
J Supercond Nov Magn (2018) 31:959–979

ORIGINAL PAPER

Stability Considerations Using a Microscopic Stability
Model Applied to a 2G Thin Film Coated Superconductor

Harald Reiss1

Received: 30 June 2017 / Accepted: 10 July 2017 / Published online: 8 August 2017
© Springer Science+Business Media, LLC 2017

Abstract A numerical, finite element simulation of local
temperature fields, critical current and transport current
distributions is applied to a 2G thin film coated high-
temperature superconductor. The focus is on simulation of
quenches originating from transport current locally exceed-
ing critical current density. As in previous reports, a sta-
tistical treatment of superconductor parameters (critical
temperature, current and magnetic field) is applied for this
analysis; it shall take into account uncertainties possibly
arising from shortcomings in conductor manufacture or dur-
ing measurements of their properties. The results of the
calculations are used as quasi-boundary (driving) conditions
for a subsequent transient microscopic numerical stabil-
ity analysis. Traditionally, stability analysis usually applies
analytic stability functions that incorporate conventional,
phonon-related timescales, t and disturbances. The question
is whether decay of electron pairs and subsequent relaxation
of the excited state to a new dynamic equilibrium carrier
concentration, the “electron aspect” of the stability problem,
under the same disturbances, proceeds on another timescale,
t ′. Is this timescale identical to the traditional (phonon)
timescale, t? If not, how large are the differences? The
recently reported microscopic stability model, now applied
to a thin film conductor, is consulted to find an answer to
these questions. A time limit, tQuench, can be extracted from
the simulations, as the time of immediate onset of a quench.
This is a new approach in stability considerations since, con-
ventionally, a temperature limit, T <TCrit, is set as stability
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criterion. If electrical operation or cooling conditions cannot
immediately respond to this challenge, the thin film super-
conductor, if this time limit is exceeded, will hardly be able
to return to zero loss current transport.

Keywords Superconductor · Random materials
parameters · Dynamic equilibrium · Relaxation ·
Boson-mediated interaction · Time of flight-concept ·
Stability against quench

1 Survey to the Stability Problem

A superconductor is stable if it does not quench under a dis-
turbance, i.e. perform an undesirable phase transition from
superconducting to normal conducting state. Traditionally,
disturbances comprise conductor movement, absorption
of radiation, fault currents or cooling failure. However,
disturbances can also arise in case nominal transport current
density exceeds critical current density. Stability models
predict under which geometrical, thermal, electrical and
magnetic field conditions quenches can be avoided to safely
achieve zero loss transport current.

Traditional stability models rely solely on conduc-
tion heat transfer using analytical expressions, mostly for
diffusion-like thermal transport. Numerical investigations,
on the other hand, have been presented only recently (com-
pare [1], with citations to the literature published since
1988); these investigations provide information also on local
temperature fields and their impact on magnitude and distri-
bution of critical and transport current and if radiation heat
transfer would be taken into account.

Quenching proceeds on timescales, t , in the order of
milliseconds or less. The temperature of a superconductor
is usually measured with sensors thermally connected to
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filaments or to thin films by solid/solid or solid/radiative
contacts. In the first case (solid/solid contacts), the results
reflect the “phonon aspect” of the transient stability prob-
lem. The question is whether under increasing temperature
initiated by the same disturbance, decay of electron pairs,
the inner, “electron aspect” of the disturbance and thus
of the stability problem proceeds on another timescale t ′
and whether this timescale is identical with the traditional
(phonon-related) timescale, t . Numerical simulations pre-
sented in this paper make an attempt to give an answer
to this question, not on the basis of a standard solid/solid
contact measurements taken at the superconductor surface
but instead by means of a numerical analysis of transient
temperature fields in the interior of the conductor.

Experience in previous studies has shown that mis-
match between timescales t and t ′ is expected near the
phase transition. Mismatch may have significant impacts
not only on superconductor stability or onset or decay
of persistent currents: Normal/superconductor phase tran-
sition during warm-up or cool-down periods traditionally
is considered to occur at exactly the instant when solid
temperature, T (x, y, t), the phonon aspect, coincides with
critical temperature, TCrit. However, critical temperature
overwhelmingly relies on the electron system of the solid.
Critical current density, JCrit(x, y, t), under the assumption
t = t ′ would become zero exactly at this instant. How-
ever, if both timescales would be different, it is not clear
that after a disturbance, the electron system of the supercon-
ductor has already completed return (relaxation) to a new
dynamic equilibrium.

At a very low temperature, the superconducting elec-
tron system is largely decoupled from the lattice and of
its thermal transport processes. At any temperature, the
superconducting electron system reflects its own dynamic
response to disturbances or to other specific excitations, by
corresponding relaxation times, τEl. Thermal diffusivity, on
the other hand, determines a relaxation time, τPh, for the
propagation of thermal (phonon) waves in a solid.

In a recently reported investigation [2], lifetimes of ther-
mally excited electron states were calculated from their
relaxation rates using a “sequential” model (it will be
explained later why the model was given this name). The
model serves to estimate the time τEl needed to reorganise
the electron system to a new dynamic equilibrium. Tempera-
ture of the electronic, or of any other system, can be defined
only if relaxation is completed.

This model incorporates analogies from (a) an aspect of
the nucleon-nucleon, Pion-mediated Yukawa interaction, (b)
from the Racah problem (expansion of an anti-symmetric
N-particle wave function from a N − 1 parent state) and
(c) from the uncertainty principle. This will be explained
later, also why it is reasonable to make reference to nuclear
physics (specifically, the shell model).

In the present paper, a numerical finite element analysis
of transient local temperature fields, T (x, y, t), of critical
current and of transport current distributions is applied to a
2G thin film coated conductor; the conductor shall be used
in a flat pancake coil. Focus is on simulation of situations
close to a quench originating initially from transport current
locally exceeding critical current density, a process that sub-
sequently may lead to also Ohmic resistances, with strongly
increasing losses.

The transient T (x, y, t) define the conditions under
which the sequential model shall be applied; the T (x.y.t)

can be considered as quasi-boundary or “driving” conditions
for the subsequent microscopic stability analysis.

The paper is organised as follows: Section 2 describes
finite element calculations of transient temperature distri-
butions, T (x, y, t), in the coil using a 2G coated YBaCuO
conductor. Sections 3 and 4 discuss application of the
sequential stability model to the same conductor. The way
to extract lifetime, τEl, of the excited electron system is
explained in Section 3. This serves to identify the timescale
t ′; we roughly have t ′ = t + τEl. We will calculate to which
extent reorganisation of the disturbed electron system can be
completed under given variations with time of temperature
and transport current.

2 Temperature Evolution in a 2G Coated YBaCuO
Conductor Close to Quench

2.1 General Aspects

Standard stability calculations following the Stekly, adia-
batic or dynamic stability models derive results under quasi-
stationary and, mostly, adiabatic conditions, for a survey see
Wilson [3] or Dresner [4]. These and many other textbooks
on superconductivity and its applications rely on homoge-
neous conductor temperature, like [5–9], to mention only
a few. There are also countless theoretical and application-
oriented papers that neglect temperature distributions in the
conductors, compare e.g. [10], where distribution of trans-
port current is considered as resulting solely from materials
properties and interfacial resistances. Meanwhile, materials
properties and interfacial resistances beyond doubt are of
high importance for distribution of transport current; but the
impact of temperature distribution, a condition of the same
importance, is completely neglected in [10].

Such assumptions, at least in 1G conductors, e.g. those
prepared in the powder in tube process, do not reflect real-
ity; this was one of the main results of the summary reported
in [1]. Instead, the item “temperature distribution”’ is most
important for analysis of current transport processes: Dif-
ferentiation between flux flow and Ohmic resistances can
be made only with respect to temperature distribution in the
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conductor, which is important in particular when consid-
ering the potential of superconductors for current limiting.
Flux flow resistivity occurs under the condition that con-
ductor temperature is below its critical value. However,
if conductor temperature is not strictly homogeneous, this
condition may be fulfilled in only part of the conductor cross
section while in other parts current limitation, if any, would
be initiated by Ohmic resistances. This situation might give
the current limiter a strongly different performance.

