
Journal of Superconductivity and Novel Magnetism (2019) 32:1633–1638
https://doi.org/10.1007/s10948-018-4890-6

ORIGINAL PAPER

Two-Electron and Two-Hole Cooper Pairs in Superconductivity
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Abstract
We revisit the generalized Bose-Einstein condensation (GBEC) theory which addresses a ternary boson-fermion gas
including two-hole Cooper pairs (2hCPs) as an essential component in superconductivity. Here, we extend the BCS-Bose
crossover theory, itself subsumed in BEC, by explicitly including 2hCPs. Shown here are phase diagrams of Tc/TF, where
Tc is the critical temperature and TF the Fermi temperature and �(0)/EF vs n/nf, where �(0) is the energy gap at zero
temperature and EF is the Fermi energy of an ideal Fermi gas, with n the total electron number density and nf is that
of unbound electrons at zero temperature. These phase diagrams are obtained for two pure phases, one with two-electron
Cooper pairs (2eCPs) and the other with 2hCPs, plus a mixed phase with arbitrary proportions of 2e/2hCPs. We find that the
extended BCS-Bose crossover predicts Tc/TF as well �(0)/EF values for the elemental superconductors (SCs) Al, In, Sn,
Pb, Hg, and Nb which compare reasonably well with experimental data.
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1 Introduction

The BCS-BEC crossover theory (where BCS stands for
Bardeen-Cooper-Schrieffer and BEC for Bose-Einstein
condensation) was likely introduced by Schrieffer [1] and
later discussed by Keldysh et al. [2], Popov [3], Friedel et
al. [4], Eagles [5] and the absolute temperature T = 0
equations formulated by Leggett [6] which were more
recently also solved numerically by Carter et al. [7].

All authors now dealt with two equations to be solved
simultaneously, one for the energy gap � and another for
the electron chemical potential μ. This picture leads to a
weak-coupling regime where pairs greatly overlapped while
μ was originally assumed in BCS theory [8] be fixed as μ =
EF, the Fermi energy of an ideal Fermi gas. But in strong-
coupling, pairs must really be small and non overlapping.
The BCS-BEC crossover was subsequently discussed by
Nozières et al. [9] (1985) and many others. (This crossover
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can in fact more accurately be named “BCS-Bose” instead
of “BCS-BEC” since a BEC cannot occur in either 2D or in
1D [10] whereas bosons can form in both instances.)

Boson-fermion (BF) gas models of superconductors
(SCs) as a BEC go back to the mid-1950s [11–14]—pre-
dating even the BCS-Bogoliubov theory [8, 15, 16]. All BF
models [11–14, 17–26] so far had been binary gases and
posit the existence of actual bosonic CPs. With a single
exception [27] all BF models neglect the explicit effect of
hole CPs (2hCPs) included on an equal footing with electron
CPs (2eCPs). This constituted a complete ternary BF model
[27–30] at the heart of a GBEC theory.

The preparation of this paper as well as writing of
the main framework was co-authored with Vladimir V.
Tolmachev, and, in sorrow, we dedicate this paper in his
memory.

Manuel de Llano
Mexico City, April 2018.

2 GBEC Theory Formalism

The GBEC theory starts from an ideal BF ternary gas
consisting of unbound electrons (fermions) with 2eCPs
and 2hCPs as bosons, to which are added very particular
BF vertex interactions. It is described [27–30] by the
Hamiltonian H = H0 + Hint where H0 is an ideal ternary
gas and Hint contains the BF vertex interactions [27, 28].
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Defining a simpler reduced Hint, called Hred, by
neglecting in Hint nonzero K-terms (center-of-momentum-
of-mass (CMM) K �= 0) in Hint but not also in H0

as done in BCS theory, renders an exactly diagonalizable
expression in Hint. Then, ignoring these bosons and using
the Bogoliubov recipe of replacing b0 and c0 the 2eCP and
2hCP zero-K creation/annhilation operators respectively by
c-numbers

√
N0 and

√
M0 in H0, where N0 and M0 are

the numbers of K = 0 bosons, one can diagonalize
the reduced dynamical operator Ĥred − μN̂ [29] via a
Bogoliubov-Valatin transformation [31, 32]. Here, N̂ is the
total-electron-number operator. Thus, the thermodynamic
(or Landau) potential in the grand canonical ensemble
becomes

�(T , L3, μ, N0, M0)

= −kBT ln
[
Tr(exp{−β(Ĥred − μN̂)})

]
(1)

where Tr stands for the “trace” of the diagonalized
dynamical operator, thus � can now be evaluated explicitly.
The neglected K �= 0 bosons can later be brought back into
the picture [33–36]). If β ≡ 1/kBT with T the absolute
temperature and kB the Boltzmann constant, the Helmholtz
free energy below Tc then becomes F(T ,L3, μ, N0, M0) ≡
� + μN , where L3 is the gas volume and N0 and M0 are
the number of electron/hole composite bosons with zero-
CMM, respectively. Taking the negative partial derivative of
(1) with respect to μ, and also minimizing F wrt N0, M0

requires imposing

−∂�

∂μ
= N

∂F

∂N0
= 0

∂F

∂M0
= 0. (2)

The first relation is familiar from statistical mechanics and
ensures the net charge conservation of the GBEC theory,
i.e., gauge invariance [37] which contrasts with the BCS
theory which lacks it. The last two requirements of (2) are
needed for a stable thermodynamic state.

