ORIGINAL PAPER

Superconductivity in Oxychalcogenide $LaREO_2Bi_3Ag_{0.6}Sn_{0.4}S_6$ (RE = Pr and Nd)

G. C. Kim¹ · M. Cheon¹ · Woojae Choi² · D. Ahmad³ · Yong Seung Kwon² · Rockkil Ko^{1,4} · Y. C. Kim¹

Received: 1 July 2019 / Accepted: 11 July 2019 / Published online: 21 August 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

We have investigated the structural, electrical, and magnetic properties of oxychalcogenide LaREO₂Bi₃Ag_{0.6}Sn_{0.4}S₆ (RE = Pr and Nd) superconductors. The LaREO₂Bi₃Ag_{0.6}Sn_{0.4}S₆ (RE = Pr and Nd) samples are composed of a single La₂O₂Bi₃Ag₅₆ phase without any impurity phase. The superconducting onset temperature of LaREO₂Bi₃Ag_{0.6}Sn_{0.4}S₆ (RE = Pr and Nd) is ~ 4.1 K, which is slightly higher than 2.8 K observed for La₂O₂Bi₃Ag_{0.6}Sn_{0.4}S₆.

Keywords BiS_2 -based superconductor $\cdot La_2O_2Bi_3AgS_6 \cdot Oxychalcogenide$

1 Introduction

Since the discovery of superconductivity (SC) in Bi₄O₄S₃ with an onset critical transition temperature of $T_{c,onset} =$ 8.60 K [1], several BiS₂-based layered compounds including REOBiS₂ (RE = La, Ce, Pr, Nd, and Yb), SrFBiS₂, Bi₂OS₂, and Bi₃O₂S₃ have been discovered [2–11]. The crystal structure of the parent compound REOBiS₂ is composed of alternate stacks of conducting BiS₂ bilayers and insulating RE₂O₂ blocking layers. Although REOBiS₂ is intrinsically an insulator with a band gap, SC was observed by partially substituting O at the RE₂O₂ blocking layers with F, which induces an electron carrier in the BiS₂ layers. From the first-principles band-structure calculation, SC in BiS₂-based compounds is derived from the Bi $6p_x$ and $6p_y$ orbitals [12]. T_c in REO_{1-x}F_xBiS₂ is distributed in

Y. C. Kim yckim@pusan.ac.kr

¹ Department of Physics, Pusan National University, Busan 46241, South Korea

- ² Department of Emerging Materials Science, DGIST, Daegu, 42988, South Korea
- ³ Department of Mathematics and Natural Sciences, North Lake College, Dallas County College District, Irving, TX 75038, USA
- ⁴ Superconductivity Research Center, Korea Electrotechnology Research Institute, Gyeongsangnam-do, South Korea

the range of 2–5 K, depending on RE elements. Among BiS₂-based layered compounds, LaO_{0.5}F_{0.5}BiS₂ synthesized under high pressure shows a maximum $T_{c,zero} \simeq 10.5$ K [13]. In the case of CeO_{0.5}F_{0.5}BiS₂ with $T_{c,onset} \simeq 3.0$ K, the coexistence of SC and ferromagnetism arising from the local moments of Ce at low temperatures was confirmed from the electrical resistivity and magnetization measurements [3, 14].

Recently, Jha et al. [15] reported SC in the layered oxychalcogenide La₂O₂Bi₃AgS₆ with $T_c \simeq 0.5$ K. The crystal structure of La₂O₂Bi₃AgS₆ is composed of alternate stacks of LaOBiS₂-type layers and rock-salt-type (Bi,Ag)S layers. They also observed a broad hump in the temperature dependence of resistivity below $T^* \sim 180$ K, possibly due to the charge density wave (CDW) transition. In La₂O₂Bi₃Ag_{1-x}Sn_xS₆, T_c increased and a broad hump in the temperature dependence of resistivity weakened, with increasing Sn content from x = 0 to 0.5 [16]. The broad hump in the temperature dependence of resistivity disappeared for $x \ge 0.3$, and the maximum superconducting onset temperature, $T_{c,onset}$, achieved was 2.8 K at x = 0.4.