Figure 1 shows the overall simulation scheme of coil and
conductor geometry (schematic, not to scale). It consists of
(a) a coil with 100 turns of which in the following only turns
96 to 100 will be simulated. The superconductor in each
turn consists of a 1 to 2 μm YBaCuO film, with a coating of
the superconductor film by an Ag layer of about the same
thickness. Thickness of the Ag layers is important for stabil-
ity of the conductor against quench (and in the simulations,
its thickness has been increased to 2 µm in order to expand
the time interval during which temperature of the YBaCuO
conductors under high load would quickly approach criti-
cal temperature). Interfacial resistances (Ag/superconductor
and superconductor/buffer layer), each of thickness 40 nm,
are indicated in diagram (c) of Fig. 1. This is a new approach
for the description of obstacles against current sharing with
the Ag coatings. Yet the overall 2G coated conductor archi-
tecture and its dimensions as indicated in Fig. 1 are standard
(the THEVA conductor design, for example, is very similar,
like coated conductors of AMSC, Bruker, Nexans, Sumit-
omo and others, but we have added interfacial layers into

Fig. 1). The conductors are epoxy-impregnated, i.e. encap-
sulated in protective layers of casting compounds (thermal
obstacles, not shown in Fig. 1) that significantly limit heat
transfer in x- and y-directions to coolant. Details of the other
diagrams will be explained later.

Trivially, it is to be expected that significant temperature
differences will not be observed in thin films, except for
possibly extreme load conditions, but there may be tempera-
ture differences between different (neighbouring) windings
(turns) in the coil.

We analyse local electrical, magnetic and thermal proper-
ties of a thin film conductor in the present paper with respect
to extended disturbances arising from an alternating nomi-
nal current of which its magnitude increased from 0.6 to 1
the ratio of critical current.

Asbefore, the analysis is not intended as a design calculation
for a pancake coil or for any other application. It concen-
trates solely on the physical aspects of the conductor itself
and its response to strongly nonlinear operation conditions.

We will use thermal and electric/magnetic data of YBa
CuO for the simulations. All materials properties (resistiv-
ity, thermal conductivity, critical current and critical temper-
ature, critical lower and upper magnetic fields, anisotropies
to transport phenomena) and Ohmic resistivity, used as input
data to the superconductor simulation, are the same as used
in previous reports (additional data needed for the present
analysis is shown in Table 1).

The flux flow resistivity to axial current transport is
calculated with the cell model very recently introduced in [1].

a

b

c

d

Fig. 1 Overall simulation scheme with coil and conductor geometry
(schematic, not to scale). a Coil consisting of 100 turns of which turns
96 to 100 are simulated. b Layers in immediate neighbourhood of the
superconductor (SC) thin film (as an example, in turn 99). c Detail
showing the simulated, very thin interfacial layers between superconductor
film and Ag (metallization) and between superconductor and MgO
(buffer layer) in turn 99 (dimension of the roughness is highly exag-
gerated in this diagram). d Cross section and meshing of the supercon-
ductor thin film in one turn; it identifies line numbers 1 to 5 of which
element temperatures are given in Fig. 4a, b. Superconductor layer

thickness is 2 μm, its width is 6 mm, thickness and width of the Ag
elements is the same. Crystallographic c-axis of the YBaCuO-layers is
parallel to y-axis of the overall co-ordinate system. Thickness of the
interfacial layers is 40 nm; dimensions of the other conductor compo-
nents are given in Table 1. In SC, Ag and interfacial layers, we have
5 × 200 line divisions for creation of the finite element mesh. Con-
ductor architecture indicated in this figure and dimensions, except for
the inclusion of interfacial layers (solely for simulation purposes, dia-
gram c), is standard. Comments received from THEVA are gratefully
acknowledged



962 J Supercond Nov Magn (2018) 31:959–979

Table 1 Additional data needed for the present analysis

Values Materials

1 Dimensions (standard)

1.1 Thickness, y-direction [μm]

Stabiliser 100 Cu

Solder 10 have applied data of PbSnAg

Metallic coating of superconductor thin film 2 Ag

Interfacial layers 0.04 Virtual (by interference of surface roughness of YBaCuO,
Ag, MgO, Hastelloy)

Superconductor (SC) thin film 2 YBaCuO

Buffer 50 MgO

Substrate 50 Hastelloy

Casting compound 2000 Polymer

Electrical insulation 50 Polymer

1.2 Width, x-direction [μm]

Superconductor thin film 6000

Conductor, total 12,000

2 Materials properties (solid values; appropriately
converted in the calculations to thin films)

References (as numbered in text)

2.1 Solid thermal diffusivity

Stabiliser [20]

Solder [21]

Metallic coating of SC [22]

Interfacial layers λ = 100 W/(m K), isotropic conductivity (see caption to
Fig. 5b), specific heat of YBaCuO

Superconductor thin film Figure 5 in [15]

Buffer [23]

Substrate [24]

Casting compound [25]

Electrical insulation [26]

2.2 Electrical conductivity

Metallic coating of SC [22]

Superconductor Flux flow model described in [1, 26] Ohmic resistivity

Interfacial layers Ohmic resistivity obtained from Russsel’s cell model

We have estimated the transport (weak link) properties
of thin film YBaCuO material that generate resistance to
transport of magnetic flux quanta (flux flow).

The thermal diffusivity, DT, of YBaCuO is between 4
10−6 and 2 10−6 m2/s, at temperatures of 77 and 120 K,
respectively. For a periodic disturbance, in the present case
initiated by flux flow and potentially also by Ohmic resis-
tive losses and when taking a mean value of DT, with the
penetration depth δ(ω) = C (2DT/ω)1/2 of a thermal wave
(Whitaker [11], p. 159), C a constant (taking for simplicity
the C = 4.6 for a flat, semi-infinite sample), and ω = 50 Hz,
we have δ(ω) ≈ 1600 μm, which is larger by orders of mag-
nitude under sole conduction heat transfer than thickness
of a thin film 2G conductor. Local temperature, T (x, y, t),
of all volume elements in the superconductor thus will
very quickly respond to any disturbance that propagates by

thermal diffusivity. Temperature distributions within single
YBaCuO layers in each turn, as long as losses are small,
thus are homogeneous also because these layers (plus Ag
and MgO) are encapsulated between components of smaller
thermal conductivity (interfaces, solder, Hastelloy).

This expectation (homogeneous superconductor temper-
ature) will later be confirmed; compare Fig. 4a, b; discus-
sion thus can be concentrated on the temperature of the
centroid (the centre of the conductor cross section) in the
simulated turns. In order to keep the model as simple as pos-
sible, we will again not integrate radiative transport though
the analysis deals with thin films.

Inductiveandhysteresis losses as before have been estimated
following traditional models from standard electro-technical
literature. Again, inductive and hysteresis losses are small
against their flux flow and Ohmic resistance counterparts.
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A new concept introduced in [12] is to consider critical
current density, critical temperature, upper critical magnetic
field and the weak-link problem connected to flux flow
(transport of magnetic flux quanta) as random variables: We
neither expect 1G nor 2G superconductors as ideally struc-
tured and perfectly homogeneous materials. Instead, under
realistic conditions, only part of a 2G thin film conductor is
epitaxially grown; there is a large variety of possible mis-
orientation of grains and grain boundaries with respect to
current flow and magnetic field. There will be fluctuations
also of chemical composition (impurities) and pores and
cracks and many other obstacles to current transport, like
superconductor/Ag and superconductor/buffer (solid/solid)
interfacial layers.

Accounting for all imperfections neither can be realised by
analytical nor by numerical modelling. A possible way-out
of the problem is to treat themost important critical parameters
(TCrit, JCrit, etc) as only statistically determined quantities,
with random fluctuations around mean values; the method
thus integrates all imperfections into a single quantity, and
it can be specified separately for each temperature and
magnetic field and for any position in the YBaCuO layers.

