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Abstract
Recently, Bozovic et al. reported that (Nature 536:309–311, 2016) in the overdoped side of the single-crystal La2 − xSrxCuO4

(LSCO) films, the transition temperature Tc and zero-temperature superfluid phase stiffness ρs(0) will obey a two-class scaling

law: Tc ¼ γ � ffiffiffiffiffiffiffiffiffiffiffi
ρs 0ð Þp

for Tc ≤ TQ and Tc ∝ ρs(0) for Tc ≥ TM, where γ = (4.2 ± 0.5) K1/2 , TQ ≈ 15 K, and TM ≈ 12 K. They further
pointed out that the parabolic scaling observed in the highly overdoped side indicates a quantum phase transition from a
superconductor to a normal metal. In this paper, we propose a quantum partition function (QPF) for zero-temperature Cooper
pairs, bywhich one can effectively distinguish betweenmean-field and quantum critical behaviors.We theoretically show that the
two-class scaling law can be exactly derived by using the QPF, and the theoretical values of γ, TQ, and TM are well in accordance
with experimental measure values. Our analyses indicate that the linear scaling Tc ∝ ρs(0) is a mean-field behavior, while the

parabolic scaling Tc ¼ γ � ffiffiffiffiffiffiffiffiffiffiffi
ρs 0ð Þp

is a quantum critical behavior.

Keywords Cuprate films . Quantum fluctuation .Mean-field . Ginzburg number . BCS theory

1 Introduction

Over recent decades, with the great advances in cooling tech-
nologies, much attention was focused on investigating the
behaviors of Cooper pairs near zero temperature. Among all
physical quantities, the zero-temperature superfluid phase
stiffness ρs(0) is a central parameter for describing zero-
temperature Cooper pairs, since it can be exactly obtained
bymeasuring magnetic penetration depths of superconducting
materials. For copper oxide materials, there has been much
interest for seeking the potential correlations between the tran-
sition temperature Tc and ρs(0). The earliest pattern was re-
ferred to as the Uemura relation [1–2] Tc ∝ ρs(0), which works
reasonably well for the underdoped materials. Later, a more
universal relation, the Homes’ law [3–6] Tc ∝ ρs(0)/σdc was

found to hold regardless of underdoped, optimally doped, and
overdoped materials, where σdc denotes the dc conductivity
measured at approximately Tc. Theoretically, Homes’ law has
been well-known as a mean-field result of the dirty-limit BCS
theory [4, 7–8]. Despite these successes, some scholars
questioned the validity of Homes’ law in highly underdoped
and overdoped sides. For example, the relation between Tc and
ρs(0) was found to be sub-linear in highly underdoped mate-
rials [9–12]. Recently, by investigating the overdoped side of
the single-crystal La2 − xSrxCuO4 films, Bozovic et al. ob-
served a two-class scaling law [13]:

Tc ¼ α � ρs 0ð Þ þ T0; Tc≥TM

Tc ¼ γ �
ffiffiffiffiffiffiffiffiffiffiffi
ρs 0ð Þ

p
; Tc≤TQ

�
; ð1Þ

where TM ≈ 12 K, TQ ≈ 15 K, α = 0.37 ± 0.02, T0 = (7.0 ±
0.1) K, and γ = (4.2 ± 0.5) K1/2. The difference between TM
and TQ implies that the two-class scaling law (1) is non-
smoothly linked by linear and parabolic parts.

Equation (1) indicates that a parabolic scaling emerges
in the highly overdoped side [13]. Since the two-class
scaling law (1) differs significantly from Homes’ law,
Bozovic et al. concluded that their experimental findings
are incompatible with the mean-field description [13–15].
The linear part in Eq. (1) can be derived by using the
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dirty-limit BCS theory [4, 7–8] and therefore is a mean-
field result; however, the parabolic part may hint potential
new physics [13]. As a possible evidence, Bozovic et al.
have observed that with increased doping (Tc → 0), La2 −

xSrxCuO4 becomes more metallic, and increased doping
induces a quantum phase transition from a superconductor
to a normal metal [13–15]. This observation indicates that
when Tc → 0, quantum fluctuations may play an impor-
tant role for inducing the parabolic scaling in Eq. (1). In
this paper, we propose a quantum partition function for
describing quantum critical behaviors of zero-temperature
Cooper pairs. Based on such a quantum partition function,
we will exactly reproduce the two-class scaling law (1).
Here, we adopt the natural units ℏ = c = kB = 1, where ℏ
denotes the reduced Planck constant, c is the light speed,
and kB is the Boltzmann constant.