As stated, the GBEC theory via (2) leads to three cou-
pled transcendental equations. These determine a thermo-
dynamic equilibrium phase diagram with three condensed
phases: two pure BEC phases, one for 2eCPs and the other
for 2hCPs, and a mixed phase of arbitrary proportions of
these two components. Each phase is defined by f±(ε)

the BF vertex interaction functions as originally defined in
Refs. [27, 28]. For 2eCPs f+(ε) = Ef < ε < Ef + δε

where δε is the CP binding energy [27] and Ef a “pseudo
Fermi energy” to be defined below. For 2hCPs f−(ε) =
Ef − δε < ε < Ef. Otherwise f±(ε) = 0. For the mixed
phase f (ε) = Ef − δε < ε < Ef + δε. The three phases
can be determined at worst numerically by solving the three
coupled transcendental equations which formally depend on
three unknown functions of T : the electron chemical poten-
tial μ(T ) along with the 2eCP and 2hCP BE condensate

densities n0(T ) ≡ N0/L
3 and m0(T ) ≡ M0/L

3. This gives
two gap-like equations [27]

2
√

n0[E+(0)−2μ]=
∞∫

0

dεN(ε)
�(ε)f+(ε)

E(ε)
tanh

[
1
2βE(ε)

]

(3)

and

2
√

m0[2μ−E−(0)]=
∞∫

0

dεN(ε)
�(ε)f−(ε)

E(ε)
tanh

[
1
2βE(ε)

]

(4)

where N(ε) is the electronic density of states, E±(0) are
phenomenological energies [38] of bosonic CPs with CMM
K = 0, E(ε) ≡ √

(ε − μ)2 + �2(ε) is the familiar
gapped Bogoliubov fermion dispersion relation and �(ε) ≡
f+

√
n0(T )+f−

√
m0(T ). The first relation of (2) yields the

total-electron-number density as

N/L3 ≡ n = 2nB(T ) − 2mB(T ) + nf(T ) (5)

where nf(T ) is that of the unbound electrons while nB(T )

and mB(T ) are respectively those of 2e and 2hCPs in all
bosonic states, ground together with excited. These turn out
to be

nB(T ) ≡ n0 + nB+(T ) with (6)

nB+(T ) =
∞∫

0+
dεM(ε)

[
exp β(2Ef + δε − 2μ + ε) − 1

]−1

and

mB(T ) ≡ m0 + mB+(T ) with (7)

mB+(T ) =
∞∫

0+
dεM(ε)

[
exp β(2μ + ε − 2Ef + δε) − 1

]−1

where M(ε) ≡ (2m3/2/π2
�

3)
√

ε is the bosonic density of
states. Finally, the number density of unbound electrons at
any T turns out to be

nf(T ) ≡
∞∫

0

dεN(ε)

[
1 − ε − μ

E(ε)
tanh{ 1

2βE(ε)}
]

−−−→
T →0

(2mEf)
3/2 /3π2

�
3 ≡ nf (8)

with the last result first reported by Chávez et al. [39]. Here,
Ef coincides precisely with EF only when n0(T ) = m0(T )

and nB+(T ) = mB+(T ), i.e., ideal perfect 50-50 symmetry.
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3 Statistical Superconductivity Theories
Subsumed in GBEC

The BCS and ordinary BEC theories are subsumed [27] as
special cases in the GBEC theory. Assuming perfect 50-50
symmetry between 2eCPs and 2hCPs. Equations (3) and
(4) can be combined into a single equation. Then, setting
μ � EF as assumed by BCS, one readily arrives at the
BCS gap equation if one identifies δε with the Debye energy
of the ionic lattice �ωD and f 2/2δε with V, the BCS net
attraction constant. Thus

1 = f 2N(μ)

2δε

δε∫

0

dε
1√

ξ2 + �(T )2
tanh

[
1
2β

√
ξ2 + �(T )2

]

(9)

where ξ ≡ ε − μ. In addition to this one also recovers the
T = 0 condensation energy exactly [40] and most recently
as well [41] for all 0 ≤ T ≤ Tc.

