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Abstract
Radiative transfer calculations are presented for multi-filamentary BSCCO 2212 and 2223 and for thin film-coated YBaCuO
123 superconductors. A strictly radiative view allows conductor morphology of these superconductors to be interpreted as
particulate or quasi-particulate objects. Problems then arising from non-regular particle shape, missing refractive indices,
dependent scattering and superconductor material (diamagnetic) properties are solved in a multi-step, approximation
approach. Both types of conductors are shown to be non-transparent to mid-IR radiation. Non-transparency may become
critical for superconductor stability. The obtained extinction cross sections converge near the phase transition. A substantial
difference of extinction properties between the superconducting and normal conducting state thus cannot be observed. As
a first corollary from non-transparency, application of the additive approximation for the total thermal conductivity used
in previous numerical calculations of the BSCCO and YBaCuO superconductors is confirmed. Second, within transit time
intervals, the length of which depends on optical thickness, no uniform equilibrium conditions of electron pair density
within the conductor cross section and near critical temperature are observed. Phase transition does not proceed uniformly,
neither spatial nor temporal, and the order (succession on time scales) of local events (temperature variations, quench),
in extreme cases, is completely dissolved. As another corollary, non-transparency even makes the existence of uniquely
defined, physical time scales doubtful in a superconductor. The obtained results are expected to improve existing stability
models and will be of practical value for future materials development.

Keywords Short time physics · Radiative transfer · Scattering theory · Non-transparency · Numerical method ·
Additive approximation · YBaCuO · BSCCO · Superconductor stability · Transient conductor temperature ·
Reverse correlation · Equilibrium processes · Physical time · EPR paradox

1 Survey and Organisation of the Paper

Radiative transfer calculations are presented in this paper
for multi-filamentary BSCCO 2212 and 2223 and for
thin film-coated YBaCuO 123 superconductors. Instead of
investigating radiative transfer in superconductor solids,
the rationale for this selection of filaments and thin films
for a thorough radiative transfer study is their present
technological relevance for current transport.

Non-transparency is an extreme aspect of radiative
transfer theory. In a simplified picture, any object (solid,
liquid or gaseous) is non-transparent if its radiation
extinction coefficient is very large. Penetration depth of
incident radiation then is small against the size of the
object. Non-transparent media are distinguished from their
transparent counterparts by a critical optical thickness. The
critical optical thickness will be defined later.

We will investigate radiative transfer and non-
transparency in the BSCCO and YBaCuO superconductors
within the wavelength interval between 27 and 32 μm. This
interval is located within the mid-infrared (mid-IR) spec-
tral range. The interval is related to conductor temperature
roughly between 108 and 92 K, the critical temperature of
BSCCO 2223 and YBaCuO 123, respectively.

When preparing radiative transfer calculations, a decision
has to be made whether the objects to be modelled are of
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continuous or discrete structure with respect to propagation
of radiation. A radiation continuum model would assume
that the wavelength of impinging radiation is large against
the size of the constituents of the object.

Multi-filamentary (first-generation (1G)) BSCCO super-
conductors can be considered as particulate or granular
since their filaments consist of a large number of flat,
plate-like superconductor grains. The grains are arranged
in parallel along the length of the conductor, and all are
embedded in a metallic matrix.

Thin-film YBaCuO superconductors can be interpreted
as (quasi-) particulate materials if they include, as seen
from the radiative transfer aspect, deviations from ideal,
homogeneous film properties, like sudden variations of the
refractive index in an otherwise homogeneous medium, or
if there are deviations from perfect film morphology, like
grains and domains, all with reference to the wavelength of
incident radiation (this is, to some extent, an analogue to the
disturbance of radiation propagation in liquids by bubbles).

In both cases, the mid-IR wavelength is not always very
large against particle size (filaments or thin-film quasi-parti-
culates, respectively). We will later describe these con-
stituents as being composed of very small subparticles of
cylindrical shape. This idea allows to model radiation/solid
particle interactions by rigorous scattering theory and heat
transfer by the principles of radiative transfer. Propagation
of radiation then is described in a radiative continuum.

Besides established superconductor properties (zero loss
current transport, existence of persistent currents and expulsion
of a magnetic field), it is an open question whether there is
also a change of the radiative transfer mechanism at the
phase transition. The literature generally believes high-tempe-
rature superconductors are opaque materials (in this paper,
non-transparency and opacity will be used as synonyms). This
is correct for bulk superconductors, but there is no proof
that filaments and thin films, too, would be non-transparent.

What is the physical background of non-transparency
of superconductors? A change of their radiative properties
against normal conducting state at the phase transition could
be expected from the already existence of an energy gap
in the electronic energy states. But in YBaCuO 123, the
energy of thermally emitted mid-IR photons (within the
range 90 ≤ T < 92 K of conductor temperature) is below
the gap energy (compare Fig. 26 in the Appendix). Incident
photons from this temperature range cannot contribute to
break-up of electron pairs and, as a consequence, cannot be
held responsible for the possibly existing non-transparency,
except for wave numbers, ω > 317 (1/cm).

But there are other potential candidates for radiation
extinction in YBaCuO 123: resonant processes (electron
inter-band transitions), vibrational excitations, fluctuations

near critical temperature (instability of charge density
waves), normal modes (coherent oscillations at a char-
acteristic frequency) or contribution by phonons. Besides
absorption, scattering can be shown to strongly contribute to
non-transparency. Calculation of refractive indices decides
whether these processes are within reach of the mid-IR radi-
ation that is emitted by the superconductor materials in the
above-mentioned temperature interval.

Measurements of optical properties of thin-film conduc-
tors (permittivity, optical resistance, index of refraction)
obtained from reflectance and transmittance measurements
neither analyse radiative transfer in dependence of local
conductor temperature nor do they yield information on
multiple and dependent scattering and on interferences in
particulate superconductors. This is the task of radiative
transfer and of application of rigorous scattering theory to
radiation/particle interactions.

Radiative transfer, in general, means propagation of radi-
ation over short distances. In exceptional cases, radiative
transfer proceeds like a conductive, diffusion process. On
the other hand, if propagation of radiation occurs over
extended distances (direct interaction of radiation with
neighbouring particles, with sample boundaries or sub-
strates), we speak of radiation exchange. Interaction with
substrates by radiation exchange is frequently observed in
optical experiments with thin films.

This paper investigates how radiative transfer explains
extinction properties (absorption and scattering) of partic-
ulate superconductors and to which extent it may have
impacts on superconductor stability.

A superconductor is stable if it does not quench, which
means if the correlation of electrons to electron pairs
is strong enough to completely compensate an increase
of internal energy that, for example, may result from
thermalisation of a disturbance.

Disturbances comprise conductor movement, with trans-
formation of mechanical into thermal energy, or absorption
of particle radiation, fault currents or momentary cooling
failure. Disturbances frequently are transient, but there are
also permanent disturbances like hysteretic or flux flow
losses. Even a small decrease of local critical current den-
sity, from a corresponding local increase of superconductor
temperature, can initiate losses and lead to further tempera-
ture increase and, as a consequence, to a quench. This may
happen also under constant transport current.

Quench proceeds on very small time scales (milliseconds or
less) and frequently leads to local damage of the conduc-
tor. But quench belongs to life of a superconducting magnet,
which means measures have to be taken to avoid quench.
Quench can be avoided by an appropriate design of supercon-
ductors (filaments, thin films) using stability models.
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Stability models yield predictions on permissible con-
ductor geometry like maximum radius of filaments or aspect
ratio of thin films, or maximum, zero loss transport current.
For a description of traditional, analytic stability models, see
the standard literature like Wilson [1] or Dresner [2].

As an advance over-analytical stability models, numeri-
cal methods have recently been introduced by Flik and Tien
[3] and by the present author [4–7]. Instead of assuming
uniform temperature distribution, these methods to predict
stability rely on calculation of temperature fields in the
superconductor.

This step is important since superconductor critical
current density and critical magnetic field strongly depend
on local conductor temperature. Under a transport current,
it is, in particular, the transient, not only the stationary
superconductor temperature field that is needed for stability
analysis.

Near the phase transition, already tiny temperature fluc-
tuations can drive the superconductor into normal conduct-
ing state. In such situations, inclusion of radiative trans-
fer into heat transfer calculations becomes indispensable
although the contribution by radiation to total heat transfer
could be small in relation to other heat transfer components.

A superconductor might be non-transparent to radia-
tion and stable against quench, while the opposite situation
might be possible as well: if the sample is transparent,
stability might be missing and the superconductor also
under a weak disturbance would undergo a phase transition.
It is not clear that a correlation between non-transparency and
superconductor stability might exist. This question, like a vari-
ety of related problems, will be investigated in this paper.

The paper is organised as follows: in Section 2, we
explain in detail the properties of non-transparent objects.
Section 3 describes the general aspects of radiative transfer
and its application to superconductors. Section 4 presents
the calculations of extinction cross sections by means of
three independent models including results from rigorous
scattering theory, and Section 5 adds a risk analysis. We
investigate whether there is a change of radiative transfer
mechanism at the phase transition that could be indicated by
a sudden jump of the extinction cross sections.

Finally, Section 6 discusses an interesting corollary
from radiative transfer, the question whether physical time
and time scales, in general, are uniquely defined in non-
transparent superconductors. An answer to this question
may have important consequences for the applicability and
reliability of all stability models.

At the end of Section 6, a conclusion is made how
the stability of superconductors can be improved in future
development of materials by a step directly derived from
the results of radiative transfer calculations reported in the
following.

2 Superconductor Temperature
Distributions

2.1 Numerical Calculations

Traditional stability models assume homogeneous super-
conductor temperature. It appears this assumption is ful-
filled only in exceptional cases. Real situations have been
analysed by numerical simulations of temperature fields in
multi-filamentary BSCCO 2223 and in coated YBaCuO 123
conductor thin films. Results of the calculations, and the
position of BSCCO filaments within the tape cross section
and positions of YBaCuO thin films in coated conductors,
are shown in Figs. 1a, b and 2a, b. From both figures,
quench of a superconductor in these conductors occurs nei-
ther homogeneously nor simultaneously in all its single
cross section or conductor volume elements.

Experimental confirmation of these numerically simu-
lated results would be most welcome, but its realisation is
a laborious task. Experiments recently have been reported,
for example, by Solovyov and coworkers [8]; they inves-
tigated the spatial distribution of critical current density
using separate strips prepared for patterning a coated con-
ductor. From the non-uniform critical current distributions,
one may conclude there is also a non-uniform distribution of
local conductor temperature, like those in Fig. 2a. But more
experimental evidence is needed.

Note in Fig. 1a the enormous rate of local conductor
temperature increases once the disturbance is switched on
(in this case, a sudden runaway of nominal current to a
fault). The rate of about 3 × 103 K/s observed within
the period 0 ≤ t ≤ 2 ms results from solely flux flow
resistance but later increases to more than 105 K/s when
critical temperature is exceeded.

Therefore, transient distribution of critical current
density, in general, will be neither constant nor uniform in
the conductor cross section. Positions with superconductor
temperature above and below critical temperature, after
a disturbance, may coexist in the total cross section, at
least within short time intervals. Different resistive states in
parallel would be responsible for transient current limiting,
and quench may occur locally, at different positions
and times, after a disturbance. Strong local variations of
superconductor temperature invariably lead to non-zero
radiative contributions to local heat flow.

The transient temperature profiles have been calculated
with a finite element program (ANSYS 16). Finite element
methods serve for solution of Fourier differential equation.
The calculated temperature fields are mapped onto fields of
critical current density and magnetic fields. Details of the
simulations (meshing, selection of time steps, convergence)
have been reported previously [4–7].
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Fig. 1 a Nodal temperature in
the cross section of a BSCCO
2223 multi-filamentary
conductor, calculated by a
transient finite element analysis
including radiative transfer in
the diffusion (additive)
approximation. Because of axial
symmetry, only the left half of
the total conductor cross section
needs to be shown (symmetry
axis is on the right). Results are
reported at t = 1.7 ms, 2.0 ms
and 2.1 ms (from top to bottom)
after the start of a permanent
disturbance (flux flow
resistance, by a large fault
transport current exceeding
critical current). Local
temperatures are identified by
the corresponding horizontal
bars. Symbols MX and MN
indicate positions in the cross
section where minimum and
maximum temperatures are
observed. The temperature
diagram at the bottom is copied
from [5]. b Cross section of the
(1G) BSCCO 2223/Ag Long
Island superconductor [55] (a
tape consisting of about 100
filaments; the figure shows a
section of Fig. 1b in [5]). The
crystallographic c-axis is
perpendicular to the filament
planes. The vertical, solid red
line schematically indicates the
direction of a hypothetical scan
of the thermal diffusivity by a
thermal wave technique, for
detection of a local quench. The
distance between the open red
circles serves for estimating the
transit time that a radiative
signal emitted at the centre of
the tape by diffusion needs to
cross half the tape thickness

(a)

(b)

The solutions apply the additive approximation for the
thermal conductivity. The total thermal conductivity λTotal

is written as a sum of separately modelled components,
λTotal = λCond + λRad, where λCond and λRad are
the (competing) contributions by solid conduction and
radiation, respectively. The additive approximation cannot

be understood without a detailed analysis of radiation
propagation (see later Section 3).

Intuitively, one would expect heat transfer might be
enforced by radiation transport (large λRad) so that hot
spots soon would disappear. But propagation of radiation is
blocked in non-transparent objects, which, in turn, means a
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(a)

(b)

Fig. 2 a Nodal temperature calculated in an YBaCuO 123-coated,
thin-film conductor, calculated like in Fig. 1a, here at time t = 4.2 ms
after the start of a disturbance (again transport current exceeds criti-
cal current). The simulation comprises the upper turns 96 to 100 of a
superconductor coil. White dashed lines are part of the mesh; narrowly
spaced, double white lines indicate the electrical insulation between
the turns, and the outer double lines reflect the reinforcement of the
casting compound. Superconductor temperature in turn 96 has already
increased to about 94 K (exceeds TCrit = 92 K) while in turns 97 to
100, temperature is still close to coolant temperature. The figure is
taken from [7]. b Simulation scheme of a coated, thin-film YBaCuO

123 superconductor (schematic, not to scale). The upper diagram in
b shows the metallization (Ag), buffer layer (MgO and corresponding
interfacial layers) in immediate neighbourhood of the superconduc-
tor (SC) thin film (the conductor architecture is typical for a coated
conductor). Dimension of the surface roughness is highly exagger-
ated. The lower diagram in b shows the cross section and meshing of
the superconductor thin film. Superconductor layer thickness is 2 μm,
its width is 6 mm and the thickness and width of the Ag elements
are the same as those of the SC film. The crystallographic c-axis of
the YBaCuO layer is parallel to the y-axis of the overall coordinate
system. The figure is a section of Fig. 1 in [7]
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quench, under a disturbance, is more probable to occur in
non-transparent materials.

It is thus important to clarify the situation: are
multi-filamentary and coated thin-film superconductors
transparent or non-transparent to radiation? Is the additive
approximation correct when it was applied in the finite
element calculations to obtain Figs. 1a and 2a?

2.2 Transparency vs. Non-transparency

Optical thickness (τ ) is defined by the sample’s extinction
coefficient (E) and its thickness (D): if E is independent
of wavelength and if E is also homogeneous (constant)
through the object under study, we have τ = ED (a
more rigorous definition of optical thickness is given
in Section 3). Optical thickness serves for separation of
transparency and non-transparency of a superconductor
(Section 2.2.2).

2.2.1 Transparency

A sample is considered as transparent if its optical
thickness (τ ) is zero or at least extremely small (a
situation approximately fulfilled in some dilute gases). If
the optical thickness is zero, a beam, if emitted from
a directionally emitting radiation source, will not be
scattered into directions different from its original direction;
also, there are no absorption/remission interactions and
interference effects. The case τ = 0 accordingly indicates
direct transmission.

A transmission experiment is simulated in Fig. 3.
Assume that a strongly focused, directional radiation source
(Fig. 3 A) is placed in front of an optically transparent
sample (for simplicity, the figure is schematically used for
explanation of transparent and, later, also of non-transparent
samples). The transmission experiment is located in the
space R3, at a stationary position, and shall be invariant

Fig. 3 Upper diagram (schematic) a disk of thickness (D); a radiation
source (A, red circle) that emits radiation pulses of directional intensity
(i′); a real observer at position (C), in front of the rear surface of a non-
transparent, solid slab 0 ≤ x ≤ D; and a virtual observer (B), operating
within the slab. Boundaries at x = 0 and x = D are transparent. Arrows
and large half-circles (envelopes to the thin, solid arrows) at x = D

indicate isotropic intensity (remission and scattering of radiation from
this position). For simplicity, the figure is used for transparent (no
absorption/remission or scattering events within 0 ≤ x ≤ D) or non-
transparent (where photons, under multiple absorption/remission and
scattering interactions, indicated by the small circles, travel along
statistically defined paths (W1 or W2); compare text). If the sample
is non-transparent, there are diffuse radiative boundary layers each

located between x = 0 and x1 = 15lm and between x2 = D − 15lm and
x = D (dashed, blue lines, schematic; the real observer (C) will not be
able to look deeper into the disk). A virtual observer (B) (explained in
Section 6) is indicated by the solid black circle. Small circles within
the slab indicate scattering or absorption/remission events. Lower dia-
gram: open and closed circles on the dashed horizontal line denote
images, f [e(s, ξ ′)], of events, e(s, ξ ′), on the different paths (W1 and
W2) that the virtual observer books as a sequence of images. The lower
horizontal line indicates the (ideal, i.e. dense) time scale (t) experi-
enced as physical time. The origin (t0) of physical time, as indicated
on the horizontal dashed line, could be identified only in a transparent
material
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under translations and rotations. Close to the sample’s rear
surface, an observer, C, sensitive to radiation at different
wavelengths) shall be positioned exactly on the beam axis.

A completely transparent sample would not contain any
material constituents or any variations of optical properties
like the refractive index between the planes x = 0 and
x = D. If the detector responds exclusively to the original
beam, the observer at his position then will be able to
differentiate between

(a) Radiation emitted by the source at constant power
or wavelength, with the radiation source at different
(axial) positions, or

(b) Radiation emitted at variable power or wavelength, but
with the radiation source at a fixed, single position

(c) Monochromatic radiation intensity emitted by the
source at different power

(d) Radiation intensity emitted at constant power but at
different wavelengths

(e) Single, isolated pulses, or series thereof, and periodic
radiation sources, all emitted from any (stationary)
position or at any wavelength or at any time or frequency

In order to fulfil items (a) to (e), the time interval
between any event, like a variation of the source’s emissive
properties, and when its image is taken by the detector, must
be shorter than the characteristic time of any variation of
the source (the event must be stationary within this time
interval). We add this condition as item (f) to the above
given list (a) to (e).

The observer accordingly will only then almost imme-
diately notice any variation of the emitted signals (wave-
length, duration, intensity, position of the source). Limi-
tations are due solely to the velocity of light (and to the
time constant of the detector). The same conclusions would
apply if emission from the source was isotropic, or if emis-
sion comes from a thermal source of infinitely small or of
extended, non-zero cross section.