This paper reports the structural, electrical, and magnetic properties of oxychalcogenide LaREO₂Bi₃Ag_{0.6}Sn_{0.4} S₆ (RE = Pr and Nd) superconductors. In LaREO₂Bi₃Ag_{0.6} Sn_{0.4}S₆, the lattice parameter *c* is insensitive with RE = Pr or Nd, but the lattice parameter *a* decreases monotonically with decreasing ionic radius of RE. The superconducting onset temperature on LaREO₂Bi₃Ag_{0.6}Sn_{0.4}S₆ (RE = Pr and Nd), which determined by the electrical resistivity and magnetization measurements, is ~ 4.1 K.

2 Experimental

Polycrystalline samples of LaREO2Bi3Ag0.6Sn0.4S6 (RE = Pr and Nd) were synthesized using a solid state reaction method. Powders of La₂O₃ (99.99 %), Pr₂O₃ (99.9 %), Nd₂O₃ (99.9 %), La₂S₃ (99.9 %), Ag₂O (99.9 %), Bi (99.999 %), Sn (99.8 %), and S (99.5 %) with a nominal composition of LaREO2Bi3Ag0.6Sn0.4S6 were mixed, pressed into pellets, and sealed in an evacuated quartz tube. As mentioned in Refs. [15] and [16], the sintering temperature was 725 °C with a sintering period of 15 h. The sintering procedure was repeated for one more time to achieve a homogeneous combination reaction with an intermediate grinding with the same sintering temperature and period. On the other hand, the properties of the samples, obtained using two sintering steps at 725 °C, were not acceptable, which may be caused by the two sintering steps at high temperature. The optimal sintering temperatures for each sample were determined by examining the XRD results and magnitude of zero field-cooled magnetization at 2 K. As a result, after first sintering at 720 °C for 15 h, the samples were sintered at 670 °C in the second step for 15 h to minimize the loss of metallic elements such as Bi, Ag, and Sn. Attempts were also made to synthesize RE₂O₂Bi₃Ag_{0.6}Sn_{0.4}S₆ (RE = Ce and Nd) and LaREO₂Bi₃Ag_{0.6}Sn_{0.4}S₆ (RE = Y, Ce, and Sm) samples using the our method and the procedure suggested in Refs. [15] and [16]. Unfortunately, these samples contained excessive impurities induced by the loss of metallic elements.

The phase purity of the prepared samples was examined by X-ray diffraction (XRD) using a Cu K α radiation at room temperature. The electrical resistivity down to 2 K was measured by a standard four-probe method in a commercial Quantum Design PPMS-14 system. The magnetic properties were measured over the temperature range, 2 K to 8 K, using the Physical Property Measurement System (PPMS, Quantum Design).

3 Results and Discussion

Figure 1a presents the room temperature XRD pattern of polycrystalline LaREO₂Bi₃Ag_{0.6}Sn_{0.4}S₆ (RE = Pr and Nd) samples. The structure of La₂O₂Bi₃AgS₆ is tetragonal with the space group *P*4/nmm [17]. As shown in Fig. 1a, the XRD peaks for the LaREO₂Bi₃Ag_{0.6}Sn_{0.4}S₆ (RE = Pr and Nd) samples are indexed to the La₂O₂Bi₃AgS₆ phase, indicating that the samples are composed of a single phase without an impurity phase. Figure 1 b shows the (006) peaks on LaREO₂Bi₃Ag_{0.6}Sn_{0.4}S₆ (RE = Pr and Nd). The shift in the (006) peak was not noticeable,

Fig. 1 a The room temperature XRD patterns of polycrystalline LaREO₂Bi₃Ag_{0.6}Sn_{0.4}S₆ (RE = Pr and Nd). The XRD patterns near to **b** (006) and **c** (110) peaks of LaREO₂Bi₃Ag_{0.6}Sn_{0.4}S₆ (RE = Pr and Nd)

suggesting that the lattice parameter *c* is not sensitive to RE = Pr or Nd. On the other hand, the (110) peak shifts toward a higher angle side as the RE is changed from Pr to Nd (see, Fig. 1c), i.e., the lattice parameter *a* decreases with decreasing ionic radius of RE from 1.179 Å (Pr³⁺) to 1.163Å (Nd³⁺) [18].

The estimated lattice parameters based on the XRD peaks are a = 4.0320 Å and c = 19.37 Å for LaPrO₂Bi₃Ag_{0.6} Sn_{0.4}S₆ and a = 4.024 Å and c = 19.37 Å for LaNdO₂Bi₃ Ag_{0.6}Sn_{0.4}S₆. The c = 19.37 Å for LaREO₂Bi₃Ag_{0.6}Sn_{0.4}S₆ (RE = Pr and Nd) is shorter than c = 19.45 Å on La₂O₂ Bi₃Ag_{0.6}Sn_{0.4}S₆ [16]. The *a* decreases monotonically from 4.065 Å [16], to 4.0320 Å to 4.024 Å as RE goes from La to Pr to Nd, as mentioned above.

