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Abstract
Equilibrium magnetic properties of the mixed state in type II superconductors were studied on high-purity film and single-
crystal niobium samples with different Ginzburg-Landau parameters in perpendicular and parallel magnetic fields using dc
magnetometry and scanning Hall-probe microscopy. The magnetization curve for samples with unity demagnetizing factor
(slabs in perpendicular field) was obtained for the first time. It was found that none of the existing theories is consistent
with these new data. To address this problem, a theoretical model is developed and comprehensively validated. The new
model describes the mixed state in an averaged limit, i.e., without detailing the samples’ magnetic structure and therefore
ignoring the surface current and interactions between the structural units (vortices). At low values of the Ginzburg-Landau
parameter, it converts to the model of Peierls and London for the intermediate state in type I superconductors. The model
quantitatively describes the magnetization curve for the perpendicular field and provides new insights into the properties of
the mixed state, including properties of individual vortices. In particular, it suggests that description of the vortex matter in
superconductors of the transverse geometry as a “gas-like” system of non-interacting vortices is more appropriate than the
frequently used solid-like scenarios.
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1 Introduction

Equilibrium bulk magnetic properties of the mixed state
(MS) in type II superconductors are discussed in all
superconductivity textbooks and in numerous papers which
followed after the discovery of type II superconductivity
by Shubnikov with coworkers eight decades ago [1].
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References for many of these papers can be found, e.g.,
in [2–5]. However, some fundamental magnetic properties
of the MS are still not well understood. Examples include,
but are not limited to, the magnetization curve M(H),
where M is the magnetic moment and H is the external
field, and the field strength Hi (also referred to as the
magnetic and magnetizing force [7], the thermodynamic
field [8], the Maxwell field [9], etc.) in samples of other
than cylindrical geometry. Following Abrikosov [9], under
“cylindrical geometry,” we imply infinite right cylinders
with base of arbitrary shape (e.g., circular cylinders and
slabs) in parallel field, that is samples with demagnetizing
factor η = 0 [6]. Cross-sectional diagram of the cylindrical
geometry is shown in Fig. 1a.

Our original interest to equilibrium properties of type II
superconductors (that is to properties of pinning-free type
II samples) of non-cylindrical geometry and specifically
to those with η = 1 (infinite slabs in transverse, i.e.,
perpendicular field [6]) was due to the fact that the latter do
not have a lateral surface by definition. This automatically
excludes effects associated with surface current (including
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the Meissner state) and surface barriers. Hence, properties
of sufficiently thick samples of this kind provide access
to the pure bulk properties of the MS, i.e., to properties
of the vortex assembly. On the other hand, vortices in
such samples are evenly distributed due to symmetry and
their number density is strictly calculated from the flux
conservation. Thus, properties of these samples may also
be used for inferring properties of individual vortices.
Therefore, knowledge of equilibrium properties of samples
of the transverse geometry (this term will be used for
samples with η = 1) is of fundamental importance. The
sample field configuration for the transverse geometry is
shown in Fig. 1b.

It is worth noting that real samples of the cylindrical
and the transverse geometries are samples with η → 0
and η → 1, respectively. Correspondingly, effects due to
the lateral surface are most significant for the former and
practically irrelevant for the latter.

Here, we report on the results of an experimental study of
thermodynamically equilibrium (i.e., uniquely determined
by parameters of state and hence reversible) bulk magnetic
properties of the MS, measured on Nb high-purity film and
single-crystal samples [10]. Measurements were performed
at the field directed both parallel and perpendicular to the
samples’ plane. To the best of our knowledge, such data for
the perpendicular field were not reported before. It turned
out that none of the existing theories is consistent with these
new data. A theoretical model quantitatively accounting for
these data is developed and introduced here as well. Similar
to the model of Peierls [11] and London [12, 13] for the
intermediate state (IS) of type I superconductors, our model
describes the MS in thick samples of any ellipsoidal shape

Fig. 1 Schematic diagrams showing cross section of samples (painted
in gray) for cylindrical (a) and transverse (b) geometries. η is the
demagnetizing factor and H is the external field. Dashed lines (not
shown in a) depict the lines of the magnetic induction B near and
inside the sample

(0 ≤ η ≤ 1) in an averaged limit, i.e., without detailing
the samples’ magnetic structure and therefore ignoring
the surface current and interactions between vortices; in
other words, following the terminology of de Gennes [8],
it accounts for the properties of the MS in zero-order
approximation. At low values of the Ginzburg-Landau (GL)
parameter κ , our model converts to the model of Peierls and
London. We will show that the description of the vortex
matter in terms of a system of non-interacting vortices is the
most appropriate for samples of the transverse geometry.