For this purpose, we have applied statistical variations
like those reported in the Appendix to [12]; a schematic

Fig. 2 This 3D diagram illustrates the region of existence of super-
conductivity (schematic, not to scale). The literature conventionally
applies uniquely, i.e. sharply defined curves (dashed blue in this
diagram) of TCrit(B), JCrit(B) and JCrit(T) that connect conventional
critical superconductivity parameters (open blue circles), see standard
volumes on superconductivity; the dependence of TCrit on B, JCrit on
B and JCrit on T then is described by analytical (polynomial) expres-
sions. In the present diagram, we instead assume statistical fluctuations
(small black dots) of TCrit(B), JCrit(B) and JCrit(T) against their con-
ventional counterparts, in order to account for uncertainties that might
arise from shortages in industrial, mass manufacture processes. In the
present numerical simulations, the fluctuations are different for each
of the 5000 superconductor elements, which means analytical expres-
sions for their description are no longer possible. The thick black solid
circles and the random distributions TCrit(B), JCrit(B) and JCrit(T) (red
curves, shown for only one single element jj) may significantly be
shifted against the corresponding conventional critical values (open
blue circles and dashed blue curves). But the shifts are exaggerated in
this diagram

illustration of the method is provided in Fig. 2 of the present
paper. In this model, critical current density and the other
critical parameters of the superconductor and its weak-link
resistivity against flux flow are different in each element
while the traditional, analytic functional dependency on
field and temperature, respectively, of all these parameters
is that of the traditional treatment (but even this dependency
might be different in each of the elements).

The 3D diagram in Fig. 2 indicates the region of exis-
tence of superconductivity (schematic, not to scale). The
literature conventionally applies uniquely (sharply) defined
curves (dashed blue in Fig. 2) of TCrit(B), JCrit(B) and
JCrit(T) that connect conventional critical superconductiv-
ity parameters (open blue circles). In the present diagram,
we instead assume the statistical fluctuations (small black
dots in Fig. 2) of TCrit(B), JCrit(B) and JCrit(T) against their
conventional counterparts, in order to account for potential
uncertainties. The fluctuations are different for each of the
(in total 5000) superconductor elements in the simulated
five turns. The thick black solid circles and the random dis-
tributions TCrit(B), JCrit(B) and JCrit(T) (red curves, shown
for only one single element of the whole 5000), accordingly,
are shifted against the corresponding conventional (tradi-
tional) critical values (open blue circles and dashed blue
curves); the shifts are exaggerated in this diagram. Each
of the superconductor elements thus provides its own 3D
existence diagram (the red solid curves) to the calculations
because temperature of each element and its exposure to an
external magnetic field might be different.

Strictly speaking, no reliable quantitative information is
available for variations of JCrit of 2G thin film coated super-
conductors that would arise from materials imperfections or
from experimental (measurement) uncertainties. As a worst
case limit, we could refer to experimental reports obtained
with 1G conductors [13]; these amount to almost 20%, but
with 2G thin film conductors, the variations should be much
smaller. The variations observed with 1G conductors also
included experimental errors, but the electric field strength
criteria meanwhile have been improved to below 0.1 µV/cm.
Therefore, we have used a variation of ±1% as a standard
in the calculations, and with ±0.1 and 10% variations for
sensitivity tests of the results only.

2.2 Calculation Scheme

The overall numerical procedure, with the integrated finite
element analysis, has been described in our previous papers
(compare the references listed in [1] for details). The finite
element simulation solely serves for solution of Fourier’s
differential equation.

As before, a standard finite element (FE) program (Ansys
16) is applied; mapped meshing is used for creation of
the large number of 2D plane elements (this means we
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assume uniform materials properties and solutions in the
z (tangential)-direction of conductor (circumferential direc-
tion of the coil windings); compare Fig. 1, diagrams a–d).
Shell elements cannot be used for simulation of the thin
films because they, by definition, assume homogeneous
temperature of the simulated object (an alternative, several
layers of shell elements, would complicate meshing, not
speed up the simulations, and plane elements provide more
flexibility).

There are numerous reports on contact resistance mea-
surements between high-temperature superconductors and
Ag, compare e.g. [14], and between superconductors and
other metals. However, applicability of the results to the
present case is doubtful, since these investigations are con-
centrated on ideal flat structures, between pairs of identical
or different materials, not on a pile of thin films where dur-
ing deposition irregularities arising possibly in one surface
might be transmitted from one thin film to the next.

Instead, interfacial layers and their electrical and ther-
mal resistances have been assigned between superconductor
(SC) and Ag, and between SC and buffer (MgO) layers, in
all turns. As a new approach, each of these layers (basically
a rough surface structure) is simulated as a thin materials
solid layer (Fig. 1, diagram c), not as plane (2D) objects
and, accordingly, will be meshed like the superconductor
and the other solid conductor components. Compared with
the application of locally unspecified surface resistances,
the present method has the advantage that the resulting solid
electrical resistances can be calculated as local quantities,
for all contact pairs of superconductor/Ag elements that face
each other and that are firmly bonded.

The interfacial layers shall account for possibly exist-
ing, isolated, point-like or extended solid/solid contacts, for
uncontrolled variations of superconductor layer thickness,
for only partial coverage of the superconductor film by
Ag, or for voids close to superconductor surface that are
filled with Ag during deposition. Compare the Appendix.
All contaminations during preparation of the coatings and
inter-diffusion between YBaCuO/Ag and YBaCuO/MgO
will alter materials properties very close to a surface/surface
solid contact.

With surface roughness, R, each in the order dR =
10 nm, of polished Hastelloy and of MgO− and super-
conductor (SC) surfaces, thickness dIFL of the interfacial
SC/Ag and SC/MgO layers was estimated as twice the pair
(dR,SC + dR,Ag) or (dR,SC + dR,MgO), i.e. dIFL ≈ 40 nm.

When simulating thin films, large lateral size/thickness
aspect ratios, r , are inevitable, in the present case r = 30/0.4
of superconductor and Ag elements, and r = 30 μm/8 nm
of the interfacial layers. However, several tests performed
with increasing r have confirmed that these ratios still are
applicable, without introducing significant uncertainties in
the transient temperature fields.

The total number of all (super- and normal-conducting)
elements including insulations, buffer layers, solders and
epoxy impregnations in the cross section of the upper five
turns, is 65,000. The large number is intended to calculate
the field T (x, y, t) in all materials as detailed as possible
because all materials properties and their internal tempera-
ture fields are responsible for temperature distribution in the
superconductor and in the interfacial layers.

We use the same data for boiling heat transfer as in
our previous reports. At the solid/liquid interfaces to the
coolant, temperature rise and oscillations of T (x, y, t)

against constant coolant temperature again are small (quasi-
thermal insulation against coolant is provided by epoxy
impregnation of the conductors). No data were available
for heat transfer to boiling nitrogen from polymer sur-
faces. Instead, stationary boiling heat transfer to nitrogen,
on smooth metallic surfaces, has been applied provision-
ally; within the simulated periods, this lack does not cause
significant errors.

Flux flow resistances are non-zero only if the mag-
netic field in the elements exceeds its lower temperature-
dependent critical field, if the field is below its upper critical
value, if element temperature is below critical temperature
and, trivially, if transport current density exceeds critical
current density. The local magnetic fields in the coil and
at the elements of each of its turns are roughly estimated
as made in [2], and again the Meissner effect is considered
separately in each of the 5000 superconductor elements.

Transient distribution of transport current then follows
from application of Kirchhoff’s laws. The results as before
serve for re-calculation of all resistances that in turn cre-
ate new current distributions, new transient losses and new
temperature fields, and these are transferred to the next
finite element calculation, with a finite time step, �t , to
obtain new resistances, current distributions, losses and
temperatures, and so on.

The new current distributions obtained after a step �t

not necessarily would be the same as obtained in previous
time steps; instead, the distribution may fluctuate, and the
transport current percolate, through the superconductor and
Ag cross sections. At the end of each time step, it has to
be checked whether summation over all re-calculated local
currents yields the same total current, to fulfill conservation
of electrical charge including the Ag coating in case there is
current sharing.

2.3 Convergence of the Results

A problem well-known in finite element analysis is to
obtain convergence if the cross sections involve compo-
nents of strongly different geometry like aggregates of thin
films (thickness a few micrometer or even nanometers) and
mechanically protecting layers (millimeter or centimeter),
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or if materials with strongly different thermal properties
contribute to the total conductor cross section (ceramic
superconductors, metals like Ag, Cu and Hastelloy, and
polymers used as casting compounds and electrical insula-
tions); all this has to be considered in the present case, see
Table 1. Appropriate selection of integration time steps, ∂t ,
to reduce computation time as far as possible, but without
loss of accuracy, thus becomes difficult: At T = 107 K,
the thermal diffusivity, DT, of Ag coating, of interfacial lay-
ers and superconductor material are 2.365 10−4, 5.605 10−7

and 2.574 10−6 m2/s; thickness dy of the corresponding ele-
ments is 0.4 μm, 8 nm and 0.4 μm, respectively. This calls
for integration time steps ∂t of below 4.23 10−11, 7.136
10−12 and 3.89 10−9 s (the estimates do not contain any
radiation contribution to heat flow; they at least in the inter-
facial layers and probably also in the superconductors would
further reduce the allowed ∂t). Clearly, with respect to a lim-
itation of computation time, the Ag and interfacial layers,
not the superconductor, impose the most critical problems.