Figure 2 shows the temperature dependence of the electrical resistivity, $\rho(T)$, of polycrystalline LaREO₂Bi₃

Fig. 2 Temperature dependence of the electrical resistivity $\rho(T)$ of polycrystalline LaREO₂Bi₃Ag_{0.6}Sn_{0.4}S₆ (RE = Pr and Nd) samples. The inset shows an enlargement of the region close to T_c

Ag_{0.6}Sn_{0.4}S₆ (RE = Pr and Nd). As shown in Fig. 2, $\rho(300 \text{ K})$ for the LaPrO₂Bi₃Ag_{0.6}Sn_{0.4}S₆ (~ 3.0 m Ω ·cm) and LaNdO₂Bi₃Ag_{0.6}Sn_{0.4}S₆ (~ 3.3 m Ω ·cm) is slightly smaller than that (~ 3.5 m Ω ·cm) of La₂O₂Bi₃Ag_{0.6}Sn_{0.4}S₆ [16]. The $\rho(T)$ of La₂O₂Bi₃Ag_{0.6}Sn_{0.4}S₆ was reported to show simple metallic behavior at the normal state below 300 K, which was then followed by an upturn at ~ 100 K upon lowering temperature [16]. The LaREO₂Bi₃Ag_{0.6}Sn_{0.4}S₆ (RE = Pr and Nd) exhibits the upturn behavior after a simple metallic behavior upon lowering temperature. On the other hand, the upturn trend in $\rho(T)$ weakens progressively and the upturn temperature decreases from ~ 100 K (La) to ~ 50 K (Pr), and finally to ~ 25 K (Nd), accompanied by an increase in $d\rho/dT$ before the upturn in $\rho(T)$ at the normal state, as RE goes from La to Nd.

The inset in Fig. 2 shows a plot of $\rho(T)$ over the region close to T_c on polycrystalline LaREO₂Bi₃Ag_{0.6}Sn_{0.4}S₆ (RE = Pr and Nd). Both the LaPrO₂Bi₃Ag_{0.6}Sn_{0.4}S₆ and LaNdO₂Bi₃Ag_{0.6}Sn_{0.4}S₆ samples exhibit the superconducting onset temperature of $T_{c,onset} \simeq 4.1$ K, which is higher than that ($\simeq 2.8$ K) of La₂O₂Bi₃Ag_{0.6}Sn_{0.4}S₆ [16]. However, $T_{c,zero}$ ($\simeq 3.5$ K) of LaPrO₂Bi₃Ag_{0.6}Sn_{0.4}S₆ is slightly higher than that ($\simeq 3.4$ K) of LaNdO₂Bi₃Ag_{0.6}Sn_{0.4}S₆ and that ($\simeq 2.4$ K) of La₂O₂Bi₃Ag_{0.6}Sn_{0.4}S₆ as shown in the inset of Fig. 2 [16].

Figure 3a and b shows the temperature dependence of zero field-cooled (ZFC) and field-cooled (FC) magnetizations, M_{ZFC} and M_{FC} , of the polycrystalline LaREO₂Bi₃Ag_{0.6}Sn_{0.4}S₆ (RE = Pr and Nd) samples, which is measured under an applied magnetic field of H = 10 Oe down to 2 K.

The magnitude of M_{ZFC} at 2 K ($\simeq -0.09$ emu/g) of LaPrO₂Bi₃Ag_{0.6}Sn_{0.4}S₆, given in Fig. 3a, is almost 1.5× larger than that ($\simeq -0.06$ emu/g) of PrO_{0.5}F_{0.5}BiS₂ measured at H = 5 Oe. The M_{FC} , which is measured under a low field of H = 10 Oe, features a paramagnetic signal at low temperatures with a transition at ~ 4.2 K, as shown in the upper inset of Fig. 3b. Moreover, M_{ZFC} around T_c is also paramagnetic, displaying a positive peak over a narrow temperature range below T_c , which is followed by a diamagnetic response at lower temperatures. The positive peak in M_{ZFC} below T_c has also been