2 Problem Status andMotivation

There are two equilibrium states in which superconductors
contain domains of normal (N) phase imbedded into
superconducting (S) phase. Those are the IS in type I and
the MS in type II materials. In the IS, due to positive
energy of the S-N interface, the N domains are multi-
flux-quantum laminae, whereas in the MS, due to negative
interface energy, these domains are single-flux-quantum
vortices. This quantitative difference in the flux magnitude
results in drastic qualitative differences between properties
of type I and type II superconductors. In particular, the MS
takes place in samples of any shape including the cylindrical
one (i.e., for 0 ≤ η ≤ 1), whereas the IS occurs only if
η �= 0 [15]. (By “shapes” we imply shapes of ellipsoids,
because only ellipsoids allow rigorous theoretical treatment
of the magnetic properties [7].)

For this reason, significant attention was paid to
measurements of magnetic properties of cylindrical samples
of type II superconductors, which, in particular, led to a
fairly good knowledge of the M(H) curve for this geometry
[1, 3, 16–19].

For cylinders at H < Hc1, the Meissner condition B =
0 allows one to calculate M(H) in three ways: (i) from
thermodynamics, (ii) from magnetostatics (see, e.g., [21]),
or (iii) from the Maxwell field Hi , which in this case equals
to the applied field H due to continuity of the tangential
component of this field [14]. Then, M is calculated from
Hi defined (in CGS units) as Hi ≡ B − 4πm, where
B is the induction and m is the magnetization, which in
superconductors is a macroscopic average M/V , where V

is the sample volume [20].
However, in the MS (Hc1 < H < Hc2), complexity

of current distribution leaves only one option to calculate
M , i.e., through the field Hi via calculation of the average
induction B̄. Then, 4πM/V is computed as B̄ − Hi . For
cylinders, where Hi(= H) is known, this was done using
the GL theory near Hc1 and Hc2 [15], and also with use
of the London equation in the vicinity of Hc1 [9, 22]. In
these field regions, approximate analytical expressions for
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B̄ are available for the extreme type II limit ln κ � 1 [9,
15, 22]. At the same time, it is supposed that the entire
M(H) curve for any κ can be calculated via numerical
solution of the GL equations [23]. Note, however, that
available approximate [15, 24] and high-precision [25]
solutions of the GL equations are not quite consistent with
this supposition. For instance, theoretical M(H) exhibits an
infinite slope at Hc1, whereas the slope of a truly reversible
M(H) curve is not infinite [17].

The situation becomes much more complicated for non-
cylindrical geometry. For the experiments, this is due to a
much larger number of pinning centers in the sample area
perpendicular to the field. For that reason, available data
on M(H) for type II samples of the transverse geometry
(see, e.g., [26–28]) are strongly irreversible and therefore
inappropriate for judgment on thermodynamic properties.

On the theoretical side, the main complication is due to
a demagnetizing field Hd ≡ H − Hi . The Maxwell field
Hi can be rigorously calculated for uniform (meaning that
B is homogeneous throughout the sample) ellipsoids [2, 6,
7]. If H is parallel to the sample axis, relative to which the
demagnetizing factor is η, then,

(1 − η)Hi + ηB = H . (1)

Therefore,

Hi ≡ H − Hd = H − η(B − Hi) = H − η 4πM/V . (2)

Thus, in uniform samples, Hd = η 4πM/V . In the
Meissner state, the sample is (i) uniform and (ii) B(= 0)
is known. The former makes it possible to calculate η (see,
e.g., [6]) and the latter allows one to use (1) yielding Hi =
H/(1−η). Then, 4πM/V ≡ B −Hi = −H/(1−η) in full
consistency with experiments (see, e.g., [2]). However this is
not the case for the MS, whereB is not uniform and therefore
η is not well defined and neither Hd nor Hi is known.

On the first view, the solution of the problem for η was
found long ago by Peierls [11] and London [12] for the IS
via replacement of B by B̄, which allows one to use η of the
uniform sample. However, (2), which follows from (1), still
contains two unknowns (Hi and M) and therefore one more
independent relationship is needed to find M . Peierls and
London resolve this problem assuming that Hi equals to the
thermodynamic critical field Hc in the entire field range of
the IS. However, this is not applicable for the MS.

One might object that there is the well-known approach
for the MS [8, 29] in which Hi for η �= 0 is calculated from
(1) as Hi = (H − ηB̄)/(1 − η) [30]. Then, B̄ is calculated
using B̄(H) obtained for the cylindrical geometry (referred
to as the constitutive relation Be(H) [29]) replacing H by
Hi , and then both Be(Hi) and Hi are used to compute
4πM/V = Be(Hi) − Hi .