Within periods �t of 50 μs and below, the ∂t were set-
tled to 10−16 ≤ ∂t ≤ 4 10−9 s (the lower limit, 10−16

s, can reasonably be taken only during initial integrations).
The upper limit, 4 10−9 s, guarantees that the approximate
relation dy ≈ 3.6(DT t)1/2 will be observed in all conduc-
tor components other than Ag and interfacial layers where
∂t = 4 10−9 s probably is too large. But this becomes
critical only if one considers heat flow specifically in y-
direction: Heat flow, however, is 2D, with element size in
x-direction of 30 μm so that this ∂t would be sufficiently
small. On the other hand, the relation dy = 3.6 (DT t)1/2

results from divergence of solely conductive heat flow, not
of heat sources or sinks other than conductive; heat sources
will appear in the interfacial layers only if there is current
sharing. All this calls for convergence tests to be performed.
With the limit ∂t≤ 4 10−9 s, a very large number of integration
sub-steps, in each of the periods �t, have to be expected.

The solution scheme applied sparse matrix direct solvers
(requests large memory space; alternatives like JCG or ICG
iterative solvers were tested but convergence is not guaran-
teed). As explained in [15], Fig. 4, the calculations yield a
series of quasi-stationary solutions that are obtained at the
end of the �t . The �t are large in comparison to char-
acteristic diffusion times of electrical and magnetic fields,
and they are large also against the time needed to establish
a new dynamic equilibrium charge distribution except, and
this will become important, for conditions very close to the
quench; compare Section 3.

Convergence can be promoted by appropriate selection
of tolerance criteria by which the program Ansys accepts
solutions in each integration sub-step, ∂t . For a representa-
tive temperature, say 100 K, the tolerance criterion in the
present calculations was settled to between 10−12 and 10−8.
Even then (or with still smaller tolerances), convergence

Fig. 3 Overall simulation scheme of transport current vs. process
time, t (process time denotes the simulated time intervals); the figure is
schematic, not to scale, and addresses only one of the 5000 supercon-
ductor elements, jj. The thick black horizontal line indicates the mean
value of critical current, ICrit, while the light-blue area describes upper
and lower limits of statistical variations ±dICrit of ICrit in the element
jj; these variations may arise separately in each of the finite elements
(the elements are not shown). As soon as the solid red curve ITransp
of transport current intersects the line ICrit of any of the elements (as
an example, at position A), flux flow losses are observed beginning at
the corresponding time, tA, in this element provided its actual temper-
ature is below its own critical temperature (that again is subject to its
own statistical variations dTCrit). In the simulations, the statistical vari-
ations dICrit correspond to 0.1, 1 and 10% variation of critical current
density, JCrit. Only if there were no variations of ICrit (strictly speak-
ing: of critical current density, JCrit), flux flow losses would not occur
before the curve ITransp hits or exceeds ICrit at point B

was hard to achieve when thermal load was very high; this
regularly happens after transport exceeds critical current
density and finally induces Ohmic resistances: The more
one approaches the voltage maximum at t = 5 ms, the more
will transport current density exceed the randomly defined
critical current density distribution so that the number of
elements in which losses are generated increases with time
(compare Fig. 3). Increments (lengths of load steps, �t)

accordingly have to be chosen carefully not to ”capture” in
one load step too many elements in which transport current
already exceeds critical current density.

If divergence occurred, temperature run-away (temper-
ature below or above the interval 77 ≤ T ≤ 600 K)
was observed always outside the superconductor thin film
cross section. Divergence of superconductor temperature
not necessarily relies on solely too high a load onto the
superconductor elements but could follow from numeri-
cal instability related to poor local meshing, or to strong
mismatch of materials properties between neighbouring ele-
ments, or in case of current sharing, from large heat losses
in the Ag layers.

A typical observation of complete divergence is nodal
temperature above 600K or below coolant temperature (77K).

The upper temperature limit (600 K) is arbitrary but
the idea is that YBaCuO certainly loses its superconductor
(chemical) materials and thus also its zero loss current trans-
port properties if this limit is exceeded. Nodal temperature
of the corresponding superconductor element then was fixed
to 600 K in the next time steps. The element in total thus was
assigned a large (Ohmic) resistance, which means, it was
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turned into a quasi-electrically insulating material, and the
corresponding current transport channel through this ele-
ment therefore was closed further on. Selection of this limit,
as long as it is strongly above room temperature, according
to experience has little or no impacts on the instant when
breakdown of transport current occurs.

The same limit, 600 K, then is applied also at the nodes
of all normal or non-conducting elements (Ag layer, buffer,
insulations, etc). Again, this limit is arbitrary but prevents
too large temperature variations in the total conductor cross
section that would induce strong conduction or contact heat
flow from non-conductor to superconductor elements; in
this case, it might no longer be possible to identify an
increased superconductor temperature as the result of losses
induced by current flow in definitely these elements.

However, if nodal temperature was below 77 K, regard-
less whether the upper temperature limit was exceeded or
not, at any position within the superconductor cross section,
the solution was not accepted for the analysis in Section 4.

Computational efforts to cover all these items were enor-
mous: On a standard 4-core PC and under Windows 7, a
simulation period of only 5 ms took more than 24 h compu-
tation time, even when using the selected ∂t = 4 10−9 s in
only those periods where strong losses were expected; this
was at about t = 4.3 ms after start (t = 0) of the simulations.

Like in previous studies, stagnation temperature, T (∞),
was calculated before start of the simulations, in order to
check the output of the finite element program against the
analytical solution. For this purpose, we used temperature
independent and isotropic values of thermal conductivity, λ,
and specific heat, cp. Coincidence between both solutions
was found, usually at a time t = 104 s after start of an arbi-
trary disturbance, at all internal positions of conductor cross
section; the maximum temperature deviation in this test was
below 10−2%. But in all following (proper) calculations, λ

and cp are treated as temperature-dependent and local (no
longer isotropic) quantities.

2.4 Coil and Conductor Geometry

Coil geometry, cross section of the in total 100 and in the sim-
ulated upper five turns, details of conductor geometry and
its composition are shown in Fig. 1a–d (materials properties
are listed in Table 1).

Finite element 2D and 3D calculations reported in [16,
17] are not doubled by the present paper: The authors in
[16] simulate electromagnetic behaviour of a coil at constant
temperature, which certainly is only a very rough approx-
imation. In [17], a 2D coupled electromagnetic-thermal
model, in an overall H formulation of Maxwell’s equation,
is applied to a stack of thin film coated conductors. The
model takes into account temperature-dependent thermal
and electrical properties, like in the present paper, but it

does not take into account buffer layers, and thermal contact
between tapes is assumed as perfect. These assumptions are
questionable, and the entire (fine, well-formulated) model
could be improved by a numerical analysis of local transient
temperature and transport current distribution and by local
materials properties. In the present simulations, exactly this
has been realised, by a microscopic description of tran-
sient temperature fields, resistive states of the conductors,
local current transport and materials properties, all items
considered within cross sections of the conductors.

2.5 Results Obtained for the Temperature Fields

Figure 4a, b shows temperature distribution at t = 5 and 10
ms, under the condition that the ratio, ITransp/ICrit, of trans-
port to critical current is limited to 0.95 and the statistical
variation, dJCrit, of JCrit is within only 1%. Transport current
thus cannot exceed the value ICrit− dICrit so that no current
transport losses in the superconductor can be created; compare
the scheme in Fig. 3. Obviously, temperature is very homo-
geneous in the thin 2G coated conductor films, as was to be
expected, and also almost identical in neighbouring turns.