Fig. 3 a Temperature dependence of M_{ZFC} and M_{FC} on polycrystalline LaPrO₂Bi₃Ag_{0.6}Sn_{0.4}S₆ sample under H = 10 Oe. The upper and lower insets show an enlargement of the region close to T_c and temperature dependence of M_{ZFC} and M_{FC} under H = 10 Oe,

respectively. **b** Temperature dependence of $M_{\rm ZFC}$ and $M_{\rm FC}$ on polycrystalline LaNdO₂Bi₃Ag_{0.6}Sn_{0.4}S₆ sample under H = 10 Oe. The inset show an enlargement of the region close to T_c

observed in polycrystalline Bi2Sr2CaCu2O8 (Bi-2212), Nb disks, MgB₂, and Pb [19–24]. Such M_{ZFC} and M_{FC} features in superconductors are generally referred to as the paramagnetic Meissner effect (PME). Fang et al. [25] observed the putative PME in samples with x = 0.1 and 0.5 of $La_{1-x}Sm_xO_{0.5}F_{0.5}BiS_2$. The putative PME in the present LaPrO₂Bi₃Ag_{0.6}Sn_{0.4}S₆ sample disappears as the magnetization is measured under H = 20 Oe (see the lower inset in Fig. 3a). The disappearance of PME by the increase in magnetic field is common to other superconductors, such as Bi-2212 showing PME. From the lower inset in Fig. 3a without the putative PME, the superconducting transition temperature is $T_c \simeq 4.2$ K, which is similar to $T_{c,\text{onset}}$ in $\rho(T)$. This is consistent with the paramagnetic transition temperature of $M_{\rm FC}$ measured under H = 10 Oe in LaPrO₂Bi₃Ag_{0.6}Sn_{0.4}S₆, and higher than $T_c \simeq 3.7$ K of $PrO_{0.5}F_{0.5}BiS_{2.5}[6]$.

LaNdO₂Bi₃Ag_{0.6}Sn_{0.4}S₆ (Fig. 3b) exhibits the general superconducting transition without the putative PME observed in LaPrO₂Bi₃Ag_{0.6}Sn_{0.4}S₆. From the temperature dependence of M_{ZFC} shown in Fig. 3b, it is expected that the values of M_{ZFC} appear to be saturated at T < 2 K, which means that the bulk SC can be achieved. The shielding volume fraction of LaPrO₂Bi₃Ag_{0.6}Sn_{0.4}S₆ (LaNdO₂Bi₃Ag_{0.6}Sn_{0.4}S₆) estimated from $4\pi\chi$ (ZFC) at 2 K is nearly 35% (98%). From the inset in Fig. 3b, T_c of LaNdO₂Bi₃Ag_{0.6}Sn_{0.4}S₆ is 4.1 K, which is lower than $T_c \simeq 5.0$ K of NdO_{0.5}F_{0.5}BiS₂ showing the highest T_c among the BiS₂-based compounds synthesized at ambient pressure [4]. The absence of PME for LaNdO₂Bi₃Ag_{0.6}Sn_{0.4}S₆ (Fig. 3b) at 10 Oe indicates clearly that the positive FC for LaPrO₂Bi₃Ag_{0.6}Sn_{0.4}S₆ is PME.

4 Summary

In summary, this study examined the structural, electrical, and magnetic properties of oxychalcogenide LaREO₂Bi₃ Ag_{0.6}Sn_{0.4}S₆ (RE = Pr and Nd) superconductors. The lattice parameter *c* (*a*) of LaREO₂Bi₃Ag_{0.6}Sn_{0.4}S₆ (RE = Pr and Nd) samples with a single phase of La₂O₂Bi₃AgS₆ is insensitive on RE = Pr or Nd (decreases monotonically with decreasing ionic radius of RE). The superconducting onset temperature of LaREO₂Bi₃Ag_{0.6}Sn_{0.4}S₆ (RE = Pr and Nd) is ~ 4.1 K, which is slightly higher than 2.8 K of La₂O₂Bi₃Ag_{0.6}Sn_{0.4}S₆.

Funding Information This work was supported by a 2-Year Research Grant of Pusan National University.