2 Quantum partition function
for zero-temperature Cooper pairs

The free energy density of zero-temperature Cooper pairs can
be generally written as [16]:

L ¼ σ � ∂τϕ q; τð Þj j2 þ η � ∇ϕ q; τð Þj j2 þ λ2 � ϕ q; τð Þj j2

þ λ4 � ϕ q; τð Þj j4; ð2Þ

where ϕ(q, τ) denotes the order parameter of zero-temperature
Cooper pairs and it is a function of space q and imaginary time
τ. Here, τ∈ 0; 1T

� �
with the temperature T being 0. σ, η, λ2, and

λ4 are phenomenological parameters [16].
If one denotes the zero-temperature superfluid phase stiff-

ness by |ϕ(q, τ)|2, then, by applying Gor’kov’s Green function
method [8] into the BCS theory at T = 0 and Tc ≈ 0, one can
obtain [17]:

η ¼ 1; ð3Þ

λ2 ¼ λ2 Tcð Þ ¼ −
24π2me

7ζ 3ð Þ � εF T 2
c ; ð4Þ

λ4 ¼ λ4 Tc; ρs 0ð Þð Þ ¼ 12π2me

7ζ 3ð Þ � εF
� T2

c

ρs 0ð Þ ; ð5Þ

where ρs 0ð Þ ¼ ns 0ð Þ
4me

and ns(0) denote zero-temperature super-
fluid phase stiffness [13] and zero-temperature superfluid den-
sity when materials are homogenous, ζ(x) is the Riemann zeta
function, εF is the Fermi energy, and me is the rest mass of an
electron. The derivation for Eqs. (3)–(5) can be found in
Appendix 1, where we have clarified why Gor’kov’s method
holds at T = 0.

Equations (3)–(5) are derived by using the BCS theory,
which assumes that quantum fluctuations on all size scales
are averaged out. Based on such an assumption of the mean-

field, ns(0) is equal to the total number density of electrons in
the normal state [8] and hence can be regarded as a constant.
This is the standard explanation of the BCS theory. However,
later we will observe that ns(0) changes with Tc as long as
quantum fluctuations cannot be averaged out.

Due to Eqs (3), (4), and (5), σ is the unique phenomenological
parameter in Eq. (2). In this paper, we order σ = 1 so that the free
energy density (2) yields an exact relativistic form:

L Tcð Þ ¼ ∂τϕ q; τð Þj j2 þ ∇ϕ q; τð Þj j2 þ λ2 Tcð Þ � ϕ q; τð Þj j2

þ λ4 Tc; ρs 0ð Þð Þ � ϕ q; τð Þj j4: ð6Þ

It is easy to observe that the transition temperature Tc in Eq.
(6) plays the role of temperature T in the classical Landau-
Ginzburg free energy. Later, we will show that Tc = 0 is a
potential critical point. To guarantee the self-consistency of
Eq. (6), we need to verify that |ϕ(q, τ)|2 is the zero-
temperature superfluid phase stiffness. To this end, the free
energy density (6) is varied to obtain the field equation of
Cooper pairs:

∂2τϕ q; τð Þ þ ∇2ϕ q; τð Þ−λ2ϕ q; τð Þ−2λ4 � ϕ q; τð Þj j2ϕ q; τð Þ ¼ 0: ð7Þ

For homogenous superconductors, Eq. (7) yields |ϕ(q, τ)|2

= − λ2/2λ4 = ρs(0), where Eqs. (4) and (5) have been used.
Because ρs(0) denotes the zero-temperature superfluid phase
stiffness of homogenous materials, |ϕ(q, τ)|2 indeed denotes
the zero-temperature superfluid phase stiffness. This verifies
the self-consistency of the free energy density (6).

Using the free energy density (6), we propose a quantum
partition function (QPF) for zero-temperature Cooper pairs as
follows:

Z Tc; J ; J*
� � ¼ ∫½Dϕ q; τð Þ*�Λ∫ Dϕ q; τð Þ½ �Λe−∫dτ ∫d

Dq L Tcð Þ− J q;τð Þϕ q;τð Þ− J q;τð Þ*ϕ q;τð Þ*½ �;
ð8Þ

where J(q, τ) denotes the external field, Λ is the momentum
cutoff, and D is the dimension of superconducting materials.

From a perspective of effective field theory, a quantum
field theory should be defined fundamentally with a cutoff Λ
[18–20]. For the crystal materials, a rigid renormalization the-
ory can be defined on a cubic lattice of a lattice unit:

a ¼ 1

Λ
; ð9Þ

where a denotes the minimal lattice constant. The physical
meaning of Eq. (9) is that quantum fluctuations with wave-
lengths less than 2πa can be averaged out [19]. Weinberg also
pointed out that [21] in solid-state physics, there really is a
cutoff, the lattice spacing a, which one must take seriously in
dealing with phenomena at similar length scales.

Since the momentum cutoff Λ is determined by a, there is
no longer any phenomenological parameter in the QPF (8).
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Therefore, the validity of the QPF (8) can be justified by the
experimental investigation result (1).