The situation changes significantly when the ratio
ITransp/ICrit approaches 1 (Figs. 5a–c and 6). In Fig. 5a,
b, turns 96 (the innermost of the simulated) and 100 (the
outermost turn of the coil), nodal and element tempera-
tures, respectively, are plotted against time. Simulations
were stopped at t > 4.3 ms because of serious convergence
problems that could not be compensated even by more strin-
gent tolerance restrictions. However, the obtained results are
sufficient to understand what happens as soon as transport
current approaches its maximum: When in Fig. 3 time, t ,
exceeds tA, flux flow losses are generated in at least 1 of the
5000 superconductor elements, at exactly this element posi-
tion. The losses will increase locally and, if this happens in
a sufficiently large number of elements, lead to the quench of
conductor and coil.

Figure 6 shows total transport current ITransp (open and
solid diamonds) through the coil and total critical current
ICrit (solid circles) in the centroid of turn 96, all vs. pro-
cess time. Process time is the time used in the simulations,
with stepwise increase by intervals �t . Results are calcu-
lated for different (increasing) ratios ITransp/ICrit using the
same materials properties as before and the statistical varia-
tion of JCrit again within 1%. With finally ITransp/ICrit = 1
(solid light-green diamonds), we note the sudden decrease
of ITransp through the coil at t = 4.1 ms to almost zero and
the simultaneous decay of ICrit (with ITransp/ICrit = 1, this
would be observed under any of the statistical variations, not
only with the 1% uncertainty). At this instant, the tempera-
ture of possibly a large number of elements (not necessarily
the temperature of just the centroid element) of turn 96
under flux flow losses increases to exceed element critical
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Fig. 4 a Superconductor element temperature in the coil, calculated
at (process) time t = 5 ms, in lines 1 to 5 of each of the simulated
upper five turns, vs. horizontal position (overall axial direction of the
coil), x. Open diamonds and solid circles indicate results obtained for
turns 96 (innermost of the simulated) and 100 (uppermost turn of the
coil), respectively. Turns and element line numbers within each turn
are explained in Fig. 1, diagram d. The centroid of the conductor is
located in line 3 at position x = 6 mm. Results are calculated for the
ratio ITransp/ICrit = 0.95 of transport to critical current (where there are
no losses from flux flow or Ohmic resistances) and using the data listed
in Table 1. Statistical distributions of superconductor materials prop-
erties have been assumed in all of the superconductor elements. With
the given ratio ITransp/ICrit, temperature distribution within the conduc-
tor, in all turns, is very homogeneous: Calculated variations are in the
order of only 10−8 K. The situation changes strongly when ITransp/ICrit

→ 1, see next figures. The slight temperature decrease near x = 3
and 9 mm reflects heat transfer to the coolant. By the anisotropy factor
X = 10, thermal diffusivity parallel to the x-axis is much larger than
in radial (y-) directions where heat transfer additionally is partly sup-
pressed by intermediate electrical insulation and interfacial layers. All
curves are calculated with an electrical resistivity ratio ρNC,e/ρNC =
103 of the superconductor materials component in the interfacial lay-
ers; compare text for explanation of the cell model. b Superconductor
element temperature, calculated as before (Fig. 4a), but at t = 10 ms,
in lines 1 to 5 of the simulated upper five turns of the coil, vs. hori-
zontal (overall axial) position, x. The ratio ITransp/ICrit again is 0.95 of
transport to critical current. Open diamonds and solid circles indicate
results obtained for turns 96 (innermost) and 100 (uppermost turn of
the coil), respectively. Curves 1 to 5 are still very close to coincidence

temperature. Phase transition in each of these elements then
is responsible for large element resistances, all in parallel,
and for a large total resistance of the coil that under constant
voltage leads to strong limitation of transport current.

As Fig. 6 shows, still within the statistical variation of
1%, there is no breakdown of superconductivity even if the

ratio ITransp/ICrit is increased from 0.6 to 0.95. This is no
longer fulfilled if higher percentages, like the 10% inFig. 7, are
considered. Such strong variations of critical current have
been observed in 1G conductors.

We have studied the impact on transport current limita-
tion under a quench also for statistical variations of critical
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Fig. 5 a Superconductor nodal temperature of the centroid (of con-
ductor cross section) in turn 96, vs. time, t (we have four nodes in each
of the plane finite elements). The centroid is the central element of
the conductor. Same calculation as in Fig. 4a, b but now with the ratio
ITransp/ICrit = 1 (and the asymmetry factor X = 5). A first quench of
the centroid is observed beginning at t = 4.1 and again at t = 4.25
ms. The observed cool-down of nodal temperature beginning at t =
4.15 ms results from heat transfer and, since nodal temperature was
increased to above 120 K, from breakdown of transport current (in
the whole conductor) that switched off thermal (flux flow and Ohmic
resistive) losses. The observed small temperature deviations among the
four nodes within each of the 2D plane element indicate almost homo-
geneous element (centroid) temperature even when at t = 4.25 ms
it increases very strongly. b Superconductor element (centroid) tem-
perature (arithmetic mean of nodal temperature) in turns 96 (black
and coloured symbols) and 100 (open diamonds), vs. (process) time,
t . Same calculation as in Fig. 5a, with the ratio ITransp/ICrit = 1 but
with different asymmetry factors, X = Dab/Dc, of thermal diffusivity
in crystallographic ab-plane and c-axis direction of the superconduc-
tor. In comparison to Fig. 5a (temperature differences within a specific
element, i.e. the centroid), this figure shows temperature differences

between same elements (the centroids) of different turns. When keep-
ing X = 10 constant, the figure also illustrates the impact of thickness
and of thermal diffusivity of the interfacial layers (IFL) on supercon-
ductor temperature: Black open circles refer to dIFL = 40 nm (standard)
and λ = 100 W/(m K), as a rough estimate made for the SC/Ag inter-
facial composite; red symbols denote dIFL = 1 μm and λ = 1 W/(m
K), as an extreme, hardly realistic case, and the light-green symbols
are obtained with the same (increased) IFL thickness and 100 W/(m
K), respectively. The red solid circles thus illustrate that the interfa-
cial layers might thermally insulate the superconductor thin films, and
superconductor temperature accordingly increases. c Nodal tempera-
ture calculated at time t = 4.2 ms. White dashed lines are part of the
mesh (the inner block comprises turns 96 to 100; the narrowly spaced
double white lines indicate electrical insulation between turns, and the
outer double lines reflect a reinforcement of the casting compound).
Superconductor temperature, in turn, 96 has already increased to a
maximum of about 94 K, while in turn 97 to 100 temperatures are still
close to coolant temperature. The symbols “MX” and “MN” denote
maximum and minimum temperature within the total conductor cross
section. In this figure, the asymmetry factor is X = 10
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Fig. 6 Total transport current (ITransp, open and solid diamonds)
through the (whole) conductor and total critical current (ICrit, solid cir-
cles), vs. time, t (the simulated time intervals). Results are calculated
for different ratios ITransp/ICrit using the same materials properties as
before (Table 1). With ITransp/ICrit = 1 (solid light-green diamonds),
note the sudden decrease of ITransp at t = 4.1 ms to almost zero and the
simultaneous decay of ICrit. At this instant, the temperature of (almost
all) elements of turn 96 (not only of the centroid) under flux flow losses

increases to exceed element critical temperature. Phase transition in
each of these elements is responsible for large element resistances, all
in parallel, and for large total resistance of the coil. With only a 0.1 or
1% statistical variation of JCrit, there is still no breakdown of supercon-
ductivity even if the ratio ITransp/ICrit is increased to 0.95. This is no
longer fulfilled if higher percentages like the 10% in Fig. 7 would arise
that might possibly result from tolerances or shortages in industrial
conductor mass production

temperature (by± 0.5 and 1 K), upper critical magnetic field
(by± 5 and 10 T) and the variation of the anisotropy parameter
of thermal diffusivity, Dab/Dc = 5, 10 (standard) and 20,
but these variations had no significant impacts on the onset
of transport current breakdown.