We can put the above items (a) to (f) into mathematical
form: transparency can be described by means of mapping
functions, f [e(s, ζ )], that create images, e(s, t), of events,
e(s, ζ ). Events occur in R3 at locations (s). The scale ζ will
be explained below.

Images of events comprise space and time coordinates.
There is no problem with space coordinates; we can use the
same coordinate system (s) to identify the location of events
and of their images. Accordingly, space coordinates (s) of
events and of their images, f [e(s, ζ )], for simplicity shall be
located in the same space R3.

But the situation is different with time coordinates:
trivially, when an event takes place, a specific time is
intuitively coupled to this event. But signals (ζ ), as reported
by a clock, do not constitute time in the usual sense but
simply describe either single events or a series of discrete

events, indicated by mechanical signals or, for example,
electronic signals or what is indicated by an hourglass. All
these events, by their signals (ζ ), have to be booked on
proper time scales (t).

Contrary to the discrete structure of the series ζ , and
contrary also to mechanically or otherwise booked signals,
time scales, in the usual understanding, do not have a
discrete structure but are dense (the exact mathematical
meaning of “dense” will be explained in Section 6.3).

In addition to items (a) to (f), we must, for a time scale
to be unique and unambiguously defined, also request that
the time interval between two successive events, e(s, ζ ) to
be booked as e(s, t), may be arbitrarily small. If this cannot
be fulfilled, part of events of a sequence could be lost from
registration on the time scale (t), which means a dense set
that could be generated by an arbitrarily large number of
images of events (from an arbitrary large number of events)
cannot be obtained. Both events and their images potentially
must be dense.

Images (bookings), e(s, t), of discrete or continuous
events, e(s, ζ ) (like oscillation of a charge) after signals
received from these events, have to be ordered. While
ordering on the ζ -scale is provided automatically by
operation of a clock, mechanically or otherwise, mapping
functions, f [e(s, ζ )], are needed to realise orderly booking
on continuous (dense) time scales (t). The f [e(s, ζ )] are
needed also to enable differentiations, like ds/dt , while the
same procedure, tentatively realised on the scale (ζ ), would
provide only ratios �s/�ζ , with both �s and �ζ of finite
size. A time scale accordingly is dense, if an arbitrary
variable, v(t), can be differentiated with respect to this time
scale (t).

But it is not clear that the order (succession), ζ , of
events will be conserved when they are booked on the time
scale, t (this restriction has nothing to do with relativity; all
events shall take place at fixed space coordinates). While
conservation of the order will certainly be provided in case
of transparent media, this is not necessarily fulfilled in a
non-transparent medium.

Orderly booking on the time scale (t) can be realised
by the properties of the mapping functions, f [e(s, ζ )]:
to uniquely define transparency, the mapping functions,
f [e(s, ζ )], must allow the creation of images in R3 from
all events in R3 occurring at any position or instant (and
irrespective of their number, limited or infinitely large).
The f [e(s, ζ )] also must allow reverse mapping: inverse
mapping, e(s, ζ ) = f −1f [e(s, ζ )] = f −1[e(s, t), must exist
for all events and uniquely reproduce from the images, e(s,
t), the underlying origins, e(s, ζ ), and their original order.
In other words, the mapping functions must be bijective,
which means they must be injective and surjective, in the
usual mathematical sense, and irrespective of the number of
images and their origins.
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Definition of the mapping function, f [e(s, ζ )], applies to
all items, (a) to (e), of the above and their extension, item
(f). But what happens if these items cannot be fulfilled? The
explanation is that mapping functions, f [e(s, ζ )], in non-
transparent media, are not bijective. The mapping functions,
f [e(s, ζ )] = e(s, t) and e(s, ζ ) = f −1f [e(s, ζ )] =
f −1[e(s, t)], will again be needed in Section 6.

2.2.2 Non-transparency

Comparison with a critical optical thickness, τCrit, is a
simple, numerical means to decide whether a sample is non-
transparent. However, from the physical standpoint, which
means the impact of non-transparency on propagation of
radiation (like spatial distribution of scattered radiation),
the difference between transparency and non-transparency
is better understood from observations (see Section 2.2.3).

Numerical definition of the critical optical thickness is
based on Lambert-Beer’s law: optical thickness, if it exceeds
τCrit = 15, reduces incident radiation to almost zero, since
the ratio of residual to original, directional intensity, i′/i′0 =
exp(−τ ), is below 10−6 (zero in the sense that a detector
would not be able to differentiate between an original signal
and its 1/106 residuum). This number is small enough to
say there is almost no directly transmitted radiation arriving
from the source at the position of a detector. The position is
defined by this optical thickness.

The criterion τCrit = 15 appears to be arbitrary. We
could also define τCrit = 50 or 100 that causes even
stronger damping of incident radiation, but the then-
required geometrical thickness (D) under a given extinction

coefficient (E) might become larger than the limit set by the
dimensions of the objects under study. In the present case,
the limit is set by dimensions of grains and filaments and by
thickness of thin superconductor films in high-temperature
superconductors.

2.2.3 Observations

In non-transparent media, radiation propagation proceeds
by a large number of single steps and becomes diffusely
distributed. Neither is it possible to safely make decisions
on the properties of the radiation source nor can decisions be
made on single, internal scattering and absorption/remission
processes in the medium (except for a possibly existing
diffuse boundary). This applies even if the radiation source
would strongly be focussed in the direction of the detector
or if the scattering properties of the medium are highly
anisotropic.

As an example, the angular distribution of originally
N = 5 × 104 rays (“bundles” in the Monte Carlo language),
leaving the rear surface of a cylindrical pellet, is shown
in Fig. 4. After a multiple of absorption/remission and
scattering interactions within the sample, with the radiation
source located in front of, or exactly at the front surface, the
final distribution, on the rear sample surface, of the emitted
or scattered radiation leaving this non-transparent sample is
highly isotropic.

Accordingly, if the observer (C) in Fig. 3 recognises the
diffuse distribution of radiation, he will conclude that the
object between x= 0 and x<D is non-transparent (provided
the plane x = D does not deteriorate the distribution

Fig. 4 Monte Carlo simulation of the distribution of radiation emit-
ted from the rear sample side (x = D) in Fig. 3. Emission from the
front sample side is by an extended (not point-like), realistic diffuse
radiation source (the same result would be obtained if the radiation is
anisotropically emitted, like a beam from a laser, and if optical thick-
ness is large). Data are calculated for a bed of ZrO2 particles using
extinction coefficients, E[1/m] = 5 × 103 (olive), 104 (dark blue) and
5 × 104 (red diamonds); the corresponding optical thickness amounts

to τ = 5, 10 or 20, respectively. Results are obtained for anisotropic
internal scattering (mS = 2, forward scattering) and albedo (of sin-
gle scattering; � = 0.5) (compare the original report). The solid curve
indicates the theoretical, diffuse cos(	) distribution given by Lambert-
Beer’s cosine law. The larger the extinction coefficient, the better is the
angular distribution of the bundles represented by a diffusely radiating
(rear) surface. The figure is redrawn from [54]
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of radiation emerging from the internal positions of the
object).

In any non-transparent dispersed medium, constituents
like solid single particles or any other obstacles to radiative
transfer can be interpreted as pairs of sources and observers:
if radiation is emitted as thermal radiation from a particle
(A), any particle (B) in Fig. 3 may be considered an
“observer” that responds to the incoming radiation from A,
for example by scattering.

If the observer (particle B) is located inside the non-
transparent medium or within only a diffuse boundary layer,
we will call it a “virtual” observer. The difference between
transparent and non-transparent media then becomes more
obvious:

(i) In the transparent case, distances of virtual observers
from a source are completely arbitrary; they see each
other, almost instantaneously, and, most importantly,
they see any radiation source. Items (a) to (f) are
fulfilled.

(ii) In a non-transparent medium, virtual observers at
certain positions see only their closest neighbours (the
radiation that they scatter or emit in direction of these
positions), but they never see a source located at a
distance of more than the said τ ≥ 15 mean free paths,
and they see even the closest neighbours only after
an extended transit time (as will be shown, in most
cases not simply given by the velocity of light, which
would apply to solely pure scattering interactions, but
in reality includes absorption/remission processes that
take much longer). Items (a) to (f) thus would be
violated.

The description of observations in non-transparent media,
and how they can be described by radiative transfer, is
difficult because of the presence of also heat transfer
contributions other than radiation in real situations. One of
the most cited volumes, with emphasis on purely radiative
transfer, is by Chandrasekhar [9]. Analytical or numerical
handling of radiation propagation, in parallel to also other

Fig. 5 Microstructure of a multi-filamentary superconductor show-
ing filaments, domains and grains (schematic, all dimensions are in
micrometres). a Grains as flat, plate-like objects (schematic, not to
scale; this reflects the finite element meshing scheme used in Fig. 1a,
b). Matrix material (Ag) is schematically indicated by light green back-
ground. Parts a and b apply to Fig. 6a (and approximately to also
the very densely packed flat, thin, plate-like particles in Fig. 6b). b
An enlarged section of grains as solid black lines; the light grey part
of the filament cross section is empty. c The multilayer scheme to

calculate radiative heat transfer (radiative exchange between screens);
a sequence of open structures within which the radiative exchange
model ((7a), (7b) and (8)) is applied. Direction of an incident beam
of intensity (i′) in b, c is indicated schematically by the thin red
lines perpendicular to the crystallographic ab-planes of grains and fila-
ments. Additionally, part (c) of the figure shows the series of conductor
volumes within which (i) the multi-foil concept (in the voids) and
(ii) the treatment of the radiative exchange problem under dependent
scattering (in the grains) has to be modelled
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modes of heat transfer like conduction in solids, is treated
in traditional volumes like [10] and [11]. First numerical
studies of the overall impact of radiation heat transfer on
the stability of a superconductor, in the presence of also
conductive heat transfer, have been reported in [12] and
[13]. Radiative transfer in solid, non-transparent media has
been studied, and a radiative diffusion model has been
explained in [14]. The present paper apparently is the first
attempt to apply radiative transfer calculations to realistic
particulate structures of high-temperature superconductors.

2.2.4 Multi-filamentary Superconductors as Particle Beds

Non-transparent media in many cases are highly dispersed.
A schematic division of non-transparent media against their
transparent or translucent counterparts is given at the end of
this paper (Fig. 25 in the Appendix).

For a medium to be classified as dispersed (a particle
“bed”), it is sufficient that the constituents can be
distinguished by their solid surfaces or by interfacial layers
near their surfaces, against their hosts. Solid particles and
the corresponding interfacial layers, as materials’ obstacles,
are responsible for local, discrete variations of the index of
refraction.

We will use for the radiative transfer calculations the
expression “particle bed” not only for these classically
(mechanically) dispersed media but also for solid spheres
or filaments, or for particles of any other geometry, if they
are dispersed in a solid matrix, with mechanical or radiative
strictly different properties.

Multi-filamentary superconductors, in this view, consti-
tute a particle bed, too, as they are composed of thin,
ceramic superconductor filaments dispersed in a highly
conducting, metallic matrix (like Ag, Cu). This aspect (a
particle bed constituted by particles in a hosting solid)
will become important in connection with calculation of
extinction coefficients by application of scattering theory in
Section 4).

Particle beds and clouds, in general, and their con-
stituents like ceramic filaments in a multi-filamentary super-
conductor, do not have sharply defined radiative surfaces
but diffuse boundary layers, in contrast to the proper solid
surfaces or solid/solid interfaces that can more or less pre-
cisely be located (apart from surface roughness, adsorbed
species or contaminations).

BSCCO 2223 multi-filamentary superconductors are
manufactured as tapes, with thickness of about 250 μm to
300 μm and width of 3–4 mm, each with presently about
100 filaments in their cross section (Fig. 5). In type II
LHe-cooled, multi-filamentary superconductors, like NbTi
or Nb3Sn, the number of filaments is larger, by orders of
magnitude, but again, all filaments are dispersed in a highly
conducting, metallic matrix.

The macro-porosity of BSCCO multi-filamentary, (1G)
tapes depends on the ratio of superconductor to matrix
material cross sections; in BSCCO 2223, this ratio is
between 0.3 and 0.5. Filament dimensions in tapes prepared
of this material are of about 30 μm thickness and 300 to
400 μm width, with Ag as the matrix material. The filament
porosity is much smaller (below 0.1, compare Fig. 6a and b)
and depends on the ratio of superconductor material (the
grains) to the void cross sections. In Section 4.3, the
grain micro-porosity will be estimated in connection with
an attempt to model dependent scattering by very small
subparticles.

Deposited on appropriate (flexible) substrates, together
with a variety of thin inter-layers for improving orientation
of crystallographic axes, growth rates, for electrical
insulation and as protective layers, thin films with thickness

(a)

(b)

Fig. 6 a, b Microstructure of particulate BSCCO superconductors.
a Layer structure of slightly curved, plate-like grains in a single
BSCCO 2223 conductor filament, a result typical for powder in-tube
manufacture steps. Because of the large anisotropy ratio of thermal
transport, the grains can be considered, from a pure thermal transport
aspect, as roughly flat. Length of the bar (to the lower right of a)
indicates 5 μm. The figure is copied from [56] (Ag matrix material
is removed). b BSCCO 2212 grains in textured fibres prepared by
laser-induced, directional solidification [57]. As a template, Fig. 1
of this reference has been copied for preparation of the present
Fig. 6b (insertion of blue curves by the present author, in order to
identify domains within which the grains are approximately aligned
in parallel). Grains (black lines) are of flat, plate-like geometry, with
the thickness of about 0.1–0.3 μm. The grains are much more densely
packed than the grains in Fig. 6a. Length of the red bar, to the lower
right of Fig. 6b, is 5 μm. The cryogenic radiation screen model
(Section 4.2) should be applicable preferentially in this case
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in the order of 1 μm to 2 μm are increasingly applied
as second-generation (2G) coated conductors for current
transport. Their porosity is much smaller.

The thickness of thin-film superconductors (like single
layers of YBaCuO 123) that are suitable for laboratory
optical spectroscopy is only between 15 and 200 nm.

2.2.5 Selection of Samples for the Radiative Transfer
Calculations

Figures 6a, b and 7a–c are selected for the radiative
transfer calculations in multi-filamentary and thin-film
superconductors, respectively. The figures are taken from
the literature; see figure captions for references to the
corresponding original work.

Figure 6a shows grains in a BSCCO 2223 (1G) filament
with the typical layer structure of approximately flat, plate-
like grains arranged parallel to each other. The layer
structure results from powder in-tube manufacturing. In
Fig. 6a, the matrix material (Ag) has been removed from the
sample.

Figure 6b shows a section of a BSCCO 2212 (again, 1G)
fibre produced by laser-induced directional solidification.
Its very thin, orthorhombic superconductor grains are
densely aligned in domains, with an increased number of
solid/solid contacts between neighbouring particles. The
crystallographic ab-planes are arranged in the direction of
the fibre axis. Yet, there are voids within the BSCCO fibre
between grains and within domains, by cracks and other
deficiencies that, in Figure 6b, all cause a micro-porosity
that is much smaller than the porosity of the (particulate)
BSCCO 2223 conductor sample, about 0.01 against the 0.3
to 0.5 of the filaments.

Instead of the particulate structure prepared with BSCCO
(Fig. 6a and b), with mechanically, clearly separated solid
particles (grains, fibres, domains), Fig. 7a, b shows thin
films used for (2G), standard coated conductor architecture
while thick films (Fig. 7c) have been suggested as
a surrogate (technically alternative, thick YBaCuO 123
conductors). Again, Fig. 7a–c is taken from the literature,
with the references to original work given in the figure
captions.

A first idea is that thin films do not contain particulates.
However, microscopic, particulate structure (grains) of
thin films of also a coated conductor and their influence
on critical current density has been confirmed in [15].
Compare Figs. 23b and 24a of this reference that describe
an hexagonal grain array and a Monte Carlo grain
growth model using square elements, the most simply
configuration, to describe current percolation in the thin
film-coated conductor.

To go one step ahead, separation of a thin film into
particulates not necessarily requests, in general, the creation

(a)

(b)

(c)

Fig. 7 a–c Micrographs of thin-film and thick-film YBaCuO conduc-
tors used for coated conductor architecture indicating the existence of
grains, in the radiative sense, in thin films. The grains are obstacles
to radiative transfer. a Surface morphology of an YBCO film with
an electrodeposited Ag thin film. The flat irregular structures in the
Ag coating are considered as images that result from irregularities
of the YBaCuO 123 superconductor film below (deviations from
ideal single-crystal lattice geometry, or statistically distributed,
polycrystalline manifolds). Length of the thin white bar (right, at the
bottom of this figure) is 5 μm. The figure is taken from [58]. Reprinted
with permission of the National Renewable Energy Laboratory, from
https://www.nrel.gov/docs/fy11osti/49702.pdf, accessed on April 11,
2018. b Scanning tunnelling micrograph of a highly textured, YBaCuO
123 layer deposited by IBAD on a non-textured, flexible metallic
substrate. The figure is taken from [59]. c Section of a polycrystalline,
thick YBaCuO superconductor, consisting of flat, approximately plate-
like particles. Yellow, green and red circles are added by the present
author to schematically indicate shadowing (dependent scattering) by
neighbouring particles, as obstacles to incident radiation (the blue
beam). Compare text. The original figure is taken from [60]. Aspect
ratio is about 4 to 6 (Fig. 6 of this reference)

https://www.nrel.gov/docs/fy11osti/49702.pdf
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of mechanically defined interfaces. Any variations of
local electrical resistance (of whatever type, like a flux
flow resistance that arises from a local transport current
exceeding critical current density) may induce a particulate
structure, in the view of current transport. Likewise, any
local variation of an otherwise perfectly homogeneous,
radiative continuum, for example a fluctuation of the
refractive index, creates, from the radiative transport view,
particulate internal structures of a thin film.

Accordingly, whether a thin film or any other object
is of particulate structure has to be defined with respect
to its transport properties, electrical or radiative or
others. Figure 7a shows an example. A thin Ag film is
electrodeposited onto the YBaCuO 123-coated conductor
in Fig. 7a. Topography of the thin film provides an image
(replication) of near-surface grain boundaries or of other
disturbances in the regular lattice of the YBaCuO film;
the proper YBaCuO film thus appears not to be strictly
homogeneous but incorporating specific (as seen from
the current transport view) particulate structures. Lateral
dimension of the images is between 2 and 15 μm. Because
of the YBaCuO film deposition process, the objects should
be flat and, from the dimensions of the images, of plate-like
particulate geometry. The authors demonstrate that direct
Ag plating has not degraded the tape quality; its critical
current is more or less the same as that of the bare YBaCuO
layer, or when it was sputtered with Ag.

