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Abstract
A hypothesis shall be confirmed: Non-convergence of a series of numerical solutions, to simulate transient temperature under
increasing losses in a superconductor, might tightly be correlatedwith the superconducting to normal conducting phase transition.
Consider as an analogue a standard, mathematical power series expansion: While the exact limit cannot be captured within the
series, there is no doubt about its existence. A series of numerical solutions in stability analysis is considered a parallel to the
mathematical series convergence problem: Likewise, there is no doubt that a limit of the numerical solution series exists (the
phase transition) but it cannot be reached within the series. The concept is applied to multi-filamentary BSCCO 2223 and coated,
thin film YBaCuO 123 superconductors and to NbTi superconductor filaments. Support is provided by a microscopic stability
model and from comparison of order parameters. Simulation of current transport near phase transitions may become severely in
error if length of load steps is in conflict with time needed for its completion.
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1 Introduction

1.1 Overall Description of the Quench Problem

Consider a sudden superconducting to normal conducting
phase transition when a superconducting filament or tape is
subject to a strong disturbance; usually, this is interpreted as a
quench, a most undesirable event. A quench can lead to severe
damage of the superconductor and possibly to its total destruc-
tion, a catastrophic failure. The physics behind quenching is
conversion of stored electromagnetic energy, originating from
screening and transport currents, to thermal energy, within
very short time.

The calculations described in this paper are concentrated on
high-temperature superconductors, with numerical simula-
tions of their stability against quench and of phase changes
when conductor temperature exceeds critical temperature. The
numerical method should in principle be applicable to

thermodynamic phase changes in also other solids or thin
films, not only to standard (T > 0) superconducting to normal
conducting phase transitions, when temperature constitutes
the degree of freedom.

A physical system can perform phase transitions also at
T = 0, namely quantum phase transitions, then under other
than temperature variations, as degree of freedom (pressure,
magnetic field, chemical composition). We will come back to
quantum phase transitions in Sects. 2.4 and 5.3, but only under
a specific aspect that is interesting for interpretation of the
results obtained in the simulations with superconductors.

Assume for the moment that the electromagnetic energy,
provided by a current of momentary density, J, is distributed
uniformly to the volume of a superconductor, a magnet coil,
for example. The simple electrical/thermal energy balance
(Wilson [1], p. 201) allows estimating a mean (stagnation)
temperature, Tm, from

∞ Tm

∫ρel tð ÞJ 2 tð Þdt ¼ ∫ρcp Tð ÞdT
0 0

ð1:1Þ

to which the system temperature converges. In Eq. (1.1), ρel
and ρ denote electrical resistivity and density and cp the spe-
cific heat. The electromagnetic energy shall be distributed
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instantly, not only spatially, after each variation of J or of ρel,
to the total volume. The solution for Tm in this case yields a
very small temperature increase against the initial state.

This balance, under the condition that the energy is uni-
formly distributed, implies that also the conductor tempera-
ture, T, in each integration step would be uniform in the con-
ductor volume.

In reality, this is never fulfilled. Quench starts locally, and
as soon as conductor temperature exceeds critical temperature,
Ohmic heating and thermal conduction quickly contribute to
increase the volume of the developing normal zone, which
increases the resistance of the conductor (and leads to decay
of J). Further, again in reality, the quantities ρel, J

2, cp and T in
Eq. (1.1) are not constant but can strongly fluctuate, in time
and in position, within the conductor.

The magnet current (in nominal operation or possibly
from a fault) will finally either almost completely disap-
pear or by means of current limiters be reduced to a toler-
able level (or simply be switched off by conventional
methods). However, before this level is reached, the con-
ductor could be destroyed.

Quench can be avoided by application of stability
models [1–3]. These models favour tight mechanical, elec-
trical and thermal conductive and radiative coupling of the
superconductor to its ambient (like its embedding in a me-
tallic matrix or by close contact to a stabilising metallic
coating). Standard stability models resemble Eq. (1.1), ex-
cept that they include a heat sink like a stabilising coating
or the cooling system.

Another view of a quench, different from the traditional
condition (T < TCrit) to avoid quenching, can be taken by
considering the density, nS(T), of electron pairs in equilibrium
states of the superconductor. In order to support zero loss of
screening and transport currents in the superconductor, a min-
imum density, nS0(T), is required. In case the available density
of electron pairs becomes too small, nS(T) < nS0(T), zero loss

current transport can no longer be provided by the
superconductor.

It is thus not only the traditional condition, T < TCrit, that
should be considered in order to protect the superconductor
against quench. A prognosis whether quenching has to be
expected or not can be substantiated more securely by com-
paring nS(T) with nS0(T). The condition nS(T) > nS0(T) has to
be fulfilled at all temperatures, T = T(t), during a disturbance.

The two conditions, T < TCrit and nS(T) > nS0(T), not nec-
essarily are equivalent. If nS(T) > nS0(T), zero loss current
transport will be possible. But the strong dependency of
nS(T) on temperature, in particular if T is very close to TCrit,
and thermal fluctuations might lead to a situation where the
condition nS(T) > nS0(T) no longer can be fulfilled even if T <
TCrit. See later, Sect. 6 (Fig. 8a; Table 1).

Background of all standard stability models are energy
balances, which like Eq. (1.1) are either reduced to com-
parison of temperatures (T < TCrit) or like Eqs. (7.5) to (7.7)
in [1] define a stability parameter, β, which requests

β ¼ μ0 JCrit
2a2= ρ C TCrit−T0ð Þ½ � < 3 ð1:2Þ

to be fulfilled, under adiabatic conditions. In Eq. (1.2), μ0,
JCrit, a, ρ, C, TCrit and T0 in this order denote electromagnetic
constant, critical current density, half thickness of a supercon-
ductor slab, material density and specific heat, critical and
coolant temperature, respectively (the integer 3 results from
integration over slab thickness in the derivation of this
equation).

Expressions like Eq. (1.2) for other than flat plate geometry
can be found in [1]. The extension of the adiabatic (Eq. 1.1, 2)
to dynamic stability, to include heat transfer to a coolant, is
reported in Eq. (7.22) of the same reference.

A real, observable temperature increase, ΔT′, is not found
in Eq. (1.2). It is replaced, after some algebra ([1], p. 134), by
the difference (TCrit − T0), the maximum temperature

Table 1 Calculated density,
nS(T), of electron pairs in
YBaCuO 123 at given
temperature. Column 2: Values
calculated using the microscopic
stability model [13], column 3:
calculated from Eq. (5a,b), in
dependence of critical current
density at local temperature

Temperature (K) Density nS(T) (1/m
3) Density nS0(T) (1/m

3) Difference [nS(T) - nS0(T)]

(1/m3)

90.5 6.665E+25 6.1321E+22 6.659206E+25

91 5.442E+25 4.0881E+22 5.438138E+25

91.25 4.713E+25 3.0661E+22 4.710040E+25

91.5 3.848E+25 2.044E+22 3.846191E+25

91.6 3.442E+25 1.6352E+22 3.440331E+25

91.7 2.981E+25 1.2264E+22 2.979604E+25

91.8 2.434E+25 8.1762E+21 2.433020E+25

91.9 1.721E+25 4.0881E+21 1.720574E+25

91.99 5.442E+24 4.0881E+20 5.441817E+24

91.999 1.721E+24 4.0881E+19 1.720959E+24

91.9999 3.159E+19 4.0881E+18 2.749876E+19

91.99999 3.159E+15 4.0881E+17 − 4.056491E+17
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difference that can exist within the slab as long as the slab
remains in its superconducting state. In an experiment, an
effective specific capacity

ρCeff ¼ ΔQ=ΔT ¼ ρC−μ0 JCrit
2a2= 3 TCrit−T0ð Þ½ � ð1:3Þ

would be observed if an amount of heat,ΔQ, is supplied to
the sample (e.g. from a disturbance). If μ0 JCrit

2 a2/[3 ρ (TCrit
− T0)] equals ρ C, the effective heat capacity ρ Ceff goes to
zero. Even a tiny amount of heat,ΔQ, supplied to the conduc-
tor then would be sufficient to drive sample temperature to
divergence and to flux jump.

The adiabatic stability criterion thus is given by

ρC−μ0 JCrit
2a2= 3 TCrit−T0ð Þ½ � > 0 ð1:4Þ

that can be solved for the slab thickness, a2 < [3 ρC (TCrit− T0)]/
(μ0 JCrit

2).
Equations (1.2) to (1.4) and their extensions consider the

energy balance extended over the whole superconductor cross
section (or volume), here a slab, which is assumed as homo-
geneous in all its materials and transport properties. However,
under heat sources (disturbances that create losses), with con-
tact of the superconductor to a coolant, and if the sample
material consists of components of different thermal diffusiv-
ity, its temperature cannot be uniform, neither spatially nor
temporally except for vanishing sources and sinks and when
time t →∞. Without modifications, standard adiabatic and
dynamic stability models like Eqs. (1.2) to (1.4) become ques-
tionable if they are applied to, for example, superconductor
filaments embedded in a normal conducting matrix. Safety
margins are applied to predictions from these models to make
sure the conductor will not quench also in these cases.

This situation can be improved. Instead of checking
T < TCrit or β < 3, control of superconductor stability
could be performed, though very challengingly, by con-
sidering the difference between the Helmholtz or
Ginzburg-Landau free energies of superconducting and
normal conducting states (with zero or non-zero magnetic
field, respectively), in relation to the energy released by a
disturbance. In case of strongly inhomogeneous conductor
temperature, application of this method would become too
complicated.

As a method more suitable (and by nomeans less challeng-
ing), especially in case of detailed conductor geometry, inho-
mogeneous material composition and inhomogeneous tem-
perature distribution, we suggest numerical simulations.
While such calculations may request enormous computational
efforts, they have the advantage that each calculation step can
be designed appropriately, step by step with energy balances
on a micro-level in small conductor elements (by a finite ele-
ment method), and they can be controlled comparatively eas-
ily by inspection of the obtained results.

The whole spectrum of transient or continuous disturbances
in superconductors is large, compare e.g. [1], Chap. 5.
Disturbances usually proceed on time-scales of milliseconds
and below. While this constitutes a typical, short-time physics
problem, quench may become a self-amplifying event, even if
numerically modelled in small time steps, above a certain tem-
perature level, under a strong disturbance and if transport cur-
rent is not limited or switched off.

1.2 A Hypothesis

This paper continues with discussion of a hypothesis that was
raised at the end of part A of the paper: Non-convergence of
an applied numerical scheme for calculation of transient tem-
perature fields in a superconductor might tightly be correlated
with the onset of the superconducting to normal conducting
phase transition. See DOI https://doi.org/10.1007/s10948-
019-5103-7.

The hypothesis is suggested on the basis of an apparently
existing correlation between two spaces:

1. The experimental situation (the “physical reality”) of the
simulated superconductor and its development with time,
under any variation of internal energy states and thermo-
dynamic variables (temperature, magnetic field and cur-
rent, in particular their critical ones). These shall in the
following be addressed as “events”.

2. The results of the simulation (the “numerical space”) that
as an “image”, or as a series of images, should reflect the
experimental reality (the events) as precisely as possible.

Like in part A of the paper, the correlation “events/images”,
if it exists, in the ideal case relies on a one-to-one correspon-
dence between both spaces (1) and (2). For all events located in
space (1), the experimental space, like temperature, magnetic
field or transport current variations and in particular the impacts
of a disturbance or of a quench, images of these events should
(a) exist in the numerical space (2) and (b) unambiguously be
correlated with events in the physical space (1). For this pur-
pose, the correspondence, if it is interpreted as a kind of map-
ping, must be bijective between both spaces, which means it
must be injective and surjective, in the usual mathematical
sense. The correspondence also must exist irrespective of the
number of events and images.

Precise predictions of the future of the system, in the present
case the approach to the possible occurrence of a quench in a
superconductor, the time when it is to be expected and whether
or not the whole superconductor volume or only part of it would
be concerned, can be made only on the basis of such a
correspondence.

But the problem is how to appropriately simulate, by nu-
merical methods, the close approach of the superconductor,
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during a disturbance, to its critical states and how to predict
time and position of the real occurrence of a quench in the
superconductor? Not only must the method avoid uncer-
tainties always inherent in numerical simulations and in the
input (the quality) of physical parameters. The correspon-
dence, once identified, also must be conserved throughout
the progress of the simulation, and it must be shown that it
can be supervised and eventually be adapted according to the
obtained results.

Numerical procedures in finite element calculations are
interrupted when divergence of the results occurs or if diver-
gence can safely be anticipated. The results obtained so far are
the “normal” completed, converged solutions. Finite element
computer codes indicate the number of completed equilibrium
iterations before the series diverges and is terminated (the out-
put signal is arbitrary, like a number “99999” in the list of
completed equilibrium iterations). In the finite element calcula-
tions, each of the load steps declared in this paper for this reason
is divided into presently up to 10 sub-steps a...k that each per-
form finite element equilibrium iterations until convergence,
with the sub-steps a...k of smaller and smaller length in time;
compare Fig. 12 in Appendix 1.

The number of problems with the simulation of transient
temperature distribution in the conductors obviously is large.
But examples found in other disciplines, like in fracture me-
chanics with successful stability analysis, prediction of irrevers-
ible system break-down and how to avoid it, exothermic chem-
ical reactions or nuclear engineering when these systems, again
under disturbances, approach critical states, provides motiva-
tion to extend these successful investigations to also
superconductors.

All results of the calculations in the following have to be
understood as those of quasi-equilibrium states of the conduc-
tor; they are successively but individually obtained in the se-
ries of load steps and sub-steps. Physically, the quasi-
equilibrium states, in reality, not within the load steps of the
simulations, are dynamic equilibrium states since decay of
electron pairs and recombination occurs at all temperatures
T > 0.

1.3 How to Prove the Hypothesis

A rigorous proof of the correlation mentioned in the previous
subsection would hardly be possible, but the results of numer-
ical calculations of transient temperature distributions, stability
functions and electron pair density in the superconductors shall
be interpreted as like elements of a mathematical power series,
with a limit to which the series converges. While the exact limit
of a mathematical power series cannot be captured within the
series, no one has doubt about its existence, which usually can
be proven by elementary algebra.