Apart from knowing Be(H), the principal condition for
using this approach is ability to calculate Hi from (1).
However, since no new relationship between Hi and M

or B is added (see also [6]), this way to compute Hi is
questionable. Indeed, for η = 1, where B̄ = H [9, 31, 32],
(1) yields Hi = H(1 − η)/(1 − η) = H and therefore
M = 0 regardless of H , implying that Hc2 = ∞. The
reason of such a striking inadequacy of this approach is
very simple: a uniform sample with η = 1 is just a sample
in the N state, where M is indeed zero. In other words, in
order to use (1) for inhomogeneous samples, Hi should be
found independently, like in the Peierls-London model for
the IS (Hi = Hc) or in the cylindrical geometry for the MS
(Hi = H) [15].

In [33, 34] M(H) for films with different κ and thickness
d in perpendicular field was calculated using the GL
theory. Calculated curves strongly depend on κ and d, but
contradict the rule of 1/2 [21] (see more about this rule in the
Discussion section below) and hence cannot be completely
correct.

The approach based on London equation [22] does not
work for the transverse geometry either. Specifically, for
cylinders the thermodynamic potential F̃ ≡ F −BHi/4π =
F − BH/4π is minimized at the expense of the second
(negative) term, reflecting the work done by the magnet
power supply when the flux through the sample changes.
Here F is the Helmholtz potential and F̃ is its Legendre
transform, also referred to as the Gibbs free energy [13].
In the transverse geometry the flux is fixed, hence the term
BHi/4π is absent [6, 8, 9]. This makes the minimization of
F̃ = F impossible, since all terms and their derivatives in
F are positive [22].

After all, inhomogeneities of the field and of the
vortex cores near the surface perpendicular to the field
should be taken into account. These inhomogeneities,
unimportant when η = 0, can be important for films
in non-parallel fields, making their properties dependent
on the film thickness. For instance, in the IS, they can
change the critical field of a few-micrometer-thick film in
perpendicular field by more than 50% compared to that in
parallel field [21, 35]. An attempt to address this issue for
the MS was made by Cody and Miller in experiments with
Pb films [28]; however, the results obtained are inconclusive
due to strong pinning in their films.

To summarize, (a) available experimental information on
the equilibrium magnetic properties of the MS in samples
of non-cylindrical geometry is incomplete. In particular,
the available M(H) data are strongly irreversible and
hence inapplicable for consideration of thermodynamic
properties. (b) Available theoretical results and approaches
are controversial. In particular, none of the existing theories
is capable to address M(H) curve for samples with η = 1.
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Progress toward solution of this fundamental problem is the
goal of our work, which results are presented below.

3 Experimental

Fabrication of pinning-free samples, being very challenging
for type I materials [2, 21], is even more difficult for
type II superconductors, since most of them are alloys
with inevitably significant pinning [1, 8]. A single-crystal
sample can be a solution, but since we also need a film for
verification of dependencies of the properties on the sample
thickness, such a solution is not complete.

Nb is known as a well-verified intrinsic type II
superconductor [17, 36–38], hence, it is a material from
which one can hope to fabricate pinning-free films. On this
reason, Nb was chosen for our samples. However, Nb is
also a getter [17]. Due to that, our first films, deposited via
magnetron sputtering and having residual resistivity ratio
RRR up to 70, were still insufficiently clean.

The Nb film sample (Nb-F) used in this work is one
of two film samples which were used in [39], where their
properties atH ≥ Hc2 are discussed. The filmwas grown on
sapphire via electron cyclotron resonance technique (ECR)
[40]; its RRR is 640, the size is 4×6 mm2, and the thickness
is 5.7 μm. This is a record pure Nb film, of the same purity
as In films used in IS studies [21, 35]. For comparison,
RRR of ultra-pure 2.5-mm thick Nb sheets used for radio-
frequency cavities (RFC) in particle accelerators is ≈ 300
[41]. More about ECR-grown Nb films can be found in [42].

Another sample (Nb-SC) was also a sample used in
[39]. It is a one-sided polished single-crystal Nb disc Ø7
mm × 1 mm supplied by Surface Preparation Laboratory,
The Netherlands. The sample was subjected to a standard
treatment used for the RFC fabrication: it was annealed at
800 ◦C for 3 h and electrochemically polished after that.

However, there is one more issue with Nb. A driving
force to achieve thermodynamic equilibrium in inhomo-
geneous samples is the S-N surface tension [21], whose
magnitude in type II Nb is significantly less than that in type
I In. This could require even purer Nb samples, but fortu-
nately, pinning weakens with temperature T . Specifically,
M(H) data for both our samples are close to reversible at
T � 8 K, which means that the samples are nearly pin-
ning free at these temperatures. For this reason, we mostly
discuss the data obtained at high temperatures.

The magnetic moment was measured using Quantum
Design dc magnetometer (Magnetic Properties Measure-
ment System). Most measurements were performed at
constant temperature in the following order. After demag-
netizing the magnetometer at T > Tc (Tc is the critical
temperature), the sample was cooled down to the chosen
temperature in zero applied (i.e., in Earth) field. Then, M

Fig. 2 Data for the magnetic moment of the Nb-SC sample measured
in parallel field at temperatures indicated

was measured vs H up to the field well exceeding the crit-
ical field Hc3, where the last traces of superconductivity
were absent. After that, the measurements were continued
at descending H down to zero applied field.