A scanning tunnelling micrograph of a highly textured,
YBaCuO 123 layer of 300 nm thickness deposited by ion
beam-assisted deposition (IBAD) on a non-textured, flexi-
ble metallic substrate is shown in Fig. 7b. A highly textured,
Yttrium stabilized zirconia (YSZ) layer was prepared as
a buffer. The superconductor film has much larger grains
(average size of about 200 nm), with apparently no correla-
tion to the grain structure of the substrate. The micrograph
shows the top surface of the superconductor with the grains
(ab-planes) formed by island growth.

The sample shown in Fig. 7c is the section of a
thick YBaCuO superconductor prepared by bio-mimetic
bulk synthesis. According to the authors, the conductor
originally was developed to circumvent problems with
the manufacture of (2G) coated conductors. The study
served to achieve microscopically, morphological control
of YBaCuO 123. In this microstructure, platelets on a
flat substrate subsequently arrange themselves in preferred
(x, y) orientation (the crystallographic ab-planes). The
thickness of the platelets is about 1 μm to 3 μm, larger than
the thickness of the particles in Fig. 6a and b, and the total
sample thickness is much larger than, and contrary to, the
presently accepted, standard coated conductor architecture
with thin YBaCuO films. Voids between the particles
apparently do not contain any material.

All grains, and from the radiative transfer aspect, also all
grain-like structures, in Figs. 6a, b and 7a–c, respectively,
are obstacles to propagation of radiation.

3 Radiative Transfer Calculations

For a first, provisional estimate, using a filament thickness
of 30 μm and an extinction coefficient of at least that of a
highly conducting, solid metallic sample, in the order of 107

(1/m) ([16], Table 2.1, the value of Au at visible wavelength
and at RT), the optical thickness amounts to τ = 300. This
clearly indicates non-transparency.

Assuming the hypothetical thickness of a superconductor
thin film of 1 μm to 2 μm, like in a coated conductor,
and if again E = 107 (1/m), we still have τ = 10 or
20, respectively. Accordingly, metallic and superconductor
films, provided their extinction coefficient is of the same
value and their thickness is at least 2 μm, can be considered
as non-transparent.

But if thin film thickness is only 15 nm to 100 nm, a stan-
dard thickness for optical investigations of superconductors,
they safely would be transparent to radiation if their extinc-
tion coefficients do not significantly exceed the E = 107

(1/m). Radiative transfer in a substrate then would become
visible in the measured reflectance or transmittance spectra,
and radiative diffuse boundary layers (Fig. 3) then probably
would overlap.

The question thus is whether the extinction coefficients
of superconductors are of the same order as those of highly
conducting metals, the approximately E = 107 (1/m).

3.1 Optical Thickness and the Equation of Radiative
Transfer

In radiative transfer, the mean free path between two succes-
sive radiation/solid particle interactions at a wavelength (
)
is a function of the spectral extinction coefficient, E
(s),
at a position s. The extinction coefficient serves for the
definition of the optical thickness

τ


(
s∗) =

s∗∫

0

E
 (s) ds (1a)

at the geometrical position, s∗, in relation to s∗ = 0. The
extinction coefficient, E
(s), need not be a continuous
function of position s, which means the number per unit
volume of constituents in a medium or their geometry and
dimensions, or their optical properties like the refractive
index, may locally be different. The path s may be oriented
under any angle against surface normal of a sample.
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The spectral mean free path (lm,
) reads

lm,
 (s) =
∞∫

s=0

sE
 (s) exp

⎡

⎣−
s∗∫

s=0

E
 (s) ds

⎤

⎦ ds (1b)

see Siegel and Howell [17], p. 414.
Equation (1b) defines lm,
 as a distribution of statis-

tically variable, spectral values. Thus, the mean free path
(lm,
) only statistically would coincide with centre-to-
centre distance or with the clearance between particles in a
particle bed.

Both extinction coefficient, E
(s), and mean free path,
lm,
(s), are local values (depending on the space coordinate
(s)), in contrast to the optical thickness (τ
) that integrates
the extinction properties of the superconductor material
over total sample thickness (this distinction will become
important in Section 4.3).

If E
 does not depend on s, the mean free path reduces
to the usual expression lm,
 = 1/E
, and if the medium is
grey, we have lm = 1/E.

Individuality of an obstacle, or of a particle/particle
phalanx characteristic for radiation exchange cell models, is
lost in the statistical expression ((1b) for lm).

3.2 The Additive Approximation

Calculation of temperature profiles, of life importance for sta-
bility analysis in filaments and thin films, requires simulta-
neous solution of (a) the equation of radiative transfer (ERT)
and (b) the equation of conservation of energy.

(a) Omitting for simplicity the index 
 for the wave-
length, the ERT reads

di′/dτ = i′(τ ) + [i′b(τ ) + ∫�(ωi, ω, τ )i′(τ )dω] (2a)

where i′ is the directional intensity, τ is the optical
thickness, dτ = Eds, i′b is the black-body intensity,
� is the scattering phase function, ωi is the incident
radiation and ω is the solid angles. The integral is to
be taken over the total 4π sphere.

The terms in brackets in (2a) result from absorp-
tion/remission and scattering that are redirected to,
and superimposed onto, the residual intensity (i′).

If both terms, i′b(τ ) and the scattering integral,
∫�(ωi, ω, τ )i′(τ )dω, are zero, Eq. (2a) reduces to
Lambert-Beer’s law

di′(τ )/dτ = i′(τ ) (2b)

Because of the scattering integral, Eq. (2a) describes
radiative non-equilibrium. If in Eq. (2a) solely the
scattering integral is zero, there is local thermal
equilibrium, at any position within the object.

For details of the solution procedures of (2a), see,
for example, Ref. [17] (Chap. 14, 15 and 19–20) or
other standard volumes like [9–11].

(b) Conservation of energy requires (2a) to be solved with
solutions of

pcp∂T /∂t + div (q̇Cond + q̇Rad) = q̇s (2c)

where q̇Cond + q̇Rad (the dot indicates the derivative
dq/dt) denotes the heat flux vectors due to conduction
and radiation, respectively, with q̇Rad as the integral,
over solid angles, of the intensity i′. The directional
intensity, i′ = i′(τ ), results from the solution of (2a).
The term q̇S denotes an energy source or a sink. In
a superconductor, the energy source is the result of
ohmic or flux flow losses or from a quench; a sink
is given, for example, by a stabilisator coating or,
trivially, by the coolant.

The solution of (2c) provides the transient temperature,
T = T (τ, t), which, in turn, is needed for calculation of
i ′b(τ ) and thus of i′(τ ) in (2a). Both heat fluxes, q̇Cond and
q̇Rad (conductive and radiative flux, W/m2), are coupled to
each other by their non-linear temperature dependency and,
accordingly, by the calculated temperature profiles.

Among various approximations described in the litera-
ture, a diffusion solution of (2a) can be applied if optical
thickness is large. In this case, the integro-differential equa-
tion, (2a), reduces to a differential equation, in which the
radiative flux (q̇Rad) can be written in terms of a radia-
tive conductivity (λRad). We have q̇Rad = −λRaddT/ds, just
like the standard Fourier conduction law q̇ = −λgrad T .
Details of this diffusion model of radiative transfer are
explained in [14].

This is solely an exceptional case, under strict non-
transparency, that λRad exists and is allowed to simply be
added to the solid conduction conductivity (λCond) to yield
the total thermal conductivity (λTotal = λCond + λRad). Only
in this case are the heat fluxes q̇Cond + q̇Rad uncoupled
from each other. If λTotal would be calculated in this way
in transparent samples, conservation of energy would be
violated.

The point is that each of the components of λTotal,
in the additive approximation (and solely in this case),
can be estimated independent of the other modes of heat
transfer. The conductivities of the different components are
estimated as if the other components would not be present
at all (one can also say if the different components are
not coupled by temperature profiles in the superconductor
solid).

If an object is semi-transparent, possibly in only a
limited range of wavelengths, corrections to λRad have
been suggested in the literature, and in the completely
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transparent case, propagation of radiation, no longer a step-
wise transport process, has to be calculated with radiation
exchange factors (compare the collections of such factors
in standard volumes on radiative transfer, for example [17],
Appendix B).

3.3 Application to Superconductors

Reflectance of YBaCuO thin films is large, exceeding 90%
in the normal conducting state at small frequency (ω < 25
(1/cm)) and in the superconducting state (ω < 600 (1/cm)),
compare Figs. 3.5 and 3.6 in Chen [18], of 150-nm-thick,
optimum doped samples, respectively. Similar observations
were previously reported by Zhang et al. [19] for very
thin samples (thickness between 10 and 200 nm, Figs. 4
and 6 in this reference), where reflectance exceeds 90% at
wavelengths around 23 μm and 50 μm at T = 300 K, and
around 23 μm at 10 K, respectively.

In metals, for comparison, large reflection indicates (and
is the origin of) very strong absorption. This conclusion
is supported by a thought experiment in [16] (Fig. 2.3,
a torsion testing machine). The question is whether
this conclusion (strong absorption, as indicated by large
reflection) applies also to grains and filaments in multi-
filamentary superconductors and to thin films in coated
superconductors. This requests the calculation of the albedo
of the superconductor (see later Section 4.3).

Thin-film optics (reflectivity, transmission, optical con-
ductivity, refractive indices) has frequently been studied in
the literature. Besides [18] and [19], compare also Gao [20],
Phelan et al. [21], Zhang et al. [22], Kumar et al. [23] or Tan-
ner and Timusk [24] and numerous references cited therein.

The radiative transfer problem, however, as a transport
process within particulate and, in the radiative sense, quasi-
particulate, thin-film superconductors, apparently has never
been investigated. The optical thin-film studies reported in
Refs. [18–24] have not analysed the interaction of radiation
with any microscopic, discrete (grain or domain boundaries)
or continuous (variations of refractive index) internal radia-
tion obstacles in the thin films, and they have not considered
coupling of radiation with other heat transfer modes (it is
also not clear that this lack can fully be compensated with
frequently applied, short radiation pulses). Again, this is the
task of radiative transfer calculations.

Although there are intensive solid/solid, point or surface
contacts in between the grains within a BSCCO filament,
the superconductor grains, from the radiative transfer
aspect, may be considered as quasi-independent obstacles
because in this particle bed, the index of refraction, of
any kind of (open or filled) voids between grains, is
strongly different from that of the superconducting grains
themselves. The same applies to thin films (the voids
between the quasi-particulates).

For spherical particles, the radiative transfer problem in
a very first step reduces to the well-known problem of light
scattering by small particles; it was solved by Mie [25] in
his paper. Though Mie derived this solution for diffraction
by a single sphere, it also applies to an arbitrary number
of randomly distributed spheres (identical by radius and
composition) if the distance between each other is large
against wavelength.

For cylindrical, dielectric or conducting particles embed-
ded in an electrically non-conducting medium, thorough
descriptions of the Mie and Raleigh scattering problems are
given by Born and Wolf [26] (pp. 633–664) and by Kerker
[27]; compare also the compilation provided by van de Hulst
[28] in his book (pp. 326–328).

All these studies are restricted to particles of regular
geometry. Computer programs and examples for calculation
of spectral extinction cross sections of normal conductors
and dielectrics, all for regular particle geometry (spheres
and cylinders), can be found in Bohren and Huffman [29].
But in the present case, we do not have regularly shaped
particles so that a way to treat flat, plate-like particles has to
be found (Section 4.3).

In the following, principles of solely linear optics will be
applied (scattering and absorption/remission independent of
the radiation intensity). With the extinction coefficient (E)
in terms of (dimensionless) extinction cross sections (QExt),
given for one individual particle of (regular) geometrical
shape, we have for spherical particles (skipping again the
index, 
, the wavelength), the relation

E∗/ρ = 3/(2ρ0)(QExt∗/d) (3a)

if the particles are homogeneously distributed in a volume
and if the clearance between particles is large against
wavelength. For cylindrical particles

E∗/ρ = 4/(πρ0)(QExt∗/d) (3b)

with uniform orientation of the fibre axes. The star (*)
assigned to E and QExt indicates anisotropic scattering.

In (3a) and (3b), d denotes the particle diameter and ρ

and ρ0 are the density of the particulate medium (the particle
bed, in vacuum) and of the solid materials of which the
particles are made from, respectively.

The extinction cross section (QExt) is dimensionless;
it indicates the ratio CExt/CGeom between the radiative
(effective) extinction cross section (CExt) and the geomet-
rical particle cross section (CGeom) (a value QExt > 1
thus indicates that the radiative extinction cross section, by
diffraction and interference effects, is, by this factor, larger
than its geometrical counterpart).

If the particles really are not homogeneously distributed
in a unit conductor volume, corrections to (3a) and (3b) have
to be applied, which means in the cylindrical particle case,
a factor has to account for different orientations of cylinder
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axis to incident radiation. The corrections will depend on the
albedo of the particles (whether they predominantly absorb
or only scatter radiation).

But the QExt of constituents like single particles (grains)
in a multi-filamentary superconductor tape, after final
manufacturing steps, cannot be measured directly. The only
alternative is to calculate the QExt by application of rigorous
scattering theory (Section 4.3; before this is started, the
order of magnitude estimates of QExt and E will be made in
Sections 4.1 and 4.2).

All items (QExt and E) in (3a) and (3b) depend on wave-
length. These have to be averaged following Rosseland [14]
to generate mean, wavelength-averaged extinction cross
sections, QExt,R of QExt,
 and of extinction coefficients,
ER of E
 (strictly speaking of absorption coefficients, A),
the latter by derivatives ∂e
b/∂eb of Planck’s black-body
radiation law integrated over the corresponding wavelength
intervals (�
); the QExt,R, in turn, modifies the densi-
ties, ρSph and ρCyl, to effective values. The procedure is
explained in detail in standard volumes on radiative transfer
(see, for example, [17], Chap. 15).

By the manufacturing procedure (pressing, rolling,
hammering) of the BSCCO tapes, its grains, filaments
and domains are of approximately flat, plate-like geometry
(Fig. 6a). The same applies to the quasi-particulate
structures seen in Fig. 7a–c.

But expressions from rigorous scattering theory, or from
approximations thereof, for extinction cross sections (QExt)
of flat, plate-like particles are not available. See Bohren
and Huffman [29], Chap. 8 (a “potpourri of particles”;
the geometry of the superconductor grains, however, is
not found in this catalogue). The same applies to Mugnai
and Wiscombe [30]: while they successfully calculate
scattering and absorption cross sections for a large variety
of non-spherical, randomly oriented, rotationally symmetric
Chebyshev particles and variations thereof, the particles
neither directly reproduce nor at least approach the flat,
plate-like geometry of the superconductor grains.

If incoming wavelength is large in relation to (any) par-
ticle geometry, the classical Rayleigh-Gans approximation
could be another candidate ([28], pp. 85–102). But this
approximation applies to particles the refractive index of
which is similar to the index of the hosting medium. This
is not fulfilled in the present (superconductor/matrix metal)
cross sections.

In addition, particles by diffraction could be shadowed
by very closely positioned neighbours (which reduces the
extinction of radiation to effective values). This is the
regime of dependent scattering.

A separation of independent and dependent scattering
regimes of spherical dielectric and normal conducting

particles has been reported in [31]. Separation of both
regimes is given as a function of scattering parameter (x =
πd/
) and volume fraction (fV). Since clearance (C) in
the present case is very small or even zero (by plane or
point-wise, multiple solid/solid contacts with neighbouring
grains), the ratio C/
 is clearly below 0.3, where 
 is
the wavelength (in the present case, with the maximum of
directional emission at about 
 = 30μm).

But the grains shown in Figs. 6a, b and 7a–c not only are
not of regular, spherical shape; they also are not made of
normal conducting material. It appears this problem is much
more serious than the difference between real and regular
particle geometry.

Further, if spherical and cylindrical particle distributions
are embedded in a continuous phase, its electrical conduc-
tivity must be zero to apply solutions for QExt reported by
Mie [25] and Kerker [27].

Heat transfer in particulate superconductors, like grains
and filaments of the BSCCO type embedded in Ag, or of
the quasi-particulate structures in thin films, especially the
radiative component, requires a completely new approach.

Radiative transfer in such particulate or quasi-particulate
media accordingly involves a threefold problem:

(i) Non-regular shape of particle geometry
(ii) Total extinction cross section not given just as

a multiple of the individual cross sections of
the constituents, because of self-interactions and
dependent scattering

(iii) Derivation of rigorous scattering theory solutions
for single, small superconducting, magnetic particles
(the grains or thin films); this step primarily
addresses the superconductor material problem

In the following, we describe three different models, inde-
pendent of each other, to calculate extinction coefficients
of particulate or quasi-particulate superconductors. The first
two models serve only for a first, rough estimate of what
finally is to be expected from rigorous scattering theory:

(1) As an explorative method, the first attempt relies on the
comparison between the London penetration depth of a
magnetic field and the radiation extinction coefficient
of a solid. This step (Section 4.1) only indirectly
reflects the particulate nature of the superconductors.
It is intended as just an order of magnitude estimate.
The advantage is that it circumvents the problems
associated with particle shape and the ratio of
wavelength to particle dimensions.

(2) The second method (Section 4.2) applies a multi-layer,
radiation screen model well known in cryogenic engineer-
ing. Here, the particulates are interpreted as quasi-2D
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isothermal surfaces. Particle shape, refractive indices
and diamagnetism need not be considered.

(3) The third model (Section 4.3) relies on the application
of classical (rigorous) scattering theory. The obtained
extinction cross sections together with a diffusion
model allow to explicitly calculate radiative transfer
in particulate media. This method, however, cannot
be realised without consideration of diamagnetic
properties and refractive indices of the superconductor.

Calculations in [32] performed for highly normal
conducting, metallic cylindrical particles (Ag) yield very
large specific extinction coefficients, as shown in Fig. 8.
It will be decisive to so see whether the extinction
properties of superconducting cylinders (and later also of
real particles, not of regular shape) might exceed those
made of Ag. For normal conducting particles, the Ag fibres
apparently constitute maximum extinction coefficients that
can experimentally be realised in the regime of normal
conductors.

Only very few information is available on the refractive
indices of particulate media. The literature on radiative
properties of superconductors preferentially deals with
their optical properties (optical conductivity, permittivity,
refractive indices), preferentially of thin films but rarely
addresses the properties of particulates.

4 Estimation of Extinction Cross Sections
in Superconductors

4.1 Comparison of Penetration Depths

One finds that the larger the extinction coefficient (E)
of a particulate ceramic medium (non-conductor grains),
the smaller the particle diameter (d). We have E ∼ 1/d
(see [33], p. 40) and if QExt is considered approximately
constant ((3a) and (3b) of the present paper).

But (3a) and (3b) are simply a geometrical relation
for deriving extinction coefficients from geometrical and
extinction cross sections, E from QExt, and from relative
density ((3a) and (3b) thus assume linear optics). Instead,
it is the QExt that contains the decisive information on the
extinction process. If QExt of superconductor spheres is
not too different from the QExt of non-conductors, E ∼
/d also for superconductor particulates. As will be shown
in Section 4.3, there is no jump of the extinction cross
sections and coefficients at the phase transition so that this
assumption appears to be applicable.