A parallel to this mathematical power series is the results
obtained in the simulated load steps under continuously

increasing losses due to strong disturbances in a multi-
filamentary BSCCO 2223, or a coated, thin-film YBaCuO
123 tape, or a NbTi superconductor filaments. There is again
no doubt that a limit of also this series exists: It is the supercon-
ductor to normal conductor phase transition of which time and
position of its occurrence cannot be reached as a converged
solution within the series. But it is clear the transition, under
the given conditions, will occur. The series can be extended, by
the number of load steps and sub-steps a...k to as close as
numerically possible approach the anticipated quench.

It is this concept that shall be pursued in this paper: By
application of appropriate numerical simulation tools, show that
a series of converged solutions in given load steps exists that
approach the divergent final state of the superconductor system,
as close as numerically possible, though this final state (the
phase transition) cannot be reached during the simulations.

In order to be successful, this procedure must avoid all
well-known short-cuts of traditional stability models.

First, these models assume worst-case scenarios to obtain
conservative solutions of the stability problem. This implies
the temperature distribution in the conductor cross section is
uniform, at appropriately chosen levels. But recently obtained
results from numerical simulations demonstrate that (transient)
temperature distributions under disturbances might not at all be
uniform (see later, Sect. 5).

There are at least five more weaknesses: The traditional
models assume

1. Homogeneous distribution and a quasi-laminar flow (no
percolation) of transport current

2. Assume instantaneous distribution and thermalisation of a
local or of an extended disturbance

3. Do not precisely specify the particular type, its location,
temporal sequence (if any) and intensity of the disturbance

4. Restrict thermal dissipation of a disturbance, and the
resulting temperature variations, simply to only conduc-
tion heat transfer (while in thin films, radiative transfer,
the transparency of the sample, must be included)

5. Describe boiling heat transfer to a coolant frequently with
only constant (independent of temperature) heat transfer
coefficients which, like the other short-cuts, may cause
severe errors

1.4 Details of the Simulations

The numerical stability model that is applied in the present
paper (an iteratively operating “master” scheme) tries to avoid
the problems of standard stability models, items (1) to (5). In
particular, numerical stability calculations (Sect. 5) have pre-
dicted, as the consequence of strongly inhomogeneous temper-
ature distributions within the conductor, percolating current
flow (compare Appendix 2 in [4] and Fig. 6a,b in [5]).
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The applied solution scheme in this paper, to verify the above
mentioned hypothesis, is by no means perfect. Though the
short-cuts of standard stability models can be avoided, more
uncertainties originate from:

1. The finite element procedure itself (the numerical problem)
and from the physical models that subsequently apply its
solutions (the temperature field as resulting from Fourier’s
differential equation). We have to concentrate on the most
important, potential error sources. In the finite element sim-
ulations of superconductor states, these comprise meshing,
convergence criteria, the idea that heat transfer can be
modelled as a diffusion-like process (with also radiation
proceeding by a diffusion-like mechanism), simulations
of energy sources and sinks like heat transfer to the coolant.

2. Under the physical, material properties and transport as-
pects, it is the potential uncertainty arising from magnitude
of the resistances, in particular the flux flow resistance (the
loss that comes up before the system enters the Ohmic
resistance state). Serious uncertainties also may arise from
differences seen in many reported, experimental values of
critical temperature and current density.

The list of uncertainties potentially arising from finite ele-
ment steps and from data input is large; they all may question
the calculated numerical solutions.

To continue with item (1), a finite element (FE) simulation
code has been embedded into the already mentioned, numerical
iterative master scheme to calculate, in a series of load steps, the
transient temperature field, T(x,y,t). After completion of the FE
procedure in each load step (which means after convergence
has been achieved in this load step or this sub-step), the master
scheme calculates electrical and magnetic states, critical values
of T, B and current density, J, and the distribution of transport
current in the cross section of the superconductor. The master
scheme will be explained in detail in Appendix 1.

Since the procedures are designed as numerical approach to
the critical state, and since this state strongly depends on vari-
ations of any load that it is subject to, they have to be carried out
in time steps the length of which must be short against relaxa-
tion times that the physical system needs to proceed from one
quasi-equilibrium state (obtained in one load step or sub-step)
to the next. The number of load steps thus will become large.

No analytical solution seems to be possible that could pro-
vide the same degree of accuracy, irrespective of the potential
uncertainties mentioned above. Like in investigations of un-
stable crack propagation in fracture mechanics, the supercon-
ductor, under a strong disturbance, approaches a “point of no
return” (as can be expected from part A, Fig. 16, the solid
black diamonds) after which it, being in a thermal excitation
state, invariably will become unstable: The larger its temper-
ature, the smaller the number of coupled electrons to carry a
zero loss current, and thus the smaller its critical current

density, which in an application might get into conflict with
transport current.

Analysis of superconductor stability based simply on com-
parison of the thermodynamic variable, T(x,y,t), with its critical
value, TCrit(x,y,t), would not be sufficient for unambiguously
establishing the said anticipated correlation. Local temperature
is the result of temperature-dependent transport processes in the
superconductor, and both critical magnetic field, BCrit(x,y,t),
and critical current density, JCrit(x,y,t), strongly depend on
T(x,y,t) and vice-versa. Excursion with time of local tempera-
ture, therefore, is a first key for the following numerical analy-
sis, and it is not a contradiction to the previous statement that
considering solely temperature would not be sufficient for sta-
bility analysis (without considering the relation between re-
quested and available density of electron pairs).

The computer program “QUENCH” (Wilson [1], p. 218)
apparently is one of the first numerical tools to calculate
quenching. Its modelling of an ellipsoid of increasing normal
conductor volume in a superconductor, layer by layer, assumes
isothermal conditions in each layer. The tool also accepts an-
isotropic materials and electrical/thermal transport conditions in
the solution process. But assuming isothermal conditions in
each layer is not very suitable to application in both multi-
filamentary and thin film superconductors because of large an-
isotropy of transport properties.

To proceed with item (2) of the above, experimental thermal
diffusivity and radiative contributions (corrections) to conduc-
tion heat transfer in this paper have been taken from the litera-
ture (the additive approximation of total thermal conductivity
has been applied to obtain a total thermal conductivity, a pro-
cedure the validity of which has been proven with the same
superconductors in part A). Impact of mid-IR radiation contri-
butions to heat transfer in multi-filamentary and in thin film
superconductors has been investigated in our previous papers
by application of rigorous scattering theory. Though radiative
contributions to heat transfer in a bulk solid material are van-
ishingly small, this is not necessarily the case with thin films.

Statistical variations against mean values of critical super-
conductor variables (TCrit, JCrit, lower and upper field BCrit) are
applied to account for uncertainties arising from incomplete
knowledge of their proper, exact values (Fig. 16 in Appendix
3). We will not explicitly include thermal fluctuations near crit-
ical temperature; instead, they indirectly shall be taken into
account by (small) random variations of TCrit around its mean
value, in BSSCO 2223, YBaCuO 123 and NbTi superconduc-
tors. These variations are different in each of the numerous, tiny
elements in the finite element calculations. Size of the random
values is explained in [4].

Simulation of the transport current distribution in this paper
is made by means of a conventional (in its geometrical design)
Kirchhoff resistance network (with transient values of the single
resistances, however): It is assumed the network distributes cur-
rent instantaneously, on a time scale that numerically is very
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small (quasi-zero) against corresponding (electrical, thermal) re-
laxation constants of the superconductor system. The “quasi-ze-
ro” time constant of the physical process of current distribution
itself thus, fortunately, does not need to be modelled explicitly.
Once the individual (transient) resistances of all elements are
calculated in each load step, j, current distribution is modelled
from one quasi-stationary state (j) to the next (j+ 1), as an instan-
taneously completed process (provided convergence in load step,
j, has been obtained already).

Compare as an example Fig. 13 in Appendix 1: Convergence
temperature is indicated schematically by the large, solid red
circles, at the end of each of the loads steps, j. When the system
arrives at its convergence temperature, redistribution of transport
current and of all electrical variables occurs quasi-instantaneous-
ly. Any attempt to specifically model the proper physical process
of current redistribution would lead to enormous complications:
While both physical systems (electrical vs. thermal transport pro-
cesses) numerically proceed in parallel, there are large differences
between their development with time.

Very close to the phase transition, a problem concerning
current redistribution can arise from the length,Δt, of load steps
in the numerical simulations in relation to the time constant, τEl,
for decay of electron pairs or recombination of single electrons
to pairs during heating or cooling or under strong current den-
sity variations, respectively. It is not clear that the phase transi-
tion will always be completed within this period so that com-
plications might arise that not only concerns current redistribu-
tion; see Sect. 6.3.

In [6], we concluded that a filament in a multi-filamentary
conductor, and even a superconductor thin film, is non-
transparent to mid-IR radiation (if sample thickness is standard,
as in usual cases of current transport). This result enormously
simplifies the analysis. There are alternatives like the combined
Monte Carlo/finite element procedure described in [7] that
might be consulted as well. These procedures constitute a more
direct approach to radiative transfer, instead of its somehow
“blurred” imagination as being simply a diffusion process.
But they would introduce more uncertainties and would strong-
ly increase computation time.

Non-transparency of the superconductor, accordingly, is the
second key to solve the said correspondence problem (it might
allow another problem, definition of a physical time scale, to
again come in through the back door, however; see Sect. 6.4).

2 Specification of the Conductors

2.1 First Generation, Multi-Filamentary BSCCO
Superconductors

Properties of the “first-generation” (1G) BSCCO 2223 super-
conductor filaments and tapes prepared in the Powder in Tube
manufacturing process have already been described in part A

and will not be repeated here (some more details can be found
in Appendix 2 to this paper). In short, the tape consists of
filaments of superconductor material embedded in a metallic
(Ag) matrix to form a thin film. The filaments in turn consist
of thin, flat plate-like superconductor grains.

A successful realisation of this Powder in Tube
manufacturing concept was achieved with the tape of the
BSCCO 2223/Ag Long Island Cable superconductor [8];
compare Figs. 1a-c and 2ab in part A.

Electrical and thermal transport properties of the BSCCO
2223 material are strongly different from the properties of the
Ag matrix, and also are highly anisotropic. The same applies
to microscopic parameters like field penetration and coher-
ence length. Each filament by surface roughness and weak
links (quasi-surface inter-layers) is to some extent electrically
and thermally decoupled from its neighbours and from the
Ag-matrix material.

Onset of the Meissner effect within each filament may be
quite different, because of the same decoupling of the filament
from its neighbours. It depends on the local magnetic field and
thus on local temperature.

Finally, calculations of heat transfer from this object to a
coolant become a challenging task, too.

2.2 Second-Generation, Coated Thin-Film YBaCuO 123
Superconductors

Calculations of transient temperature distribution in the
other (presently more attractive) superconductor, the coat-
ed, thin film YBaCuO 123 tape applied in a coil, have been
described in [9]. The stability analysis in this conductor, as
seen from the numerical simulation aspect, is less compli-
cated because the many superconductor/matrix interfaces
in the BSCCO system are replaced by plane (2D) interfa-
cial contacts to other thin layers (substrates, coatings), and
the anisotropy of electrical and thermal transport is less
pronounced.

Details of the conductor are explained in Fig. 1 of [9]
and will not be repeated here. Again in short, the overall
design of the simulation scheme addresses a coil with 100
turns (only the outermost five windings are simulated).
Conductor architecture is standard, but very thin, interfa-
cial, insulating layers exist between superconductor film
and Ag (metallization) and between superconductor and
MgO (buffer layer), the properties of which have to be
taken into account in the simulations. Superconductor lay-
er thickness is 2 μm, its width is 6 mm, thickness and
width of the Ag elements in the simulations are the same
as of the superconductor thin film, and thickness of inter-
facial layers is 40 nm. Crystallographic c-axis of the
YBaCuO-layers is parallel to y-axis of the overall coordi-
nate system.
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2.3 NbTi Superconductor Filament

The numerical simulation is applied also to NbTi fila-
ments. Radius of the cylindrical filaments is about
30 μm. The filament is embedded in a cylindrical,
5-μm-thick, standard matrix material (here Cu). In a mul-
tifilament wire, each filament thus is separated from its
neighbours by at least 10 μm. A target spot indicates
location of a disturbance. Radius of the target spot is
rTarget = 6 μm. Without loss of generality, the disturbance
is modelled as a surface source. A single heat pulse onto
the NbTi of in total 2.5 × 10−10 Ws shall be distributed,
as a thermal disturbance of ΔtP = 8 ns duration; the pulse
is distributed over the target radius. Cooling is with LHe.
In this conductor, the disturbance thus does not result
from a fault current.

3 Phase Transitions in the Superconductors

Phase transitions have to be studied in addition to the
simulations of current transport in the three supercon-
ductors (BSCCO, YBaCuO and NbTi). This is to sup-
port interpretation of the results obtained with these
systems near their critical temperature. While it is just
one detail of the analysis of phase transitions that will
be consulted in Sect. 6.3, namely the order parameter,
simulation of the density of electron pairs is necessary
to decide how zero loss current transport can be corre-
lated to this density, and to which extent even a fault
current, as a disturbance, could be satisfied.

Phase transitions can be classified into first-order and con-
tinuous transitions (the latter comprise second order transi-
tions). Under first-order transitions like melting or freezing,
the two phases co-exist, with clearly defined phase bound-
aries, until the transition is completed. In quantum phase tran-
sitions, the phases are not spatially separated but in momen-
tum space.

Continuous phase transitions are described by order
parameters; these are thermodynamic quantities that in
the disordered phase on the average are zero. In contin-
uous phase transitions, the transition point is the so-
called critical point.

Standard phase transitions occur at finite temperature
and result from competition between energy and entropy
of the system. Quantum phase transitions, too, are
interpreted as competitions, but now between ground
states at T = 0 of a many-body system (for example, an
ultra-cold gas). Study of phase diagrams at T = 0 might
hold a key to unsolved problems. We will in Sect. 6.3
consider quantum phase transition just with respect to
their order parameter diagram.