Data obtained for the Nb-SC sample in parallel field
are shown in Fig. 2 and typical data for high temperatures
are presented in Fig. 3. As seen from Fig. 2, in the
Meissner state, data for all temperatures agree with each
other. Hence, the sample was well aligned with H and the
flux trapped at the ascending field was low, which allows
calculating the thermodynamic critical field Hc(T ) from
the area above M(H) curves [16]. The sample volume
calculated from M(H) at H < Hc1 agrees with that
measured directly within 5% error, indicating that η‖ � 0.05
and therefore η⊥=1−2η‖ � 0.9 [6]. Here, η‖ and η⊥ are the
demagnetizing factors in parallel and perpendicular fields,
respectively.

Data for magnetic moment measured for the Nb-F
sample in parallel field are shown in Fig. 4. Typical high-
temperature data obtained for this sample are available in
[39]. The sample volume was determined from the slope of

Fig. 3 Data for the magnetic moment of the Nb-SC sample
measured in parallel field at T = 8.60 K. Hc1, Hc2 and Hc3
designate the respective critical fields. Dashed arrows indicate either
the measurements were conducted at ascending (green arrow) or
descending (black arrow) field
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Fig. 4 Data for the magnetic moment of the Nb-F sample measured in
parallel field at temperatures indicated

M(H) curves in the Meissner state; its uncertainty is 10%.
η⊥ of this sample is 1−O(10−3) [6].

The M(H) data measured in parallel field were used to
construct the phase diagrams necessary for discussion of
experimental results for perpendicular field. These phase
diagrams are shown in Figs. 5 and 6 for the Nb-SC and the
Nb-F samples, respectively. The inserts show the data for
M measured vs temperature at Earth field. For the Nb-SC
sample, Tc = 9.20 K and κ calculated as Hc2/

√
2Hc [15] is

1.3 near Tc increasing to 1.6 at 2 K. For the Nb-F sample, Tc

= 9.25 K and κ starts from 0.8 near Tc reaching 1.1 at 2 K.

Fig. 5 Phase diagram of the single-crystal sample Nb-SC constructed
from the M(H) data measured in parallel field. Hc1, Hc2, and Hc3
indicate the graphs for the respective critical fields and Hc is the
graph for the thermodynamic critical field. Insert: magnetic moment
measured at zero (Earth) field versus temperature

Fig. 6 Phase diagram of the film sample Nb-F. See captions of Fig. 5
for notations. Insert: magnetic moment measured at zero applied field
versus temperature

Data for the magnetic moment measured in perpendicular
field at high temperatures are shown in Figs. 7 and 8 for
the Nb-SC and Nb-F samples, respectively. The data are
reversible over more than half of the field range of the MS
starting from Hc2. Therefore, in this range, the samples
are in the equilibrium state. The equilibrium M(H) are
linear, and their extrapolation (represented by the dash-
dotted green lines) to H = 0 yields 4πM(0)/V close to
−Hc1 (shown by the red star) [43] . The validity of such an
extrapolation is supported by the rule of 1/2: the area above
the green line equals to the condensation energy H 2

c V/8π
(=1/2 in coordinates 4πM/HcV vs H/Hc), where Hc is
calculated from the data obtained in parallel field.

Comparing Figs. 7 and 8 with Figs. 4 and 5 in [21], one
notices a striking similarity in M(H) for the MS and the
IS. However, there are also important differences: in the IS,
M(0)/V and the critical field strongly depend on the sample
thickness, whereas for both our samples, 4πM(0)/V is
close to −Hc1 and Hc2⊥ = Hc2‖, where Hc2⊥ and Hc2‖ are
the upper critical fields in the perpendicular and the parallel
geometries, respectively. Nevertheless, it was important to
ensure that our samples are indeed type II superconductors.
The most direct way for that is to measure the flux in the N
domains.
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Fig. 7 Magnetic moment of the Nb-SC sample measured in
perpendicular field at the indicated temperatures. The star shows
M(0) = −Hc1V/4π or 4πM(0)/V = −Hc1 calculated using Hc1
and V inferred from measurements in parallel field. Left and right
vertical scales show M in different units as indicated; horizontal scales
give the applied field in Oe (bottom), in units of Hc2‖ (lower top) and
in units of Hc (upper top). 1/2 designates the area above the green
line representing the condensation energy H 2

c V/8π (in coordinates
4πM/HcV vs H/Hc) inferred from the data measured in parallel field

In the MS B̄ = n�0 [9], where the planar density n =
N/A is the number of flux lines N passing through an area
A. In the transverse geometry, B̄ = H and therefore

n = H/�0. (3)

Fig. 8 Magnetic moment of Nb-F sample measured in perpendicular
field at the indicated temperatures. See caption of Fig. 7 for details

Hence, the slope of n(H) curve allows one to determine
the flux in the N domains and therefore the type of
superconductor.