Huebener (private communication, July 2018) reports
that the Meissner phase experimentally investigated with
superconductor powders disappears with smaller particle
size. The disappearance of the Meissner phase, at T <

TCrit in type I superconductors, can be understood as the

Fig. 8 Specific extinction
coefficients (ER*/ρ; the
Rosseland mean of spectral E
)
for anisotropic scattering of
thermal radiation by thin Ag
cylinders, vs. temperature (T )
and particle diameter (d). The
results do not include dependent
scattering, which means they
can be applied to only small
particulate density (ρ). The
figure is redrawn from its
original publication [42]
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disappearance of the London penetration depth (λL). The
extinction coefficient thus would be correlated qualitatively
to the penetration depth of a magnetic field by E ∼1/λL in
superconductor particulates. Can this relation be extended
to thin-film superconductors?

Most investigations of magnetic field penetration into
superconductors deal with static external magnetic fields.
The familiar spatial decay law, under stationary conditions,
reads

H(x) = H0 exp(−x/λL) (4a)

with λL for high-temperature superconductors of λab = 150 nm
[35] and to at least λc = 1000 nm (Table 2.7 in [36]). Since
λc is large against grain thickness (about 0.3 μm in the c-
axis direction, Fig. 6b), all grains in a filament, irrespective
of their vertical position, would completely be penetrated
by the magnetic field, a hardly realistic interpretation. In the
following, the penetration depth, therefore, is understood as
that of the filaments, with almost zero porosity.

For describing the penetration of time-dependent mag-
netic fields, we can estimate the spatial dependence of the
field decay if we insert the Maxwell equation, curl E =
−dH/dt , into the first London equation, E = λ2

LdJ/dt . This
yields

λ2
Lcurl dJ/dt + dH/dt = 0 (4b)

see Huebener [34] (p. 6). Using curl H = J, Huebener
obtains

λ2
Lcurl curl dH/dt + dH/dt = 0 (4c)

from which div grad dH/dt = (1/λ2
L) dH/dt and its time

dependent solution is obtained

dH(x)/dt = dH0/dt exp(−x/λL) (5)

In both static and time-dependent magnetic fields, the
spatial dependence of the decay of H is the same.

Let us now compare the spatial decay of dH(x)/dt with
the decay of directional radiation intensity (i′) given by
Lambert-Beer’s law, physically a completely different decay
process, but the spatial structure of both decay laws again is
the same.

Consider a harmonic, plane electromagnetic wave, with both
its electrical and magnetic field vectors, E and H, in phase

E(z, t) = [Ex(z, t), 0, 0] = [E0 cos(ωt − kz), 0, 0] (6a)

H(z, t) = [0, Hy(z, t), 0] = [0, H0 cos(ωt − kz), 0] (6b)

In vacuum, the vectors E and H are oriented perpendicular
to each other. They are also perpendicular to the wave
propagation vector (k). Assume that the wave impinges
under right angle onto a flat (x, y) superconductor surface
(Fig. 9a). E and H then oscillate in planes parallel to this
surface. Conservation of energy is indicated by the Poynting
vector, S = E×H.

The Poynting vector represents momentary radiation
energy density (time-dependent radiative flux) penetrating
in z-direction into the sample; dimension of S is expressed
in W/m2. Radiation intensity (i′) of a beam, on the other
hand, is described by the radiative energy flux per unit
solid angle and per wavelength interval; dimension of i′ is
W/(m2/sr/μm). Restriction of the intensity “per solid angle
(steradian)” and “per wavelength interval (μm)” is of no
importance for comparison of the spatial, directional decay,
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Fig. 9 a Orientation of the vectors of electric and magnetic fields
(E and H, respectively) and of propagation vector (k) of a
harmonic electromagnetic wave (schematic and in vacuum). The
dashed lines (triangle) denotes an example of intermediate x, y-
planes all positioned within a flat superconductor and all parallel to
superconductor surface. The impact of a complex refractive index of
the superconductor on E and H is neglected. b Extinction coefficients,
E (1/m), and specific extinction cross sections, QExt, of YBaCuO
123, vs. radiation temperature. The E coefficients are obtained
from comparison of the IR radiation penetration depth (1/E), with
the London penetration depth (λL) of an external, time-dependent
magnetic field. The QExt is given for one cylindrical particle (compare
text for explanations). The penetration depth (λL), here the value λab
of mid-IR radiation incident perpendicular to the crystallographic ab-
plane, is about 150 nm (measured in [35]; screening currents are
flowing in this plane)
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provided solid angle and wavelength intervals are small.
Decay of the radiation intensity thus can be described by
decay of its magnetic field vector, H. Both vectors Hexp and
Hmid−IR are of the same dimension.

If magnitude of the H field and intensity (i′) are not
too large, the superconductor cannot distinguish between
an experimentally applied, time dependent magnetic field
(Hexp, which means in a standard field penetration
experiment) and the radiation field vector (Hrad) in the
Poynting vector of an incident beam. This works if field
orientations and frequency are the same. Frequency is given
by ω = c/
mid−IR, where c is the velocity of light and

mid−IR is the wavelength of the incident radiation, in
this case the mid-IR wavelength. Under these conditions,
the exponents, −x/λL, and −τ = −Ex, are independent
of the corresponding magnitudes of magnetic field and of
radiation intensity.

The formal identity of relations (a) and (b)

(a) The spatial dependence of magnetic field decay in
a superconductor flat slab (with field parallel to the
surface), dH(x)/dt = dH0/dt exp (−x/λL)

(b) The spatial dependence of directional radiation
intensity decay (incident under right angle onto the
slab at x = 0), i′(τ )/i′(0) = exp(−τ )

then allows the extraction of the extinction coefficient (E)
from the identity of the exponents (−x/λL) and (−τ =
−Ex), certainly within only small ranges of particle size,
temperature and position x. Superconductor temperature
should be fairly below critical temperature. This means the
exponents should not be too small to assure both decay laws
approaching zero field or zero directional intensity within
the filament and at approximately identical positions.

This extraction works without explicit, detailed calcu-
lation of extinction cross sections (QExt) from particulate
properties.

Dependence on temperature of the obtained extinction
coefficient is shown in Fig. 9b for YBaCuO 123. The
standard BCS expression for the temperature dependence of
the penetration depth (λL) has been applied. Near-critical
temperature induces a rather strong dependence of E on
temperature. The comparison therefore should be restricted
to temperature not very close to TCrit.

Results for BSCCO 2212 and 2223, obtained with the
same estimate, will be shown later (in Fig. 19a, we have
E of about 106 (1/m) from this approach; for comparison,
the result with Nb3Sn from the same approach amounts to
E = 107 (1/m).

4.2 Multi-layer, Radiation ScreenModel

This method interprets the single filaments in a BSCCO
2223 multi-filamentary conductor (Fig. 6a) and the thin

BSCCO 2212 grains (Fig. 6b) as consisting of staples
(columns) of separate, approximately flat, plate-like thin
grains. In a second step, in particular, Fig. 6b suggests com-
paring the thin grains and their orientation perpendicular to
the thermal gradient, with thin, highly reflecting radiation
screens, arranged in parallel.

This reflects an engineering concept well known from
the evacuated, multi-layer super-insulations in cryogenic
applications. There, a number of up to 40 highly reflecting
radiation screens (thin metallic or metallised polymer foils)
in a narrow, evacuated insulation space either are arranged
in parallel to the walls of a rectangular container, or the
screens are wound in spirals around a liquid gas storage
tank, to reduce radiative heat losses.

While the thin grains in Fig. 6a are slightly bent and
the solely geometrical aspect optically little resembles flat
screens, the grains in Fig. 6b come closer to the point. In
both cases, because of their thermal transport properties,
with a high degree of anisotropy of current and thermal
transport in the high-temperature superconductor materials,
heat transfer in horizontal direction (in the crystallographic
ab-planes of the grains of Fig. 6a and b) is much larger than
that in vertical (c-axis) direction. The degree of anisotropy
in YBaCuO 123 is in the order of 10 to 15, but is particularly
large, by more than 1 order of magnitude, in BSCCO
2212 and 2223. From the heat transfer view, the grains at
least in Fig. 6b, and their blocking of radiation, therefore
can be modelled approximately as flat, thin-film radiation
obstacles oriented perpendicular to temperature gradient.

In Fig. 6b, the lateral (x, y) dimension of the grains is
between about 300 μm × 400 μm, which is large against
grain thickness (about 0.3 μm) and (vertical) clearance
between grains (about 10 nm or below). Dimensions in
lateral direction are not very important for the present
radiation exchange problem as long as the radiation
obstacles, i.e. the grains, are arranged as staples and the
particles see their closely located neighbours, provided they
are of approximately equal geometrical size.

Let εWall and εFoil denote the thermal emissivity of
flat walls of a container that houses a multiple N of
highly reflecting foils arranged in parallel. Under stationary
conditions, the residual net radiative flux, over infinitely
extended screens, is given by

q̇Rad = q̇Rad,0/[1 + NηWall/ηFoil] (7a)

see Kaganer [33] (pp. 33–35) for its derivation, with plane
shields and with both thermal emissivities (ε) that are very
small. In (7a), we have ηWall = εWall/(2 − εWall) and
ηFoil = εFoil/(2 − εFoil), as reduced emissivity.

In reality, the lateral clearance between the grains in
Fig. 7a and b is large so that radiation will advance through
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the voids. However, for determination of the extinction
coefficients (as it is a local quantity), it is sufficient to

either restrict the analysis to the real lateral dimen-
sions of the grains (which means, we do not con-
sider radiative flow over total insulation surfaces).
In Fig. 6b, the lateral dimensions are large against
mid-IR wavelength,

or decide for the following that the grains are treated
as if they were infinitely extended but with consid-
erable holes between the grains (a quasi-perforation
of the screens, like the very small perforations that
are usually applied in thermal super-insulations to
facilitate evacuation of the space in between).

The second alternative will be applied in the following.
The term q̇Rad,0 in (7a) denotes the radiative heat flux
without foils (N = 0)

q̇Rad,0 = ηWallσ
(
T 4

1 − T 4
2

)
(7b)

where T1 and T2 are the temperature of flat hot and cold
walls of an evacuated container. The factor σ denotes the
Stefan-Boltzmann constant.

If we apply (7a) and (7b) to the staples in Fig. 6a, b, the
emissivity (εWall) of the wall would be given by the matrix
material (Ag), of which the emissivity, at the wall/grain
interfaces, due to the manufacturing process is certainly
larger than the emissivity of a clean, polished, optical
quality Ag surface (below 0.01).

The emissivity of the grains is much larger, certainly in
the order εGrain = 0.9, but hardly can be measured. Below,
in Fig. 10a and b, we will test by means of a radiative
exchange model how strongly in practice the εGrain would
influence the calculated extinction coefficients. All grains
approximately have the same (reduced) emissivity, ηFoil =
ηGrain, and the size of the opposite surfaces between any pair
of grains, in a staple, is approximately constant.

The ratio q̇Rad,0/q̇Rad is equivalent to hemispherical
radiation transmission. This ratio can be simulated by means
of the (radiative) two-flux model. This model is a well-
known method in radiative transfer (see e.g. [17], pp.
491–494, or a short description in [37]).

The two-flux model is explained in Fig. 10a. Integration
of the directional intensities, i′+ and i′−, over the upper
and lower half-spheres yields oppositely oriented radiative
fluxes, q̇+ and q̇−. The transmittance through a slab
of thickness (x = D) is calculated from the ratio
q̇+(x=D)/q̇+(x=0). A reasonable assumption is that
scattering is isotropic (it would not be realistic to assume
clean, optical surface quality of the grain surfaces). We then
obtain for the transmittance

q̇Rad/q̇Rad,0 =
[(

1−β2
)

exp (−αD)
]/(

1−β2 exp(−2αD) (8)
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Fig. 10 a Schematic description of the two-flux model for radiative
transfer. The model considers directional intensities (i′) and hemi-
spherical radiative fluxes (q+ and q−, indicated by the half-spheres)
obtained after integration of the i′ over solid angle. Anisotropic scat-
tering can be treated with N-flux extensions of this model (the method
of discrete ordinates [17], pp. 495–502, or a short summary in [37]).
But it would not be realistic to assume strong forward scattering or
predominantly forward emission from the metallic screens. b Extinc-
tion coefficients, E (1/m), and specific extinction cross sections, QExt,
of YBaCuO 123 (dark blue) and BSCCO 2212 (dark yellow sym-
bols), vs. radiation temperature. The extinction coefficients (E) are
estimated from comparison of the transmittance of one filament of
30 μm thickness obtained with the cryogenic multi-foil model. Pre-
diction of hemispherical transmittance, in dependence of E, is made
with the two-flux model (see text for explanation). The QExt, given
for one cylindrical particle, is calculated from the E using the densi-
ties of the particle bed and the solid material. All results are calculated
with the hemispherical emissivity, εGrain = 0.9 const (a sensitivity test,
at constant temperature, with 0.6 ≤ εGrain ≤ 0.99, showed only weak
dependence of E on this parameter)

with α = 2E(1 − �)1/2, β = [1 − (1 − �)1/2]/[1 + (1 −
�)1/2], and � is the albedo of single scattering.
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Comparison of the ratio q̇Rad/q̇Rad,0 from (7a) and (7b)
of BSCCO 2212 grains (those in Fig. 6b) with (8) yields
the extinction coefficient E (the extinction coefficient is
contained in the factor α in (8)).

The result is shown in Fig. 10b (both E and QExt)
for BSCCO 2212 particles (and for comparison also for
YBaCuO), in dependence of radiation temperature. We
use the hemispherical emissivity εGrain = 0.9 const of
the BSCCO 2212 and YBaCuO 123 grains (dark yellow
and dark blue diamonds, respectively). Assuming the same
emissivity for both materials, the ratio q̇Rad,0/q̇Rad depends
only on the number of screens. The extinction cross section
(QExt) can be obtained by means of (3a) and (3b) from E.

The overall result, strong radiation extinction by super-
conductor grains and filaments, (E ≥ 1.2 × 107 1/m), does
not change substantially if εGrain runs from 0.6 to 0.95.
It is expected εGrain strongly exceeds 0.5, because it is a
ceramic material, and the surface roughness of the grains
certainly is large. A correction for dependent scattering will
not be applied: the radiation screen model is an extreme
case, namely zero-dependent scattering. But a correction
for quasi-perforations (the a large amount of voids between
the grains) has to be applied to the results, as shown in
Fig. 19b.

With thickness of the staple (the filament) in Fig. 6a of
about 30 μm, the extinction coefficients, E, in Fig. 10b are
large enough to get the optical thickness, τ ≥ 360, very
large against critical optical thickness, τCrit = 15. From
this second estimate, we provisionally conclude (before
results from Section 4.3 are available) that multi-filaments
prepared for current transport from BSCCO 2212 and
YBaCuO 123 conductors in the superconducting state will
be non-transparent to radiation.

But the approximations, (7a), (7b) and (8), neglect
possible penetration of matrix material in the BSCCO
conductors into the space between grains. Further, in (7a)
and (7b), the grains are treated as if temperature gradients
are zero over grain thickness. Possibly existing non-zero
temperature gradients across each radiation screen (grain)
would modify (7a) and (7b). Accordingly, there are risks
arising from application of also this model for an estimate
of the extinction coefficient; these risks will be discussed in
more detail in Section 5.

4.3 Extinction Cross Sections from Application
of Rigorous Scattering Theory

The third method first applies in a first step to single
regularly shaped particles. Modifications will be applied
later to approach the real (flat, plate-like) geometry of the
superconductor grains.

Electromagnetic scattering theory involves the solution
of the Maxwell equations at the interface between two

media that are characterised by different indices of
refraction. The following calculations are confined to only
YBaCuO 123 quasi-particulate superconductors (refractive
indices for the BSSCO conductors are missing). The applied
refractive indices are those of thin films (the extinction
coefficient (E) is defined per unit length and thus does not
depend on thickness).

4.3.1 Refractive Indices of YBaCuO Thin Films

In the normal conducting state, standard description of the
complex permittivity, ε(ω), of YBaCuO thin film includes
a two-component model (see e.g. [24]) with a free-carrier,
temperature-dependent absorption (Drude) term, a mid-
infrared (Lorentz) term and a constant, high-frequency
contribution

ε(ω) = εDrude + εLorentz + εHF (9a)

The Drude parameter describes accelerated free electrons
that are subject to an electron scattering rate. The Lorentz
term applies to bound electrons, here with a broad, mid-IR
absorption band and a damping constant (see below; detailed
descriptions are provided in [18–24]). In the present case,
only excitation of vibrational states in the IR spectrum is
included in the refractive indices derived from (9a) and (9b).

In the superconducting state, the free-carrier part of ε(ω),
using the standard two-fluid model, is split by the fraction
(fS) of electrons that are condensed to electron pairs (index
S) while the remaining part (1 − fS) remains to be normal
conducting. We have the following in the Drude-Lorentz
model:

ε(ω) = fSεS + (1 − fS)εDrude + εLorentz + εHF (9b)

If T → TCrit, fS → 0; this reduces ε(ω) to only the classical
Drude and Lorentz terms (apart from the high frequency
contribution, εHF, that is usually neglected in the analysis of
the mid-IR spectra of superconductors).

If T → TCrit, fS → 0 yields the expression of the ε(ω)
for a normal conducting metal or a dielectric. There is no
jump of ε(ω) at T = TCrit.

Equations (9a) and (9b) need discussion: a standard
assumption is to consider the normal-state resistivity
part, the (1 − fS) fraction, as constant, down to zero
temperature, which implies also the fS, the fraction of
electrons condensed to pairs, is constant. See, for example,
[22, 23]; there, the fS fractions are kept fixed, at a few
selected, different temperatures, in a multi-parameter fit to
experimental reflectance and transmittance data.

In both references, the fS fractions apparently do not
include dynamic equilibrium states (these include decay
of electron pairs and recombination) and non-equilibrium
processes. This is an obvious lack of the procedure since
there is a strong temperature dependency of the density (nS),
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the density of electron pairs, by which the fS fractions are
defined, fS = nS(T )/nS(T = 0).

The total set of electrons available for superconductivity,
the fraction (fS), after any disturbance that would lead to
any temperature variation, has to be re-organised according
to the Pauli principle. A numerical model on how to perform
this calculation has been suggested in [38] (and meanwhile
applied in [7] to a coated superconductor). The model
involves decay and recombination of electron pairs after
a temperature variation (in this paper, it is, for simplicity,
called the “microscopic stability model”).

The model includes the Racah problem, namely the
expansion of an anti-symmetric N-particle wave function
from an N − 1 parent state. The situation is the analogue
to calculation of “coefficients of fractional parentage” in
atomic and nuclear physics: if the anti-symmetric, total
wave function of a nuclear state incorporating N of nucleons
shall be formulated, it can formally be expressed by
appropriate coupling of an anti-symmetric wave function
of (N − 1) nucleons with a one-particle wave function.
The calculations thus have to be performed sequentially,
following a chain of events (recombination or decay) that
finally yield the new dynamic equilibrium electron state.
The Yukawa interaction in this model is taken as a tool to
estimate the recombination times.