4 Calculation of Flux Flow Losses

4.1 Concept

Origin and mechanism of flux flow losses have been described
in standard literature, compare e.g. Sect. 7.3 in [10] or Sect.
6.5.2 in [11]. For simulation of the flux flow resistivity, we
refer to the previous paper [12] in which a cell model was
applied (suitable to both BSCCO and YBaCuO superconduc-
tors) and derivation of a new flux flow resistivity model was
thoroughly described. The “new” model is essentially a de-
tailed calculation of the electrical resistances in normal
conducting, highly diversified solid sub-structures in a super-
conductor cable including weak links and interfacial resis-
tances. It avoids some questionable assumptions made in tra-
ditional flux flow resistance calculations. The flux flow model
shall shortly be described in the next subsection. A more de-
tailed description is given in Appendix 3.

Simulation of only substructures of the multi-
filamentary BSSCO superconductor, like only 1 to 5 of
the 91 filaments in the tape, certainly would reduce com-
putation time, but it would not be very helpful for calcula-
tion of temperature and current distribution and for stabil-
ity analysis: We need simulation of the total number of
filaments in the tape, because it is the surface of the tape,
not of the filaments, that faces the coolant. The filaments
are separated from the coolant (and among themselves) by
the Ag matrix, with numerous interfacial resistances due to
roughness of the surfaces and contaminations arising from
the manufacturing (Powder in Tube) process.

It is not at all clear that each of the filaments in the BSCOO
superconductor tape would experience the same transport cur-
rent and, accordingly, the same potential load: The resistances
depend on temperature, which means at least a second-order
correction becomes necessary. Only the distribution of distur-
bances in all filaments and thin films, and the corresponding
local losses, all in sufficient detail, can reasonably provide
current distribution and the temperature field within the total
conductor cross section and at the solid/liquid interfaces. All
these are needed to correctly simulate current transport and
heat transfer.

4.2 How to Numerically Calculate Flux Flow Resistivity
and Losses

Flux flow resistances limit current transport when in an exper-
iment with superconductors transport current density exceeds
critical current density. Flux flow resistance may come up
even if superconductor temperature is below its critical
temperature.

Under transport current, losses arising from flux flow resis-
tance will steadily increase conductor temperature if heat dis-
sipation to matrix and coolant are not sufficiently strong. If the
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temperature exceeds its critical value, the conductor finally
gets into the Ohmic resistance state, which causes even higher
losses if current cannot be limited or immediately be commut-
ed to a parallel or conventionally be switched off. The well-
known flux creep process will not be considered in this paper.

For calculation of flux flow resistivity, the already men-
tioned random distribution of superconductor critical temper-
ature, magnetic field and current density [4] around their mean
values has been applied, as the first step in this analysis. This
idea shall take into account uncertainties that could arise from
shortcomings in conductor manufacture. Within the range of
random values below the “clean” TCrit, it also reflects an in-
creasing degree of disorder of the charge carriers.

Second, calculation of the flux flow resistivity, ρFF, of the
superconductor grains, as local and time-dependent values,
ρFF(x,y,t), has been made by application of the standard rela-
tion, compare again [10, 11]:

ρFF x; y; tð Þ ¼ ρNC x; y; tð ÞB x; y; tð Þ=BCrit x; y; tð Þ ð2Þ

Strictly speaking, this relation is applicable to the solid
(bulk) superconductor, not to a bed of superconductor parti-
cles like the grains in filaments shown in part A, Fig. 1c. In
order to apply Eq. (2) in a finite element simulation, we ac-
cordingly need local values of induction,B(x,y,t), and of upper
critical magnetic field, BCrit(x,y,t) and of local, normal state
resistivity, ρNC(x,y,t), in a particle bed (the superconductor
grains). Very roughly, the ratio B(x,y,t)/BCrit(x,y,t), with
BCrit(x,y,t) to be taken a T = 0, indicates that the relative su-
perconductor volume occupied by the vortex core is a very
small number. In traditional literature, ρNC frequently is con-
sidered a constant, independent of temperature and magnetic
field, an assumption that seems to be highly questionable.

If we would intend to model current flow through
individual grains, a finite element (FE) mesh with extremely
fine spatial resolution would be needed. Conductor dimen-
sions are between nanometres (weak link structures),
micrometres (grains and filaments) and millimetres (tapes).
Mapping each superconductor grain in a tape, and in particular
its surface geometry and the weak links, using at least some
tens of appropriate elements, inevitably leads to a total ele-
ment number of nodes and elements by far too large to obtain
results within acceptable computation time. It is even not clear
that the FE simulation could be successful because of the
strongly varying particle (grain, weak link) geometry and the
strongly different materials and electrical and thermal trans-
port properties in a tape. Finite element simulations are not
infallible.

Instead, not individual grains and their surfaces have been
modelled but the FE model applied in this paper is focused
onto a continuum. This approximation assumes an agglomer-
ate of a very large number of very small superconductor
grains. A cell model is used to estimate the normal conduction

resistivity, ρNC, of this agglomerate as an effective value, ρeff,
to finally calculate by Eq. (2) the flux flow resistivity, ρFF.

The simulation of the flux flow resistivity, as a continuum
property, has the enormous advantage that calculation of at
least ρNC(x,y,t) and if B(x,y,t) and BCrit,2(x,y,t) can be provided
with high spatial resolution, also of ρFF(x,y,t), become
independent of details of the meshing in the FE procedure.

The continuum assumption presently appears to be the only
manageable way to circumvent extremely long computation
times when calculating resistances in the simulations. More
detailed description of this model can be found in Appendix 3
to this paper.

Besides excursion with time of local temperature, and of
non-transparency of the superconductors, the continuum ap-
proximation of flux flow resistivity is the third key for suc-
cessful numerical analysis.

5 Results of Temperature Field Calculations

It is assumed in the following that the fault due to a short
circuit in an electrical network starts at tFault = 1 ms (this is
the instant when transport current first rises over nominal cur-
rent). Compared with previous papers [4–7, 9], where tFault =
6.5 ms, computation time is reduced. Current increase to a
fault is simulated as before: Increase to 20 times the nominal
value, within 2.5 ms.

Under this condition, a first impression of when a quench
might occur is given in Fig. 1 that shows the number NEq of
equilibrium iterations needed by the finite element program to
obtain convergence of the temperature field in the series of
load steps.

The number NEq reflects the development with time of tran-
sient temperatures obtained in three different runs of the FE
program. The calculations apply identical input parameters,
start and boundary conditions. Computation time is stepwise
increased to approach the instant when phase transition is ex-
pected. Results refer to the total tape cross section including all
superconductor and Agmatrix elements with their temperature-
dependent electrical, magnetic and thermal properties. Results
are obtained with NEl = 21528 elements and, in this case, al-
ready with the new flux flow resistance model explained in
Appendix 3 (comparison between the results obtained with
the traditional flux flow resistance will be shown later).

The significant increase ofNEq at t ≥ 2.6 ms indicates this is
approximately the time when a quench is expected to occur
very soon.

Figure 2 shows nodal temperature obtained close to this
time when onset of a quench is expected. In comparison with
part A, results at t = 2.51, 2.52, 2.53, 2.56 and 2.6 ms (from
top to bottom) are calculated with a strongly increased number
of elements (NEl = 29580 instead of less than 5000). However,
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the consequence of the enlarged number of elements is a
strong increase of computation time.

These temperature field calculations have been performed
with a conventional value of the flux flow resistivity, about
ρFF = 10−7 to 10−6 Ω m at small magnetic fields (compare
Fig. 17 in Appendix 3). Figure 2 confirms the saw-toothed
temperature excursion expected from the temperature vs.
time-diagram in Appendix 1, Fig. 13: Compare the schemati-
cally shown initial increase of temperature and the following
decay in this figure with the corresponding maximum values
(right end of the horizontal bar), from 93.624 to 110.159 K
during 2.5 ≤ t ≤ to 2.52 ms, then followed by temperature decay
from 110.159 to 104.34 K during 2.52 ≤ t ≤ to 2.6 ms, all in
Fig. 2. Also, the example shown in Fig. 14 confirms this
expectation.

When the calculations,with the same numberNEl, tentative-
ly are extended to t = 2.62 ms, to more closely approach a pos-
sibly existing critical time, the point of no return mentioned in
partA, reductionof computation timebecomesnecessary.With
NEl = 29580, the FE program needs about 32 h computation
time on a standard PCwith 4-core processor and 8GBworking
space, toobtainconvergenceof the results inabout30loadsteps
and in the total number of about 130 sub-steps.

The number NEl therefore was reduced to 22680 elements.
Nodal temperature within some of the filaments (a detail of the
complete tape cross section) is shown in Fig. 3a and is calcu-
lated in stepsΔt of 0.1 and finally of 0.02 ms, without signif-
icant loss of accuracy against Fig. 2. Results are given for
filaments closely located to the symmetry axis of the tape.

Figure 3 a and b demonstrates that there is not only an
inhomogeneous temperature field within the total tape cross
section (trivially, this is expected and was observed already in
previous papers and in part A), but the point is that clear non-
uniformity of the temperature field is observed also within
individual filaments.

The bottom diagram in Fig. 3a in addition indicates that
temperature apparently splits into two maxima near the centre
of the individual filament cross sections. This spatial variation is
shown in more detail in Fig. 3b, with NEl = 22680 (top) and
21528 elements (below). The variation of local temperature is
observed in all filaments and is independent of the total number
of elements in the (mapped) meshing scheme.

This is apparently the consequence of a more and more
diversified, thermal excitation of the superconductor grain ma-
terial. From the numerical simulation aspect, the excitation is
subject to the interacting thermal and electrical transport and
magnetic field penetration processes within the grains that all
depend on temperature. But it is also the self-amplifying diver-
gence mechanism, when the system approaches its critical tem-
perature, which is behind the strong temperature distributions,
together with strong non-linearity of the transport parameters.

Temperature excursion, T(x,y,t), extracted from Fig. 3b
(upper diagram) is shown in Fig. 4b for a single filament
(filament 2, compare Fig. 4a for identification of the
filament position). Results are calculated with NEl = 22680
elements again using conventional flux flow resistivity values.
Data are taken along the axis of symmetry of the tape, x =
1.92 mm. Temperature is more or less continuous (rather
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Fig. 1 Number NEq of equilibrium iterations needed to obtain
convergence of the solutions in the load steps of the numerical
simulations performed for the multi-filamentary BSCCO 2223
superconductor. The three curves NEq result from the temperature
distribution obtained in different calculations using identical input
parameters and steadily increased computation time, either by starting
new calculations at t = 0 for the full period or by restarts of already
converged solutions to approach the instant when phase transition is
expected and the superconductor can be prevented from thermal run-

away (blue diamonds, solid red circles, open circles). Results refer to
the total tape cross section including all superconductor and Ag-matrix
elements with their temperature-dependent electrical, magnetic and
thermal materials parameters. Results are obtained with NEl = 21528
elements and with the new flux flow resistance model explained in
Appendix 3. Note the strong increase of NEq at t ≥ 2.6 ms. Extension of
the numerical experiment becomes critical since the calculation of the
curve with the open circles takes already 18 h (with standard computer
equipment)
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unchanged at t = 2.6 and 2.614 ms), but note the sudden in-
crease between 2.614 and 2.62 ms to values all above TCrit.

Temperature excursion within the single filament 1
located in the upper region of the tape cross section is

Fig. 2 Nodal temperature in the BSCCO 2223 tape, as expected in situations close to onset of a quench; results are calculated with NEl = 29580 elements
at t = 2.51, 2.52, 2.53, 2.56 and 2.6 ms (from top to bottom) and with the traditional flux flow resistivity. Computation time exceeded 32 h
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shown in Fig. 4c. Again, strong variation of temperature
within the filaments is obvious for all t ≥ 2.6 ms.

While these calculations (Fig. 4b, c) applied conventional
values of the flux flow resistivity, results of the same

calculation, now with NEl = 21528 and with the new flux
flow resistivity model (explained above and in more
detail in Appendix 3), are shown in Fig. 5. It again
shows strong variations of element temperature. As

Fig. 3 a Nodal temperature
(detail) within outermost right
elements near the axis of
symmetry calculated at 2.5, 2.6
and 2.62 ms (from top to bottom),
with NEl = 22680 elements and
again with the traditional flux
flow resistivity. b Nodal
temperature distribution in the
tape (detail). Upper diagram:
Results obtained with NEl =
22680 elements and with the
traditional flux flow resistivity
values. Lower diagram, for
comparison: NEl = 21528
elements calculated with the new
flux flow resistivity model
explained in this paper; see text
and Appendix 3. Results are
given at t = 2.62 ms. Although
less pronounced in the lower
diagram, temperature splits in the
centre of the filaments into two
peak values, or at least strong
temperature variations are
observed with application of both
schemes. A decision which model
is to be preferred can be made
only on the basis of experiments
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Fig. 4 a Part of the total tape cross
section showing filaments (dark-
green) and matrix elements (dark-
grey) and the plane element mesh
(mapped meshing). The thick solid
line at the right denotes the axis of
symmetry of the tape (x =
1.92 mm). Left half, axis-
symmetric parts of two single
filaments, 1 and 2, are indicated by
the coloured ellipses to indentify
the tape sections within which
temperature distributions and the
stability function will be shown in
the subsequent figures. b Element
temperature, T(x,y,t) (arithmetic
mean of nodal
temperatures),within the single
filament 2 (compare Fig. 4a to
identify filament position in the
tape). Element temperature is
plotted vs. y-position (with the
corresponding x-positions of
filament 2 kept constant) along the
axis, x= 1.92 mm, of symmetry of
the tape. Results are calculatedwith
NEl = 22680 elements using the
traditional flux flow resistivity
value (like in Fig. 3b). Vertical
position of filament 2 is in the
central region of the tape cross
section where no splitting of the
temperature is observed.
Temperature remains more or less
continuous (is rather unchanged at
t = 2.6 and 2.614 ms), but note the
sudden increase between 2.614 and
2.62 ms to values all above TCrit.
After a small, additional time-step,
a quench would be expected to
occur immediately within this
filament. c Element temperature
T(x,y,t) as before (b) (arithmetic
mean of nodal temperatures) within
single filament 1 (compare a for its
position). Element temperature is
plotted vs. y-position along the
axis, x= 1.92 mm, of symmetry of
the tape. Results are again
calculated with NEl = 22680
elements using the traditional flux
flow resistivity value (like in Fig.
3b). In this diagram, the curves
demonstrate splitting of the
element temperature at all t ≥
2.6 ms (compare text). Like in b,
after a small, additional time-step, a
quench would be expected to occur
immediately within this filament
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before, now with the different NEl and with the different
flux flow resistivity model, local temperature again splits
into two maxima, like in Fig. 3a, b. The significant tem-
perature variation within a filament does not depend on
the number of elements or on the model to calculate flux
flow resistivity.