With this in mind, we probed the film sample with a
scanning Hall-probe microscope (SHPM) [44]. The scanned
area was 7.6 μm×7.6 μm away from the sample edges. The
sample was cooled at zero applied field. To achieve better
resolution determined by the contrast of the field inside and
outside the flux lines, the SHPM images were taken at low
H . At low fields, pinning is not small (see Fig. 8, and Fig. 2a
in [39]) and therefore the equilibrium hexagonal structure of
the vortex ensemble can be mangled. Typical images taken
at T = 5.00 and 9.15 K are shown in Fig. 9.
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Fig. 9 Scanning Hall-probe
images of the MS in Nb film
taken at 5.00 K (upper row) and
9.15 K (lower row). The colors
reflect relative magnitude of the
induction with the brightest
color corresponding to the
strongest B. The bright spots are
vortices. The fields in Oe

indicated at the top of images
are the applied field; the left
images are taken at zero applied
(Earth) field

A graph for n − n0 = (N − N0)/A vs H is shown
in Fig. 10. Here, N0 is an adjustable parameter reflecting
the occasional number of the lines in the scanned area at
Earth field due to pinning and low statistics. As one can
see, the experimental points agree with (3), thus confirming
that each flux line carries a single flux quantum �0. Since
κ of our single-crystal sample is larger than that of the
film, we conclude that both our samples are classical type II
superconductors with Abrikosov vortices [15].

4 Theoretical

The problem of the magnetic properties of inhomogeneous
superconductors was for the first time addressed by Peierls
[11] and F. London [12, 13] for the IS. As was mentioned
above, both authors solved it in an averaged limit, in which

Fig. 10 Dependence of the flux line density n on the external field
at different temperatures as indicated. �0 is the superconducting flux
quantum and n0 is an adjustable parameter explained in the text

the non-uniform induction B is replaced by averaged B̄, and
using the demagnetizing factor η of the uniform sample. To
supplement (1), Peierls and London assumed that Hi = Hc.
This assumption was justified by a paradigm on instability
of the N phase when Hi < Hc. Note, however, that this
paradigm is valid only for the cylindrical geometry [35].

It is important to stress that the averaged description
implies that the real sample structure is neglected and therefore
any possible interactions between the structural units are
neglected automatically. If, e.g., the sample consists of ℵ
unit cells, then the sample free energy F = ℵF̄0, where F̄0

is the average free energy per unit cell. Therefore, the averaged
description does not contain cross terms responsible for
interactions, hence excluding them by definition.

The Peierls-London model is valid for thick samples [2,
21, 35], i.e., when the surface-related inhomogeneities can
be neglected (condition identical to that for the cylindrical
geometry). Since N laminae are screened in the sample
interior and interact through the outer field, neglect of the
near-surface inhomogeneities means neglect of interaction
between the laminae, in full consistency with the averaged
approximation. Thus, the Peierls-London model represents
a global description of the IS in a zero-order approximation
[8], where interaction between the structural units is neglected.

For the MS, such an averaged model is missing,
resulting in the absence of a global description of this
state and leaving a significant “gap” in understanding the
MS magnetic properties. In particular, as shown above,
none of the existing theories is capable of addressing the
magnetization curve for a slab in perpendicular field. The
model, presented below, is targeted to fill this gap.

In Fig. 11, graphs for η = 0 represent the Maxwell field
Hi vs H for the cylindrical geometry, where Hi = H .
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Fig. 11 Maxwell field Hi in type I (a) and type II (b) superconductors
of different shapes vs external field H . Abbreviations NS, IS, and
MS designate the normal, intermediate, and mixed states, respectively.
Section ab in (b) represents Hi(H) in the MS for samples with η = 0.

The demagnetizing factors η are related to a long cylinder and infinite
slab in parallel field (η = 0), to a long circular cylinder in perpen-
dicular field (η = 1/2), and to an infinite slab in perpendicular field
(η = 1)

The red (ab) section in Fig. 11b represents this dependence
for the MS, meaning that the function Hi(H) is linear
and extends from Hc1 to Hc2. On the other hand, the
experimental results for the transverse geometry (see Figs. 7
and 8), specifically (a) linear M(H), (b) Hc2⊥ = Hc2‖, and
(c) 4πM(0)/V = −Hc1, along with the condition B̄ = H ,
directly indicate [45] that Hi(H) for η = 1 is also a linear
function extending in the same range. Therefore, one can
assume a linear form of Hi(H) for all η, as it is shown in
Fig. 11b. An analytical expression for these functions is

Hi = Hc1 + Hc2 − Hc1

Hc2 − Hc1(1 − η)
[H − Hc1(1 − η)]. (4)

Having Hi , one obtains M from (2):

4πM

V
= −Hc1 + Hc1

Hc2 − Hc1(1 − η)
[H −Hc1(1−η)], (5)

then, B̄ = Hi + 4πM/V is

B̄ = Hc2

Hc2 − Hc1(1 − η)
[H − Hc1(1 − η)]. (6)

Graphs of these functions are presented in Fig. 12.