References

- Mizuguchi, Y., Fujihisa, H., Gotoh, Y., Suzuki, K., Usui, H., Kuroki, K., Demura, S., Takano, Y., Izawa, H., Miura, O.: Phys. Rev. B 86, 220510 (2012)
- Lee, J., Stone, M.B., Huq, A., Yildirim, T., Ehlers, G., Mizuguchi, Y., Miura, O., Takano, Y., Deguchi, K., Demura, S., Lee, S.-H.: Phys. Rev. B 87, 205134 (2013)
- Xing, J., Li, S., Ding, X., Yang, H., Wen, H.-H.: Phys. Rev. B 86, 214518 (2012)
- Demura, S., Mizuguchi, Y., Deguchi, K., Okazaki, H., Hara, H., Watanabe, T., Denholme, S.J., Fujioka, M., Ozaki, T., Fujihisa, H., Gotoh, Y., Miura, O., Yamaguchi, T., Takeya, H., Takano, Y.: J. Phys. Soc. Jpn. 82, 033708 (2013)
- Kajitani, J., Deguchi, K., Hiroi, T., Omachi, A., Demura, S., Takano, Y., Miura, O., Mizuguchi, Y.: J. Phys. Soc. Jpn. 83, 065002 (2014)
- Jha, R., Tiwari, B., Awana, V.P.S.: J. Phys. Soc. Jpn. 83, 063707 (2014)
- Yazici, D., Huang, K., White, B.D., Chang, A.H., Friedman, A.J., Maple, M.B.: Philos. Mag. 93, 673 (2013)
- Shao, J., Yao, X., Liu, Z., Pi, L., Tan, S., Zhang, C., Zhang, Y.: Supercond. Sci. Technol. 28, 015008 (2015)
- Phelan, W.A., Wallace, D.C., Arpino, K.E., Neilson, J.R., Livi, K.J., Seabourne, C.R., Scott, A.J., McQueen, T.M.: J. Am. Chem. Soc. 135, 5372 (2013)
- Shao, J., Liu, Z., Yao, X., Pi, L., Tan, S., Zhang, C., Zhang, Y.: Phys. Status Solidi RRL 8, 845 (2014)
- Li, L., Parker, D., Babkevich, P., Yang, L., Ronnow, H.M., Sefat, A.S.: Phys. Rev. B 91, 104511 (2015)
- Morice, C., Artacho, E., Dutton, S.E., Molnar, D., Kim, H.-J., Saxena, S.S.: J. Phys.: Condens. Matter 27, 135501 (2015)
- Mizuguchi, Y., Hiroi, T., Kajitani, J., Takatsu, H., Kadowaki, H., Miura, O.: J. Phys. Soc. Jpn. 83, 053704 (2014)
- Lee, J., Demura, S., Stone, M.B., Iida, K., Ehlers, G., dela Cruz, C.R., Matsuda, M., Deguchi, K., Takano, Y., Mizuguchi, Y., Miura, O., Louca, D., Lee, S.-H.: Phys. Rev. B 90, 224410 (2014)
- Jha, R., Goto, Y., Higashinaka, R., Matsuda, T.D., Aoki, Y., Mizuguchi, Y.: J. Phys. Soc. Jpn. 87, 083704 (2018)
- Jha, R., Goto, Y., Matsuda, T.D., Aoki, Y., Nagao, M., Tanaka, I., Mizuguchi, Y.: arXiv:1810.08404
- Hijikata, Y., Abe, T., Moriyoshi, C., Kuroiwa, Y., Goto, Y., Miura, A., Tadanaga, K., Wang, Y., Miura, O., Mizuguchi, Y.: J. Phys. Soc. Jpn. 86, 124802 (2017)
- 18. Shannone, R.D.: Acta Cryst. A32, 751 (1976)
- 19. Chaban, I.A.: J. Supercond. 13, 1011 (2000)
- Thompson, D.J., Minhaj, M.S.M., Wenger, L.E., Chen, J.T.: Phys. Rev. Lett. 75, 529 (1995)
- Braunisch, W., Knauf, N., Kataev, V., Neuhausen, S., Grutz, A., Kock, A., Roden, B., Khomskii, D., Wohlleben, D.: Phys. Rev. Lett. 68, 1908 (1992)
- Sozeri, H., Dorosinskii, L., Topal, U., Ercan, I.: Phys. C 408–410, 109 (2004)
- 23. Yuan, S., Ren, L., Li, F.: Phys. Rev. B 69, 092509 (2004)
- Papadopoulou, E.L., Nordblad, P., Svedlindh, P., Schoneberger, R., Gross, R.: Phys. Rev. Lett. 82, 173 (1999)
- Fang, Y., Yazici, D., White, B.D., Maple, M.B.: Phys. Rev. B 91, 064510 (2015)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.