The fast increase of the filament temperature at t ≥ 2.6 ms in
Fig. 4b, c indicates that a local quench is soon to be expected,
probably after only a small, additional time-step.

We will now concentrate on calculation of stability functions.
It is a tool that is frequently applied in stability analysis andmight

constitute an alternative to only inspection of temperature distri-
butions in the conductor. The stability function reads, with the
integral taken separately over numerator and denominator,

0≤Φ tð Þ ¼ 1− 1=Að Þ∫JCrit x; y; tð ÞdA=JCrit x; y; t¼0ð ÞdA≤1
ð3aÞ

and over A, the total superconductor cross section.
Definition of a stability function apparently originates from
[3].This is approximated by

0≤Φ tð Þ¼ 1−ΣJCrit T x; y; tð Þ;B x; y; tð Þ½ �ΔA=ΣJCrit T x; y; tð Þ;B x; y; t0ð Þ½ � x; y; tð Þ�ΔA≤1 ð3bÞ

with the summations taken over all superconductor elements
and using their individual cross sections, ΔA.

The ratio JCrit(x,y,t)/JCrit(x,y,t = 0) gets Φ(t) close to zero if
JCrit(x,y,t) is close to JCrit(x,y,t = 0), in other words, if the tem-
perature field and thus critical current density are not very differ-
ent from their initial values. In this case, almost the whole con-
ductor cross section is open to zero loss current transport, with
high critical current density (this simplified calculation and inter-
pretation of Φ(t) neglects losses by flux flow, however). If
T(x,y,t) becomes close to TCrit, the critical current density,
JCrit(x,y,t), is very small at these positions, and Φ(t)→ 1. Zero
loss current transport then is hardly possible:

ITransp tð Þ ¼ JCrit x; y; 77 Kð ÞA 1−Φ tð Þ½ � ð4Þ
If T(x,y,t) > TCrit, we are finally in the Ohmic resistance

regime and Φ(t) = 1, which means ITransp(t) without losses is
zero because JCrit(x,y,t) is zero.

For the calculation of Φ(t) by Eq. (3a, b), an integral view of
the temperature distributions, in a properly chosen superconduc-
tor cross section, has to be taken. Within the said hierarchy

(grains, filaments, tape, cable), we tentatively start with total tape
cross section involving all filaments.

Figure 6 a shows nodal temperature within the tape calcu-
lated at t = 2.6999 ms (as will be shown later, a situation very
close to the expected phase transition in many filaments of this
tape). “Tentatively” means that the calculation of Φ(t) might
be misleading because of the very large temperature variations
observed in the tape cross section (Fig. 6a) and, correspond-
ingly, by the large temperature gradients (Fig. 6b).

Large temperature gradients emphasize large local heat
transfer rates, and the temperature gradients are responsible
for thermal stresses within the superconductor grain volumes
and, to a much smaller extent, in the Ag matrix.

The temperature variations, between 77 and almost 290 K,
exceed the values seen in all temperature diagrams shown in the
previous Figs. 2a and 3a, b and in the temperature vs. y-position
diagrams in Figs. 4b, c and 5. But there are also many filaments,
about 1/3 of all, of which the temperature is clearly below critical
temperature (and even close to 77 K). Critical current density of
these filaments thus remains close to the initial value,
JCrit(x,y,T= 77K), and current redistribution and sharing, among
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Fig. 5 Element temperature
within the single filament 1, all at
x = 1.92 mm (axis of symmetry of
the tape; compare Fig. 4a for
filament position). The filament is
located in the upper region of the
tape cross section. Results are
calculated with NEl = 21528
elements and with the new flux
flow resistance model explained
in Appendix 3. The curves as
before demonstrate splitting of the
element temperature, here at t ≥
2.62 ms
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the filaments in the tape, from high-resistance filaments to these
low-temperature filaments, will be observed.

The stability function, under the given temperature distri-
bution, then is expected to be small and could even decrease
with time if current redistribution and sharing become strong.
This is confirmed in Fig. 6c (note the decrease of Φ(t) begin-
ning with t = 2.6 ms).

As reported in our previous papers, this is another example
in which the stability function cannot identify regions (and
thus does not exclude their existence) in the present tape cross
section, or in a superconductor in general, when run-away of
local temperature might occur. As a tool to correctly predict
stability of superconductors, the stability function works only

if temperature differences in the conductor cross section are
small. Under a disturbance, originating, e.g. from a circuit
fault, this is with multi-filamentary superconductors like
BSCCO 2223 not the case, compare Fig. 6a.

The popularity of the stability function apparently goes back
to its application to LHe cooled superconductors where temper-
ature variations in the conductor cross section are much smaller,
because of the large thermal diffusivity of metals and alloys.

Accordingly, in order to proceed with the analysis of a
possible correlation between stability and density of elec-
tron pairs, and to make another attempt to successfully
exploit the stability function and demonstrate its beyond
doubt valuable prediction potential, we have to look onto
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Fig. 6 a Nodal temperature distribution within all elements of the total
tape cross section. Results are calculated for t = 2.699 ms, with NEl =
21528 elements and with the new flux flow resistance model explained
in Appendix 3. The overall strong temperature variation including all
superconductor elements of the tape is hardly suitable for calculation of
the stability function, Φ(t), see c. b Gradient of the temperature field,
grad(T) [K/m], within all elements of the total tape cross section.
Results are calculated at t = 2.699 ms, with NEl = 21528 elements and
with the new flux flow resistance model explained in Appendix 3. The
increased density of the arrows between 0.1998e8 and 0.265e8 and

between 0.332e8 and 0.398e8 results from the locally finer (horizontal)
division of the mesh between adjacent filament positions. c Stability
function, Φ(t), calculated using Eq. (3a, b) and the critical current
density from a of all elements located within the total tape cross
section. Note that Φ(t) is substantially below the critical value Φ(t) = 1
though the maximum values of nodal temperature seen in a have
increased up to almost 290 K. The explanation is that there are many
elements in the cross section (about 1/3 of all), the temperature of
which still is below critical temperature, or is even near 77 K
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the next lower (physical) level in the said hierarchy; this
level is set by the filaments, the smaller, compact physical
unity in the tape cross section. Though there are local po-
sitions where temperature remains near the initial value, we
can expect, in this second, again tentative step, that the
temperature variations and, correspondingly, the tempera-
ture gradients, within a single filament are smaller than
those calculated over the whole tape cross section. The
predictions by the stability function thus will become more
convincing.

We consider again the single filament 1. Figure 7 a shows
temperature calculated between 2.4 ≤ t ≤ 2.699 ms, again with
NEl = 21528 and the new flux flow resistance model. For all
element numbers greater than 60, the temperature clearly
shows a tendency to split into two maxima (at the other posi-
tions, the diagram is similar to Fig. 15b in part A, but is
calculated here with finer resolution). A “critical time”, tCrit,
can roughly be estimated from Fig. 7a when element temper-
ature in this filament starts to strongly fluctuate; this happens
at about t = 2.6 ms.

This estimate of critical time can be improved: The ob-
served, reduced scattering of the temperature within the fila-
ment allows to continue the analysis with a mean filament
temperature, T(x,y,t), as is plotted in Fig. 7b. When T(x,y,t)
crosses TCrit = const, a sudden increase of T(x,y,t) is observed
that allows to identify the critical time as tCrit = 2.63 ms, the
start of a run-away within the single filament 1 of supercon-
ductor temperature.

Calculations of the stability function can be performed up
to temperatures very close to TCrit, but the JCrit in the denom-
inator of Eq. (3a, b) must be non-zero.

Though Fig. 7b still delivers just an estimate (because of
application of a mean filament temperature), it is confirmed by
the stability function (Fig. 7c, d) calculated in the reduced

�Fig. 7 a Distribution of local element temperature of all elements that
belong to filament 1 (for filament position in the tape again compare Fig.
4a). Results are calculated with NEl = 21528 elements and with the new
flux flow resistance model explained in Appendix 3. For all element
numbers greater than 60 and if t ≥ 2.6 ms, temperature splits into two
maxima. At the other positions, the diagram is similar to Fig. 15b in
part A, but here with finer resolution. Enlarged symbols for a critical
time, tCrit = 2.63 ms, with strong fluctuations, indicate that this is
apparently the instant when the temperature of a large number of
elements is expected to exceed TCrit = 108 K. b Filament mean
temperature (arithmetic mean taken over all elements of the single
filament 1), vs. time. The figure serves to identify a “critical time” tCrit
after which a quench is expected to inevitably occur after additional time
steps. c Stability function, Φ(t), between 2.4 and 2.6999 ms, of the single
filament 1.Results are calculated as before (a) but plotted against filament
mean temperature. d Stability function,Φ(t), between 2.4 and 2.6999 ms,
of the single filament 1 located in the upper region of the tape close to the
axis of symmetry. Results are calculated using Eq. (3a, b) with the
JCrit(x,y,t) of all element belonging to filament 1, NEl = 21528 and the
new flux flow resistance model explained in Appendix 3. The sudden rise
of Φ(t) between t = 2.6 and 2.62 ms indicates the system (the single
filament 1) more and more approaches a quench. That the curve in its
upper parts shows slight bending towards less than linearly increasing
values of Φ(t) indicates transport current is increasingly dispersed to
other filaments within the tape (and, finally to the Ag-matrix)
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cross section. Calculation of Φ(t) is made with only the
JCrit(x,y,t) of the elements that belong to this single filament.

First, Fig. 7c shows the (smooth) behaviour of Φ(t) that
is to be expected from the decrease of JCrit(T) with increas-
ing temperature. The sudden increase of Φ(t) at t = 2.63 ms
(Fig. 7d) then is in parallel to the estimate of the critical
time, tCrit, made in Fig. 7b using the mean filament tem-
perature (and confirms Fig. 1).

The curve Φ(t) in Fig. 7c, in its upper parts, shows
slight bending; it does no longer increase linearly from
values obtained at lower filament mean temperature. This
observation can be understood from transport current be-
ing increasingly dispersed to other filaments in the tape
and finally to the Ag-matrix, which reduces supercon-
ductor resistivity, load and filament temperature and thus
increases critical current density, JCrit(x,y,t) in Eq. (3a,
b).

Results obtained with other filaments of the tape would
be similar. Since conductor temperature at the lower po-
sitions of the tape is smaller, the stability functions calcu-
lated for those filaments are smaller, too, because of the
larger JCrit. The stability function for these filaments then
would be below the Φ(t) shown in Fig. 7c, d for the single
filament 1; the results are an upper limit of Φ(t).

Based on these results, we will compare the results of item
(1) and (2),

1. The results for the stability function obtained from only
one single filament like in Fig. 7c, d

2. The development of local temperature (Fig. 7a)

with the results of the second step announced in Sect. 1.1,
namely predictions obtained from the microscopic stabil-
ity model (item 3), i.e. density and decay rates of electron
pairs and their comparison with the density of electron
pairs necessary to support JCrit (Fig. 8a, b; Table 1).

In summary of this Section, application of the stability
function, Eq. (3a, b), certainly provides helpful results to
encircle a phase transition, but the method has disadvan-
tages: Highly diversified conductor temperature leads to
strongly varying values of local critical current density. In
the present examples, it would take too long computation
time to arrive at a situation where Φ(t) finally gets close to
Φ(t) = 1. Information on individual hot spots developing
in the conductor cross section gets lost. It appears that
calculation of Φ(t) in such situations should be limited
to individual filaments. While a quench if encircled by
this method would be a local phenomenon (observed in
one filament), it is yet of practical value: If just one fila-
ment quenches, operation of the tape as a whole already
gets into danger, and it is not clear that the heat always
can be dissipated in due time to the Ag-matrix or to
neighbouring filaments.

Inspection of transient conductor temperature distribution
thus appears to be better suited for stability analysis than the
stability function, under the given conditions. The alternative
to both methods is described in the next section.

6 Limitation of the Numerical Solutions

6.1 Density of Electron Pairs to Support JCrit in BSCCO
2223

The number of electron pairs must be sufficiently large to
provide zero loss current transport and to successfully screen
the interior of the superconductor against an external magnetic
field. Fortunately, even a tiny fraction of the electrons that
condensed to electron pairs can be sufficient. All currents in
the superconductor, transport and also screening currents flow
with critical current density, JCrit.

If we restrict the interesting temperature interval, within
which the calculations shall be performed, to 100 ≤ T <
TCrit = 108 K for BSCCO 2223, the density of electron pairs,
nS(T), must satisfy the said minimum condition in dependence
of the abscissa (temperature) values in Fig. 8a, b. This mini-
mum density is obtained from

JCrit Tð Þ¼ JCrit T ¼4Kð Þ 1−T=TCritð Þ¼ nS Tð ÞvFermi2e ð5aÞ

with JCrit = 3.75 × 10
8 A/m2 at 77 K, or for YBaCuO 123 the

approximately quadratic temperature dependence, JCrit(T) =
JCrit(T = 0) (1 − T/TCrit)

2, with vFermi the Fermi velocity and e
the elementary electrical charge.

The Fermi velocity in BSCCO 2223, about 2.86 × 104 m/s,
is given by

vFermi ¼ πξ0Δ E ¼ 0ð Þ=h ð5bÞ
with ξ0 the coherence length in the ab-plane,ΔE(T = 0) the

energy gap, and h denotes Planck’s constant. The density,
nS(T), not only must be stable (though in dynamic equilibri-
um), but the ratio fS = nS(T)/nS(T = 4 K) at T = 100 K must be
at least in the order of 10−5of the T = 4 K value (nS is estimated
from the electron density of about 6 × 1027 1/m3 of which
about 1/2 is considered as available for electron pair
formation).

The density nS(T) is obtained as described previously [13]
in a model. When this model was suggested, it was called a
microscopic stability model because it considers stability not
in terms of energy balances or stability functions and thus of
critical current density that all are macroscopic quantities.
Instead, it addresses the existence of elementary
(microscopic) carriers of electricity in the superconducting
state.