In type I materials, where by definition Hc1 = Hc2 = Hc

[22], (4) yields Hi = Hc, as in the Peierls-London model.
This is easily seen from Fig. 11b: when Hc2 → Hc1, i.e.,
when a superconductor converts from type II to type I, the
graphs in (b) convert to the graphs in (a). Then, (5) and
(6) convert to formulas for M and B̄ in the Peierls-London
model as well (see [21] for the graphs). Therefore, our model
describes the averaged properties of both theMS and the IS in
the limit of non-interacting vortices in type II superconductors
and laminae in type I superconductors, respectively.

5 Discussion

First, we briefly stop at the rule of 1/2 because, being
well known (see, e.g., [2]), it is not always clearly
articulated in the textbooks. This rule represents the law
of energy conservation in superconductors when M is
aligned (antiparallel) to H. Consistency with this rule is a
prerequisite for discussion of equilibrium properties.

In the general case, this law reads that, at constant T ,
the total free energy F̃M (for which M = −∇HF̃M [6]) of

Fig. 12 aMagnetic moment in
terms of 4πM/V and b
averaged induction B̄ versus
external field H in type II
superconductors with different
demagnetizing factors η (see
caption of Fig. 11 for
explanation)
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any singly connected superconductor of volume V in a dc
magnetic field H of any orientation is

F̃M(H) = F̃M(0) −
∫

MdH

= Fs0 −
∫

MdH = Fn0 − H 2
c V

8π
−

∫
MdH, (7)

where Fs0 and Fn0 are the Helmholtz free energies of the S
and N states in zero field, respectively.

The first two forms of (7) show that the extra total free
energy of a sample (above the free energy of the ground
state F̃M(0) = Fs0) is the sample magnetic energy EM =
− ∫

MdH, or the energy of interaction of the external
field with the sample magnetic moment induced by this
field. Similar as in conventional diamagnetics [14], EM in
superconductors is the kinetic energy of the charges (paired
electrons) carrying the induced currents [2]. The last form
of (7) demonstrates that (i) the total free energy in the N
state (= Fn0) is independent of the external field since
the magnetic permeability μ of this state is unity, and (ii)
the source of EM is the condensation energy H 2

c V/8π .
Finiteness of the latter makes a transition to the N state
a mandatory property of any superconductor [6]. At this
transition, EM of any sample equals to its condensation
energy or area under M(H) curve plotted as 4πM/V Hc

vs H/Hc, when M is aligned to H, is 1/2. Therefore, the
condensation energy density H 2

c /8π is the energy per unit
volume it takes to destroy superconductivity, i.e., to destroy
an electron pairing [47].

As one can see from Fig. 12a, the area under the graphs
M(H) for different η is the same, meaning that if the
magnetic moment is calculated for different orientations of
the applied field, the sample condensation energy is the
same, as it should. Therefore, our model meets the rule of
1/2 and we can proceed to the discussion.

Comparing the modeled magnetization curve for η = 1
in Fig. 12a with the experimental data in Figs. 7 and 8,
one can see that for the transverse geometry, the model is
quantitatively consistent with the experiment.

Next, since the area under the graphs in Fig. 12a equals
to H 2

c /2, we see that Hc is the geometrical mean of Hc1 and
Hc2, which is consistent with the rule known for the extreme
type II limit [23]. This suggests that the rule Hc1Hc2 ≈ H 2

c

is more general than it looked till now.
Further, as shown by Andreev [46], in the IS, Hi is the

Maxwell field and hence the induction in the N domains,
where B = μHi = Hi , since μ = 1 in the N phase.
Extending this consideration to the MS [22], one can state
that Hi is the Maxwell field in the vortex cores. Therefore,
our model suggests that B in the vortex cores increases from
Hc1 at H = (1−η)Hc1 to Hc2 at H = Hc2 and the structure
of individual vortices (in sufficiently thick samples) does
not depend on the sample shape (η).

Also, as seen from Fig. 11b, in the coresB = Hi > H for
all η �= 0. This is consistent with the well-known fact (see,
e.g., [48, 49]) that the upper boundary of μSR measured
spectrum of the magnetic induction in type II samples is
greater than the external (perpendicularly directed) field.