For the noninteracting BF system, i.e., when f±(ε) = 0
in (3) and (4) implying that �(ε) ≡ 0, one must put μ = Ef

so that E(ε) = |ε − Ef|. The total electron-number density
for this noninteracting BF system is then

n = 2n0 +
∞∫

0+
dεM(ε) (exp β[2Ef + δε − 2μ + ε] − 1)−1

+
∞∫

0

dεN(ε)

[
1 − ε − μ

E(ε)
(1 − 2 exp[βE(ε)] + 1)−1

]

(10)

where one allows for the fully asymmetric case by ignoring
the presence of 2hCPs altogether by setting mB(T , n) =
0 for all T . Determining n0(T , n) associated with the
remaining 2eCP condensate fraction for 0 ≤ T ≤ Tc,
the critical temperature Tc can then be defined as the
temperature below which n0(n, T ) just ceases to vanish as
T decreases. The solution is obtained [27] from (10) since
n0(n, Tc) = 0 and gives

Tc � 3.31
�

2

MkB

(
NB/L3

)2/3
(11)

which is just the BEC formula for an ideal Bose gas with
masses M ≡ 2m and boson particle density NB/L3 ≡
1
2 (n − nf) where again nf ≡ nf(T = 0). From all this, one
arrives at the universal BEC ratio

Tc/TF = (1/2) [2/3�(3/2)ζ(3/2)]2/3 � 0.218.

Figure 1 is a flowchart illustrating the aforementioned five
statistical theories subsumed in the GBEC formalism.

Fig. 1 Five statistical theories subsumed in the GBEC formalism. The
BCS-Bose crossover extended with 2hCPs along with 2eCPs, with
three equations, one gap-like for 2eCPs and another for 2hCPs, and
the number density. Taking the asymmetric case (right branch) with
2eCPs only, one recovers the Friedberg and T.D. Lee model as well
as the BEC theory. On the other hand (left branch), assuming 50-50
symmetry between 2eCPs and 2hCPs leads to the BCS-Bose crossover.
Putting μ = EF and f = √

2�ωDV , where V is associated with the
BCS electron-phonon interaction, one recovers the BCS theory

4 Extended BCS-Bose Crossover

The extended BCS-Bose crossover theory [42, 43] emerges
from including bosonic 2hCPs explicitly in addition to
the 2eCPs. Hence, one deals with the number densities
of condensed 2hCPs m0(T ), the excited 2hCPs, mB+(T ),
alongside the condensed 2eCPs n0(T ) and the excited
2eCPs nB+(T ). In perfect symmetry between 2eCPs and
2hCPs, i.e., with half-and-half proportions, one recovers the
original (unextended) BCS-Bose crossover [1]. Specifically,
the equations for the extended crossover for the 50-50 case
at T = Tc implies that �(Tc) = 0 so that n0(Tc) =
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m0(Tc) = 0 which thus leaves

[E+(0) − E−(0)] = f 2

Ef+�ωD∫

Ef−�ωD

dεN(ε)
1

|ε − μ| tanh

×
(

1
2βc|ε − μ|

)
(12)

with βc ≡ 1/kBTc, so the number equation at T = Tc is

n = nf(Tc)

=
∞∫

0

dεN(ε)

[
1 − ε − μ

|ε − μ|

×
(

1 − 2 (exp{βc|ε − μ|} + 1)−1
) ]

. (13)

If μ = EF, one recovers the original BCS weak-coupling
gap equation. Otherwise, one solves the two equations (12)
and (13) when μ �= EF also.

Figure 2 shows �(0)/EF vs n/nf. The blue (online)
short-dashed curve as solution of the 50-50 symmetry case,
namely (12) and (13) for the energy gap at T = 0 made
dimensionless with Fermi energy vs dimensionless number
density n/nf. Also shown is the 100-0 (2eCPs only) case
(thick curve) as well the 0-100 (2hCPs only) case (thin
curve) for both energy gap and critical temperature. Note
that one has three condensed phases: i) for 50-50 below
the blue (online) short-dashed curve; ii) for 100-0 light-gray
shaded area; and iii) for 0-100 dark-gray shaded area, and
of course a normal phase (darkest gray shaded area). Blue
(online) rectangular inset shows the same phase boundaries

Fig. 2 Gap �(0)/EF vs n/nf for 50-50 case blue (online) short-
dashed curve, 100-0 thick curve, and 0-100 thin curve. Gray shaded
areas mark different phases. Remarkably, it shows a mirror-symmetry
between 100-0 and 0-100 cases around n/nf = 1 and, of course,
for the 50-50 case. Inset shows more detail around n/nf = 1, red
(online) dot marks where 100-0 and 0-100 cases intersect at n/nf = 1
when �(0)/EF = 9.11 × 10−5. Here, �ωD/EF = 10−3 and Fermi
temperature of TF = 103 K were used

but in greater detail. Inset also shows a red (online) circle,
while �(0)/EF shows that 100-0 and 0-100 intersect at
the same value for n/nf = 1 with �(0)/EF � 9.11 ×
10−6 while the 50-50 case has �(0)/EF � 1.34 × 10−5,
suggesting that this latter case gives a larger energy gap with
respect to 2eCPs or 2hCPs. The 50-50 energy gap values
coincide precisely with experimental data as will be shown
below.