Results are shown in Fig. 8a. As with the previously inves-
tigated YBaCuO 123 superconductor (compare again [13]),
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the required density nS0(T), dark-yellow diamonds in both
diagrams, is small against the available density (nS(T), dark-

blue) of the BSCCO 2223 system. Zero loss current transport
thus is confirmed.
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Fig. 8 a Relative density fS =
nS(T)/nS(T = 4 K) of electron
pairs (the order parameter, fS), in
dependence of temperature,
calculated for YBaCuO 123
(above) and BSCCO 2223
(below). Dark-yellow diamonds
in both diagrams are calculated as
fS = nS0(T)/nS(T) thus indicating
the minimum relative density of
electron pairs that would be
necessary to generate a critical
current density of 3 × 1010

A/m2(YBaCuO) and 3.75 ×
108 A/m2 (BSCCO), both at 77 K,
in zero magnetic field. The upper
diagram is taken from [13]; it also
compares predictions of the
microscopic stability model
(dark-blue diamonds) with results
from Eq. (8) in [19] (light-green).
b Relative density fS = nS(T)/
nS(T = 4 K) calculated like in a.
The figure shows a detail of the
results obtained for YBaCuO 123
with JCrit = 9 × 10

10 A/m2 at T =
4 K. The curves are calculated
from the microscopic stability
model (dark-blue diamonds). The
dark-yellow diamonds are
obtained as fS = nS0(T)/nS(T)
using Eq. (5a b,); this is the
minimum relative density
required to support a given
JCrit(T). The green ellipse that
encloses the relative densities,
both calculated at T = 91.9999 K,
indicates that the density of
electron pairs at this and at higher
temperatures (close to, but below
TCrit) is too small (the difference
nS(T) − nS0(T), at T > 91.9999 K,
becomes negative) to support the
given JCrit(T); see Table 1
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The ratio (at least 100) between the fS indicated by the dark-
yellow and dark-blue (or light-green) diamonds in Fig. 8a
shows that even the assumed fault (a multiple of 20 of nominal
transport current) could in principle be satisfied by the density
of electron pairs, but flux flow resistance and losses would
immediately increase conductor temperature to values above
critical temperature and decay of the electron pairs.

The nS(T), dark-blue and dark-yellow symbols in Fig. 8a (up-
per diagram) coincide only very late (very close to TCrit), but
coincidence yet can be identified. But when TCrit− T < 10−4 K,
calculation of the (residual) nS(T) by application of the micro-
scopic stability model to the other conductor, BSCCO 2223
(lower diagram), the calculation becomes more and more time
consuming and finally takes too long to arrive at a useful result.

This is explained as follows: In a series of individual re-
organisation (decay and recombination) steps under dynamic
equilibrium conditions, described using the fractional parent-
age scheme of this model, the very long computation time is
the consequence of the increasingly large number of electrons
that are involved in these re-ordering processes: If an arbitrary
electron pair composed of electrons i and j (of a total number
NEp) decays to separated, single particles, all NEl separated,
single electrons have to be reorganised to obtain a new dy-
namic equilibrium state. Time needed for reorganisation thus
depends onNEl. The closer T approaches TCrit, the larger is the
number NEl that has to be re-ordered. Re-ordering has to fulfil
the Pauli principle.

Going back to Fig. 1, a simple straight-ahead, alternative
method was reported to at least estimate the critical time when
in the multi-filamentary BSCCO 2223 superconductor, a quench
is expected: It is the number Neq of equilibrium iterations. The
curves in Fig. 1 run in parallel to and thus are confirmed by the
results reported in Fig. 7a–d.

6.2 Density of Electron Pairs to Support JCrit in YBaCuO
123

The situation is better with YBaCuO 123: Fig. 8a, b shows
both densities at temperature values very close to TCrit (92 K).
The curves coincide at about the distance ΔT = 10−4 K from
TCrit. The upturn of the dark-yellow diamonds, i.e. fS = nS0(T)/
nS(T), results from the decrease of nS0(T) that reflects the tem-
perature dependence of JCrit. It is comparatively weak in rela-
tion to nS(T) with its strong exponential dependence on
temperature.

Beginning at T = TCrit −ΔT, the available electron pair den-
sity finally (Table 1, italic entries) becomes smaller than the
density required for zero loss current transport. Under given
voltage, the transport current then has to be realised by un-
paired, normal conducting electrons. Thus, current has to run
against Ohmic resistances, which leads to fast temperature
increase. This is reflected by the divergence of the numerical
results for fS = nS0(T)/nS(T), dark-yellow diamonds in Fig. 8b.

Success of the microscopic stability model thus may de-
pend on computation time; in case of the BSCCO supercon-
ductor, computation time becomes too long to observe coin-
cidence. This lack of the method may be avoided with super-
conductors of smaller TCrit (like YBaCuO). But another prob-
lem arises from comparison of the length of load steps and
time constants, as will be shown in the next subsection.

6.3 Classification of Phase Transitions

6.3.1 Order Parameters

This subsection deals with phase transitions in superconductors;
thus, on systems at T > 0, with a very large particle number. For a
review of quantum phase transitions (T = 0), refer to [21]. The
description of an experimental study to approach a quantum
phase transition in an ultra-cold gas, from a super-fluid to a
Mott insulator, is published in [22]. Both papers are examples
taken from the large variety of existing publications in this
discipline.

If in a quantum phase transition the system approaches a
critical point, spatial correlations of the order parameter become
long-ranged distances. Close to this point, the correlation length
scale, ξ, over this distance follows ξ ~ 1/|t|ν. If the (continuous)
phase transition occurs at T > 0, the distance can be written as
t = (|T −TCrit|)/TCrit. The length ξ thus diverges if t → 0 (ν is a
spatial critical exponent, ν > 0). But if the system consists of
ordered and disordered phases in parallel, the correlation length
will be finite, not exceeding the corresponding spatial
dimensions.

In analogy to this spatial (long-range) correlation, long-range
correlations of order parameter fluctuations also exist in time, on
a scale τCrit ~ ξ

2 ~ 1/|t|(ν z), with z a dynamical critical exponent.
The problem in phase transitions in general is how to de-

termine order parameters and their spatial and temporal
dependency.

The microscopic stability model [13] not only describes
superconducting to normal conducting phase transitions as
continuous transitions, in the vicinity of their critical temper-
ature. The model also might provide a potential tool to calcu-
late order parameters. It applies an analogy to the nucleon-
nucleon, pion-mediated Yukawa interaction (here applied to
electron-electron correlations during formation of electron
pairs), an aspect of the Racah-problem (for expansion of an
anti-symmetric N-particle wave function from a N − 1 parent
state), and the Pauli and uncertainty principles, all in depen-
dence of the local (transient) temperature; these approxima-
tions are performed in a stepwise, sequential manner for tran-
sient temperature fields (those reported in the previous sec-
tions). The model takes into account that the stronger the
binding of the electron pairs is, the larger the number of states
into which during decay the electrons can be scattered.
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Interestingly, the relative density, nS(T)/nS(T = 0), of electron
pairs in a virtual unit volume (the Coulomb volume); the time
constants, τEl and the decay rates, d[nS(T)]/dt, in thismodel either
diverge to finite but very large values or they decay sharply to
zero, at T = TCrit. This is shown for BSCCO, YBaCuO andNbTi
superconductors (compare Figs. 8 and 9a, b; the originals are
found in [13]). Also, the radius rC of the virtual Coulomb volume
diverges when T approaches TCrit.

Density of electron pairs and their derivative with time, as
obtained from calculations using this model, apparently run in
parallel to the behaviour of ξ and τCrit and thus to the order
parameter when approaching a critical point in any, including
quantum, phase transitions.

While the physical background of the microscopic stability
model is strongly different, it is yet tempting to discuss

whether a similarity of the results provided by the numerical
approach in one system (the microscopic stability model [13]
with the order parameter fS = nS(T)/nS(T = 0), with τEl, and
d[nS(T)]/dt, all with respect to electrons in superconductors
at T > 0) can be understood from the ξ and τCrit and the order
parameter of the other system, which means standard phase
transitions (T > 0), or as an extreme case, quantum phase tran-
sition at T = 0, considering the particles of an ultra-cold gas
[22] as an approach to this transition.

If so, why do both systems (their order parameters) culmi-
nate in a divergence or in a sharp decay, to infinity or to zero,
at a critical temperature or at a critical point, respectively? It is
the question of the physics behind.

An attempt has been made to answer both questions in [13].
Figure 9b and the diagram (b) in Fig. 1 of [21], here reproduced
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Fig. 9 a Phase diagram (schematic) showing two hierarchies: the
quantum phase diagram near a quantum critical point (QCP, dashed
lines) and the classical analogue (left to the QCP) with the order
parameter, fS, instead of temperature, T. The Figure is redrawn, with
modifications (T replaced by fS), from Fig. 1, part (b) in [21]. The
parameter r on the horizontal axis is used as a control parameter to tune
the system through the quantum or classical phase transition. The thick,
solid line marks the finite-temperature boundary between ordered and
disordered phases. Close to this line, the critical behaviour is classical.

b Initial and mean decay rates (per unit volume) of thermally excited
electron states calculated using a screening factor, χ = 0.01, to the
Coulomb potential, in a virtual conductor volume, VC, of the
superconductor YBaCuO 123. See text in the original paper [13] and
Sect. 6.3 for explanations. The area below the curves corresponds to the
ordered phase (electrons condensed to electron pairs) that is from the
thermally disordered phase (electrons from decayed electron pairs)
separated by the classical critical, finite temperature boundary
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in Fig. 9a, serve to compare both systems and to explain similar-
ity and differences.

6.3.2 Similarity of the Order Parameters in Different Phase
Transitions

Figure 9 a reflects the well-known temperature dependency of
the Ginzburg-Landau order parameter, |ψ|. For comparison of
Fig. 9b with Fig. 9a, it is useful to replace

1. Temperature, T, on the vertical axis in [21] by a (physi-
cally reasonable) temperature-dependent quantity, here
the relative density or the decay rates (Fig. 9b) or the time
(Fig. 10). The relative density, nS(T)/nS(T = 0), in Fig. 9b
thus takes the role of the order parameter

2. The control parameter, r, on the horizontal axis in [21]
(there used to tune the system through the quantum phase
transition under variations of non-thermal parameters) by
the dimensionless distance, t, in Figs. 9b and 10

The region below both curves in Fig. 9b (the superconduc-
tor) then corresponds to electrons condensed to electron pairs;
outside this region, the decay rate is zero (there are no electron
pairs within this region). This region (below both curves in Fig.
9b) reflects the region below the single (but scattered) curve of
the ordered phase in Fig. 9a (the quantum phase transition).

The region above both curves in Fig. 9b (the disor-
dered phase of the electrons) then corresponds to the dis-
ordered phase (the gas particles) in Fig. 9a: In the super-
conductor, this concerns electrons that are not, or are no
longer, condensed to pairs and therefore are considered as
disordered (in this phase, electrons condensed to pairs co-
exist with normal conducting electrons). In the quantum
system (Fig. 9a), disorder is caused solely by particle
statistics (condensed particles co-exist with normal gas
particles but are separated in momentum space).

Both regions are separated by the classical critical, finite
temperature boundary that in Fig. 9a (solid curve) is given by
uncertainties (fluctuations) of the system temperature. Also in
Fig. 9b, the boundary is not sharp; this is partly explained by
the difference between the curves indicated as “initial” (decay
of pairs at the begin of the simulation) and “mean” (taken over
the whole period when an increasing number of pairs already
has decayed and therefore the decay rate decreases steadily).
Another explanation is the statistical variation of critical tem-
perature against its mean value; the random distribution of
TCrit (Fig. 16 in Appendix 3) applied in the present calcula-
tions enters via the energy gap into this model.

The similarity between Figs. 9a and b therefore results from
the curve “finite-temperature boundary between the ordered
and disordered phases” (the solid curve in Fig. 9a, and the
dark-blue and dark-green diamonds in Fig. 9b; the curve in
both systems increases with decreasing temperature, T, or dis-
tance, t, respectively.
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Fig. 10 Time constant (relaxation time) τEl for decay of electron pairs in a
superconducting NbTi-filament. Time or time constant, τEl, is to be
understood as the relaxation time that the system needs, at a given
temperature, T, to complete a phase transition, here after a thermal
excitation of the electron system. Results are calculated using a
screening factor, χ = 0.01, to the Coulomb potential, in a virtual
conductor volume, VC. See text in the original paper [13] for more
explanations. Results are shown in dependence of dimensionless
distances, t = |(T − TCrit)|/TCrit. The distance t is explained in Sect. 6.3
and like in Fig. 9b is used to tune the super/normal conductor system, here
by variation of conductor temperature, T, through the phase transition.

The right-hand side of the diagram, t > 0, cannot be reached by the
microscopic stability model; data in this part of the diagram are just
mirror images of the corresponding values obtained at t < 0. With
increasing temperature, t→ 0 (T→ TCrit from below), it would take the
system extremely long to totally complete the superconductor/normal
conductor phase transition. In the simulations, under a continuing
disturbance, the system “jumps” to normal conduction thus leaving a
small, residual amount of electron pairs in a small volume within which
the phase transition cannot be completed (this is, however, without any
significance for resistive current transport). In physical reality, there is no
jump (time is continuous)
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With the above substitutions (1) and (2), the similarity be-
tween both Fig. 9a and b also suggests to plot the time con-
stant, τEl, the time needed for recombination of single elec-
trons to pairs, versus the dimensionless distance t = (T − TCrit)/
TCrit (Fig. 10).

Time constant, τEl, on the t-axis of Fig. 10 is to be
understood as the relaxation time that the system needs,
at a given temperature, T, to complete a phase transi-
tion, here after a thermal excitation of the electron sys-
tem. But the transition can be completed within a load
step only if τEl is smaller than the length, Δt, of this
step, compare Fig. 11. Since τEl diverges strongly when
t → 0, completion of the transition that involves all
particles within Δt becomes increasingly difficult
(strongly retarded; see the horizontal lines in Fig. 11)
and becomes finally impossible at temperatures very
close to TCrit.