In the following section, we will apply the calculated
transient temperature fields, T (x, y, t), obtained close to
a quench, to an analysis of relaxation of excited elec-
tron states to a new dynamic equilibrium. The results shall
indicate whether the said difference between timescales
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Fig. 7 Total transport current (solid diamonds) through the conductor,
and total critical current (solid circles), vs. (process) time, t . Results
are calculated for the ratio ITransp/ICrit = 1 of transport to critical cur-
rent using the same materials properties as before (Table 1) but now
for different statistical variations of critical current density, JCrit. These
variations lead to different onset times of the sudden decrease of ITransp
(solid diamonds) to almost zero, as is obvious from the 10% variation

of JCrit that leads to a reduction of JCrit (red solid circle) at already
t = 4 ms, about 0.5 ms earlier than with a variation of 1 or 0.1%.
Simultaneously, element temperature of turn 96 increases strongly to
exceed element critical temperature with corresponding increase of
total resistance of the coil and transport current breakdown (solid red
line)
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t and t’ can be quantified also in the 2G coated conductor,
if they exist at all.

3 Relaxation of Excited Electron States

3.1 Definition of the Wave Functions

The sequential model described in [2] now is adapted to
the 2G coated conductor. Consider first relaxation of an
arbitrary excited electron state:

Summation over the inverse of average lifetimes, τi, of
an ith excited electron state, at a given constant tempera-
ture (T > 0), with the summation index, i, taken over all
1 ≤ i ≤ NExc (with NExc the number of thermal electron
excitations), describes a relaxation rate (negative of the cor-
responding generation rate, GRel), of this state at a time t ,
per unit superconductor volume, V , as follows:

GRel [T (t)] = (1/V )
∑ {[

1/τi,Rel [T (t)]
}

(1)

Dimension of GRel[T (t)] is [1/(m3 s)].
The dynamic equilibrium between electron pairs and

their excitations exists if relaxation of excited electron states
to electron pairs, at temperature below critical tempera-
ture, on the statistical average compensates decay, and vice
versa. Equation (1) essentially is identical to (3) in [18];
only a dependence on time of temperature, T (t), has been
added. At constant temperature and for large time, t , the
relaxation rate GRel[T (t)] finally becomes constant and is
equal to a corresponding excitation (decay) rate,GDec[T (t)]
so that the difference between both rates is zero (decay
and relaxation of electron states originating from thermal
fluctuations will not be not considered). At increasing tem-
perature, in particular if it approaches critical temperature,
the rate GRel[T (t)] finally approaches zero.

Equation (1) can be written also in terms of relaxation by
decay widths, 	,

GRel [T (t)] = (1/V )
∑ {

	i,Rel [T (t)]
}
/ (h/2π) (2)

of statistically or of thermally excited states, with the usual
definition, 	i = (h/2π)/τi , and the summation index 1 ≤ i
≤ NExc of the excited electron states (h denotes the Planck
constant).

Thermal equilibrium is destroyed if, at a time t0, tem-
perature is suddenly increased to T1 = T + �T , still with
T1 < TCrit; this is the case in the present simulations: The
finite element calculations in the preceding sections yield
temperature evolution, T (x, y, t)with increasing time under
flux flow or Ohmic disturbances.

Under dynamic equilibrium, a total wave function,ψ(t0),
or a set of individual wave functions, ϕi(t0), of which ψ(t0)

is composed, describes the superconducting quantum state

at an original time t0. A thermal disturbance, and the cor-
responding temperature increase, requires the original wave
function to be rearranged to a new total wave function,
ψ(t1), either at the end of a single disturbance (like sud-
den absorption of radiation) or, as in the present case, until
the next variation (increase of temperature) is experienced.
For relaxation of the excited state, the wave function, ψ(t1),
of this state has to be re-arranged (relaxed) to a final wave
function ψ(t2). Time t2 indicates completion of relaxation,
and the difference, t2 – t1, accordingly is the lifetime, τEl, of
the disturbed (excited) electron state.

The question then is whether relaxation will be com-
pleted before the local heat source changes again (or
whether τEl is smaller than the corresponding time constant,
τPh, of the thermal transport processes). In other words, the
question is whether the difference t2 − t1 is smaller than the
length of the said process time steps, �t , in the preceding
finite element calculations.

For relaxation of ψ(t1) to the new total wave function
ψ(t2), emphasis is on the whole set of the ϕi(t), not only
of part of them, by which ψ(t2) has to be expanded. The
situation is an analogue to calculation of “coefficients of
fractional parentage” in atomic and nuclear physics, see e.g.
[19], p. 333–338: If the anti-symmetric, total wave func-
tion of a nuclear state incorporating N of nucleons shall
be formulated, it can formally be expressed by appropri-
ate coupling of an anti-symmetric wave-function of (N− 1)
nucleons with a one-particle wave-function. This yields a
product:

ψ (N − 1) , i, α)xφi(j) (3)

with i and j indicating angular momenta; the symbol α

summarises other quantum states to identify a number of
N− 1 and one-particle configurations, respectively. The
wave function of the N particle state still has to be anti-
symmetrised. For this purpose, the wave function shall be
expanded as a product of anti-symmetric wave functions
of N− 1 single particle states. Addition of the one-particle
state then requires re-arrangement of all previous N− 1
states to correctly obtain the new wave function, ψ(t2). The
new wave function has to fulfil the Pauli exclusion principle,
and the expansion coefficients (in the nuclear shell model)
are the well-known Racah coefficients.

Re-arrangement of the total wave function cannot pro-
ceed instantaneously but requires a time interval, the total
lifetime τ = (t2 − t1) > 0, of the disturbed system, before it
has completed its return to a new dynamic equilibrium. The
new anti-symmetric wave function, �, is of the type

� = C
∑

(−1)PP [ϕ(1, 2)ϕ(3, 4)ϕ(5, 6). . . ϕ(N−1)ϕ(N)]
(4)

with P indicating permutations of the anti-symmetric pair
wave functions ϕ(i, j). Regardless whether � describes a
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ground state, like in (4), or an excited or a relaxed state,
calculation of � always involves a sum of individual per-
mutations of the pair wave functions, ϕ(i, j). In the present
case, each permutation is associated with a single relaxation
step. Calculation of t2 − t1 thus involves a sum of individual
contributions over single time steps, each corresponding to a
single permutation in (4). The (total) relaxation time, t2− t1,
contains an enormous number of contributions and of their
summations (Section 3.4) since the number of particles to
be rearranged is very large.

3.2 Relaxation in Time and Space of Excited Electron
States

We consider relaxation of the excited electron state under
two different points of view: relaxation in (1) time and (2)
in space.

Assume that a local disturbance (a temperature increase)
occurs at a particular position x′ in the superconductor thin
film and at a time, t0 (bold symbols denote vector quan-
tities). At t1 > t0, we accordingly have at this position
an increased concentration, c(x,t), of excited electron states
over the previous equilibrium value.

The picture “relaxation in space and in time” then follows
from the variation of the concentration c(x,t),

dc(x, t)/dt = (∂c(x, t)/∂x)(∂x/∂t) + ∂c/∂t (5)

which identifies the contributions “relaxation in space” =
(∂c(x,t)/∂x) (∂x/∂t) and “relaxation in time” = ∂c(x,t)/∂t .

Because of propagation of a thermal wave in a supercon-
ductor solid or thin film,

(1) Relaxation in space means that the increased concen-
tration, c(x′, t1 > t0), from any arbitrary position, x′, of
excited states is distributed by a transport process to posi-
tions x �= x′; a particular simple transport mechanism is
diffusion.

(2) Relaxation in timemeans that the disturbed total wave
function, ψ(x, t > t0), that describes all electron states,
returns to equilibrium shape by relaxation processes, with
the stagnation result ψ(x,t2).

Contributions from both items (1) and (2) have to be
summed up to the lifetime, τ = τEl, of the disturbed system.

Experience [2] has shown that contributions from relax-
ation in time to (5) is much larger than contributions from
relaxation in space (modelling of the diffusion process); the
latter contribution thus will be neglected in the following (a
quantitative discussion of this item in a 1G conductor can be
found in the Appendix to [2]).

Instead of using perturbation theory or time-dependent
Ginzburg-Landau theory, we again use for item (2) an aspect
of the Yukawa model of nucleon-nucleon interaction: A
“time of flight” concept with a mediating Boson is con-
sidered as an analogue that can be used (of course with

some caution) to describe binding of two electrons to a
(Cooper) pair in a superconductor. The relaxation in time
from practical reasons is divided into two sub-contributions:

(2a) Contributions 	ij by two arbitrary particles i and j

in a superconductor unit volume that determine an “intrinsic
lifetime” of the non-equilibrium state in this volume; it is
the exchange of phonons that mediate binding interaction
between single particles and that have to travel a non-zero
distance between the particles concerned.