However, there is an obvious problem. In Fig. 12a, the
linear graph M(H) for cylinders (η = 0) differs from the
experimental curve, showing a non-linear change near Hc1

(see, e.g., Fig. 3 or [17]). In the standard theory [8, 22, 23],
this feature for cylindrical geometry (yielding the unrealistic
infinite slope at Hc1) is described assuming overlapping the
fields of neighboring vortices, leading to their repulsion. On
the other hand, in cylinders, there is the surface current,
which is absent in samples of the transverse geometry.
The magnitude of this current is determined by the field
drop at the surface [6], which is maximal near Hc1 and
vanishes upon approaching Hc2. Our model includes neither
the vortex-vortex interaction, nor surface current, which
explains the difference of the modeled and experimental
M(H) curves for η = 0. Note that surface current also is
not accounted for in the standard theory [8, 22, 23].

The question then arises whether such a model is needed
if vortices interact? The same question can be formulated as:
Why for samples of the tranvsverse geometry the experimental
M(H) graphs in Figs. 7 and 8 are identical to that in the model
of non-interacting vortices in Fig. 12a? The only possible
answer we can suggest for both formulations is because vor-
tices in samples of the transverse geometry do not interact.

The field passes through any superconducting sample of
the transverse geometry in which currents are optimized so
to minimize the sample magnetic energy and therefore the
total free energy F̃M . However, the result of this optimiza-
tion is different in type I and type II superconductors. Type I
samples tune the period of the laminar structure, the fraction
of the normal phase, and induction inside it, as well as the
currents and the laminae shape near the surfaces, altogether
leading to a strong dependence of the magnetic properties
on the sample thickness d [21, 35].

No doubt that all these degrees of freedom are also
available for type II superconductors, but owing to the gain
received from the negative interface energy, in this case, all
tunings are performed keeping maximum possible number
of vortices and therefore the minimum flux passing through
them, i.e., �0. Then, the vortex density n is as that in (3)
and the parameter of the most effectively packed hexagonal
vortex lattice b = (2�0/

√
3H)1/2 [22].

It is important to stress that n and b are as such due
to the symmetry and the flux conservation and, hence, do not
depend on d.

On the other hand, if vortices in the transverse geometry
do not interact, the sample magnetic energy is a simple sum
of the free energies of the individual flux lines εd, where ε

is the energy of the flux line per unit length (line tension).
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Therefore, considering that H = B̄ = n�0 = N�0/A and
using (5) with η = 1 one obtains

EM = −
∫

MdH = Nεd = V

4π
H(Hc1 − Hc1

2Hc2
H)

= Nd
�0

4π
(Hc1 − Hc1

2Hc2
H), (8)

which yields

ε = �0Hc1

4π
(1 − H

2Hc2
). (9)

Comparing ε at Hc1 in the cylinders (= �0Hc1/4π [8, 9,
22, 23]) with (9), we see that ε in the transverse geometry at
H→0 whenHi = Hc1 equals to ε in the cylinders, as it should.

At higher field, ε decreases becoming �0Hc1/8π at
H=Hc2, where it yields

EM = Nεd = (
Hc2A

�0
)(

�0Hc1

8π
)d = Hc1Hc2

8π
V = H 2

c

8π
V, (10)

as it should as well. Note that the latter is consistent with
the physical meaning of the condensation energy density
H 2

c /8π as the energy needed to destroy pairing [47].
This confirms the validity of (9) and, hence, the absence

of the interaction between vortices in samples with η = 1.
Therefore, the vortex matter in samples of the transverse

geometry can be viewed as a peculiar 2D “gas-like” system
of non-interacting vortices where the role of pressure P is
taken by the external field H and the equation of state is
given by (3) for the entire field range of the MS.

Indeed, similar to the gas, whose density ρ → 0
when pressure P → 0, and isothermal compressibility
ρ−1(∂ρ/∂P )T = 1/P , the vortex matter is highly
compressible, i.e., its density n → 0 at H → 0 and
the “compressibility” n−1(∂n/∂H)T = 1/H . Similar to
the gas, where the slope of ρ vs P is determined by the
Boltzmann constant, in the vortex matter, the slope of n

vs H is determined by the fundamental constant �0. But,
contrary to the gas, the properties of the vortex matter do
not depend on temperature. At constant sample temperature
when the field H (“pressure”) changes, the vortex density
n changes accordingly. But, when the field has stopped
changing, vortices stay motionless, in contrast to the
gas, where molecules continue thermal motion. Therefore,
vortices in a slab in perpendicular field can be treated as
a system at zero temperature. But, zero temperature means
zero entropy. Therefore, vortices should be ordered in full
consistency with well-known experimental fact [50].

Comparing the gas-like scenario with solid-like pictures
[51], one can see that the former is more appropriate for the
vortex matter since a primary property of solids, rigidity, is
absent in the equilibrium vortex ensemble.