This does not mean there is no phase transition at all at
temperature very close to TCrit. Assume that during
heating, the system arrives at a temperature, T′, a value
on the abscissa in Fig. 10. The temperature, T′, corre-
sponds to a τEl that probably exceeds, Δt, of the load
step. Completion of the transition in time then is possible
for only a finite part of the electron pairs. The numerical
system then proceeds to the next load step where during
heating this ratio, r(T), decreases. But since also the den-
sity of electron pairs, nEl(T), decreases with increasing
temperature, the absolute number of non-decayed electron
pairs, r(T) nEl(T), per unit volume becomes small when
T → TCrit.

6.3.3 Numerical Simulations vs. Physical Reality

In the simulations, with load steps of finite length, Δt, the
system for t < 0 under a continuing disturbance (heating) thus
“jumps” to the next load step and eventually to normal con-
duction (t > 0) without building (simulating) the quasi-
equilibrium state at t = 0, and without all electron pairs
decayed to single electrons. But the residual electron pairs
are without any significance for current transport because their
number is too small to support a non-zero JCrit.

Consider in Fig. 10 first the diagram from the left side (t <
0, heating): It takes the system of electrons (still condensed to
pairs in the virtual volume VC) with decreasing distance, t
(here with increasing T→ TCrit from below) the longer it takes
to release the electrons from being coupled to pairs to the
disordered state, the larger the number N of separated elec-
trons that already occupy this state. This is because the elec-
trons in the equilibrium final states have to obey the Pauli
principle and thus may occupy only allowable, single electron
states; these have to be identified (which takes considerable
time: A very large number of time differentials has to be
summed up).

Fulfilment of the Pauli principle therefore is the reasonwhy
the total time interval needed to complete this re-ordering
(decay of pairs to single electrons) process becomes increas-
ingly large when T→ TCrit. In the calculations, the process has
to be repeated for each single step n of the large number N of
decay events. The total time interval therefore increases
strongly by the very large number of summations over indi-
vidual time differentials (each about 10−13 s).
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Fig. 11 Relaxation time (the time needed to obtain dynamic, quasi-
equilibrium in the centroids of turns 96 (light-green, lilac, orange and
blue diamonds, respectively) and 100 (red diamonds) of a coil of
coated, thin-film YBaCuO 123 superconductor (in total 100 turns), after
a thermal disturbance originating from transport current density locally
exceeding critical current density. The light-green, lilac, orange and blue
diamonds refer to element temperature calculated in the finite element
simulation; dark-green circles are calculated for an arbitrary sequence of

element temperatures. Differences of the calculated relaxation times
originate solely from the random distances between two electrons in the
volume VC. As soon as element temperature exceeds 91.925 K, coupling
of all electrons in this thin film superconductor to a new dynamic
equilibrium can no longer be completed within the integration times,
here 1 or 50 μs, indicated as length of process time intervals (lilac
horizontal dashed lines) in this figure. The figure is taken from [9]
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This result in consequence decreases in Fig. 9b the decay
rates when T → TCrit. An explanation also is given by the
strongly decreasing density of electron pairs: The number of
electron pairs that could decay goes to zero at T close to TCrit
(dynamical behaviour of the system strongly slows down).

The right-hand side of the diagram, t > 0, cannot be reached
by the microscopic stability model; data shown in Fig. 10 for
t > 0 are just mirror images of the corresponding values obtain-
ed at t < 0 (in Fig. 9b, they are simply omitted). With decreas-
ing temperature, T → TCrit from above (cooling), t → 0, it
would take the system extremely long to totally (virtually)
complete the normal conducting to superconducting phase
transition.

In the reverse situation (cooling), again in the simulation, the
system accordingly jumps from normal conduction to supercon-
ductivity (t < 0), as before without necessarily building
(simulating) a quasi-equilibrium state at t = 0. A finite, residual
number of unpaired electrons thus remain in the system, but
without any significance for disturbing zero loss (zero resis-
tance) current transport.

In the physical reality, however, states at t = 0 will be build
up, since time is a continuous variable (there are no jumps of
time that here could be relevant). But there remains a gap
between simulation and reality.

Going back to simulations, the gap cannot be closed by
arbitrarily extending the length, Δt, of load steps or sub-
steps to values always larger than τEl, the electron relaxation
time. A complete simulation of the phase transition, until all
electron pairs are decayed or all single electron are
recombined to pairs, respectively, at t→ 0, from below or
above, is not possible in a numerical scheme with finite length
of load steps.

A compromise therefore has to be found: When t→ 0, the
load step lengthΔt in the simulations has to be adjusted as to
get the product r(T) nEl(T) in each step as small as possible, the
absolute number of not decayed pairs or of not recombined
single electrons, respectively.

6.3.4 Combining the Results

We thus have items (1) to (6), arguments that confirm agree-
ment between the curves reported in Figs. 8a, 9a, b, 10 and 11:

1. In Fig. 8a,the dark-blue and light-green diamonds in the
upper diagram; the agreement becomes better the more T
approaches TCrit, where both values, from quite different
models, finally coincide.

2. We also observe qualitative agreement in Fig. 9a, b
(the critical points and the curve of the classical crit-
ical, finite temperature boundary) and in Fig. 10 (the
divergence to very large values of the time constant
when t→ 0).

3. With the confirmed (item 2) microscopic stability model,
also the curve showing the minimum number of electron
pairs necessary to support a critical current density, JCrit >
0, is confirmed (Fig. 8a, upper diagram, dark-yellow and
dark-blue diamonds),

4. The coincidence of the dark-yellow and dark-blue
diamonds in Fig. 8a (upper diagram) and comparison
of the last two lines of Table 1 indicate that at a
difference of only 10−5 K below TCrit, the number
of available electron pairs after an additional time
step in the simulations no longer would be sufficient-
ly large to support non-zero JCrit. From this time on,
current transport is by normal conducting electrons,
with correspondingly large increase of the resistance
to the Ohmic resistance state (a quench will be the
consequence). By the standard Kirchoff resistance
network, the simulations do not allow competition
between current transport by the small number of
residual electron pairs and the normal conducting
electrons,

5. This confirms the numerical simulations in [9] of transient
temperature in the YBaCuO 123 superconductor (and also
of the BSCCO 2223 system and its stability function) in
which a strong increase of local temperature after a critical
time was observed, which indicates the system is close to
onset of a quench.

6. Finally, onset of a quench in the BSCCO 2223 supercon-
ductor was already revealed by the maximum number of
converged equilibrium iterations (Fig. 1).

6.4 Non-Transparency vs. Time Scales

A corollary from radiative transfer was discussed in [6]: The
question is whether physical time and time scales in general
are uniquely defined in non-transparent systems.

Non-transparency has been shown in part A of the present
paper to be a pre-requisite for validity of the additive approx-
imation. Non-transparency, on the other hand, raises the prin-
cipal problem of how to interpret time scales in experiments
with superconductors when images of the same event are cre-
ated at different times after their occurrence, and probably at
different positions. This happens because of different, parallel
transport channels (phonons, radiation by scattering or
absorption/remission and others) that all would interact and
that all proceed with strongly different velocity. Among these,
transport of thermal excitations by phonons is the slowest part,
and scattering of radiation the fastest who leads all others to
create images. The bijective correlation that exists in transpar-
ent systems between events and images gets lost.

This does not collide with relativity principles. But an an-
swer to this question may have consequences for reliability
and predictions of all non-stationary stability models (and also
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in other physical disciplines). See [6] for explanations. More
results will be published in the future.

7 Current Transport Near the Phase Transition

In retrospect, beginning with the apparently existing parallel
between the present results (Fig. 9b, the order parameter) with
the spatial and time dependence of the order parameter in
quantum phase transitions (Fig. 9a), items (1) to (6) in Sect.
6.3 provide confidence in the numerical, transient temperature
field and stability calculations, and they provide confidence
also in the search of a correlation between results obtained
from the numerical (non-convergence) study and the experi-
mental situation.

The results obtained from the numerical simulations and
the microscopic stability model, and items (1) to (6) in Sect.
6.3, all in common lead to the summary Fig. 10 and 11, for the
superconductor NbTi filament and the YBaCuO 123 thin film,
respectively.

Thus on the one hand, the agreements found in Sect.
6.3 support the numerical results, and in general the
working steps of the microscopic stability model [13],
for if the numerical steps in this model would be in-
complete or seriously be wrong, agreement, neither
quantitatively nor qualitatively, not even just a similarity
between Fig. 9b with the curve of the classical or quan-
tum critical phase boundary in Fig. 9a, could be
expected.

On the other hand, collision between length of load
steps and relaxation time can put numerical simulations
of current transport in heavy waters, if they are
modelled as a series of converged, quasi-equilibrium
solutions: Redistribution of transport current that would
be completed instantaneously (or at time scales very
short against thermal or other time constants) cannot
be modelled within load steps or sub-steps of finite
length. While the well-known (small) jump of the spe-
cific heat at T = TCrit can easily be integrated into the
numerical (finite element) procedure, since length of the
thermal time constant is finite (it is based on the dom-
inating, rather slow phonon component), this is follow-
ing Figs. 10 and 11 not the case with current transport.
Completion of the phase transition at temperatures very
close to critical temperature thus superimposes on elec-
tricity transport, in a considerable part of the intervals
Δt. Numerical simulations of current transport near
phase transition thus may become severely in error if
length of load steps is too short and thus in conflict
with completion of the phase transition.

Within numerical simulations, this conflict apparently can-
not be avoided. With the density nEl(T) of NbTi calculated in
[13], length of load steps and time constant for decay and

recombination then are needed to at least minimise the product
r(T) nEl(T).

As a consequence, the bijective correlation mentioned in
Sect. 1.2, between spaces (1) and (2), the space of the physical
reality and the numerical space, respectively, is the less fulfilled
the closer the system approaches critical temperature. The hy-
pothesis set up in Sect. 1.2 thus cannot be fulfilled in general.

All this waits for experiments to be performed with non-
transparent samples, to confirm the numerical results. Non-
transparency and the validity of the additive approximation
are the conditions behind the results obtained in the previous
sections. Measurements of the time constants could be per-
formed around the phase transition with dynamic (AC) mea-
surements, like in AC magnetic susceptibility experiments; see
standard literature, e.g. [23] Chap. VIII; lecture notes on the
physics of AC magnetic susceptibility can be consulted in [24].

8 Summary

Numerical simulations have been performed with a multi-
filamentary BSCCO 2223, a coated, thin-film YBaCuO 123
tape and a NbTi superconductor filament. Under disturbances,
here a fault current, the resulting transient temperature distri-
butions in the conductor cross section are strongly non-
uniform.

Non-convergence of the numerical schememight tightly be
correlated with onset of the superconductor to normal conduc-
tor phase transition. While a rigorous proof of this hypothesis
is hardly possible, the results obtained for transient tempera-
ture distributions, stability functions and local values of criti-
cal current and electron pair density, under continuous increas-
ing, self-amplifying losses in these superconductors, have
been shown to allow encircling position and time of the antic-
ipated phase transition from results of a series of load steps;
the method, if performed in finite element calculations with
highest possible spatial and time resolution, would allow to
catch the superconductor on the last metres (milli- or micro-
Kelvin) from quenching.

But numerical simulations of current transport near phase
transition may become severely in error if length of load steps
is in conflict with time needed for completion of the phase
transition. This conflict apparently cannot be avoided if the
system is close to the phase transition. As a consequence, the
hypothesis set up in Sect. 1.2 is not fulfilled in general.

Density of electron pairs vs. phase transition from the
superconducting to normal conducting state allow identifi-
cation of the minimum density, nS0(T), of electron pairs
necessary for support of critical current density. It is not
only the traditional condition, T < TCrit, in standard stabil-
ity calculations that has to be fulfilled in order to protect
the superconductor against quench. Comparison of nS0(T)
with the temperature dependent, actual density, nS(T) >
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nS0(T), a condition that, strictly speaking, is to be fulfilled
at all T = T(x,y,t) during a disturbance, supports and com-
pletes decision-making.

Sequential approximations in the numerical calculations and
in a microscopic numerical stability model provide a tool for
calculation of order parameters, at least in standard finite tem-
perature phase transitions. There is, of course, still the
Ginzburg-Landau theory for superconductors as an alternative.

A differentiation between numerical simulation and physical
reality becomes more important the more the superconductor
approaches critical temperature, when length of load steps in
the simulations becomes smaller than relaxation times. Phase
transition at temperatures very close to critical temperature su-
perimposes on electricity transport and may have serious im-
pacts, if not completed, on magnitude of current and critical
current density and on simulation of current redistribution.

Therefore, stability analysis is not, or not only, a problem
of current transport and critical current density but in the cal-
culation of transient temperature fields also relies on under-
standing of phase transitions and their completion to new
dynamic equilibrium.

A final question: Are the calculation steps of the micro-
scopic stability model perhaps suitable also for calculation of
order parameters in other standard and possibly also in quan-
tum phase transitions? Additional investigations will be need-
ed to find an answer.

Experimental confirmation of the results obtained in the
reported procedures (numerical simulations, interpretation of
the phase diagram)might become enormously difficult, which
however is the problem of all stability models. But attempts
would be highly appreciated. Candidates are dynamic (AC)
measurements (performed like in AC magnetic susceptibility
experiments) around the phase transition. Experimental con-
firmation still is not avaiable. Yet the paper shall demonstrate
the enormous potential of numerical simulations also of tran-
sient superconductor states and of current transport near
phase transitions.

Appendix 1. The Numerical Iterative Master
Scheme.

The numerical simulations reported in part A (DOI https://doi.
org/10.1007/s10948-019-5103-7) and in the present paper
apply an iterative calculation scheme (in the following called
the master scheme) illustrated in Fig. 12. The master scheme
consists of

1. As an inner core, a finite element (FE) program for solu-
tion of Fourier’s differential equation. In case heat transfer
by radiation becomes involved (a problem that may be
important to thin films), a Monte Carlo (MC) simulation
will be included but is not part of the proper FE procedure.
It is needed to provide solutions of the equation of

radiative transfer that contribute to the initial conditions
of the FE calculations in each load step. FE and MC so-
lutions yield the transient temperature field in the super-
conductor; this constitutes step (1) of the simulations.

2. Peripheral numerical procedures (that incorporate this
core) serve for calculation of local values of critical pa-
rameters (current density, magnetic field and its penetra-
tion), of the Meissner effect, of local resistance, fault
states, electrical losses of the conductor and of distribution
of the transport current (steps 2 to 5).

