Eq. (4)
squeezes both components onto a common time scale.
Transit times thus become a series of events registered on this
time scale where transit times, when registered, become a
series of images. It is not clear if this series will uniquely be
ordered [14] since conduction and radiative heat flow, in par-
allel, proceed at strongly different propagation velocities (dif-
ferent by orders of magnitude).

This problem is not restricted to superconductors: A similar
situation arises in laser-flash experiments to determine the
thermal diffusivity of thin films. The question again is whether
in such experiments the non-transparency condition, of both
incoming laser and absorbed/remitted thermal radiation, i. e.
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in completely different spectral regions, was really fulfilled.
Impacts on stability predictions will again be investigated in a
subsequent paper. In part B of the present paper, we will try to
approach still more closely the "point of no return" of the self-
intensifying disturbation (presently identified at about 8.6 ms)
and investigate on which timescale break-down of electron
pair density has to be expected; this break-down must be cor-
related with the dynamics of the phase transition.
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