The more the temperature approaches its critical value,
the longer takes it the electronic system to reach a new
dynamic equilibrium; this is simply the consequence of the
Yukawa interaction and, near TCrit, the strongly increasing
number of decay products and, finally, the Pauli principle.
Therefore, fractions (fS) in (9b) are not constants but
strongly depend on time and temperature. The same applies
to ε(ω) and all its components. All these are dynamic
variables.

The concentration ratios, fS = nS(T )/nS(T =0), of elec-
tron pairs obtained from this model continuously converge
to zero when T → TCrit. There is no sudden jump to zero of
nS(T ) when T → TCrit and, consequently, no sudden jump,
but a continuous variation, of the ε(ω) from superconduct-
ing to values of the normal conducting state. See Fig. 11b.

The calculation of the nS(T ) involves the probability
for exciting the electron system. This is proportional to
exp[−�E(T )/kT], under equilibrium conditions. With the
electron density, at temperature close to absolute zero, of
about 6 × 1027 1/m3, of which about (1/2)(1/10) would
be available for pair formation, and for simplicity, the
standard (BCS) temperature dependence of �E(T ) =
1.74�E(T =0)(1 − T/TCrit)

1/2, with binding energy (�E)
taken as temperature dependent and �E(T =0) = 60 meV,
we obtain the nS(T ). The final step in the microscopic
stability model then is application of the Yukawa interaction
and the Pauli principle to obtain the decay rates of YBaCuO,
as given in Fig. 11a.
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Fig. 11 a Decay rates of electron pairs in YBaCuO at temperature
very close to critical temperature. At T = 91.99 K and even more at
T = 91.999 K, the system, though in dynamical equilibrium, should
increasingly be stable in relation to the state at T = 91.5 K or to
any other, earlier state (at still lower temperature) because of the fast
decrease of the decay rates with increasing temperature. b Relative
density, nS(T )/nS(T =4K), of electron pairs (fraction (fS) to be used
in the permittivity, ε(ω), in (9b)), in dependence of temperature,
calculated for comparison of the predictions from the microscopic
stability model (dark blue) with results from (8) in [21] (light green
diamonds). Dark yellow diamonds indicate the (relative) minimum
density of electron pairs that would be necessary to generate a critical
current density of 3 × 1010 A/m2 at 77 K in zero magnetic field

In order to check the convergence of the nS(T ) and
of the decay and recombination rates, and assuming ther-
mal fluctuations near the phase transition are absolutely
zero, we may allow the conductor temperature numerically
and very closely, in the course of the conductor tempera-
tures T (x, y, t) in Figs. 1a and 2a (or during other distur-
bances), approaching the critical temperature (TCrit=92 K
in YBaCuO 123). Under this condition, checking of conver-
gence can be made at hypothetical conductor temperatures
like 91.999 K at which, because of T < TCrit and zero
thermal fluctuations, the conductor is still in the solely
superconducting state (this applies to all fS < 1).

Presently, assuming zero thermal fluctuations can be
accepted only as an approximation (second-order transitions,
like superconducting/normal conducting phase transitions
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at zero magnetic field, invariably imply fluctuations; see
Section 5.4.4 in [39]).

Under these conditions, the decay rates are small.
Between T = 91.99 K or 91.999 K and 91.5 K, the rates
decrease by 7 or 10 orders of magnitude, respectively, which
means the (yet) dynamical states at 91.99 K and 91.999 K
are almost (and increasingly) stable in relation to the state
at T ≤ 91.5.

Calculation of the extinction cross sections (QExt) at T =
91.99 K and at temperature even more close to T = TCrit thus
will allow to clearly distinguish between superconductor
states before and after a phase transition. This is because the
refractive indices of thin YBaCuO films, available at T =
300 K, are not very different from the refractive indices near
T = TCrit. Though this assumption, made in [19], appears
to be plausible, it should be checked since the suggested
extrapolation extends over the enormous range of 200 K.

The calculated concentration ratios, fS = nS(T )/nS(T ),
are shown in Fig. 11b. The fS fractions reported by Zhang
et al. [22] (Table 1) and by Kumar et al. [23] (Table 1)
are clearly below these fractions. In [23], the authors obtain
fS = 0.35 and 0.25 at T1 = 10 K and T2 = 50 K against
the TCrit of about 81 K. But in both [22] and [23], the fS

fractions are parameters kept fixed, at rather small values,
within a multi-parameter fit onto experimental reflectance
and transmittance data. This does not seem very realistic and
is definitely contrary to the results (temperature-dependent

fS) obtained with the microscopic model and reasonable
expectations.

A simple check of this controversy can be made with
reference to the wavelength interval (�
) between incident
photon energy and the �E of the gap. We do not know the
cross sections of radiation/electron pair interactions. But the
fraction of black-body radiation within �
, calculated with
the F0−
T

in [17] (Appendix A), amounts to 18% of the
total spectrum. The fractions (fS) should be located within
this percentage (the probability (p) that electron pairs would
be broken by IR photons is below 1).

One would therefore expect larger fS than that reported
in [23], also in view of the large temperature differences of
T1 and T2 from TCrit (note the large uncertainty of 20% that
the authors assign to the fS fractions). The same argument
applies to the 0.7 ≤ fS ≤ 0.85 reported in [22] for T1

between 10 and 45 K.
Yet, both papers (Fig. 1 in [22] and Figs. 4 and 6 in

[23]) report good agreement with measured reflectance and
transmittance results. A possible explanation is that the
(multi-parameter) fits of the reflectance and transmittance
data really might not very sensitively depend on the
parameters fS (multi-parameter fits, according to all
experiences, can be quite arbitrary).

It is interesting to compare the predictions by the
microscopic stability model of the fractions (fS) also with
the ratio nS(T )/nS(T = 0) = 1 − (T /TCrit)

4 reported in

Table 1 Parameters applied for the calculation of εDrude, εLorentz and total permittivity (ε) by means of (9a), (9b), (12a) and (12b); nomenclature
is from [23]

Dimension References Average

[23] [19] [22] [20]

Parameters in (9a), (9b), (12a) and (12b), all at TRad = 90.5 K
Wavelength 
max at TRad μm 32.02
Frequency (wave number) ω at 
max, 1/cm 312

Drude parameters
DC electrical conductivity, σDC 1/(ohm cm) 5778 5778 5778 5778 5778
Electron scattering rate, 1/τ 1/cm 150 500 100 180 232,5
Plasma frequency, ωp 1/s 5,419E+14 9,894E+14 4,425E+14 5,936E+14

Free electron contribution, εDrude 3016 5908 2124 3478 3631

Lorentz parameters
Plasma frequency, ωpe 1/cm 1.8e4 24,150 1.8e4 7800 1.69875e4
Center frequency, ωe 1/cm 1800 1800 1800 200 1400
Damping constant (bound electrons), γe 1/cm 5400 7500 5040 700 4660

Mid-IR band contribution, εLorentz 117 231 115 4154 1154

High frequency contribution, ε∞ 5 4 4 25 9,5

All data are for the radiation temperature (TRad) = 90.5 K. From TRad, wavelength (
max) is calculated by application of Wien’s displacement law,
at which the hemispherical radiation intensity, emitted into vacuum, reaches its maximum. The average taken of the corresponding parameters
serves for a separate calculation of refractive indices (solid black diamonds in Fig. 12a and b) to compensate uncertainties arising from
extrapolation of the listed parameters to temperatures near critical temperature
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(8) of [21] (though it is not clear that this equation was
derived for dynamic equilibrium states). The comparison is
shown in Fig. 11b. The microscopic stability model predicts
the density of electron pairs in a spherical volume of which
the radius is calculated in dependence of temperature, while
the said (8) in [21] is related to the overall volume of
the superconductor (the comparison thus is of only limited
significance).

Both predictions (trivially) agree in that the fractions
(fS) = nS(T )/nS(T = 0) should converge to zero when
T → TCrit (and to 1 when T → 0); these convergences are
confirmed in Fig. 11b. That the fS fractions obtained
from the microscopic stability model (dark blue diamonds)
are the larger ones is probably due to the dynamic
equilibrium decay and recombination processes included in
the microscopic stability model (the larger fS also would not
contradict fluctuation effects near transition temperature).

When T → TCrit, the strong decrease of the fS in (9b)
causes also a strong decrease of the permittivity (ε).

So far, the situation concerns the availability of refractive
indices of YBaCuO thin films. The situation becomes
definitely worse when refractive indices not of thin films
but of particulate, plate-like morphology are needed. The
indices reported by Kezuka et al. (Fig. 3 in [40]) in principle
could be used in the calculations for a thick YBaCuO
conductor. But the refractive indices are not specified by
frequency or wavelength (and are not as detailed as those
reported in [19]). Values n = 1.692, k = 0.403 and n =
1.629, k = 1.461, in m= n−ik, are much smaller than those
measured by Zhang et al. [19] and Kumar et al. [23] with
thin films.

The availability of refractive indices also of BSCCO
multi-filamentary conductor, with again a flat, plate-like
microstructure, is scarce, as before. We again find only
few single values, for only its real part, and mostly not
specified by frequency or wavelength and temperature.
Results reported by Sandilands et al. [41] indicate n = 5.8
for a bulk BSCCO 2212 sample at ω = 2000 1/cm, outside
the interesting range of frequency.

Therefore, the main conclusions of this section, to
promote radiative transfer calculations, can be summarised
as follows:

(a) Refractive indices should be calculated by an
appropriate model (this model is given by the standard
(9a) and (9b))

(b) The calculations of the fractions, fS(T ), should be
supported by a more realistic estimate than presently
used in the literature

Finally, using the imaginary part (k) of the refractive index,
the extinction (absorption) coefficient E = K = 4πk/
 (in
the Maxwell derivation) of the thin-film superconducting
state increases to about 107 1/m in the IR to mid-IR. But

a large imaginary part (k) not necessarily indicates strong
scattering.

4.3.2 Material Parameter Problems

Before the start of the calculations of QExt, we have to check
the following conditions (1a) to (4):

(1) Is the basic requirement, particles in a non-conducting
medium, to apply standard derivations of scattering
and absorption cross sections fulfilled within the fil-
aments? Strictly speaking, the electrical conductivity
(σ ) of the hosting material must be zero if the Mie and
Kerker results shall be applied. Fortunately, the space
between the grains (not between filaments) is empty
because the metal Ag, though highly ductile, is too
hard to penetrate during the manufacture of filament
and tapes into the tiny voids between the grains

(2) Only refractive index of YBaCuO from experiments
with thin films is available, at temperature strongly
below critical temperature. How can we approach the
indices near the phase transition?

(3) The fractions (fS) of the free-electron part of ε(ω)
depend on time and temperature and converge against
zero at temperature near its critical value. Can this
observation (convergence of fS) perhaps be exploited
to find an approach how the problem with scattering of
IR radiation by superconductors can be modelled?

(4) Solutions to the scattering problem reported in Born
and Wolf [26] and Kerker [27] can be applied not
only to dielectrics and metals but also to a perfect
electrical conductor (not a superconductor). Kerker
[27] (Chap. 6.5.2), in particular Fig. 6.13, predicts
very large extinction cross sections for very thin
cylinders in case the electrical conductivity is infinitely
large. Fortunately, this prediction was confirmed,
numerically in [42] and experimentally in [43]; see the
end of this section. Can we count on the reliability
of the procedure in case the conductivity of the base
material is that of a superconductor instead of a very
clean dielectric or metal?

Three more items complicate condition (4):

(4a) While a perfect conductor (like a superconductor)
under a time-dependent magnetic field generates per-
sistent screening currents, it does not show the Meiss-
ner effect. This means if we would apply the refrac-
tive indices of an excellent, clean, electrical normal
(metallic) conductor (perhaps from measurements
with thin films), and the Mie and Kerker [25, 27]
solutions or corresponding standard programs (writ-
ten for normal conducting particles), the result could
not be acceptable for the extinction cross sections of
superconducting particles.
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(4b) If transport current density (J) exceeds critical current
density (JCrit) either in the whole conductor cross
section or only locally (a situation like in Figs. 1a and
2a), the superconductor gets into flux flow resistive
states. As long as T < TCrit, the system still is a super-
conductor. Flux flow resistivity of BSCCO grains
was estimated in the order 10−7� m [6, 7]. Though
the superconductor is resistive, this does not mean
the Mie and Kerker solutions could be applied as if
the material was a classical (weakly resistive) normal
conductor.

(4c) With a single plane wave, derivation of the variation
of H(x, t) and B(x, t) into time- and space-dependent
components in a dielectric or in a metal immediately
follows from solely Maxwell equations and their deri-
vatives, like the Fresnel equations. This is different
with superconductors: variation of B and H, with
exponential decay in time and distance works only
if Maxwell and London equations are taken into
account. To which extent would this difference
request corrections of the Mie and Kerker solutions?

The physics of the interaction between a plane electro-
magnetic wave with the surface of small superconductor
particles has to take into account the following:

(j) The distribution of screening currents near the particle
surface

(jj) The resulting magnetisation (M) of the supercon-
ductor, items (j) and (jj) by appropriate boundary
conditions

(jjj) The Meissner effect, items (j) to (jjj) by inclusion of
the London equations into the solution procedure to
obtain the screening currents

All these items [(1) to (4), (4a) to (4c), (j) to (jjj)] are
elements of a macroscopic, continuum theory level. On the
microscopic level, the simultaneous presence of electron
pairs and their interaction with incident radiation, and of
quasi-particles (that condense to electron pairs at very low
temperature) and of normal conducting electrons, has to be
considered.

Presently, a solution procedure that satisfactorily would
take into account all these items is not available. A way out
of the material problem [items (1) to (4), (4a) to (4c), (j) to
(jjj)] has to be found.

4.3.3 AWay Out of the Material Parameter Problems

In Fig. 11b, the fractions (fS), under dynamic equilibrium,
converge to zero if temperature approaches its critical value.
Magnetisation M = −B = μ0H of the superconductor then
goes to zero as well.

This conclusion is obvious also if we look at the
scattered intensity of incident radiation: in the small particle

limit, scattered intensity is composed of two polarised
components (I1 and I2). In case of non-magnetic particles,
I1 and I2 describe the solely electric dipole radiation, while
in case of magnetic materials, a contribution from both
electric and magnetic dipoles has to be considered. For
spherical particles, Kerker et al. [44] (p. 766) report

I1 = (
2/4π2r2)x6[(ε−1)/(ε + 2)+(μ−1)/(μ+2) cos θ ]2 sin2 ϕ (10a)

I2 = (
2/4π2r2)x6[(ε−1)/(ε+2) cos θ+(μ−1)/(μ+2)]2 cos2 ϕ (10b)

In (10a) and (10b), 
 denotes the wavelength, r is the
distance to an observer, ϕ is the angle between the electric
vector of the incident wave and the scattering plane, x is
the scattering parameter (x = πd/
, with d the particle
diameter), θ is the angle between forward and backward
scattering directions and ε and μ are the relative dielectric
constant and magnetic permeability, respectively.

With χ as the magnetic susceptibility, reduction of μ =
1+χ to μ very close to 1 (the normal conducting value of μ)
reduces (10a) and (10b) to scattering of radiation by normal-
conducting particles, which, in turn, goes in line with the
convergence of the fraction (fS) to zero.

The calculations accordingly could be performed at
temperature very close to TCrit, if the number of residual
electron pairs still remains sufficiently large to carry a
critical current that as a screening current successfully
screens the interior of the superconductor against an
external magnetic field. Even a tiny fraction of electrons
condensed to electron pairs is sufficient to transport current
without losses, in particular screening currents, that all flow
with critical current density (JCrit).

If we restrict the interesting temperature interval, within
which the calculations shall be performed, to 91.9 ≤ T <

TCrit = 92 K for YBaCuO (or to 107.9 ≤ T < TCrit =
108 K for BSCCO), the density of electron pairs still must
satisfy a minimum condition to generate the critical current
density in dependence of the abscissa (temperature) values
in Fig. 11b. The minimum density is obtained from

JCrit(T ) = JCrit(T = 4 K)(1 − T/TCrit) = nS(T )vFermi2e (11a)

where JCrit = 3 × 1010A/m2 at 77 K, within this range
of conductor temperature; nS(T ) is the approximately linear
temperature dependence of the density of electron pairs;
vFermi is the Fermi velocity; and e is the elementary
electrical charge. The nS(T ) is obtained from the dark blue
diamonds in Fig. 11b, and the Fermi velocity, in YBaCuO
at about 4.5 × 105 m/s, is given by

vFermi = πξ0�(E = 0)/h (11b)
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where ξ0 is the coherence length in the ab-plane, �E(T =
0) is the energy gap and h denotes Planck’s constant. The
density, nS(T ), not only must be stable (though in dynamic
equilibrium), but the ratio fS = nS(T )/nS(T = 4 K) in
Fig. 11b must be at least in the order of 10−4 of the T = 0 K
value; compare the dark yellow diamonds.

Finally, to apply (9a) and (9b) for εDrude and εLorentz,
from which refractive indices are calculated, we have
the following for normal conduction (and using the
nomenclature of [23]):

εDrude = −ω2
P/[ω(ω + i/τ )] (12a)

where ωP is the plasma frequency and ω is the angular
frequency at which the calculations are performed. Below
critical temperature (1/τ = 0), (12a) reduces to

εS = εDrude(T < TCrit) = −ωP/ω2

with ω2
P = σDC/(ε0τ).

The Lorentz term, under normal conduction, reads

εLorentz = ω2
pe/[ω2

e − ω2 − iωγe] (12b)

where ωpe is again the plasma frequency, ωe is the centre
frequency of the absorption band and γe is the damping con-
stant. Equation (12b) is written for a single oscillator; inclu-
sion of higher-order oscillators has been treated in [18, 20]
but is not necessary in the present case.

All frequencies in (12a) and (12b) and thus also the
εDrude, εLorentz, the final ε and, as a consequence, all
refractive indices depend on temperature.

In the following, for YBaCuO, we have estimated the
refractive indices using (10a), (10b), (12a) and (12b) in
the interval 90.5 ≤ T ≤ 91.999999 K; the corresponding
fractions (fS) at these temperatures are calculated from the
microscopic stability model. Values of the DC electrical
conductivity, plasma and centre frequencies, electron
scattering rates and damping constants are listed in Table 1.

The results for the refractive indices do not sensitively
depend on the choice of the Lorentz parameters, but the
DC conductivity involved in the Drude component has to be
chosen carefully (as recommended, by linear extrapolation
to temperatures below TCrit). Radiation temperature is
converted to wavelength and frequency by application of
Wien’s displacement law (see the note at the beginning of
Section 5).