Standard finite element codes apply multi-physics elements
by which coupled thermal/mechanical or thermal/electrical

Fig. 12 Flow chart of the numerical simulation procedure. Green
rectangles with sub-step numbers 1 to 5 are defined as: 1 If j = 1 (first
load step), data input of start values of temperature distribution, specific
resistances, critical parameters (J, B), transport current distribution I0; if
j > 1 (next load steps, after at least two intermediate, converged FE
calculations within each of the iterations a...k), application of
recalculated temperature, specific resistances, critical parameters,
current distribution Ij as the next data input; 2 results obtained after first
converged FE step for the same parameters in the same load step,
calculation of TCrit, BCrit, JCrit; 3 calculation of resistance network and
of transport current distribution Ij, all as data input into the next FE
calculation within the same load step j; 4 results like in 2; 5 results like
in 3, convergence yes or no? If no, return to 1 (iterations a...k, in the same
load step), if yes go to next load step j + 1, continue with 1. The number
NFE of FE calculations (red circles within individual sub-steps a...k) is not
fixed toNFE = 2 but can be extended arbitrarily (but like the number NIt ≤
10 of iterations a...k strongly increases computation time). Decisions on
NFE andNIt can bemade from observed convergence or non-convergence
in rectangles 4 and 5
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simulations can successively be realised. Such multi-physics
elements are not available for the coupled heat transfer/
superconductor stability problem. The “architecture” of the
master scheme thus has to compensate the missing multi-
physics elements.

At the end of step (5), the whole procedure, steps (1) to (5), is
repeated as an iteration process until convergence is obtained to
yield, in each of the load steps or sub-steps, a quasi-stationary
(quasi-equilibrium) local temperature and transport current dis-
tribution. This result decides whether the superconductor is still

in the zero-loss, current transport state or has reached a flux
flow or an Ohmic resistance state.

All these calculations are performed with a large number
NEl of finite elements (between 4000 and 30000). Internal
standard FE convergence criteria in step (1) contribute to ob-
tain stable quasi-equilibrium solutions of the Fourier problem,
while in the peripheral components of the master scheme, it
has to be controlled whether the output provides stable solu-
tions for critical current density, magnetic field, values of re-
sistance, fault states, electrical losses of the conductor (in total
for all electrical and magnetic parameters relevant for current
transport), for the Meissner states and for current distribution.

The flow chart in Fig. 12 explains operation of the master
scheme.

As result of step (1), Fig. 13 schematically explains the
saw-toothed behaviour of the solutions obtained for transient,
local conductor temperature. The dashed blue curve indicates
the variation of any of the input parameters (like thermal con-
ductivity, specific heat of the conductor or critical current den-
sity). As an initial thermal excitation, we apply absorption of a
radiative pulse, as a single point-like event, or a sudden in-
crease of transport current to a fault; in this case, the distur-
bance is not point-like but in principle may extend to all grains
or filaments or to the total cross section of a conductor cable.

Both events (an incident radiation pulse or a fault current)
would be recognised at single localised or extended positions
in the conductor cross section. Local temperature will increase
in an intervalΔt1 in Fig. 13, as calculated in the FE part (step
1). The temperature increase changes the value of all temper-
ature-dependent, local parameters like thermal diffusivity or
critical current density and thus also of local resistances since
transport current density might exceed critical current density
and generate flux flow resistance.

The resistances are used as input for calculation of transport
current distributions from the complete resistance network;
the network is composed of the resistance of all (4000 to
30000) elements. Since the number of non-zero resistances
might not be constant, and their values fluctuate (since they
depend on local temperature), the transport current distribu-
tion, too, cannot be uniform. Transport current distribution
may oscillate (percolate) through the cross section (compare
e.g. [5, 6]).

This procedure, performed in each load step j, is with the
present status of the master scheme repeated up to NIt= 10 times
(the number NIt denotes iterative sub-steps). Note that the divi-
sion of each load step j into NIt iterations is not identical to the
(large) numberMj of standard, equilibrium FE iterations in each
of the load steps and in each of theNIt sub-steps. The numberMj

is set by the user or by the program itself, as standard parameters
to obtain convergence in the FE solution procedure of Fourier’s
differential equation. The number NIt must be set by the user,
from observation of the convergence behaviour of the system to
the large circles in Fig. 13.

Fig. 13 Solution scheme used in the numerical simulations including a
finite element (FE) procedure that is integrated in a master scheme
(schematic, not to scale; compare text). The figure explains the tooth-
like behaviour of nodal or element temperature. For incident radiation
pulses, a Monte Carlo simulation is performed in the interval Δt1,
solution of Fourier’s differential equation proceeds in the interval Δt2;
we have Δt1 < <Δt1. For a single pulse, only one load step applies. For
AC disturbances like a fault current, the full simulated period consists of a
large number of full 2π-oscillation periods. Each period (duration 20 ms)
is, for example, divided into 40 single load steps (each withΔt1 +Δt2 = 5
10−4 s). Surface sources (at the target) and volume sources (both
conductive and radiative) in a filament or in another conductor
geometry are defined as start conditions, within each load step. The
dashed blue curve indicates any parameter like specific resistance or
heat, or thermal conductivity and also results of the calculations (like
JCrit or the stability function) that depends on temperature, T(t), and that
in turn drives the solutions for the temperature field T(x,y,t). Convergence
temperature is indicated by the large, solid red circles, at the end of each
of the load steps, j. The FE program, by appropriately set convergence
conditions, decides to which extent an initial differential integration time
step, δt ≥ 10−14 s within the Δt1,2 can be increased up to δt ≤ 10−5 s if
length of the load step is 5 10−4 s, as presently.When the system thermally
arrives at its convergence temperature, redistribution of transport current
and of all electrical variables is assumed to occur quasi-instantaneously,
with time constants small in relation to thermal relaxation time
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In case of absorption of a radiation pulse, first, a Monte
Carlo simulation is performed in the interval Δt1 in Fig. 13.
The Monte Carlo simulation serves for definition of an initial
distribution of radiative volume sources that is needed for the
finite element analysis of the thermal conduction plus radia-
tion problem. According to Carslaw and Jaeger [14], an initial
temperature distribution is equivalent to a distribution of in-
stantaneous, initial heat sources (like radiative). Conversely,
once radiative sources are determined, here from the Monte
Carlo calculations, this distribution in each load step is equiv-
alent to an initial temperature distribution within the sample.
The Monte Carlo simulation thus provides solutions of the
equation of radiative transfer (see part A of this paper) in that
it calculates all absorption/remission and scattering events. We
in this case have surface sources (at the target) and volume
sources (both radiative and conductive) within grains and
filaments.

In case of absorption of a radiation pulse, with application of
the Monte Carlo simulation and the solution of Fourier’s differ-
ential (FDE) equation, temperature in the intervalΔt1 in Fig. 14
(see below) increases quickly; compare the red curve. The solu-
tion of the FDE continues in the interval Δt2 to yield, after the
end of the disturbance, the exponential decay of the temperature
(indicated by green curves and dark-blue arrows). Since only one
pulse is considered in this example, and because the absorption/
remission and scattering events proceed very fast, we haveΔt1 <

<Δt2. In case there are repeated, oscillating pulses (Fig. 14), each
pulse constitutes its own load step, with againΔt1 < <Δt2.

But in case of AC disturbances, like a fault current, the full
simulated period may be extended to up to 10 full 2π-
oscillation periods. Each period (duration 20 ms) is divided
into 40 single load steps (Δt =Δt1 +Δt2 = 5 × 10−4 s) and
each load step again divided by up to 10 sub-steps with equi-
librium integrations.

Temperature evolution in both cases is calculated until it ar-
rives at its convergence temperature in the load step j (large red
circles in Fig. 13). In case the disturbance is given by a fault
current, the red and green curves and the convergence tempera-
tures (the large red circles) are repeated in each load step. This
produces the saw-toothed scheme of the temperature develop-
ment shown in this figure.

Transport current within the individual load steps of length
Δt = 5 10−4 s is constant but increases from load step j to the step
j + 1when simulating a fault. Asmentioned, the transport current
shall within a short period (here 2.5ms) increase to a fault current
with a large multiple of the nominal value (in the present calcu-
lations by a factor of 20).

By appropriate FE (i.e. internal) convergence conditions set
for temperature evolution and heat flow, the FE program in step
(1) decides to which extent an initial differential integration time
step δt ≥ 10−14 s within theΔt1,2 can be increased up to a max-
imum δt ≤ 10−5 s.

Fig. 14 Convergence of local element temperature (example) obtained in
the simulation procedure (master scheme), as explained in Appendix 1
and in Fig. 13 with integrated intermediate finite element calculation
steps. The figure shows element temperature excursion with time after
an isolated but periodic thermal excitation by heat pulses on a YBaCuO
123 filament of 200 μm radius (TCrit = 92 K, at zero magnetic field)
before application of standard Powder in Tube manufacturing steps
(material properties of the sample thus are close to those of the solid
superconductor). Results refer to positions X from the centre of the
circular filament. Time intervals Δt1 (temperature increase due to

absorption of the pulses) and Δt2 (decrease of temperature because of
conductive and radiative heat dissipation) are explained in the text.
Convergence behaviour of the temperature resembles the saw tooth-like
behaviour schematically indicated in Fig. 13. The large red circle
indicates convergence temperature after a number NIt (a...k) of iterations
(compare Fig. 12) within the load steps, j (the load steps in this diagram
are identified by the computation time). At time t > 0.01 s, the saw tooth-
like convergence behaviour can no longer be resolved, because of the
logarithmic plot. The figure is taken from [7]
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For an illustration of achieved convergence, compare solid
diamonds, in particular the purple, red and blue symbols, be-
tween 10−8 ≤ t ≤ 10−4 s in Fig. 14 calculated for single isolated
but periodically repeated disturbances (here, the repeated absorp-
tion of a single radiative pulse incident onto a small, point-like
target positioned on a YBaCuO 123 filament).

While integration time steps, δt, are small, the length of the
intervals Δt is large in comparison to characteristic (diffusion)
time, τC, of electrical or magnetic fields and of currents, and of
time τR needed to establish new quasi-equilibrium, electron
charge distributions.

The solution scheme of the (proper) finite element problem
(step 1) applied sparse matrix direct solvers which request large
memory space. Alternatives (JCG or ICG iterative solvers) were
tested but convergence is not guaranteed. In the present case, 4-
node, planemodel elements have been applied that allow rotation
against axis of symmetry.

Stable operation of the conductor in an electrical grid can be
disrupted by suddenly upcoming electrical resistances and corre-
sponding losses that immediately transform into thermal energy.
From the large spectrum of possible disturbances, only flux flow
and Ohmic resistance losses have been considered in this paper.

Appendix 2: The Conductor.

The Powder in Tube manufacturing process comprises standard
mechanical processes interleaved with repeated thermal treat-
ment of the superconductor material. Rolling or hammering
and other metallurgical methods align the grains horizontally
(Fig. 1a-c in part A).

The better the alignment (the crystallographic ab-plains paral-
lel to the horizontal grain axis), the better the current transport
properties (in particular the critical current density) of grains and,
consequently, of filaments, tapes and cables in these planes.
Uniform horizontal orientation of all grains strongly improves
also thermal transport in the same plane. But in vertical, c-axis
direction, current and thermal transport are strongly limited be-
cause of a large number of electrical resistances (quasi Josephson
junctions in the BSCCO 2223 crystals) and of interfacial electri-
cal (weak links) and thermal resistances (very thin, insulating
layers) between neighbouring grains and between grains and
the Ag-matrix.

Thickness of the tape shown in Fig. 1b in part A is about 250
to 300 μm, with about 3 to 4 mm width and with strongly
different geometrical dimensions of its embedded filaments and
Ag-matrix inter-layers. Also, the solid thermal conductivity of
the BSCCO 2223 material is strongly different from the conduc-
tivity of the Ag-matrix and is highly anisotropic. The same ap-
plies to electrical transport. Each filament (the black rectangles in
the cross section), by surface roughness and weak links (to some
extent closed, quasi surface inter-layers), is electrically and ther-
mally decoupled from its neighbours and from the Ag-matrix
material.

Onset of the Meissner effect within each filament may be
quite different from the same effect in neighbouring filaments
and even in neighbouring elements, as it depends on the local
magnetic field and thus on local temperature distribution. The
Meissner effects therefore have to be calculated in each of the up
to 30000 elements.

Appendix 3. A model for calculation
of the flux flow resistivity.

General aspects

The following is a summary that describes simulation of flux
flow resistance. The model is suitable for calculation of flux flow
losses by numerical procedures like the method of finite ele-
ments. This model was explained in detail in [12]. In this
Appendix, we restrict its description to the physics behind, and
the numerical modelling steps will not be repeated here. The
readers interested in the numerical steps are invited to consult
[12].

In Eq. (2), the resistivity ρNC usually is considered the room
temperature (constant) normal conduction value of the super-
conductor solid material. However, this simple equation (i) is
valid for only homogeneous superconductor solids, (ii) it is
not at all clear that ρNC should be kept independent of temper-
ature in calculations of flux flow resistivity. (iii) As was men-
tioned in [12], with corresponding citations to original litera-
ture, there may be deviations from Eq. (2) in type II supercon-
ductors, like YBaCuO or BSCCO, with large values of the
Ginzburg-Landau parameter. (iv) Equation (2) without modi-
fications does not appear to appropriately include any weak
links between solid constituents (grains, domains) in micro-
porous conductors as they might contain a variety of different
structure (1D to 3D geometry) and material composition that
each contribute to electrical resistance. (v) Direct experimental
determination of ρFF is difficult, not only because flux creep, a
competition to flux flow, operates in the background and can
have different origins; flux creep inevitably rises with increas-
ing temperature. (vi) While the idea to extract flux flow resis-
tivity from the slope of the I/Vor J/E-curves, pinning of vor-
tices in high temperature superconductors (HTSC, because of
their large anisotropy of current transport and of field penetra-
tion) neither can be limited to an atomistic structural view (like
dislocations) nor do pinned vortices in HTSC reflect the com-
paratively simple geometrical structures (flux lines, vortices)
found in low-temperature (metallic) superconductors.