3 Parabolic Scaling

We assume that quantum fluctuations with wavelengths larger
than 2πa cannot be averaged out. By the theory of critical
phenomena, this means that the coefficients λ2(Tc) and
λ4(Tc, ρs(0)) in Eq. (6) should receive the contributions from
quantum fluctuations on these size scales. To evaluate the
contributions, by applying the renormalization group ap-
proach to the QPF (8), one can obtain the renormalization
group equations1 [17]:

dλ2 Tcð Þ
dlnb

¼ λ2 Tcð Þ � 2−4λ ̂4
� �þ Oðλ ̂24Þ; ð10Þ

dλ ̂4
dlnb

¼ 3−Dð Þ � λ4̂−10λ ̂
2
4 þ Oðλ ̂34Þ; ð11Þ

where the quantum dynamical exponent z is equal to 1 and

λ ̂4 ¼ λ4 Tc; ρs 0ð Þð Þ � πð ÞD2ΛD−3

2 2πð ÞDΓ D
2

� 	 : ð12Þ

By Eqs. (10)–(12), it is easy to get a nontrivial fixed point:

λ2 Tcð Þ≈0

λ4 Tc; ρs 0ð Þð Þ≈ 3−D
10

�
2 2πð ÞDΓ D

2

� 	
πð ÞD2ΛD−3

8>><>>: : ð13Þ

λ2(Tc) and λ4(Tc, ρs(0)) are defined by Tc and ρs(0) via Eqs.
(4) and (5). Substituting Eqs. (4) and (5) into Eq. (13) yields:

Tc≈0
Tc≈γ Dð Þ �

ffiffiffiffiffiffiffiffiffiffiffi
ρs 0ð Þ

p�
; ð14Þ

where

γ Dð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3−Dð Þ � Λ3−D �

7 2πð ÞDΓ D
2

� 	
ζ 3ð Þ � εF

60 πð ÞD2þ2me

vuuuut : ð15Þ

If we denote Tc ≈ 0 by Tc ≤ TQ(D), Eq. (14) can be written in
the form:

Tc ¼ γ Dð Þ⋅
ffiffiffiffiffiffiffiffiffiffiffi
ρs 0ð Þ

p
for Tc≤TQ Dð Þ; ð16Þ

where TQ(D) denotes a sufficiently low temperature. The
physical meaning of Eq. (16) is that ρs(0) will change with

Tc as long as Tc ≤ TQ(D). Later, we will theoretically show
TQ(2) ≤ γ(2)2 and TQ(3) ≤ 0.

The two-class scaling law (1) was found in the single-
crystal La2 − xSrxCuO4 films (D = 2) around x = 0.25 [13].
Therefore, for D = 2, Eq. (16) reproduces the parabolic part in
the two-class scaling law (1). To verify this, we show that γ(2)
is in accordance with the existing experimental measure value.
Plugging Eq. (9) into Eq. (15), one can obtain [21]:

γ 2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7 � ζ 3ð Þ � εF
15 � π � a � me

s
: ð17Þ

For single-crystal La2 − xSrxCuO4 films, substituting the
data a ≈ 3.8 × 10−10 m [13] and εF(x ≈ 0.2) ≈ 8.75 eV [22]
into Eq. (17) yields [21]:

γ 2ð Þ≈4:29 K1=2; ð18Þ
which exactly agrees with the experimental value (4.2 ±
0.5) K1/2 [13].

The high accordance between theoretical and experimental
values thoroughly proves that the parabolic scaling in Eq. (1)
is due to quantum fluctuations. From this meaning, the non-
trivial fixed point (13) describes the quantum critical behav-
iors of zero-temperature Cooper pairs when Tc ≤ TQ(D).
However, we do not clarify the range of applicability of the
nontrivial fixed point (13), i.e., the value of TQ(D). According
to the renormalization group theory, the nontrivial fixed point
(13) is valid if and only if quantum fluctuations cannot be
averaged out. Therefore, to evaluate TQ(D), we need to find
a criterion for identifying the validity of the mean-field
approximation.

4 Quantum Ginzburg Number

For thermal fluctuations, there exists a clear criterion of the
applicability of the mean-field theory, i.e., the classical
Ginzburg number Gi [23–25], where the mean-field approxi-
mation is valid when Gi ≪ 1. To evaluate quantum fluctua-
tions, we extend Gi to a quantum version. To this end, let us
first define the correlation function of the order parameter ϕ(q,
τ) as [16]:

Gðq−q0
; τ−τ

0 Þ
¼ 〈 ϕ q; τð Þ− ϕ q; τð Þh i½ � � ½ϕðq0

; τ
0 Þ*−〈ϕðq0

; τ
0 Þ*i�i;

ð19Þ

where the mean value of a physical variable A(q, τ) is
defined by

A q; τð Þh i ¼ 1

Z Tc; J ; J*
� � ∫Dϕ q; τð Þ*∫Dϕ q; τð Þ

e−∫dτ ∫d
Dq L Tcð Þ− J q;τð Þϕ q;τð Þ− J q;τð Þ*ϕ q;τð Þ*½ � � A q; τð Þ:

ð20Þ

1 b denotes the parameter that guarantees the rescaling transformation q′ = b−1q
and τ′ = b−zτ, where z is the quantum dynamical exponent [17].
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Using Eqs. (8), (19), and (20), it is easy to obtain:

G q−q
0
; τ−τ

0

 �

¼ ∂2lnZ Tc; J ; J*
� �

∂J q; τð Þ∂J q0 ; τ 0ð Þ* ¼ ∂ ϕ q; τð Þh i
∂J q0 ; τ 0ð Þ* : ð21Þ

As a quantum extension of the classical Ginzburg
number Gi, by using the correlation function (19) we
construct an error function of the order parameter ϕ(q,
τ) as follows:

eq Dð Þ ¼
∫∞0 dτ ∫d

DqG q; τð Þ
��� ���

∫∞0 dτ ∫d
Dqϕ q; τð Þ*ϕ q; τð Þ ; ð22Þ

where eq(D) returns to the classical Ginzburg number Gi

when ϕ(q, τ) is independent of τ, that is, eq Dð Þ ¼
∫dDqG qð Þj j

∫dDqϕ qð Þ*ϕ qð Þ ¼ Gi if ϕ(q, τ) = ϕ(q). By Eq. (22), the

mean-field approximation is valid if and only if

eq Dð Þ≪1: ð23Þ

Therefore, when the inequality (23) breaks down, the
nontrivial fixed point (13) holds. To rigidly determine the
range of applicability of the nontrivial fixed point (13),
we need to explore the physical meaning of the inequality
(23). To this end, let us order

M Tcð Þ ¼ ∫∞0 dτ ∫d
DqG q; τð Þ

��� ���; ð24Þ

W tð Þ ¼ ∫
1
t
0dτ ∫d

Dqϕ q; τð Þ*ϕ q; τð Þ: ð25Þ

By using Eqs. (24) and (25), Eq. (22) can be written as
eq(D) = M(Tc)/W(0). Obviously, we have W(t) ≤ W(0) and
M(Tc) ≤ W(0). Since G(q, τ) is the correlation function,
M(Tc) actually denotes themagnitude of quantum fluctuations.
Thus, the physical meaning of the inequality (23) is that quan-
tum fluctuations can be omitted if and only if their magnitude
is extremely small, that is,M(Tc) ≪W(0). Based on this obser-
vation, there should exist a critical magnitudeM0 so that when
M(Tc) ≥ M0, quantum fluctuations cannot be omitted. This
means that the nontrivial fixed point (13) is valid when
M(Tc) ≥ M0. To evaluate the value of M(Tc), we introduce an
approximation ϕ(q, τ) ≈ 〈ϕ(q, τ)〉 ≈ 〈ϕ(q, τ)〉vac. This approx-
imation has been well-known for evaluating the magnitude of
thermal fluctuations when T > 0 [23–24].

Proposition 1: If ϕ(q, τ) ≈ 〈ϕ(q, τ)〉 ≈ 〈ϕ(q, τ)〉vac, then the
magnitude of quantum fluctuations, M(Tc), yields:

M Tcð Þ ¼ ξ2∝T−2
c ; ð26Þ

where ξ = (−λ2(Tc))−1/2 denotes the quantum correlation
length2 and 〈ϕ(q, τ)〉vac denotes the vacuum expectation value

of 〈ϕ(q, τ)〉.
Proof: see Appendix 2. ■

ByEq. (26), the magnitudeM(Tc) and the correlation length
ξ grow as Tc decreases, and both of them finally diverge at Tc =
0. This implies that Tc = 0 is a critical point. Since M(Tc)
increases as Tc declines, there does exist T

0
Q so that when

Tc≤T
0
Q, one has M(Tc) ≥ M0. This means that the nontrivial

fixed point (13) is valid when Tc≤T
0
Q. To estimate T

0
Q, we

construct an index as below:

Eq D; tð Þ ¼ M Tcð Þ=W tð Þ: ð27Þ

It is easy to check Eq(D, 0) = eq(D) and Eq(D, t) ≥ 0. If we
order W(T∗) = M0, then Eq(D, T∗) ≥ 1 is equivalent to M(Tc) ≥
M0, whereW(t) ≤W(0) andM(Tc) ≤W(0) have been used. Thus,

the following proposition provides a way for estimating T
0
Q.

Proposition 2: Let us order TQ ¼ TQ Dð Þ ¼ min T*; T
0
Q

n o
.

Eq(D, TQ) ≥ 1 leads to Eq(D, T∗) ≥ 1.
Proof: Since TQ ≤ T∗, we haveW(TQ) ≥W(T∗), which leads

to Eq D; TQ
� � ¼ M Tcð Þ

W TQð Þ ≤
M Tcð Þ
W T*ð Þ ¼ Eq D; T*

� �
. That is to say,

Eq(D, TQ) ≥ 1 leads to Eq(D, T∗) ≥ 1.■

Since Eq(D, T∗) ≥ 1 is equivalent to M(Tc) ≥ M0, by the
Proposition 2 Eq(D, TQ) ≥ 1 leads to M(Tc) ≥ M0. Therefore,
we conclude that the nontrivial fixed point (13) is valid when

Eq(D, TQ) ≥ 1. Since TQ is the lower bound of T
0
Q and the

nontrivial fixed point (13) is equivalent to Eq. (16), we have
the following criterion:

Criterion A: If Eq(D, TQ) ≥ 1, the parabolic scaling (16)
holds for Tc ≤ TQ.