Results for the real (n) and imaginary (k) parts of the
refractive index, m = n − ik, are shown in Fig. 12a and
b. They are in rough agreement with Fig. 5 in [23] if their
measurements would be extrapolated to the 310 ≤ ω ≤ 320
1/cm in the present case.
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Fig. 12 a Real part (n) of the complex refractive index (m = n − ik)
of YBaCuO 123, calculated using (9a), (9b), (12a) and (12b); compare
text for explanations. Red, blue, and light green diamonds indicate
values from [20, 23] and [19], respectively (see also Table 1). The lilac
diamonds are for Ag. Black solid and open diamonds are mean values
(compare text). b Imaginary part (k) of the complex refractive index of
YBaCuO. The same symbols as in a

4.3.4 AWay Out of the Particle Shape Problem

The idea interprets the irregularly formed, flat plate-
like grains as being composed of subparticles of regular
shape (small cylinders) for which solutions of Maxwell
equations are already available. Like a casting mould, the
irregular, proper grain geometry in this model serves as
a 3D enclosure tightly filled with the regular subparticles
(likewise, a thin cylinder can be imagined as a straight chain
of spheres of the same small diameter).

The plate-like grains could also be divided into, or filled
with, tiny cubicles or spheres small enough that a uni-
form internal field approximation becomes accurate. This
approach (Ku and Shim [45]) is particularly interesting in
view of the Meissner effect and because randomly oriented,
chain-like agglomerates of small particles have unique scat-
tering characteristics, with the extinction roughly the same
when comparing results of agglomerates with the same
number of individual spheres.
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A disadvantage of the subparticle model arises from
dependent scattering, which includes far-field interference
and multiple scattering effects. By contrast, independent
scattering (the radiation field not influenced by neighbour-
ing particles), and no (far-field) interference of scattered
waves, would be an idealistic assumption that can be ful-
filled only if the particles are point-like. This is not the
case. Dependent scattering is taken into account in the next
section.

The advantage of the subparticle model is that the
calculation of the QExt of regular particles has frequently
been confirmed in the literature.

The plate-like grains of Fig. 7a–c are approximated, in
their horizontal (x, y) extensions, either by a series and
staples of densely arranged thin cylinders (the subparticles,
Fig. 13) or by a 2D dense array of spheres.

In case of cylinders, the direction of incident radiation
(z-direction) would preferentially be perpendicular to their
axes. The cylinder axes are arranged in parallel to the
direction of current flow (y-direction), which means
perpendicular to the crystallographic c-axis (z-direction).

Inspection of Figs. 6b and 7a–c suggests fixing the
subparticle diameters in this model to about 0.3 μm, the
apparent thickness of the thin grains in Fig. 6b.

The small subparticle diameter ensures that the ratio
of wavelength to particle dimension is large, the array
accordingly is a radiation continuum and the analysis can
be realised with the equation of radiative transfer and its
solutions.

The first approach (cylinders) also is consistent with
the direction of current (Fig. 13) and induced self-fields.

On the other hand, the spherical particle alternative has
the advantage that the result (corrections of the extinction
cross sections imposed by dependent scattering) could
be compared with predictions of the Percus-Yevick hard-
sphere model (see below). But current flow paths within
the grains then would frequently be interrupted (like in the
proper weak link problem by quasi-insulating obstacles).
The distance between such obstacles (contact resistances
with each of the other spheres) is strongly below the
spherical particle diameter (0.3 μm), which means a large
variety of contact resistances would reduce critical current.

For this reason, preference is given to the thin cylinder,
subparticle model (Fig. 13). With the length (lx) of one grain
of about 300 μm and its thickness (d) of 0.3 μm, we have
N = lx/d , about 1000 cylinders, arranged in parallel. From
the ratio of the N cylinder cross sections, ACyl = N(π/4)d2

in one grain, to the total grain cross section (AGrain), we have
the grain porosity, �Grain = 1−ACyl/AGrain = 0.215, or the
volume fraction (fV) 0.785. With the wavelength of about
30 μm, this yields the scattering parameter, x = πd/
, of
about 0.03 (usually an indication of strong absorption and
small scattering).

4.3.5 Dependent Scattering

Dependent scattering in the following is included into
this analysis by sole calculation of shadowing effects in
dependence of the single particle extinction cross sections.

Rigorous calculation of dependent scattering would have
to take into account dipole and multi-pole expansions of the
scattered amplitudes, excited by incoming electromagnetic

Fig. 13 Superconducting thin cylinders (view from top, schematic, not
to scale) applied for calculation of the effective extinction cross section
(QExt) of a grain due to dependent scattering (shadowing of neigh-
bouring particles). The grain, and its total number of thin cylinders
(the subparticles, light grey shaded), is enclosed in a red rectangle.
The figure illustrates the dependent scattering effect for one cylin-
der (dark blue shaded, located at a central geometrical position) onto

several single, neighbouring particle surfaces (enclosed in a blue rect-
angle; they are at least partly shadowed by this cylinder). Thickness
(in z-direction) of the grain (flat, plate-like particle) is d = 0.3 μm,
and horizontal dimensions (lx and ly ) are each between about 250 and
300 μm. The large yellow arrow indicates the direction of transport
current density, J
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waves, in each atom or molecule of all particles of an array
of closely arranged grains in a filament. Superimposing all
primary and secondary fields emitted from the array would
completely be impractical; the number of fields is too large
to reasonably handle the corresponding huge set of Maxwell
equations.

As an alternative, mixing rules like the Maxwell-Garnett
method could be applied, and another alternative is the
application of Eq. (16) in [45] to non-magnetic particles
of cubicle or of any other cell geometry in combination
with adjusted refractive indices (a step very similar to the
original Lorentz-Lorenz, the Clausius-Mossotti and the later
followed Maxwell-Garnett methods). Like the dipole and
multi-pole expansions, mixing rules would consider the
radiative transfer problem from an integral view of the
particle bed. Again, this appears to be too complicated or
would introduce still more uncertainties than listed in the
previous sections.

Also, approximations like the equivalent sphere concept
are not very attractive (the difference between the real
shape of the grains in comparison to a sphere with adjusted
diameter and refractive index appears to be too large to
yield acceptable solutions with reasonable computational
efforts. This applies to also other concepts investigated in
[45]. Also, ray tracing and Monte Carlo simulations of
radiative transfer in packed beds, though powerful methods
in general (compare e.g. Singh and Kaviany [37]), are not
very suitable for the solution of the very present radiative
transfer problem, again because of practical reasons: the
porosity of the grains is too small, and the geometrical shape
of the grains is too irregular, to limit the number of bundles
to a reasonable computational effort.

With the single-particle QExt of one cylinder, the CExt

exceeds the (geometric) particle cross sections (CGeom)
by this factor. Assuming, for example, QExt = 7 (odd
number, to avoid summations over half-cylinders), the total
QExt,total of one grain is not given simply by the number
NQExt = 7000. Instead, counting the number of cylinders
that fully or only partly contributes to the total overlap of
the cross sections and assuming there is no interference
of the radiation scattered from neighbouring cylinders, we
have QExt,total = 988. This large correction, by dependent
scattering, reduces the total radiation extinction within one
grain to an effective value, QExt,total/(NQExt) = 0.141,
about 1/7 of the naı̈ve estimate QExt,total = NQExt (radiation
scattered by one obstacle multiplied with their number (N)
yields total scattered radiation only if the obstacles are
strictly identical and if the clearance is large against the
wavelength).

This reduction applies to each grain in each of
the filaments. The calculated radiative flux, because of
penetration of radiation into the grains (instead of almost
zero penetration into the highly reflecting shields in

Section 4.2), is reduced by this factor to an effective value,
by an order of magnitude smaller than the proper radiative
heat flux (q̇Rad) through the stack of grains. The effective
optical thickness thus reduces from τ to only a fraction,
χτ0 = [QExt,total/(NQExt)]τ .

The second attempt (again modelling plate-like grains
by small regular particles) applies very small spheres. If
again d = 0.3 μm and with the same x, y-dimensions of
the platelet as before, we have a dense set of 106 spherical
particles in one grain. This yields the porosity �Grain =
1 − ASpheres/AGrain = 0.476.

With its analytic formula, the Percus-Yevick hard-
sphere model [31] takes into account the interference of
radiation scattered from neighbouring single or multiples of
spherical particles. The ratio of the effective extinction cross
(QExt,dep sc, under dependent scattering) to its regular value
(QExt) of single particles according to this model reads

QExt,dep sc/QExt = �4[1 + 2(1 − �)]−2 (13)

With the porosity �Grain = 0.476, we have
QExt,dep sc/QExt = 0.0123, by an order of magnitude
smaller than what would be obtained from simply count-
ing the number of shadowed spheres. This would yield
QExt,dep sc/QExt = 0.139, again for QExt = 7.

The large difference, 0.0123 vs. 0.139, can be explained
by the interference of scattered radiation from neighbouring
spheres. This is a definite manifestation of dependent
scattering (far-field interference and multiple scattering).

It is to be expected that similar, but probably less
severe corrections from interference effects would apply
to the optical thickness for the cylindrical particle model.
Unfortunately, there is no such model that, like the Percus-
Yevick hard-sphere model, would yield QExt,dep sc/QExt, in
dependence solely of its porosity.

The factors, χ = QExt,total/NQExt, apply to radiation
incident in z-direction and result from simply the extinction
cross sections being larger than their geometrical counter-
part.

4.3.6 Extinction Cross Sections of the Irregularly Shaped
Particles

Finally, for calculations of extinction cross sections (QExt)
and albedo (�) of YBaCuO 123, the cylindrical subparticles
(Fig. 13) are used as a tool, with the refractive indices from
Fig. 12a and b, at the same radiation temperatures, for the
particle diameter 0.3 μm.

Results are shown in Fig. 14a and b in dependence of
radiation temperature. The same calculation for BSCCO
2212 subparticles is performed with refractive indices
obtained from the components of ε(ω) reported in [46].

Radiation temperature needs a comment. Contrary to the
radiation temperature, TRad = [(T 4

1 − T 4
2 )/(T1 − T2)]1/3,
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Fig. 14 a Extinction cross section (QExt) of IR and mid-IR radiation
interacting with cylindrical YBaCuO 123 and BSCCO 2212 pseudo
(sub)-particles (explained in Fig. 13) of 0.3 μm diameter, in
dependence of radiation temperature. The results are calculated from
(9a), (9b), (12a) and (12b); compare text for explanations. Diamonds
(red, blue and light green) are calculated for the YBaCuO conductor
using the parameters from [20, 23] and [19], respectively, and the lilac
diamonds are for Ag. Full, dark yellow circles are for the BSCCO
2212 superconductor. For YBaCuO, solid black diamonds (average 1)
indicate the QExt calculated with the arithmetic mean of each of
the Drude and Lorentz parameters (like σDC, ωpe and ωe); open
black diamonds (average 2) indicate the arithmetic mean of all QExt
obtained with the individual dielectric parameters. Because calculation
of the QExt by scattering theory is highly non-linear, both averages
(1 and 2) are not necessarily identical. b Albedo of single scattering for
the cylindrical YBaCuO 123 pseudo (sub)-particles. For identification
of the diamonds and of averages 1 and 2, compare a

that is a characteristic variable in the radiative diffusion
model, with T1 − T2 as the temperature difference taken
over a slab of a non-transparent sample, here TRad is
the local temperature within the sample (obtained from
the temperature difference over a slide of infinitely small
thickness). If not otherwise specified, TRad either is used
as an input parameter to the radiative transfer calculations
or corresponds to the wavelength where the maximum
of black-body radiation into vacuum is observed (Wien’s
displacement law).

The magnitude of QExt (Fig. 14a) substantially exceeds
the corresponding values of Ag particles (Fig. 8). Temper-
ature dependence of extinction cross section and of albedo
(Fig. 14b) reflects the strong temperature dependence of
the fraction (fS) in Fig. 11b. Absorption dominates in the
extinction cross section, at this particle diameter.

The QExt is converted to the extinction coefficients (E)
using, in (3b), the densities ρ0 = 5968 and ρ = 4687 kg/m3

(the density (ρ) of the grains is explained in the next
subsection). Results are shown in Fig. 15.

The corrections (χ) for dependent scattering obtained
with the cylindrical particle approach are substantial (even
though interference effects cannot be included in this simple
model). With a polynomial approximation of the curve χ

vs. QExt, comparison before and after the application of
this correction to the extinction coefficients (E) is shown in
Fig. 15, in dependence of radiation temperature (the original
QExt is from Fig. 14a).

The total extinction cross sections (QExt) of a grain
results from the additive, layer-by-layer, extinction cross
sections induced by the cylindrical subparticles. For
simplicity, these can be considered arranged as a column
of cylinders stapled in z-direction, the direction of incident
radiation. The column is described by the same extinction
coefficient (E, defined as the decay of radiation per unit
length) as only one layer, and the correction factor (χ ) of
this one layer covers also the reduced radiation extinction
generated within the total thickness of a single grain.

So far, the calculations for YBaCuO 123 thin films were
performed. Calculations of also the refractive indices of
BSCCO 2212 have been performed with the data from
[46]. With the reported large, in-plane optical conductivity
in the permittivity (ε) of the meta-material (a layered
superconductor with strongly anisotropic properties), and
the in-plane real part of ε that is strongly negative, the
imaginary part of the permittivity increases to very large
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Fig. 15 Extinction coefficients (E) of YBaCuO 123 and BSCCO 2212
before and after application of the correction resulting from dependent
scattering to the QExt. The diamonds and full circles are identified
from the caption to Fig. 14a and b
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values at the frequency below 1013 1/s. This results in
large imaginary parts (k) of the refractive index m (besides
small n). The extinction coefficients become very large, and
the albedo converges to � = 1, almost pure scattering.

As a concluding remark, it is not clear whether fS →
0 implies also electron/phonon coupling to converge in
a similar manner to a fixed rate, or whether there is a
corresponding jump of this coupling at the phase transition.

4.4 Optical Thickness of a Single Filament
and of a Tape

Results obtained for the extinction coefficients (E) now
have to be checked whether, under these conditions, the
optical thickness of grains and filaments still exceeds τCrit =
15.

The optical thickness (Fig. 16) of one BSCCO 2212 or
2223 filament, or of any other aggregate of grains if the total
thickness is D ≥ 30μm, calculated using the extinction
coefficients (E) from Fig. 15 and accounting for dependent
scattering, is substantially larger (τ about 100) than the
critical optical thickness (τCrit = 15). This applies to also
the thick YBaCuO conductor in Fig. 7c.

The optical thickness of the grain-like constituents (again
as seen under the radiative transfer aspect) in the thin films
of Fig. 7a and b of a coated conductor is much smaller:
the optical thickness of a bare, 2-μm-thick YBaCuO film,
again under dependent scattering, amounts to only about
τ = 10. But in coated conductors, there are thin interfacial
layers between superconductor and metallisation (Ag) and
between superconductor and buffers, plus the Ag layer itself
(Fig. 2b). These increase the active thickness of the radiation
obstacle to 3–5 μm. Thin films in coated conductors are
non-transparent to mid-IR radiation.
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Fig. 16 Optical thickness (τ ) of a thick YBaCuO conductor and for
BSCCO filaments calculated for independent (above) and dependent
(below) scattering. The diamonds and full circles are identified from
the caption to Fig. 14a and b

The result for the 30-μm-thick BSCCI filaments, or
for a thick YBaCuO conductor and for the coated, thin-
film YBaCuO conductor, confirms that application of the
additive approximation in the finite element calculations of
transient temperature distributions (Figs. 1a and 2a) and in
corresponding figures of the papers [4–7, 12, 13] (not all
confined to sole superconductivity) was justified, and the
radiation contribution to total heat transfer was correctly
simulated.

A scan along the vertical, solid red line in Fig. 1b hits
a sequence of different, but strongly absorbing, very thin
normal conducting and superconducting material layers.
With dgrain = 0.3μm, dFilament = 30μm, dAg = 25μm and
DTape = 300μm, we have τ = τ1 +τ2 + τ3 + . . . τN at about
1.2×104. The final ratio i′(x)/i′ (0) of directional intensity
is practically zero.

For comparison, predictions for the extinction coeffi-
cients of cylindrical particles, made of an electrically highly
conducting normal metal (not a superconductor), have been
confirmed previously [43] using metallised glass fibres.
Experimental E


∗/ρ obtained for double-sided, coated
borosilicate glass fibres is in the order of 5 m2/g, even
at T = 300 K (Fig. 17). These are the largest specific
extinction coefficients that ever have been reported for a
dispersed, solid particulate medium.

The tendency predicted in Fig. 8 is confirmed (very large
extinction coefficients obtained with small particle diameter
and at low temperature). Since this is an extreme case of
radiation/particle interactions, the agreement supports the
calculations reported above of the extinction cross sections
of superconducting particles by the same numerical tools as
used with the metallised glass fibres.

Since high-temperature superconductor fibres of diam-
eter below 100 nm are not available, glass fibres coated
with thin superconductor layers might be a manageable
way to also experimentally confirm superconductor grains

Fig. 17 Specific extinction coefficients (E*/ρ) of thin, metallised
glass fibres (coated with Al). The figure is redrawn from its original
publication in [43]
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are non-transparent to thermal radiation. A first attempt
was made [32] (Section 6.3) with a low TCrit supercon-
ductor evaporated on thin glass fibres, d ≤ 100 nm. In a
LHe-cooled magnetometer, the Meissner effect was clearly
demonstrated, but transmission measurements at T < TCrit

still have to be completed.
The albedo (�) of single scattering by metallic and

dielectric grains was calculated in [42] again using the
computer program written by Bohren and Huffman [29].
Figure 18 shows results of the calculations for Ag cylinders
and dielectric fibres, in dependence of particle radius (r).
The calculations were performed with spectral, complex
indices (m) of refraction of Ag and borosilicate glass, at
the wavelength (
) = 5μm; the ratio 
/r of wavelength
to particle dimension (r) thus is very large so that again
the ensemble of grains in a fibre can be described as a

Fig. 18 Albedo of single scattering by dielectric and metallic, thin
cylindrical particles, vs. scattering parameter (x = πd/
), with d and

 as the particle diameter and wavelength, respectively. The dashed
curve calculated with the large imaginary part of the refractive index
indicates strong absorption in a metal (here, Ag). The figure is redrawn
from [42]

radiation continuum. At very small particle radii, the albedo
converges to zero.

The extinction cross sections QExt of both types of
normal conducting, cylindrical particles (Ag and glass
fibres) thus almost completely rely on absorption: with the
extinction coefficient E = S + A, using S and A as the
scattering and absorption coefficients (like E of dimension
[1/m]), respectively, and � → 0 for r → 0, we have, with
S = �E and A = (1 − �)E, the result E = A.

But the albedo of the superconducting cylinders
(Fig. 14b) is smaller, with exception of the BSCCO 2212
particles where the albedo (�) is almost equal to 1.