Now, we turn to one more aspect of our experimental
results, i.e., the proximity of κ of our film sample to the
critical value κc = 1/

√
2. In recent years, there emerged

an active interest in the properties of superconductors with
κ ≈ κc (see [52] and references therein). Considering the
properties of the critical (κ = κc) superconductors in the
framework of classical field theory, Bogomol’nyi showed
[53] that vortices with flux exceeding a single flux quantum
are unstable against decay to single flux quantum vortices,
and that the energy of a system of stable (single-flux-
quantum) vortices equals to the sum of the energies of the
unit vortex, i.e., vortices do not interact.

The GL parameter of our film sample is 1.1κc, and, as
we see, the vortices are indeed single-flux-quantum non-
interacting units. The same was found for the Nb-SC sample
with κ = 1.8κc. Hence, our experimental results confirm
Bogomol’nyi’s predictions for superconductors with κ �
1/

√
2.

Finally, we have to address a question inevitably arising
when reading this paper: if vortices do not interact when the
sample (e.g., a film) is in perpendicular field, why do they
interact when the field is parallel, as stated in the standard
theory? In view of enormous amount of literature associated
with the vortex interaction, a complete answer to this
question is hardly feasible in the framework of this paper.
Therefore, what follows should be sooner considered as an
invitation to discussion than a solid judgment on this matter.

The vortex-vortex interaction in the standard theory fol-
lows from the assumption of overlapping of the inductions
B of neighboring vortices, which increases the sample free
energy thus leading to repulsive interaction between vortices
[8, 22, 23]. Note, however, that overlapping of B at some
point inside the sample means overlapping of currents at the
same point, i.e., overlapping of vortices [55]. The latter is
met neither in normal fluids [56] nor in superfluids [57, 58].
In the GL theory, vortices in superconductors also do not
overlap [15, 59].

Indeed, in regular matter, overlapping of electron shells
of neighboring molecules results in strong molecular repul-
sion leading to practical incompressibility of liquids and
solids. As we have seen, this is not the case for the vortex
matter in superconductors. This is because molecules are
fixed entities, whereas vortices are self-adjustable units.
Recall that currents induced in a singly connected super-
conductor serve solely to reduce its free energy. Therefore,
since the B overlapping increases the free energy, one can
expect that the superconductor will tune the currents to
avoid that, thus keeping vortices non-interacting regardless
of the vortex density. This qualitative scenario is consis-
tent with the reported experimental results for the transverse
geometry and, most importantly, with the rule of 1/2, valid
for all geometries and indicating that the total free energy of
superconductors contains no potential energy.

Coming back to our model of zero-order approximation,
we note that it does not include inhomogeneities near the
“transverse” (perpendicular to the field) sample surface, as
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it also takes place in the Peierls-London model for the IS.
These inhomogeneities increase the sample magnetic
energy and therefore modify the magnetization curve. In
particular, as it was mentioned above, in the IS, they can
significantly decrease the upper critical field [21]. However,
contrary to the IS, where effects of these inhomogeneities
were noticed already in 2-mm thick samples [54], such
effects were not found in our samples. This can be explained
by a finer pattern of these inhomogeneities (compare images
in Fig. 9 with those in [35]). Therefore, the surface-related
effects in the MS should be expected in thinner samples and
they may differ from those in the IS, hence constituting a
very interesting problem of fundamental superconductivity.

6 Summary and Outlook

Equilibrium properties of the mixed state in type II
superconductors were studied with high-purity film and
single-crystalline niobium samples with zero and unity
demagnetizing factor η, that is in parallel and perpendicular
magnetic fields, respectively. The magnetization curve for
the samples with η = 1 was obtained for the first time. It was
found that existing theories fail to describe these new data.
A theoretical model successfully addressing this problem
was developed and experimentally validated.

The new model describes magnetic properties of
the mixed state in a zero-order approximation where
interactions between vortices and surface current are
ignored. The model is applicable to thick samples with any
η without limitation for the magnitude of the Ginzburg-
Landau parameter κ . The model is quantitatively consistent
with the data obtained for the samples with η = 1, where
the surface current is absent by definition. This indicates the
absence of interaction between vortices in such samples. An
expression for the field strength Hi inside superconductors
in the mixed state is obtained together with a formula
for the line tension of vortices valid in the entire field
range of the mixed state. At low κ , our model converts
to that of Peierls and London for the intermediate state
in type I superconductors, which is valid in the limit of
non-interacting laminae. It is shown that visualization of
the vortex matter as an ordered 2D gas-like system at zero
temperature is more appropriate than the frequently used
solid-like scenarios.

The reported model is constructed and verified using
experimental results obtained with low-κ Nb type II
superconductors. Therefore, it is interesting and important
to test the model with materials of higher κ . Single-crystal
samples of A15 compounds, e.g., V3Si, can be appropriate
candidates for such a verification. Single-crystal samples
of unconventional superconductors close to the critical
temperature can be also appropriate.
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