(2b) Contributions 	Rel = (h/2π)/τ resulting from the
uncertainty principle, for the proper condensation (or relax-
ation) event, once the particles i and j are correlated (iden-
tified) in step (2a); this step generates one pair by relaxation
of 2, then correlated, particles i and j .

For relaxation to one electron pair, each of the individ-
ual decay widths, 	ij , and 	Rel, contributes by about 10−12

and 10−14 s, respectively, to individual life times τij , for an
energy gap of some tens of millielectronvolt. While these
are very small contributions to total τ , there is a very large
number of individual 	ij , and 	Rel, and correspondingly,
τij , that have to be taken into account so that the total life-
time, τ , of the total disturbed state may become quite large
(this depends strongly on temperature).

Because of the Pauli exclusion principle (and again in
view of the Racah-problem), calculation of total lifetime, τ ,
from the two contributions (2a) and (2b) has to proceed in a
step-wise manner, with many, successively performed sum-
mations (Section 3.4); therefore, the model has been called
the “sequential model”.

3.3 Transfer of the Model from Excited Nuclear
to Electron States

The two contributions (2a) and (2b) to item (2) will now be
estimated to find the individual lifetimes, τij . We start with
the contribution (2a):

For this approach, averages of the lifetime must be taken
over a (virtual) volume VC at all positions, x, within the thin
film superconductor. Determination of the size of VC is one
of the critical points of the analysis because the number of
electrons contained in VC is very large and so is the number
of permutations of the pair wave functions to be performed.

To determine VC, assuming a spherical volume, we need
its radius, rC. A first, direct but very rough estimate for the
ground state can be performed using the inter-particle dis-
tances, d = (V /N)1/3, withN the number of particles filling
a sample volume, V . With the inverse of the electron density
in high-temperature superconductors (ρEl = 6 1027/m3),
this yields a mean distance, dm, between any two electrons
of about 0.55 nm, or when taking only that part of the elec-
trons that condense to electron pairs, a fraction of (1/10)
of the total number, the mean distance increases to about
1.2 nm. This is about the coherence length of an electron
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pair in the ab-plane of high-temperature superconductors.
This distance is small against the thickness (400 nm) of the
superconductor elements in the preceding calculations.

A similar result is obtained from consideration of the
Coulomb interaction within an again spherical cloud of vol-
ume, VC, of the large number of electrons. The radius, rC, of
VC shall be given by the condition that the Coulomb poten-
tial energy between two arbitrarily selected electrons i and
j , EC, is minimised and below the binding energy, 2�E, of
a single electron pair. The Coulomb energy amounts to

EC(rC) = χeiej /(4πε0rC) ≤ 2�E(T ) (6)

with ei and ej denoting electron charge and ε0 the dielectric
constant.

In metals, the effective Coulomb force is modified by
screening. In the solid, the electrostatic (repulsive) Coulomb
potential consists of (a) the repulsive interaction (interpreted
as a mean field) and (b) the (attractive) positive ion charges
in the solid. The two contributions are superimposed. In
the simplest form, this can provisionally be simulated using
the screening factor, χ , in (6) that essentially modifies the
dielectric constant.

As explained [2], almost all electrons, NEl(t0) = (½)
(ρElVC)/10 contained within the volume VC, in a rough
approximation do not belong to S = 0, L = 0 but to S = 0,
L = 2 spin and angular momentum states. Crystal imperfec-
tions and impurities could lead to false, s-wave-like charge
distributions; this will be neglected by simply assuming per-
fect crystalline order, clearly outside the interfacial layers
to Ag and MgO, and very clean materials in the same thin
YBaCuO films.

Positions xi , xj of particles i and j , in one dimension,
at time, t ≥ t1, are predicted in the following using random
variables RNDi and RNDj , with 0 ≤ RNDi,j ≤ 1 applied
to the rC which yields the random distance d(t) = xi (t)−
xj t) of particles before their condensation to electron pairs.
Selection of a lower limit of d(t) does not have signifi-
cant influence on the final results (the coherence length of
YBaCuO in c-axis direction, was assumed for this limit).

As an alternative, results could be obtained also using the
Thomas-Fermi potential, as was done in [2], with ETF =
EC(rC) exp(–r/rTF), with EC(rC) from (6), without the fac-
tor χ , and rTF the scattering length. Literature values of
rTF are in the order of 0.5 nm, again very small against
dimensions of the superconductor elements.

ThevolumeVC, i.e. the number of all electrons i, j contained
therein, located at random positions xi ,xj , will be used for
summations over all potential interactions (Section 3.4),
and the distances, xi− xj , for an estimate of contributions,
from a time of flight concept, to relaxation times.

The second information needed to calculate total lifetime
τ of the excited electron system concerns the Boson that
mediates correlation and binding of two electrons to a pair.

As an initial approach, we consider an analogue to nucleon-
nucleon interactions:

Nuclear forces (compare again [19]), are short-range sat-
uration forces. In the Yukawa-model, the Pion (π), a Boson
with spin zero, needs a time interval (in a rough picture a
time of flight) of about �tπ = 4.7 10−24 s, much smaller
than lifetime of charged Pions (about 10−8 s), to mediate
the binding energy between two nucleons. This time inter-
val is estimated from the uncertainty principle using �E =
mπc2, with mπ the rest mass of the Pion and c the veloc-
ity of light. It is not clear that its mass necessarily would
be the rest mass of a free solid particle, but the range of the
Pion-mediated nuclear binding force (the “uncertainty of the
nucleon radius”), d = �tπ c, is about 1.4 10−15 m, a value
surprisingly close to the radius of the nucleon.

In the Deuteron, the only stable bound, two-particle
nucleon system, we have a central binding force (plus a
small electrical quadrupole moment) and a comparatively
small binding energy so that the inter-particle distance
between proton and neutron even exceeds the range of the
nucleon/nucleon interaction force. This is in a surprising
analogy to binding of electrons in the BCS-model: It is suf-
ficient that there is a (negative) binding energy that even
may be arbitrarily small.

There are of course differences between the three cases
(nucleon-nucleon interaction, deuteron and electron pair):
(a) In the deuteron, proton and neutron couple to a spin
triplet (3S1) state (parallel spins), and it is a free particle;
(b) while the exchange Boson in the nucleon-nucleon inter-
action interacts between two solid particles, it does so only
in the interior of a nucleus (we do not consider p-p or p-n
scattering reactions); (c) in a superconductor, however, the
exchange is between electrons, not between solid particles,
with lattice vibrations that provide virtual Bosons to mediate
exchange of energy and momentum.

But the other aspects of electron pair formation, (i) two
particle interaction, (ii) a Boson (the phonon ω) as the
(virtual) exchange particle and (iii) weakly bound, two-
particle states, get electron pair formation in superconduc-
tors (strictly speaking, a method to estimate its duration with
time), though only from formal aspects, at least marginally
similar to its nucleon/nucleon analogue. An alternative com-
parison could be made with the two-electron system in the
4He atom, but this comparison formally suffers from the
central potential that the electrons in superconductors do not
experience.

Formation of both a nucleonic bound state and of an
electron bound state (the electron pair) in this model then
would proceed within a time interval (the time of flight,
or lifetime, �tπ or �tij , of particular excitations, (i, j),
respectively) that the corresponding exchange Boson (π or
ω, respectively) needs to mediate the binding interaction.
Instead of binding interaction, we may also say “correlate
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the corresponding single particles before their relaxation”.
This is not a “recombination” of two previously separated
electrons because any pair wave function, ϕ(i’,j ’), of the
relaxed state might not be identical with any original pair
(i, j); it is not necessary that the candidates (i’,j ’) would
equal the (i, j).

The interval �tπ accordingly is the lifetime of two
uncoupled (but correlated) nucleons considered as virtually
disturbed states before they “condense” to a bound two-
particle state in a nucleus. In the same way, �tij is the
lifetime of two uncoupled (uncorrelated) electrons, the time
interval that is needed for relaxation of the two electrons
to a pair. When considering all �tij of all electrons i and
j in the volume VC, their summation (Section 3.4), for re-
arrangement of the total wave function at the new dynamic
equilibrium state, delivers the needed time t2.