Modelling Weak Links

Resistances, on the one hand, and on nanoscopic scale, exist as
electrically insulating, quasi-interlayers between neighbouring
crystallographic ab-planes, which means they can be interpreted
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as natural quasi-Josephson junctions. Or the resistances as “weak
links” appear, on microscopic dimensions, as 3D material “brid-
ges” between neighbouring grains and domains (in high-
temperature superconductors of good quality, as clusters of or-
thorhombic, parallel-oriented grains). There are also weak links
consisting of 2D interfacial or 1D point contacts only.

In general, two paths are open to current transport through a
particle bed like the agglomerate of grains shown in Fig. 1c of
part A: The filament is composed of superconductor particles and
of empty or filled voids. The voids might partly be filled with
Ag-matrix or with weak link material (like different phases of
superconductor material), or the voids result from pores that in
turn result from materials or manufacture imperfections and are
simply filled with air. Currents paths then are described as (a)
intra-granular currents that in the Meissner state, as zero loss
displacement and screening currents, yield zero internal magnetic
field in individual particles and (b) inter-grain currents flowing
through 3D, 2D and 1D contacts between neighbouring particles
and multiples thereof; these currents not necessarily would be
zero loss currents. Inter-grain paths open to current transport
are of practical importance.

Either path can be assigned a corresponding resistivity. A
total, effective resistivity, ρeff, then integrates all resistances

opposed to intra- and inter-grain currents within an appropri-
ately designed geometrical cell. We will use in Eq. (2), and
thus in the finite element simulations, the effective resistivity,
ρeff = ρeff(ρNC,T,B,g), as a function of temperature, magnetic
field, B, and of geometry, g, instead of the traditional assump-
tion ρNC constant. Equation (2) thus is written as ρFF = ρeffB/
BCrit2.

The direct dependence of ρFF on magnetic field, given by the
factor B/BCrit2, is taken into account solely in the finite element
procedure. The indirect temperature dependency of ρFF results
from ρeff(ρNC,T,B,g), which means from the temperature depen-
dencies of all material parameters and fields entering the flux
flow model, ρeff= ρeff[ρNC(T),T(B),B(T),g] (apparently, this de-
pendency is often neglected). An indirect temperature dependen-
cy of B and thus of ρeff results also from JCrit, since screening
current flow as critical currents and determine the magnitude of a
partly penetrating external field. In view of these physical inter-
dependencies, it is rather questionable whether the assumption of
a constant (independent of temperature) flux flow resistivity, ρFF,
can be justified.

More generally, even the structure of Eq. (2) seems to be
questionable. An improved theory, still to be developed, might
give up standard assumptions like a viscosity opposed to flow of

Fig. 15 Geometrical cell model for calculation of the resistivity, ρNC, and
its effective value, ρeff, under normal conduction, to be applied in Eq. (2)
for ρFF and thus in the finite element simulations. Above, left, the figure
shows three arbitrarily selected filaments 1, 2 and 3 (schematic, no to
scale; this is a detail of the tape cross section). Filaments (black, flat
ellipses copied from the original figure, the Long Island Cable
conductor) are approximated by black rectangles. Each filament (first
detail, right) consists of a number M × N domains (clusters of
orthorhombic plate-like, parallel oriented grains; schematic) each of
which incorporate a superconductor core (the proper grain, large black
rectangle) and a shell of weak link material (light-grey). Each of theM ×
N domains is divided into a number N =m × n grains (second detail,

bottom part of the figure, left; schematic). This hierarchy of large and
small superconductor cores in domains and grains and of correspondingly
thick and thin shells and sub-shells facilitates modelling resistances of
grains and weak link materials of different size, thickness, material
composition, physical properties and field dependence, respectively.
Total simulated conductor length, z, taken over large numbers of grains
and domains is arbitrary. Numerical values indicating size of cross section
of one filament in this figure are in micrometre. Resistances to current
flow in z-direction of all domains and grains, filaments and Ag-matrix
material are switched in parallel. The figure (with slight modifications) is
taken from [12]
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flux quanta in particle beds and therefore would suspend Eq. (2),
except for application to homogeneous solids.

A provisional and practical way is to presently calculate ρFF
by means of Eq. (2) in a network composed of superconductor
grains and domains and weak links in-between, with the “effec-
tive” value ρeff of ρNC.

It is assumed in the following that the domains in Fig. 15 are
built by staples of a large number of plate-like single grains that
during samplepreparation inpowder in tubeprocesses arepressed
to a roughly ordered particle “bed”, with the crystallographic ab-
planes parallel to current flow, in Fig. 15 parallel to the x,z-plane.

Acorrespondingmodel reportedby [15]describes total current
of a 2223 tape conductor through a network of parallel weak and
“strong” links, with strong field dependence of critical current
density, JCrit, in weak links but with dependence of JCrit on flux
pinning in strong links. Weak links in this model are regarded as
Josephson junctions, and strong links are represented by the solid
grain material. While separation with respect to field dependence
of JCritprincipally appears to be sound,webelieve the assumption
of parallel (which, strictly speakingmeans, contactless) paths, like
the imaginationofseparate“chains” (twoindividualcurrentpaths)
would be too much an approximation to be successful. On the
micro- and nanoscopic size level, grains and their weak links in
reality are disorderly arranged; geometrically ordered structures
becomeobviousnot before grains are compressed todomains and
to filaments, under thermomechanical treatment duringPowder in
Tube manufacture.

Fig. 16 Existence diagram of superconductivity (schematic, not to scale;
the lower critical magnetic field is not shown), with random variations
(small black dots) of TCrit(B), JCrit(B) and JCrit(T) against their
conventional values; the variations are different in each of the
superconductor elements. The thick black solid circles and the random
distributions TCrit(B), JCrit(B) and JCrit(T) (red curves, shown for only one
single element, jj, may significantly be shifted against the conventional
critical values (open blue circles and dashed blue curves). The figure is
taken from [9]
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Fig. 17 Flux flow resistivity, ρFF, calculated from the effective
ρeff(compare text) and with the field factor B/BCrit,2 in Eq. (2) to current
transport of a multi-filamentary BSCCO 2223 conductor, for local
(constant) magnetic flux density, B = 10 and 100 mT (solid dark-green
and light-green diamonds, respectively). Calculation of the resistivity
follows Fig. 15. Dimensions of domains, x1, y1 and z1, are 70, 6 and
70 μm and thicknesses dx1, dy1 and dz1 of weak link shells enclosing
domains are 100, 10 and 100 nm, respectively. Dimensions of grains x2,
y2 and z2 are 20, 1 and 20 μm and thicknesses dx2, dy2 and dz2 of weak
link shells surrounding grains are 1, 1 and 1 nm, respectively. Solid blue

circles indicate ρGrain as solely the grain core (bulk) material without
magnetic field and under zero current (note the temperature range is
reduced to 96 ≤ T ≤ 108 K). Open dark-green diamonds denote
conventional ρFF from [20] calculated with B = 10 mT. For comparison,
dark-grey diamonds indicate resistivity of the Ag-matrix material. The
upper critical magnetic field, at T = 4.2 K, is BCrit,20 = 200 T giving BCrit,2
(T) = BCrit,20 [1 − (T/TCrit)

2]. Critical temperature (vertical, dashed red
line, for B = 0 and very small current) is 108 K. The figure is taken
from [12]
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Flux Flow Resistance Obtained from a Cell
Model

In the cell model approximation (Fig. 15), we in the first step
extract the resistivity of the proper (ideal, zero porosity) solid
(bulk) material from measurements of the resistivity of a multi-
filamentary, polycrystalline Powder in Tube (PIT) conductor.
The PIT conductor for its modelling is not ideally suited at all,
but this lack, to obtain the zero porosity value, shall be compen-
sated by application of an appropriate model describing conduc-
tion in particle beds. The model must allow extraction of the
(zero porosity) resistivity of the solid material from the total
resistivity of a particle bed (what we obtain in this way is, to
some extent, a virtual value that of course depends on the as-
sumed model).

Applying instead the resistivity of bulk (solid, pure) material
in the simulations is not recommended for this step: The bulk
material does not undergo the special mechanical and thermal
treatments usually applied during manufacture of PIT-conduc-
tors. The resistivity of proper, pure bulk material samples (and
other properties) thus will be strongly different from the resis-
tivity of the solid part of samples when they finally leave the
PIT process (the process implies a variety of mechanical and
thermal manufacturing steps).

The uncertainty inherent in this way to extract the zero poros-
ity value of the solid part of the particle bed is considered as
smaller than the uncertainty that would result from application
of the solid resistivity of (pure) bulk material in the numerical
simulations. But to be successful, the model to extract the zero
porosity value must be well established, with experimental
evidence.

This extraction will be made from the resistivity of BSCCO
2223; resistivity of this material is accessible from the literature.
After the first step, and now again with the same cell model, the
extracted (virtual, zero porosity resistivity) is converted to the
resistivity of weak link material, resident on the periphery of
grains and domains.

A “historical” cell model, the Russell cell model [16], shall
be applied for these steps. It is easy to handle since it just
contains porosity and the resistivity of both (solid and porous)
phases, either for electrical or thermal transport. It is flexible
(the role of particles and voids without much effort can be
interchanged); the results roughly are independent of size of
the constituents, and though the model in its original scope
applies to a regular distribution of cubic particles, it is according
to experience applicable to particulates of also other shape and
of modestly irregular spatial distribution. In the present case, for
application of Russell’s cell model, the “particulates” are grains
and domains distributed in a filament, with tiny voids of
nanoscopic dimensions in-between that house weak links.
Provided their geometry and material composition can ade-
quately be indicated, there is no reason to believe the model
could fail severely.

Small porosity in this picture indicates that weak links
occupy only a small volume fraction in relation to the
volume of the superconductor solid phases (grains,
domains).

The Russell cell model does not assume particles or voids
arranged in coherently connected, non-interacting chains.
Instead, particles and voids are interpreted as distributed ob-
stacles to current flow. The cell model treats all resistances that
contribute to the (spatial) average ρeff as if they would be
randomly distributed.

The conductor cross section (Fig. 2a,b of part A) thus shall
be mapped upon a geometrical cell model (Fig. 15, schematic)
that allows application of the Russell cell model. The geomet-
rical structure assigns each of its particular solid cross sections
(grains, domains, filaments and voids partly filled with weak
link material) a specific resistivity. These have to be calculat-
ed, from repeated application of the Russell cell model, in a
series of successive approximations (for this purpose, all these
have to be assigned a specific porosity).

Repeated Application of Russell’s Cell Model

Division of the 91 filaments in the multi-filamentary conductor
(black rectangles in Fig.15, schematic) into M × N domains,
and each domain into m × n grains, results in a three-level
hierarchy (“large” domains, “small” grains, “tiny” weak links).
Each domain is composed of a solid core (the proper supercon-
ductor, black rectangles) and of “shells” (light-grey sections)
that indicate weak link materials arranged around the black
cores. Each grain incorporates its own superconductor core
(again black rectangles) and corresponding sub-shells (thin
white lines, now the weak links between the grains).
Electrical and thermal transport through the Ag-matrix material,
of well-known resistivity, is accounted for solely in the finite
element scheme.

Micro- or nanoscopicmetallurgical sections or SEMpictures
are not available, the resolution of which would allow more
than just getting very rough impressions of spatial structure
and porosity of 3D weak link materials. Also, the tiny dimen-
sions of weak links cannot be concluded from experiments.
Weak links in additionmight even consist of only 2D interfacial
or 1D point-like contacts.

In a qualitative view, porosity ΠShell of weak link materials
between domains probably is much larger than the correspond-
ing ΠShell of weak links between grains, and porosity will in-
crease with radial distance from position of inner-lying grains.
This is because manufacture of PIT superconductors is subject
to robust thermomechanical treatments; the conductors experi-
ence large frictional (from thermal expansion, winding) and
compressive forces, the latter due to mechanical shock treat-
ment (forging, down-hammering, rolling). Since the supercon-
ductor material is very hard, the very first “receiver” of com-
pressive and frictional load is the domain periphery, so that
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particle surfaces at these positions, in very thin surface layers,
may be ground to almost a powder, in contrast to grains located
(and thus mechanically protected) in the deep interior. Weak
links between grains thus would contribute stronger to mechan-
ical stability of the bed, in parallel to the matrix jacket, than
weak links between domains. Assigning largeΠShell (close to 1)
to domain weak links simultaneously assumes that the corre-
sponding weak links are poor superconductor phases distribut-
ed in the proper BSCCO 2223 material.

Values of the porosity ΠShell of weak links between grains
again can be estimated only but this material would be rich in
superconductor phase. Whether in a melt the periphery of
grains and domains is sharply defined depends on surface
tension and decay rate of temperature, but we can expect that
concentration of the proper superconductor material does not
sharply break down to almost zero at the periphery; a finite
concentration gradient is more probable.

But other BSCCO superconductor phases and probably
existing contaminations may contribute to the resistivity of
weak links, in different ways, however. This has been
accounted for in this model by separation of weak link resistiv-
ity according to magnetic field dependence: The resistivity is
split into the proper field-dependent BSCCO phase (which
means, below its T < TCrit = 108 K) and in the other BSCCO
phases that do not (or do no longer, at elevated temperature)
depend on magnetic field, and thus cannot contribute to ρFF.
Normal conducting “foreign” contributions (contaminations) to
the resistivity of weak links have to be eliminated from ρFF, too.

Thermal Analogue to Weak Links

After (a partly reverse) application of Russell’s cell model to
estimate material properties of grain, domain and shell cross
sections, the geometrical aspect of calculating the effective
resistivity of the cell remains to be solved: Shell cross sections
have to be reduced to point-like contacts, in order to describe
weak links.

No experimental values are available on size or on num-
ber of electrical contacts and on their distribution on super-
conductor particle surfaces and interfaces. Modelling of
electrical resistance in normal particle beds originally goes
back to Rayleigh and Maxwell and has been revisited by
Holm [17]. Kaganer [18] and several authors cited in this
reference have converted the results from electrical trans-
port to the analogous thermal transport problem. In turn,
refinements achieved in heat flow-related studies can be
used for solution of the present electrical transport problem
in a two-phase medium (grains or domains and weak
links).

To solve this problem, a resistance cell unit between two
spheres, with partial thermal or electrical resistances, is de-
scribed in [12] (and goes back to [18]) again with citations
to original literature including constriction zones, Hertz’

contact theory and radii, but will not be repeated here.
Please consult this reference and the original literature.
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