To estimate TQ by using the Criterion A, we need to calculate
Eq(D, TQ). SinceM(Tc) has been estimated by Eq. (26), we only
calculate the value ofW(TQ). As an approximation, we consider
that the integral scope of ∫dDqϕ(q, τ)∗ϕ(q, τ) is up to the correla-
tion length ξ. Thus, by using ϕ(q, τ) ≈ 〈ϕ(q, τ)〉vac, we have:

W TQ
� �

≈
1

TQ
ξD ϕ q; τð Þh ivac

�� ��2 ¼ 1

TQ
ξDρs 0ð Þ: ð28Þ

2 Eq. (26) implies ξ∝T−δ
c with a critical exponent δ being 1. If we consider

the two-order correction from the renormalization group, the quantum
critical exponent δ forD = 2 should yield 1.25. This is a new prediction
that can be tested. We propose that one can measure δ by using neutron
scattering experiments near Tc = 0, which have been successfully carried
out for measuring the critical exponent of the thermal correlation length
[26].
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Substituting Eqs. (26) and (28) into Eq(D, TQ) yields:

Eq D; TQ
� � ¼ TQξ

2−D

ρs 0ð Þ : ð29Þ

We now estimate TQ(D) by using Eq. (29). The Criterion A
indicates that Tc ¼ γ Dð Þ � ffiffiffiffiffiffiffiffiffiffiffi

ρs 0ð Þp
holds at Tc = TQ(D), that

is, TQ Dð Þ ¼ γ Dð Þ � ffiffiffiffiffiffiffiffiffiffiffi
ρs 0ð Þp

. Substituting it intoEq(D, TQ) ≥ 1
obtains Eq(D, TQ) = ξ2 − Dγ(D)2/TQ(D) ≥ 1, which indicates:

TQ Dð Þ≤ξ2−Dγ Dð Þ2: ð30Þ

For D = 2, the inequality (30) yields:

TQ 2ð Þ≤γ 2ð Þ2; ð31Þ

which by using the experimental value γ(2) ≈ 4.2 K1/2 yields
TQ(2) ≤ 17 K, agreeing with the experimental measure value
TQ(2) ≈ 15 K [13].

For D = 3, substituting γ(3) = 0 into the inequality (30)
obtains

TQ 3ð Þ≤0; ð32Þ

which indicates that the parabolic scaling (16) holds for Tc ≤
TQ(3) = 0. That is to say, the mean-field approximation always
holds for D = 3. In fact, Tao has pointed out [17] that D = 3 is
the upper critical dimension of quantum critical systems and
that the mean-field approximation is valid at the upper critical
dimension. Therefore, our result for D = 3 agrees with the
previous analysis [17].

5 The Two-Class Scaling

By using Abrikosov-Gor’kov’s mean-field theory for
superconducting alloys, for dirty BCS superconductors, the
relation between Tc and ρs(0) can be derived as [7–8, 17, 27]:

Tc ¼ α � ρs 0ð Þ þ T0: ð33Þ

The derivation for Eq. (33) can be found in
Appendix 3. In particular, by using the latest experi-
mental data [28], Khodel et al [27] have produced the
correct theoretical value of α. This is an evidence for
supporting the linear scaling in Eq. (1) as a result of
Abrikosov-Gor’kov’s mean-field theory. By Eq. (1), Eq.
(33) holds for Tc ≥ TM. By the Criterion A, if the mean-
field approximation is valid, Eq(D, TQ) ≤ 1 should hold.
Using Eq. (27) and TM ≤ TQ, it is easy to verify Eq(D,
TM) ≤ Eq(D, TQ). This implies that one can estimate TM
by using Eq(D, TM) ≤ 1. The following proposition will
rigidly confirm this fact.

Proposition 3: Let us order Ω = ∫ dDqϕ(q, τ)∗ϕ(q, τ). If ∂Ω
∂τ

¼ 0 and TM > 0, then we have:

eq Dð Þ≪Eq D; TMð Þ: ð34Þ

Proof: see Appendix 4. ■

Corollary 1: If Eq(D, TM) ≤ 1, then we have eq(D) ≪ 1.

Regarding the Proposition 3, the condition ∂Ω
∂τ ¼ 0 should

approximately hold as long as ϕ(q, τ) ≈ 〈ϕ(q, τ)〉vac is satisfied.
Thus, by the Corollary 1, we can replace eq(D) ≪ 1 by Eq(D,
TM) ≤ 1 to estimate TM. Since superconducting films imply D
= 2, by Eq. (29), we have Eq(2, TM) = TM/ρs(0). By Eq. (1), Tc
= α · ρs(0) + T0 holds at Tc = TM. Substituting TM = α · ρs(0) +

T0 intoE
q(2, TM) ≤ 1 yields Eq 2; TMð Þ ¼ αTM

TM−T0
≤1, indicating

TM ≥
T0

1−α
; ð35Þ

where we have considered 0 < α < 1 [13] and ρs(0) ≥ 0.
Substituting experimental data α ≈ 0.37 and T0 ≈ 7K into

the inequality (35) obtains TM ≥ 11K, which agrees with the
experimental value TM ≈ 12K [13].