1,0E+05

1,0E+06

1,0E+07

1,0E+08

85 90 95 100 105 110
Radiation temperature (K)

Ex
tin

ct
io

n 
co

ef
fic

ie
nt

, E
 (1

/m
)

BSCCO 2223

YBaCuO 123

BSCCO 2212

1,0E+05

1,0E+06

1,0E+07

1,0E+08

85 90 95 100
Radiation temperature (K)

Ex
tin

ct
io

n 
co

ef
fic

ie
nt

, E
 (1

/m
)

YBaCuO 123

BSCCO 2212

(a)

(b)

Fig. 19 a Comparison of the results obtained with the three different
methods (Sections 4.1 to 4.3) to obtain extinction coefficients, all
at temperature close to critical temperature. Diamonds, circles and
triangles indicate results from rigorous scattering theory (Section 4.3),
the cryogenic screening model (Section 4.2) and the comparison
between the penetration depths (Section 4.1), respectively. Results
from the screening model are given for constant hemispherical,
thermal emissivity (ε = 0.9). Compare text for explanations. Magnetic
field (London) penetration depth (λL), perpendicular to the ab-plane
(with screening currents in this plane), of BSCCO 2212 and 2223
amounts to λab = 200 nm to 300 nm and 150 nm, respectively;
these values are from [36] (Table 2.7), and the dependence of λab on
temperature is λab = λab(4 K) [1 − (T /TCrit)

4]0.5 (small triangles). For
BSCCO 2212, λab = 205 nm, and a linear temperature dependence,
λab = λab(0) (1 + αT ), as reported in [61] for a single crystal, has
been applied (large triangles). b Comparison of the results obtained
with the three different methods (Sections 4.1 to 4.3) now including
corrections from dependent scattering according to Fig. 13, and for
quasi-perforations in the radiation screen model
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4.5 Comparison of the Results Obtained
in Sections 4.1 to 4.3

Figure 19a shows the comparison between extinction coef-
ficients (E) obtained for the (quasi-) particulate supercon-
ductor YBaCuO 123 and for the particulate BSCCO 2212
and BSCCO 2223 superconductors using the three differ-
ent approaches in Sections 4.1 to 4.3 (triangles, circles
and diamonds, respectively). The extinction coefficients
of the three materials, before corrections from dependent
scattering are applied, safely exceed E = 106 (1/m).

With corrections due to dependent scattering, the agree-
ment between the extinction coefficients obtained from the
three independent methods is further improved (compare
Fig. 19b).

For the radiation screen model, a correction is needed
for the transmission windows (quasi-perforations) between
the grains. The literature reports substantial contributions
to radiative flux by radiation windows even if perfora-
tion is tiny, in total just 1% or below of the total surface.
There is also radiation propagating parallel to the sur-
faces. In the present case, perforation is large. Inspection
of Fig. 6a and comparison with experimental data sug-
gest the effective radiative flux increases strongly, by about
1 order of magnitude (in other words, radiation screens
consisting of an array of flat, plate-like particles, even if
evacuated, would not be very effective to reduce radia-
tive losses in cryogenic engineering). This yields a corre-
sponding decrease of the effective extinction coefficients
calculated in Section 4.2. The final result is shown in
Fig. 19b.

The agreement of the results obtained with scattering
theory and the cryogenic screening model (blue diamonds
and circles, respectively) for YBaCuO 123 is surprisingly
good. Even for BSCCO 2212 (light red diamonds and
circles), the corresponding deviation is within a factor
of about 3 (not catastrophic in view of the complicated
approximations and calculation steps).

4.6 Comparison of the Results with Normal
Conductors

Extinction coefficients for the normal conducting YBaCuO
123 (quasi-) particulate superconductor are calculated in
Fig. 20a, for T = 300 K (blue diamonds). Comparison
with the red diamonds and with Fig. 19a and b shows that
there is no jump of the extinction coefficients at T =
TCrit that would be large enough (exceeding numerical
uncertainties of the calculations) to allow a clear distinction
of the superconductive and normal conductive states by their
radiative transfer properties.

The extinction coefficients of superconductors, in normal
conducting state, accordingly are not smaller than those in
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Fig. 20 a Comparison of the extinction coefficients (E) of YBaCuO
123 calculated at 92.001 ≤ T ≤ 200 K (red diamonds); results
are shown in dependence of wavelength by application of scattering
theory and the Drude-Lorentz model to estimate the complex refractive
indices as a function of temperature. Blue diamonds are obtained using
spectral refractive indices (m = n − ik), for room temperature (RT)
as reported in [19]. b Specific extinction coefficients (ER*/ρ, the
Rosseland mean of spectral E
) for anisotropic scattering of thermal
radiation by thin dielectric fibres, vs. temperature (T ) and particle
diameter (d). The refractive index m = 1.5 − 0.0016i corresponds
to glass fibres. Like in Fig. 8, the results do not include dependent
scattering, which means they can be applied, without corrections, to
only small particulate density (ρ). Assuming a density of ceramic or
glass wool (ρ) of about 200 kg/m3, the extinction coefficients (E*) are
below 105 (1/m) (the star indicates inclusion of anisotropic scattering).
The figure is redrawn from its original publication [42]

superconducting state (in zero magnetic field, below critical
temperature).

For comparison, the extinction coefficients of classical
normal conductors, like ceramic or glass fibres, are
clearly below these results (Fig. 20b). Only the extinction
coefficients of high-density, bulk ceramics, like ZrO2, are in
the same order of magnitude as those shown in Fig. 19a.

Figure 20a also confirms that extrapolation of (9a), (9b),
(12a) and (12b), the Drude-Lorentz model, together with the
input parameters in Table 1, to the temperature range T >

TCrit is reasonable: the method yields quite similar results
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when the spectral refractive indices m = n − ik reported
in [19] are taken for the calculation of E in dependence of
wavelength.

Very large extinction coefficient and optical thickness
in the superconducting state, vs. a hypothetically small
optical thickness under normal conduction of the same
superconductor (particulate) material, indeed would have
confirmed also the perhaps existing, extended correlation
between non-transparency, superconducting/normal con-
ducting phase transition and quench of a superconductor. As
Fig. 20a shows, this is not the case.

5 Uncertainties, Risks and Discussion
of the Conclusions

In this paper, radiative properties of the superconductors are
considered at the wavelength (
max) where the maximum
emissive power of the black body is observed. Contrary to
optical experiments, we cannot investigate radiative transfer
at just one wavelength. This might be questionable since
3/4 of the whole black-body spectrum is at wavelengths

 > 
max. However, the spectral intensity per wavelength
interval reduces exponentially at all wavelengths 
 
=

max. Possible errors become smaller when 
 deviates
more from 
max. Contributions to the absorption cross
sections from short wavelengths and from millimetre and
radar wavelengths in the whole black-body spectrum thus
are neglected.

5.1 Comparison of Penetration Depths

If the standard temperature dependence of the penetration
depth is accepted, the position within the conductor at which
exp(−x/λL) becomes close to zero might not coincide
with the position where exp(−τ ) disappears. Zero-to-zero
comparisons, and conclusions drawn thereof, are highly
questionable. The comparison can be made with finite pen-
etration depth only. Even then, the equality of the two
decay equations expected relies on an equality of exponen-
tials and thus might work in exceptional situations only.

Further, corrections to the extracted extinction coeffi-
cients may become necessary since both interactions occur
in a solid with its specific refractive index, not in vacuum.
To become a (semi-) quantitative method, experiments have
to be performed that yield both penetration depths in a
variety of superconductor materials.

The extinction coefficients obtained from comparison
of penetration depths, 1/E and λL, for the three materials
(triangles) in Fig. 19a are much smaller, by about 1 order
of magnitude. Deviations apparently are systematic and
possibly are the consequence of the method as a whole
(refractive index of the superconductor material neglected in

(7a) and (7b) and because of uncertainties of the penetration
depth (λL) of a magnetic field; literature values indeed show
strong uncertainties, and the structure of the samples is not
always indicated).

Applicability and practical use of this method certainly
need thorough investigations before it can be considered as
a, at best, semi-quantitative tool. The difference between the
large and small, light red triangles in Fig. 19a results from
the measurement of λab using a BSCCO 2212 single crystal
that yields the larger values of E.

5.2 Radiation ScreenModel

A schematic view of the conductive and radiative thermal
resistances (RCond and RRad, respectively) of a column of
j ≤ j + 5 of total N grains within a filament is shown in
the Appendix (Fig. 24). First, the model neglects the matrix
material (Ag); the space between the grains is assumed to
be empty. This approximation can be accepted since the Ag
hardly penetrates into the voids between two or very few
layers of grains, perhaps only at positions near the upper and
lower boundaries of the filaments.

Derivation of (7a), (7b) and (8) assumes that in each
screen, the temperature of front and back sides of the screen
is identical. But both equations assume the screen material
was Al or Ni or other highly reflecting and thermally con-
ducting metal. In case of the superconductor material, this is
not fulfilled.

In cryogenic multi-screen engineering, this is no prob-
lem: if emissivity is very small (or the reflectivity very
large), and also the thermal conductivity of the screen mate-
rial is very large (with Al or Ni as the screen material), inci-
dent radiation is strongly damped in the foil material, and
the large thermal conductivity of Al or Ni (and the screens
evacuated) is responsible for outbalancing any temperature
gradients to almost zero. But in case of the superconductor
grains, this is not clear. Radiation may penetrate into the
grains within the diffuse radiative boundary layers (Fig. 3),
and the conductivity of the superconductor is by orders of
magnitude smaller than that of Al or Ni. This induces addi-
tional thermal resistances against the total thermal radiative
flow.

But non-zero temperature gradients across each radiation
screen (grain) would increase optical thickness. Optical
thickness decreases radiative heat flow, like a large tempera-
ture gradient in a solid conducting medium indicates reduced
solid thermal conductivity. In turn, because of non-zero
temperature gradients over the grains, the optical thickness
thus would be larger than estimated from this model.

The large correction applied to the results in Fig. 19a by
taking into account transmission windows (the quasi-per-
foration) is not very surprising. It is well known even tiny
disturbances of perfect surface quality of highly reflecting
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screens can exert catastrophic effects (this applies already to
fingerprints resulting from careless handling of the highly
reflecting foils).

5.3 Results from Application of Scattering Theory

The method applies extrapolations of permittivity reported
in the literature (its parameters and calculation steps), from
temperature far below TCrit (in few cases, T ≤ 50 K) to
values very close to critical temperature (TCrit = 92 K in
YBaCuO 123). This possibly constitutes a serious problem
since part of these parameters was obtained by the corre-
sponding authors from multi-parameter fitting procedures.

If we instead of temperature intervals consider frequen-
cies (ω) or wavelengths (
), there is between T = 50
and 90 K a variation of ω from 175 to 315 1/cm (
 from
58 to 32 μm). In this range of frequency or wavelengths,
a strong variation of the refractive indices (m = n − ik)
is not expected (compare Fig. 8 in [19] or Fig. 5 in [23]
with the smooth variations of n and k (these were measured
at T = 10 K and with ω only below 100 (1/cm), or at
T = 300 K with 
 ≤ 100 μm, respectively). But this is
rather a plausibility argument, not a proof.

On the other hand, comparison of the extinction coeffi-
cients (E) calculated at T > TCrit of YBaCuO 123, in depen-
dence of wavelength (Fig. 20a), shows good agreement
between the blue diamonds (obtained with spectral refrac-
tive indices m = n − ik reported in [19] for T = 300 K
const) and the red diamonds (from application of the Drude-
Lorentz model calculated for 92.001 ≤ T ≤ 200 K radiation
temperature). This agreement indicates that the risk from
the above-mentioned extrapolations of the permittivity is
less dramatic; an agreement like in Fig. 20a would not be
obtained if application of (9a), (9b), (12a) and (12b) to
temperature near TCrit and at T = 300 K is not possible.

The results obtained for the permittivity and, conse-
quently, for the extinction cross sections, the extinction
coefficients and the albedo (Figs. 14a, b, 15 and 16) also
rely on the convergence of the fractions (fS) to zero if sam-
ple temperature becomes close to critical temperature. In
order to reduce this risk, the calculations of QExt, E, � and
τ were performed also with the “average 1” (calculations
performed with the arithmetic mean of the parameters listed
in Table 1). Agreement of the obtained E with “average 2”
(the mean value of the calculated results, Fig. 14a and b),
within 5%, again is encouraging.

There is still the uncertainty inherent in the estimate of
minimum fraction (fS) of electron pairs that is necessary to
generate and retain critical currents, as transport currents or
as screening and persistent currents and for magnetisation.
But the risk from uncertainty in the fS, in particular the
minimum fS, appears to be small since the estimate of the
fS is highly conservative.

Measurement of refractive indices at temperature below,
but very close to, critical temperature involves enormous
difficulties and will hardly ever be performed. Efforts might
better be invested to improve the theoretical models for
application of the combined Drude and Lorentz models in
this critical range of temperature. As a first step in this
direction, application of the microscopic stability model,
with its calculation of the density nS of electron pairs,
is suggested in this paper and might be useful in other
simulations.

It is an open question whether algorithms like the
time domain finite difference (TDFD) schemes appro-
priately could be adjusted to include also the London
equations and thus yield a solution of the irregular par-
ticle shape problem. The desired solution is not trivial
and is illustrated, for example, in transformations like
f (T , J ) = ns(T ,0) − ns(T , J ))/ns(T ,0), that applied Eq.
(2c) in [47], where the authors believe the relative depen-
dency of superfluid density (ns) on current density (J) can
be used in this equation if “current density, J, be much less
than critical current density, Jc”.

This cannot work properly: current in a superconductor
always flows with critical current density. The transforma-
tion thus has to be based on absolute current, not on current
density, which means current distribution in the conductor
cross section has to be known first. The procedures could
perhaps be improved by a series of iterations.

It is also rather questionable whether the approach
reported in [48] can be successful: the authors assume
a type I superconductor with zero penetration depth.
This simulates a perfect conductor but does not satisfy
the Meissner effect. Reference [48], and the literature
cited in reference [49], also does not consider the other
central problems of the present paper: radiative transfer in
superconductor particulate objects.

It appears as if in [49], a parameter (ka) was introduced
to replace the fundamental T < TCrit criterion for super-
conductivity and field shielding. Instead, the parameter ka
is allowed to assume continuously varying values, ka ≥ 0
(compare Figs. 2, 3 and 4 of this reference). As a conse-
quence, there would be no complete shielding at which an
external magnetic field is suddenly excluded from the super-
conductor volume as soon as T < TCrit. Field expulsion in
type I superconductors cannot be described on the basis of
a continuously varying parameter.

6 Physical Time in Non-transparent Objects

6.1 Survey of the Problem

In the previous sections, we have investigated the possible
existence of a correlation between non-transparency and
stability against quench. The answer was negative. It is
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a weak anti-correlation or inverse correlation that can be
found, at the most: non-transparency of a superconductor
may exclude its stability against quench (it, most probably,
does not promote stability).

The aim of the present section is to discuss whether a
correlation or anti-correlation could be found between non-
transparency and existence of physical time in non-transpa-
rent superconductors. Presently, it is a mere hypothesis.
However, the existence of such a relation would be highly
interesting: if it existed, it would, for example, read: “The
more a superconductor sample becomes non-transparent,
the less can time and space co-ordinates be identified
when a quench occurs in the conductor cross section”. The
consequence “the less can time and space co-ordinates be
identified” would have impacts on detection of a quench.

The temperature profiles in Figs. 1a and 2a clearly
show that quench may occur at different positions (x) not
uniformly distributed in the conductor cross section. In both
figures, there are several positions where local temperature
difference to the corresponding TCrit is so small that only
little additional energy is needed to increase temperature at
these positions above the limit.

The following is a corollary of the results obtained from
the radiative transfer calculations in the previous sections.

6.2 Transit Times

In simulations of temperature distribution in a supercon-
ductor, the contribution by radiation in the diffusion model
usually is small against its solid thermal conductivity. For
example, the temperature difference (T1 − T2), taken in
Fig. 1a (bottom diagram, in a mid-plane position) over the
cross section of a single filament (located at the centre of
the tape) amounts to about 18 K (T1 = 116 K, T2 = 98 K).
With an extinction coefficient (E) in the order of 107 (1/m),
the radiative conductivity (λRad) from the diffusion model
amounts to about 5–6 10−5 W/(m K), less than 0.1% of the
solid thermal conductivity of the BSCCO 2223 supercon-
ductor (λCond about 0.12 W/(m/K), in c-axis direction and
near its critical temperature). The small percentage of the
radiation contribution results from non-transparency of the
conductor.

Despite its small value, the radiative conductivity has
important consequences for temperature profiles, stability
functions, zero loss transport currents (compare [12, 13])
and for transit times of signals emitted from, for example,
a disturbance in the centre of the filament in direction
to its neighbouring filaments. Different transit times
between both positions can be distinguished with respect to
different heat transport processes (conduction, radiation and
interferences thereof).

But if propagation of radiative signals is blocked by non-
transparency, events are not only spatially separated (like in
Figs. 1a and 2a) but also temporally separated so that events
and their images (the response, exemplified as results of
measurements) are no longer uniquely correlated.

If there is only some residual radiation (no solid conduc-
tion), the difference θ = ty − tx (the transit time between
positions y and x) may become arbitrarily large. Then,
events e(y, ty) and e(x, tx), cannot be correlated because ty
cannot be correlated with tx by a finite and uniquely known
difference (ty − tx). In an extreme case (non-transparency),
the difference might not exist at all when tx or ty cannot
be indicated. Instead, e(y, ty) and e(x, tx) can be correlated
only if ty − tx is very small (like in the sole scattering case
where θ is in the order of 10−13 s; see below) and if both ty
and tx are booked on uniquely and unambiguously defined
time scales. In turn, e(y, ty) and e(x, tx) can be correlated
only if optical thickness is very small (the transparent case)
and if there is no or only very weak solid conduction.

But the correlation between e(y, ty) and e(x, tx) not only
would fail because of an undefined difference (ty − tx),
the question is whether an uncountably large number of
events would completely, uniquely and unambiguously be
recognised on a dense time scale (ty) of their images.

In order to be completely, uniquely and unambiguously
be recognised, bijective mapping, f [e(s, t)], the result of
Section 2 must exist between events at (x, tx) and their
images at (y, ty).

6.3 Modelling Physical Time in a 1D Space

Physical time is not identical to psychological time. Orien-
tation of the arrow of physical time becomes possible when
the second law of thermodynamics is taken into account.
The differentiation between past and future, and the deter-
mination of the arrow of physical time, relies on an initial,
minimum entropy state [50]. Mathematically, irreversibility
thus reduces R to the half-set R+ [51]. But psycholog-
ical time extends in both orientations to infinity. Both
orientations emerge from a finite, non-zero-length pres-
ence interval. Physical time postulates zero-length elements,
while psychological time does not. Superconductors belong
to the favourite circle by which the standard, commonly
accepted idea of a universal physical time possibly could be
confirmed or questioned.

Physical time does not exist a priori, and it needs events
for its definition, like temperature variations or quench of a
superconductor or others. The point is time scales cannot exist
without events, like space does not exist without bodies.