Figure 3 shows the phase diagram of Tc/TF vs n/nf

for the same cases: i) 50-50 case; ii) 100-0 (2eCPs only);
and iii) 0-100 (2hCPs only). Also shown is a red (online)
circle where the three phases cross at the same triple-point
value labeled Tt = Tc/TF � 7.64 × 10−6 at n/nf =
1. The BCS critical temperature comes from their weak-
coupling expression Tc/TF � 1.134�ωD exp[−1/λBCS],
where λBCS is the BCS electron-phonon dimensionless
coupling constant, and lies only at n/nf = 1. Again, there
are three phases for Tc that depend on the value taken by
n/nf. Below those curves, one finds superconductivity by
slightly changing n/nf from unity; we now analyze this
latter result.

Table 1 shows for elemental SCs values for �(0)/EF,
Tc/TF and the gap-to-Tc ratio 2�(0)/kBTc, all for the 50-
50 and 100-0 cases, and compared with experimental data
when n/nf = 1. Values for the 50-50 case were obtained by
solving (12) and (13) while for 100-0 by solving (3) and (5).
Note that the 50-50 case compares quite well with the data
but not for the 100-0 case where 2hCPs are neglected, i.e.,
m0(T ) = 0. This implies that by merely excluding 2hCPs
altogether, the energy gap and the gap-to-Tc ratio which

Fig. 3 Tc/TF vs n/nf for 50-50 case blue (online) short-dashed curve,
100-0 thick curve, and 0-100 thin curve. Inset shows more detail
around n/nf = 1, red (online) circle marks where 50-50, 100-0, and 0-
100 curves intersect at n/nf = 1 with Tt = Tc/TF = 7.64×10−6. Gray
shaded areas mark different phases. Notably, it shows a symmetry
between 100-0 and 0-100 cases around n/nf = 1 and, of course, for
the 50-50 case. Here, �ωD/EF = 10−3 and Fermi temperature of
TF = 103 K were used
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Table 1 Tc/TF, �(0)/EF, and 2�(0)/kBTc for 50-50 ideal perfect symmetry and 100-0 proportions (2eCPs only) for the aforementioned
superconductors

�(0)/EF (×10−5) Tc/TF(×10−5) 2�(0)/kBTc

Exptl 50-50 100-0 Exptl 50-50 100-0 Exp 50-50 100-0

Al 1.36 1.49 1.03 0.86 0.84 0.84 3.18 3.53 2.44

In 6.10 6.05 3.78 3.41 3.43 3.43 3.57 3.53 2.21

Sn 5.41 5.34 3.47 3.15 3.03 3.03 3.43 3.53 2.29

Pb 14.1 11.5 6.64 6.55 6.51 6.51 4.32 3.54 2.04

Hg 10.8 8.80 5.28 5.00 4.99 4.98 4.34 3.53 2.12

Nb 28.6 25.3 15.8 15.0 14.9 14.9 3.83 3.40 2.12

The 50-50 values were obtained solving (12) and (13), and the 100-0 by solving (3) and (5) with n/nf = 1. Note that 50-50 proportions fit quite
well with experiment rather than for 100-0 proportions. Experimental data: critical and Fermi temperatures was taken from [44–49]; energy gap
from [50–52]

in turn are related with coupling, decrease substantially
with respect to actual data. Thus, 2hCPs are unequivocally
indispensable to describe superconductivity.

5 Conclusions

The GBEC formalism subsumes the BCS-Bose crossover
extended with explicit inclusion of 2hCPs. Starting from
an ideal ternary BF gas with particular BF vertex
interactions, the extended crossover is found to be defined
by two thermodynamic-equilibrium requirements along
with a well-known result from statistical mechanics that
guarantees charge conservation. Upon just slightly varying
n/nf around 1, and without abandoning electron-phonon
dynamics, it leads to critical temperatures Tc enhanced by
several orders compared with BCS theory. Notably, the lack
of 2hCPs, i.e., with m0(T ) = 0 or 100-0 proportions,
meaning only 2eCPs, results in an energy gap and gap-to-
Tc ratio significantly reduced with respect to the 50-50 case,
suggesting that 2hCPs are indispensable for an acceptable
description of superconductivity.
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42. Chávez, I., Garcı́a, L.A., Grether, M., de Llano, M.: Int. J. Mod.
Phys. B 31, 1745004 (2017)
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