Using Eqs. (16), (31), (33), and (35), we exactly produce
the two-class scaling law for D = 2 as below:

Tc ¼ α � ρs 0ð Þ þ T0; Tc≥TM≈
T0

1−α
Tc ¼ γ 2ð Þ �

ffiffiffiffiffiffiffiffiffiffiffi
ρs 0ð Þ

p
; Tc≤TQ≈γ 2ð Þ2

8<: ; ð36Þ

where γ 2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7�ζ 3ð Þ�ε F

15�π�a�me

q
.

The theoretical values of γ(2), TQ, and TM have been
listed in Table 1. They agree with experimental measure
values. In particular, the difference between TM ≈ 11 K
and TQ ≈ 17 K implies that the part over [TM, TQ]
should be a combination of linear and parabolic scaling.
Here we have fitted Eq. (36) to experimental data in the
Fig. 1. The accordance between theoretical formula and
experimental data is pretty well. Equation (36) is the
main result of this paper. It can be rigidly tested by
investigating other quasi-two-dimensional BCS-like
superconductors.

Table 1 Comparison of theoretical results with experimental measure
values [13]

Parameter Experimental value Theoretical value

γ(2) (4.2 ± 0.5) K1/2 4.29 K1/2

TQ 15 K 17 K

TM 12 K 11 K

J Supercond Nov Magn (2020) 33:1329–1337 1333



6 Conclusion

In conclusion, by using the BCS theory, we propose a QPF to
describe quantum critical behaviors of zero-temperature
Cooper pairs. It was recently found that, in the overdoped side
of the single-crystal La2 − xSrxCuO4 films, a two-class scaling

law emerges as: Tc ¼ γ � ffiffiffiffiffiffiffiffiffiffiffi
ρs 0ð Þp

for Tc ≤ TQ and Tc = α ·
ρs(0) + T0 for Tc ≥ TM. By using the QPF, we show that the

parabolic scaling Tc ¼ γ � ffiffiffiffiffiffiffiffiffiffiffi
ρs 0ð Þp

can be exactly derived
when Tc is sufficiently low, where the theoretical value of γ
is exactly calculated as 4.29K1/2, being in accordance with the
experimental measure value γ = (4.2 ± 0.5)K1/2. Furthermore,
we show that the linear scaling Tc = α · ρs(0) + T0 is a mean-

field behavior of the dirty-limit BCS theory, which lies far
beyond the control of the QPF. To determine the range of
applicability of the QPF, we extend the classical Ginzburg
number to a quantum version. By using the quantum
Ginzburg number, we show that the QPF holds for Tc ≤ TQ,
while the mean-field theory holds for Tc ≥ TM, where theoret-
ical values of TQ and TM are estimated as TQ ≈ 17 K and TM ≈
11K, respectively, agreeing with experimental measure values
15K and 12K. The high accordance of theoretical values of γ,
TQ, and TM with experimental measure results justifies the
validity of the QPF. Finally, the QPF predicts that for 2-
dimensional overdoped cuprate films, the transition tempera-
ture Tc and the quantum correlation length ξ will obey a scal-

ing ξ∝T−δ
c with a critical exponent δ being around 1.25. This is

a new prediction that can be tested. We propose that one can
measure δ by using neutron scattering experiments near Tc = 0,
which have been successfully carried out for measuring the
critical exponent of the thermal correlation length [26].
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Appendix 1. Derivation for η, λ2, and λ4

By using the BCS Hamiltonian of superconductivity, Gor’kov
has shown that when |T − Tc| ≈ 0, the Landau-Ginzburg equa-
tion can be written in the form [8]:

1

4m*
e
∇2ψ Tð Þ− 1

λ
� T−Tcð Þ

Tc
ψ Tð Þ− 1

λ � ns 0ð Þ ψ Tð Þj j2ψ Tð Þ

¼ 0; ð37Þ

where λ ¼ 7ζ 3ð Þ�ε F

6π2T2
c

and |ψ(T)|2 denotes the superfluid density

at the temperature T. Moreover, ns(0) denotes the zero-
temperature superfluid density when materials are homoge-
nous, ζ(x) is the Riemann zeta function, εF is the Fermi energy,
andm*

e is the mass of an electron. Quantitatively, ns(0) is equal
to the total number density of electrons in the normal state [8].
This is the standard description of the BCS theory.

We first verify that Gor’kov’s Eq. (37) holds at T = 0. Since
|ψ(T)|2 denotes the superfluid density at the temperature T, we
should conclude, for homogenous materials, |ψ(0)|2 = ns(0) as
long as Gor’kov’s Eq. (37) holds at T = 0. That is to say, when
|ψ(0)|2 = ns(0), the self-consistency of Eq. (37) at T = 0 can be
justified.