Physical time (t) usually is added to the 3D Euclidean
space (xk, 1 ≤ k ≤ 3) as the fourth component (x4 = ict,
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with c as the speed of light). This 4D structure has been
proven suitable for application in transparent space. The
situation is different in non-transparent space. Instead of
the standard, 4D space-time, we will construct the arrow of
physical time in a separate space (Z) to describe this space
independent of the properties of the 3D vector space R3 (in
a stationary system, there should be no problem).

It is not clear that the separate space (Z) really might
fulfil criteria of a vector space. We will provisionally speak
of Z as a vector-like time space. Yet, psychological time
suggests that Z should be 1D, Z = Z1.

In a purely mathematical sense, physical time may be
identified with, or its number of elements imagined as
equipotent to, the set (R) of real numbers. If the correlation
between events and their images correlation is bijective
(as is realised in transparent, but questionable in non-
transparent objects), physical time is dense since the set R
is dense. Thus, physical time is dense only in transparent
media. This understanding of a time scale to be dense
does not, and need not, consider the granularity concept of
quantum gravitation and the Planck time, tP , about 10−44 s.
Provided t >> tP , images not necessarily but potentially
form a (quasi-) continuum on a time scale.

The set R, for t >> tP , is totally ordered: if a1 and a2

are elements of R, one and only one of the following three
relations holds: a1 < a2, a1 = a2 or a1 > a2.

All this does not collide with relativity principles as long
as we consider only stationary systems. Thus, physical time
is dense and totally ordered only in transparent media.

Elements of the Euclidean space R3 as usual are interpre-
ted as vectors that are multiples and linear combinations of
a set of basic vectors, rk (1 ≤ k ≤ 3). By analogy, physical
time (t) shall be constructed in Z1 as elements (zi) that are
multiples and linear combinations in 1D space of a basic
element (z), which means zi = αiz. The factor α will be
specified below.

A coordinate ti = zi of the image f [ei(si , ζi)] = ei(si , ti)
on a physical time scale (t) (if it is uniquely and
unambiguously defined) is the distance from an origin z0

of Z1. The existence of a zero element of physical time,
z0 = t0 = α0 and z = 0, has to be postulated, without
loss of generality, by the difference between two coincident
images (elements of Z1); otherwise, it would not be possible
to define coincidence in Z1. Accordingly, the difference
αz − αz = z0 is zero only in transparent space.

That the 1D space Z1 is dense accordingly can be
formulated also with respect to the set of constants (αi) in
the images, f [ei(si , ζi)] = ei(si , ti), with ti = z0 + αiz, if
the αi belongs to an uncountably infinite set, like the set (R)
of real numbers. If this is the case, and with its zero-length
element z0, the mathematical structure of Z1 then is close to
the theory of one-parameter half-groups [52].

As a result, the space Z1 in transparent space is dense and
ordered.

6.4 Images and Probability of Their Existence

Local conductor temperature is extracted from scanning the
temperature distributions in Fig. 1a (scan along the vertical,
red line in Fig. 1b) and in Fig. 2a (there, temperature is
extracted at horizontal position near the symbol MX of the
finite element plot, where nodal temperature shows a local
maximum). The result (nodal temperature in the BSCCO
2223 and YBaCuO 123) is shown in Fig. 21a and b.

In Fig. 21a, the peak in the temperature distribution
within the superconductor (SC) regions results from flux
flow and normal conducting losses that overcompensate the
much larger thermal conductivity of the Ag matrix into
which the five filaments are embedded. In Fig. 21b, the large
thermal mass of thick layers below the superconductor thin
film (MgO, Hastelloy) is responsible for the approximately
linear temperature profile, shortly after the start of the
disturbance. Horizontal temperature variations in turn 96
of the simulated coil result from statistical variations of
the parameters TCrit, BCrit and JCrit (this is explained
in [5–7]; we cannot expect exactly identical critical
superconductor parameters over extended conductor lengths
from industrially manufactured conductors).

With the extracted T (y) shown in Fig. 21b, Fig. 22
shows local values of extinction coefficients, E = E[T (y)],
in the thin film-coated YBaCuO 123 superconductor.
The extinction coefficients (E) are calculated using their
temperature dependence in Fig. 15. That E[T (y)], in
contrast to T (y), deviates from linear dependence on
temperature is due to the wavelength dependence of the
refractive indices used for calculation of the QExt.

Figure 23a shows calculated transit times θ1, θ2 and
θ3 for an event like temperature variation or for a beam
scattered or emitted at position (x = const, y ≥ 126 μm,
the lower boundary of the filament) or for a quench from
which signals (energy quanta, thermal disturbances) are
emitted. The transit times, θ1, θ2 and θ3, are needed for a
signal to arrive at the filament upper boundary (x = const,
y = 128 μm), or vice versa, within the YBaCuO 123
superconductor thin film, using the extinction coefficients
(E) from Fig. 22.

If transit time depends solely on thermal conduction, the
situation may already become critical if local temperature
is close to critical temperature; even a temperature increase
of only 1 K then could initiate phase transition. In case
of solely solid conduction (if there is, hypothetically, no
radiation at all in the superconductor), transit time, for
example taken over a distance of half-filament thickness in
Fig. 1a, is about only 23 μs. Yet, within this short period,
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Fig. 21 a Nodal temperature,
T (y), in the multi-filament (1G)
BSCCO 2223 superconductor.
Temperature is extracted from
Fig. 1a at y-coordinates along
the vertical red line in Fig. 1b.
Vertical positions (y) are
counted from the bottom to the
top of the conductor cross
section. Thin vertical black lines
indicate the positions of the
superconductor (SC) filaments
within the total tape cross
section. b Nodal temperature,
T (y), in the thin film
(2G)-coated YBaCuO 123
superconductor. Temperature is
extracted from Fig. 2a. Vertical
positions (y) are counted from
the bottom to the top of the thin
film cross section. Thin vertical
black lines indicate the positions
of the SC film within the total
winding cross section (winding
no. 96 of the simulated coil)
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the local temperature under the given disturbance, because
of the large variation dT /dt , would increase by 2.3 K.

In a real situation (solid conduction plus radiation),
there will be at least two, but possibly more images of
a single event. The images can be differentiated by the
corresponding transit times.

A first image, as an extreme case, may result from
pure (elastic) scattering (albedo � = 1) and without solid
conduction. This can be realised if particles do not, or do
only very slightly, contact each other and if, for example,
the material is BSCCO 2212, with its � = 1 (using the
data reported in [46] for calculation of the refractive index;
the condition “no solid conduction” of course cannot be
fulfilled with this material). This image is generated by
propagation of a signal solely by radiation, with the velocity
of light in the object.

A second image, the other extreme, would be due to
pure absorption/remission (without scattering, � = 0, and
again without solid conduction). This case happens with
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Fig. 22 Local values of extinction coefficients, E = E[T (y)], in the
thin film-coated YBaCuO 123 superconductor. Data are given for the
same y-coordinates as in Fig. 21b. The E[T (y)] is calculated using
the local temperatures extracted from Fig. 2a and the temperature
dependence of E shown in Fig. 15
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superconducting thin cylinders (or with thin Ag cylinders,
all described in the previous sections and again with only
little solid/solid contacts).

Transit time (θ) of a signal arising from any excitation,
over a distance (�y) is obtained from solution of Fourier’s
differential equation

θ = [(�y/C)2]/a (14)

for a flat slab and with a as the thermal diffusivity assumed
to be constant. In the present case, the diffusivity is
calculated using aRad = λRad/(ρcp), with λRad the radiative
conductivity (from the diffusion approximation), ρ as the
density and cp as the specific heat.

Images also result from the case 0 < � < 1,
with scattering and absorption/remission in parallel (and
still without conduction). Transit time results from the
scattering contribution, S = �E, and from the remaining
absorption/remission part, A = (1 − �)E. While the part
S again proceeds by the velocity of light in the object, the
absorption/remission part is calculated with the radiative
diffusivity mentioned above and with scattered radiation in
parallel to the absorption/remission part.

More images result from combined conduction plus
radiation heat transfer, with 0 ≤ � ≤ 1. This is the most
realistic case, not restricted to sole radiation. In a non-
transparent object, transit time in this case is obtained from
θ = [(�y/C)2]/aTotal, under the additive approximation,
with aTotal as the total thermal diffusivity. In the additive
approximation, aTotal is calculated using the total thermal
conductivity, λTotal = λCond + λRad, and with density and
specific heat as before. Calculation of the transit time by this
procedure includes only radiation by absorption/remission.
The scattering part again proceeds, in parallel, by the
velocity of light and does not contribute to obtain radiative
equilibrium.

Heat transfer by combined conduction plus radiation heat
transfer, with 0 ≤ � ≤ 1, has frequently been studied in
the literature. However, in terms of transit time, the case
(� > 0) in a conductive medium is only occasionally
discussed (for example, Klemens [53]; explanations can
be found in [42], p. 81): large albedo may create a
strong temperature jump (while the temperature field
remains differentiable). A temperature jump is only step-
by-step degraded by the slow, diffusion-like, radiative
absorption/remission transport processes (but degradation
may be accelerated by the conduction component). Each of
the images of events like a temperature variation thus cannot
be constant in time and therefore is not uniquely defined.

The number of images, in principle, may increase to
even an arbitrarily large number since there is an arbitrarily
large number of combinations of S and A in the extinction
coefficient, E = S + A. This means the number of different
values of the albedo might be arbitrarily large, too.

A correspondingly similar, but less complicated situation
has been investigated in Monte Carlo simulations of
radiative transfer in thin-film, normal conductors, by
assuming the albedo within certain limits is a random
variable [54]. Each random variation of the albedo, at each
of the large number of radiation/solid collisions, delivers
another total transit time.

The point is while also in the non-transparent object total
heat flux is given by the sum of the different contributions,
by conservation of energy, and is uniquely defined, the
transit time and thus the position of the corresponding
images, and their order on the time scales, are not. Even if
events are arranged orderly, the order of their images might
completely be dissolved.

This has a peculiar consequence: time in non-transparent
objects is not transparent. Consequently, there is neither a
unique identification of images belonging to the same event
nor of events belonging to the same image.

This situation still becomes more difficult if we consider
the probability by which signals arrive at a detector,
solely by radiation, to generate an image. In a non-
transparent object, the original directional intensity of a
beam not only is exponentially damped, according to the
optical thickness. Because of (1a), the final signals (images
taken by a detector) also fluctuate statistically: the mean
free path (lm) is not constant. Each path, W1 or W2 in
Fig. 3, incorporates a different number of lm, and each
of the lm depends on specific, local absorption/remission
or scattering interactions that not necessarily would be
identical along the paths. The probability to receive a
uniform signal thus becomes small.

As a numerical example, Fig. 23b shows the probability
(p) in dependence of the position (y) within the YBaCuO
123 thin film, from which a beam of directional intensity
is emitted or scattered, under right angles to opposite posi-
tions (the x-coordinates kept fixed). The intensity, if scat-
tered, or after absorption remitted, in other directions, will
be damped more strongly than shown in Fig. 23b, which fur-
ther reduces the probability of a signal to arrive at a detector.
The number of signals or images observed by a detector
thus is reduced, in inverse proportion to optical thickness.

All this is solely a corollary of the analysis of radiative
transfer in the preceding sections. We accordingly have to
live with uncertainties that arise from simply the complex
interactions of several heat flow components and from the
statistical rules of radiation propagation in non-transparent
objects.

6.5 A Practical Consequence for Superconductor
Stability

Among other measures to improve stability, standard multi-
filamentary conductor architecture applies the distribution



1566 J Supercond Nov Magn (2019) 32:1529–1569

1E-14

1E-12

1E-10

1E-08

1E-06

0,0001

0,01

1

125 126 127 128 129
Vertical position (Micrometer)

Tr
an

si
t t

im
e 

(s
)

Radiation: Solely scattering

Radiation: Scattering and absorption/remission

Solid plus radiative conductivity

1E-15

1E-12

1E-09

1E-06

0,001

1

125 126 127 128 129
Vertical position (Micrometer)

Pr
ob

ab
ili

ty

Radiation: Scattering and
 absorption/remission

(a)

(b)

Fig. 23 a Transit time for a beam scattered or emitted at position
(x = const, y ≥ 126 μm) that is needed to arrive at the upper boundary
(x = const, y = 128 μm), or vice versa within the YBaCuO 123
superconductor thin film, using the extinction coefficients (E) from
Fig. 22. In case of pure scattering, the beam proceeds by the velocity
of light in the medium of refractive index (n); otherwise, in a non-
transparent object, transit time is calculated from θ = [(�y/C)2]/aTotal,
with the diffusivity (aTotal) to be taken according to the strength of heat
transfer components and by application of the additive approximation,
if appropriate. b Probability function, p(x), that each beam scattered
or emitted at position (x = const, y ≥ 126 μm), on its straight way
through the YBaCuO 123 thin film (all x = const), under the right
angle hits the upper boundary (x = const, y = 128 μm), or vice
versa, within the conductor cross section and using the extinction
coefficients, E, from Fig. 22

of the filaments in a metallic matrix of high thermal
conductivity. The discussion in this paper instead has
been focused on the radiative properties within the proper
superconductor material.

From the results described in the preceding sections, it is
concluded that the superconductor material should be devel-
oped in a way to strongly promote scattering of radiation
(instead of strong absorption/remission processes). Large
albedo, � → 1, according to Fig. 23a, decreases transit
time (compare the blue and red symbols). Though radiation
is small in comparison to the solid conduction compo-
nent, scattering contributions, possibly as intermediate steps

in the total transfer process, promote fast distribution of
excitations energy within the conductor cross section.

Though radiative equilibrium cannot be obtained under
scattering, it is the large signal velocity (or the small transit
times) that makes strongly scattering superconductors
attractive for improving their stability. At near transition
temperature, the small contribution by radiative to total heat
transfer, by its optimisation with large albedo, may turn out
as the most useful for stability, since temperature close to its
critical value is the most critical situation.

It is not clear whether strong scattering might reduce
critical current density. This relation should be clarified in
future experiments.

7 Summary and Outlook

A substantial difference of extinction coefficients between
the superconducting and normal conducting states of the
particulate YBaCuO 123, at the phase transition, cannot
be confirmed. There is no strict (anti-) correlation between
radiation heat transfer, non-transparency and quench.

If a (quasi-) particulate superconductor, like YBaCuO
123 films in a coated conductor, at T < TCrit, is non-
transparent to mid-IR radiation, it is non-transparent also in
its normal conducting state. The result would be the same
for the particulate superconductors BSCCO 2212 and 2223.

Non-transparency of YBaCuO 123 filaments confirms
the applicability of the additive approximation for the total
thermal conductivity, to calculate solutions of Fourier’s
differential equation by analytical or numerical methods.

Optimisation of the scattering contributions to radiative
heat transfer decisively can contribute to superconductor
stability, in particular near the phase transition, the most
critical situation.

Within short time interval (the transit times), there are
no uniform equilibrium or non-equilibrium conditions of
electron pair density near critical temperature in a non-
transparent superconductor. Phase transition accordingly
does not occur uniformly (spatial or temporal) in the
conductor cross section.

Non-transparency prevents uniformity of events in space
and also denies uniformity of their occurrence in time.
Because of a large variety of potential transit times in non-
transparent objects, time in these objects is not transparent.

These conclusions also show that considering the
physical time scale as the fourth component of a common
vector space in non-transparent media invariably leads to
contradictions: the structure of three spatial and, separately,
one time-like components, namely R3 and Z1, in a non-
transparent medium is completely different from the usual
correlative 4D space-time geometry. There, all time-like
space elements, of both R3 and of the fourth component,
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Z1, are assumed as uncountably infinite. But this is not
fulfilled in non-transparent space. One of the central
questions discussed in the famous Einstein-Podolsky-Rosen
(EPR) paper concerns “completeness of a physical theory”.
The theory of radiative transfer in non-transparent objects
is not complete. We will later investigate a possibly
existing, systematic parallel between the EPR paradox
and present understanding of radiative transfer in non-
transparent superconductors: Like in quantum-mechanics,
a reconstruction cannot be achieved by introduction of
later claimed hidden variables (von Neumann), to restore
causality and locality from a “fog” of images.
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Appendix

Fig. 24 Conductive and radiative thermal resistances (RCond,S and
RRad,S , respectively) of grains (schematic), and total resistance (RTotal)
of a filament. Grains are indicated by the light grey flat rectangles.
Within the solids (index S, thickness z2), the conductive and radiative
resistances are switched in parallel. The space between the grains
(clearance z1, about 10 nm or less) is empty (index e; within z1,
there are only radiative resistances, RRad,e). Total resistance (RTotal)
results from switching all grain and clearance resistances in series. The
figure helps to identify a weak point when estimating the extinction
coefficient from the multi-layer screen concept (Section 4.2) applied
to the grains: front and rear side temperatures (TFront and TBack,
respectively) in each grain (j , j + 1, j + 2, . . . , j + N) would
be (almost) identical, which is not very clear when considering the
finite thermal transport properties of the grain material. Compare the
discussion of risks of the conclusions in Section 5.2

Fig. 25 Schematic description, like in set theory notation, of dispersed,
transparent, translucent and non-transparent media. The figure relates
to a fixed wavelength of radiation propagating in these substances.
The figure has two hierarchies: first, dispersed media are elements
of the thick circle (6); accordingly, all elements outside this circle
are non-dispersed (continuous) media like massive solids or liquids
without bubbles. Second, elements of transparent, translucent or non-
transparent media are elements of the thin circles, and no elements
outside these circles exist. Accordingly, elements of non-transparent
media are not the complement of the uppermost circle (indexed
“transparent”) but are contained only in the lowest circle. The thin
circles are ordered with respect to increasing optical thickness (τ )
from top to bottom of the figure. A possible population of the
seven sets is as follows: (1) metallised or metallic fibres, heavily
opacified non-conducting fibres or powders, soot and graphite; (2)
metals and liquids (not thin films thereof); (3) glass wool with large
fibre diameters compared to the wavelength of incident radiation,
low-density powders, aerogels, fog and snow; (4) water and other
clear liquids and panes; (5) pure (not opacified) glass fibre boards,
powders, particle beds, concrete, sands and dust, with large particle
diameters compared with incident wavelength. Region (5) indicates
the intermediate region between translucent and non-transparent, both
dispersed media. Region (6) collects clouds, powders and fibres with
medium optical thickness and (7) the vacuum or dilute gases. The
figure is an update of Fig. 2 in [32]
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Fig. 26 IR and mid-IR photon energy and energy gap (�E(T )) of
YBaCuO 123 vs. wave number (ω). The energy gap is calculated using
the standard BCS relation �E(T ) = 1.74 �E(T = 0) (1 − T /TCrit)0.5,
with �E(T = 0) = 60 meV. The velocity of light in vacuum is reduced,
using the real part of the refractive index of the solid material, to its
proper value in the superconductor. The temperature range 90.5 ≤
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(1/cm). Comparison of both curves shows there is no spontaneous
phase transition initialized by diffuse, thermal radiation emitted within
the material, in this range of wave numbers and radiation temperatures
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