When materials are homogenous, ψ(T) is independent of
the space q. Then, Eq. (37) yields:

1

λ
� T−Tcð Þ

Tc
ψ Tð Þ þ 1

λ � ns 0ð Þ ψ Tð Þj j2ψ Tð Þ ¼ 0; ð38Þ

Fig. 1 The experimental data from [13] are plotted as black circles, which
belong to the Tc interval [5.1 K, 41.6 K]. a The theoretical parabolic

scaling (red line) Tc ¼ 4:29 K1=2∙
ffiffiffiffiffiffiffiffiffiffiffi
ρs 0ð Þp

perfectly fits the experimental
data in [5.1 K, TM], while the linear scaling (blue line) perfectly fits the
experimental data in [TQ, 41.6 K], where TM ≈ 11 K and TQ ≈ 17 K, as
predicted by Eq. (36). b The theoretical parabolic scaling (red line) Tc

¼ 4:29 K1=2∙
ffiffiffiffiffiffiffiffiffiffiffi
ρs 0ð Þp

is fitted with the experimental data in the Tc
interval [0, 15 K] , where TM ≈ 12 K and TQ ≈ 15 K are experimentally
measured [13]
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which can be rewritten as

ψ Tð Þj j2 ¼ ns 0ð Þ � Tc−T
Tc

� 	
: ð39Þ

By Eq. (39), we obviously have |ψ(0)|2 = ns(0). This ver-
ifies the self-consistency of Eq. (37) at T = 0.

Nowwe start to derive η, λ2, and λ4 in Eq. (2). By rescaling
ψ(T) according to ϕ Tð Þ ¼ 1ffiffiffiffiffiffi

4m*
e

p ψ Tð Þ, Eq. (37) yields the fol-
lowing Lagrangian function:

L Tð Þ ¼ ∇ϕ Tð Þj j2 þ 4m*
e

λ
� T−Tcð Þ

Tc
� ϕ Tð Þj j2

þ 8m*2
e

λ � ns 0ð Þ � ϕ Tð Þj j4: ð40Þ

If we order ρs(T) = |ϕ(T)|2, then ρs Tð Þ ¼ ψ Tð Þj j2
4m*

e
denotes the

superfluid phase stiffness at the temperature T. Thus, by Eq.
(39), we have:

ρs 0ð Þ ¼ ns 0ð Þ
4m*

e
: ð41Þ

Substituting Eq. (41) into Eq. (40) yields:

L Tð Þ ¼ ∇ϕ Tð Þj j2 þ 24π2m*
e

7ζ 3ð Þ � εF T2
c �

T−Tcð Þ
Tc

� ϕ Tð Þj j2

þ 12π2m*
e

7ζ 3ð Þ � εF � T 2
c

ρs 0ð Þ � ϕ Tð Þj j4: ð42Þ

If we introduce the imaginary time τ∈ 0; 1T
� �

with T = 0,
then we have ϕ(q, τ) = ϕ(0) [16]. Since Eq. (37) holds at T = 0,
we conclude that Eq. (42) holds at T = 0 as well. Therefore, by
Eq. (42), we have:

L 0ð Þ ¼ ∇ϕ q; τð Þj j2− 24π2me

7ζ 3ð Þ � εF T 2
c � ϕ q; τð Þj j2

þ 12π2me

7ζ 3ð Þ � εF
� T 2

c

ρs 0ð Þ � ϕ q; τð Þj j4; ð43Þ

where we assume m*
e ¼ me at T = 0 and me denotes the rest

mass of an electron.
Comparing Eqs. (2) and (43), we have:

η ¼ 1; ð44Þ
λ2 ¼ λ2 Tcð Þ ¼ −

24π2me

7ζ 3ð Þ � εF T 2
c ; ð45Þ

λ4 ¼ λ4 Tc; ρs 0ð Þð Þ ¼ 12π2me

7ζ 3ð Þ � εF
� T2

c

ρs 0ð Þ : ð46Þ

Appendix 2. Proof of Proposition 1

Proof: By Eq. (8), it is easy to obtain the field equation of zero-
temperature Cooper pairs as below:

∂2τ þ ∇2−λ2−2λ4 � ϕ q; τð Þj j2
h i

� ϕ q; τð Þ ¼ −J q; τð Þ*: ð47Þ

Substituting ϕ(q, τ) ≈ 〈ϕ(q, τ)〉 into Eq. (47) yields:

∂2τ þ ∇2−λ2−2λ4 � ϕ q; τð Þh ij j2
h i

� ϕ q; τð Þh i

¼ −J q; τð Þ*: ð48Þ

Using Eq. (21), Eq. (48) can be written in the form:

∂2τ þ ∇2−λ2−4λ4 � ϕ q; τð Þh ij j2
h i

� G q−q
0
; τ−τ

0

 �

¼ −δ q−q
0
; τ−τ

0

 �

; ð49Þ

where δ(q, τ) denotes the Dirac function.
By using 〈ϕ(q, τ)〉 ≈ 〈ϕ(q, τ)〉vac and Eq. (6), we have:

ϕ q; τð Þh ij j2≈ ϕ q; τð Þh ivac
�� ��2 ¼ −

λ2

2λ4
: ð50Þ

Substituting Eq. (50) into Eq. (49) obtains

∂2τ þ ∇2 þ λ2

� � � G q; τð Þ ¼ −δ q; τð Þ: ð51Þ

Let us consider the Fourier transforms as follows:

G q; τð Þ ¼ ∫∞0
dω
2π

∫
dDk

2πð ÞD
eG k;ωð Þeik�qþiωτ ; ð52Þ

eG k;ωð Þ ¼ ∫∞0 dτ ∫d
DqG q; τð Þe−ik�q−iωτ ; ð53Þ

δ q; τð Þ ¼ ∫∞0
dω
2π

∫
dDk

2πð ÞD eik�qþiωτ ; ð54Þ

Substituting Eqs. (52)–(54) into Eq.(51) obtains:

eG k;ωð Þ ¼ 1

kj j2 þ ω2−λ2

: ð55Þ

Substituting Eq. (55) into Eq. (52) yields:

G q; τð Þ ¼ ∫∞0
dω
2π

∫
dDq

2πð ÞD
eik�qþiωτ

kj j2 þ ω2−λ2

∝e−
qj j
ξ ; ð56Þ

where ξ = (−λ2)−1/2 denotes the correlation length.
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Using Eqs. (53) and (55), it is easy to find:eG 0; 0ð Þ ¼ ∫∞0 dτ ∫d
DqG q; τð Þ ¼ −λ2ð Þ−1 ¼ ξ2.

Appendix 3. Derivation for Eq. (33)

For isotropic BCS superconductors, by using Abrikosov-
Gor’kov’s mean-field theory for superconducting alloys, one
can obtain [17]:

λ−2
p 0ð Þ ¼ 4πns 0ð Þe2

m*
e

Δ 0ð Þ2∫∞0
1

u2 þΔ 0ð Þ2

 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þΔ 0ð Þ2
q

þ 1

2τ s

� 	 du;

ð57Þ

where λp(0) denotes the penetration depth at zero temperature,
τs denotes the scattering relaxation time, Δ(0) denotes the
energy gap at zero temperature, and e denotes the electron
charge.

If we order y ¼ u
Δ 0ð Þ, Eq.(57) can be rewritten in the form:

λ−2
p 0ð Þ ¼ 4πns 0ð Þe2

m*
e

∫∞0
1

1þ y2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y2

p
þ 1

2τ sΔ 0ð Þ
� 	 dy:

ð58Þ

We investigate Eq. (58) in terms of two cases, that is, clean
and dirty superconductors.

For clean superconductors, we should have τs → ∞; thus,
Eq. (58) yields:

λ−2
p 0ð Þ ¼ 4πns 0ð Þe2

m*
e

∫∞0 1

1þy2ð Þ32
dy ¼ 4πns 0ð Þe2

m*
e

,that is,

λp 0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m*
e

4πns 0ð Þe2

s
; ð59Þ

which is the famous London penetration depth [8].
For dirty superconductors, we simply consider τs → 0;

thus, Eq. (58) yields:

λ−2
p 0ð Þ ¼ 8πns 0ð Þe2

m*
e

τ sΔ 0ð Þ∫∞0
1

1þ y2ð Þ dyþ o τ2s
� �

: ð60Þ

Since ρs 0ð Þ∝λ−2
p 0ð Þ and Δ(0) ∝ Tc, Eq. (60) implies:

ρs 0ð Þ∝Tc; ð61Þ

which can be generally written as:
Tc ¼ α � ρs 0ð Þ þ T0: ð62Þ

Appendix 4. Proof of Proposition 3

Proof: The following equation obviously holds:

∫
1
T
0dτ ∫d

Dqϕ q; τð Þ*ϕ q; τð Þ ¼ ∫
1

TM
0 dτ ∫dDqϕ q; τð Þ*ϕ q; τð Þ

þ ∫
1
T
1

TM

dτ ∫dDqϕ q; τð Þ*ϕ q; τð Þ:
ð63Þ

Substituting Ω = ∫ dDqϕ(q, τ)∗ϕ(q, τ) into Eq. (63) and by
using ∂Ω

∂τ ¼ 0, we obtain:

lim
T→0

∫
1
T
0dτ ∫d

Dqϕ q; τð Þ*ϕ q; τð Þ

¼ 1

TM
Ωþ lim

T→0

1

T
−

1

TM

� 	
� Ω: ð64Þ

Since 1
TM

Ω≪ lim
T→0

1

T
−

1

TM

� 	
� Ω, by using Eq. (64), we

have:

1

TM
Ω≪ lim

T→0

1

T
−

1

TM

� 	
� Ωþ 1

TM
Ω

¼ lim
T→0

∫
1
T
0dτ ∫d

Dqϕ q; τð Þ*ϕ q; τð Þ; ð65Þ

which leads to:

∫
1

TM
0 dτ ∫dDqϕ q; τð Þ*ϕ q; τð Þ≪ lim

T→0
∫
1
T
0dτ ∫d

Dqϕ q; τð Þ*ϕ q; τð Þ:
ð66Þ

By using the inequality (66), it is easy to verify:

eq Dð Þ ¼ lim
T→0

∫
1
T
0dτ ∫d

DqG q; τð Þ
��� ���

∫
1
T
0dτ ∫d

Dqϕ q; τð Þ*ϕ q; τð Þ

≪ lim
T→0

∫
1
T
0dτ ∫d

DqG q; τð Þ
��� ���

∫
1

TM
0 dτ ∫dDqϕ q; τð Þ*ϕ q; τð Þ

¼ Eq D; TMð Þ:
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