In both cases, Yukawa model of two nucleons, or electron
pair, dividing the distance d(t) = xi− xj , by the velocity
of the corresponding exchange Boson, vBoson, gives a mea-
sure for the “lifetime of the interaction” and, if appropriately
summed up over all particles in the volume VC, the intrinsic
part of the “lifetime of the disturbance”, τ = τEl; this is to
be identified with the term ∂c(x,t)/∂t in (5). The emphasis is
on ”appropriately summed up lifetimes”: By (3), relaxations
are not allowed to run in parallel.

Also the estimate of the contribution 	Rel is made
according to an analogue from numerous examples reported
in atomic, molecular and nuclear physics: Relaxation of
excited states is made by application of the uncertainty
principle:

�t1EP = (h/2π)/�E1EP (7)

with the binding energy (the energy gap), �E1EP. The time
interval, �t1EP, holds for decay of one electron pair (1 EP)
to two excited electrons as well as for the present purpose,
i.e. its reverse, namely relaxation of two excited electrons
to one electron pair, with the condition that the (i’,j ’) of
the original pair not necessarily are identical with any (i, j)

of the relaxed pair. The same applies to an arbitrary large
number of electron pairs formed from particles contained in
the unit volume VC. With provisionally �E = 60 meV (at
very low temperature), the contribution �t1EP amounts to
about 10−14 s.

3.4 The Sequential Model

Finally, calculation of total lifetime, τ , requires contribu-
tions �tij and �t1EP to be weighted by the number of
allowed open relaxation channels. Weighing has to take into
account the Pauli exclusion principle: As mentioned, after
each relaxation step of two single electrons to a pair (i, j),
the new wave function has to be defined (re-formulated)
appropriately before the next re-arranging step may follow.

This next step is allowed only if the Pauli principle is
observed; this is the analogue to calculation of the coeffi-
cients of fractional parentage, Equation (3). Formation of
the total wave function, ψ(t), thus cannot be completed
before each permutation, P [ϕ(1,2) ϕ(3,4) ϕ(5,6). . .ϕ(N−
1) ϕ(N), of the (pair) wave functions, ϕ(i, j), of in total N

particles contributing to the total sum, is taken into account
(compare Equation (5a,b) in [2], for more explanations).

The maximum number NCor of possible correlations
(between two potential candidates suitable for building one
pair) therefore is to be determined from a total of NExc

particles by the following:

Ncor = NExc(t)!/[(NExc(t) − 2)! 2!] (8)

The total time for mediating the exchange energy between
all potential candidates i and j , each correlated to one indi-
vidual electron pair (i, j) then, is obtained by summation
over all NCor open correlation steps. Each contribution to
�tij (t), the time needed to re-arrange the total wave func-
tion, is given by summation over individual ratios (time
needed for one correlation attempt), d(t)/vω, with particle-
particle distances, d(t), and vω the velocity of the mediating
Boson. Again note that the excited electron system, dur-
ing the re-arranging procedure, will not take just the very
first particles “at hand” from an arbitrary sequence of all
potential combinations!

Only when by this sequential procedure each of the two
electrons i and j properly are identified (by the conditions
si = 1/2, sj = −1/2, li = 1, lj = 1, and pi = − pj,
namely at positions xi(t), xj (t) within VC), the time inter-
val �t1EP from (7) is added to �tij (t) to yield �tRelij (t) =
�tij (t) + �t1EP. The time interval �t relij (t) incorporates (i)
(numerical) correlation and (ii) (physical) relaxation (index
“rel”, i.e. condensation) of two electrons to one pair.

After formation of a number NEP of electron pairs, we
have NExc(t) = NExc(t1)− 2NEP as the number of exci-
tations to be used in (8) for the next selection of potential
electron pairs, now from the reduced number NExc(t). This
process is repeated until all NEl candidates still available in
VC are coupled to pairs, which means we have for the total
time interval, �tTotal, needed to accomplish re-arrangement
of the total wave function, a second summation:

�tTotal =
∑

�tRelij (t) (9)

with the summation index running over 2 ≤ �k ≤ NExc(t)

in (9) using �k = 2. It is clear that this procedure to cal-
culate lifetime strongly differs from a particle picture (as
for example applied in current injection experiments [17]);
for completeness, the latter would have to include particle
motions.

Computation time required to calculate the sum in (8)
and (9) is enormous: For YBaCuO, at T = 90.5 K, we have
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NEl(t1) and Ncor in VC in the order of 104 and 108, respec-
tively, which means summations over a number of terms in
the order of 1012 contributions would be the consequence.
A possible simplification of this problem was made in [2]
(instead of calculation of d(t) from random positions xi , xj ,
mean values, dm, of the inter-particle distance, d(t), were
applied), but in the present simulations, summations were
made using real, randomly defined particle positions and
their distances, d(t).

When in YBaCuO, temperature T → TCrit (92 K), all
d(t) or dm diverge, due to the dependence of �E on temper-
ature, T , and thus of the radius rC of the volume VC. This
result, divergence of d(t) and dm, is indeed the familiar one:
All electron pairs finally decay into single, uncorrelated
electrons when (local) thin film superconductor temperature
very closely approaches its critical temperature, separately
in each element.

Summarizing the contributions from diffusion (relax-
ation in space) and sequential model (relaxation in time),
we have for the total lifetime near the phase transition, in a
good approximation, τ ≈ τEl = �tTotal.

Total conversion rates, from NExc(t > t1) excited elec-
trons located in the volume VC to finally NExc(t)/2 electron
pairs, by application of τ ≈ �t total read

GRel(t) = dNExc/dt

= NExc(t)/τ (10)

For temperature clearly below TCrit, the total volume of
the thin film superconductor contains a very large num-
ber of single spherical cells, VC, with the GRel in each cell
being identical: The relaxation rates, GRel, calculated in
(10) per unit cell volume yield also the relaxation rates of
the whole thin film because relaxation will most probably,
apart from differences resulting from variations of the tem-
perature field, proceed in parallel in each cell (but in each
cell, the summations as mentioned have to observe (3)). This
means relaxation proceeds in parallel in just one of the finite
elements of the thin film (element size is 400 nm × 30 μm,
a cross section very large (but of homogenous temperature)
compared to cross the section VC, with a radius rC in the
order of 1 nm.

Relaxation times, τ = τEl, that result from application
of (9) are reported in Section 4 of the present paper. As is
to be expected, the curves approach very large values when
temperature T → TCrit. In the extreme case, [TCrit − T (t)]
→ 0, and if temperature T in each interval �t would be kept
constant, it would take the superconductor indefinitely long
time to allow relaxation to pairs of all of the increasingly
large number of excitations.

But temperature T (x, y, t) within �t is not constant
(because losses increase steadily) so that the whole summa-
tion procedure has to be restarted at every new temperature

variation. Since temperature increases, and with increas-
ing temperature still more electrons would have to relax to
pairs, the calculated relaxation times of the simulated quasi-
stationary states thus are lower limits. They approach the
real (transient) relaxation times the better the shorter the
time intervals �t (the load steps) and the integration time
intervals (the ∂t). At temperature levels not very close to
TCrit, the increase, �T , of element temperature in Fig. 5b
between t = 4.1 and 4.15 ms (process time) amounts to
about 60 K (blue diamonds and light-green triangles). In
one integration time step, ∂t = 4 10−9 s, this yields a cor-
responding increase ∂T during this period of about 5 mK.
Assuming T = 85 K, the difference ∂T at this temperature
level causes a difference between corresponding relaxation
times (Fig. 8) of only 1.63 10−17 s. The difference between
calculated quasi-stationary and transient relaxation times
during integration accordingly is very small.

Then, can the relaxation procedures be completed within
any of the intervals �t? An answer to this question shall be
investigated in the next section.

4 Application of the Sequential Model
to the YBaCuO Coated Conductor

4.1 Relaxation Times and Rates

Relaxation time for constant element temperature, T , in the
centroids of turn 96, after a thermal disturbance, is shown in
Fig. 8 (light-green, lilac, orange and blue diamonds, respec-
tively), and in turn 100 by the red symbols. Differences
of the calculated relaxation times the between all symbols
solely originate from the random distances between two
electrons in the volume VC.

As soon as element temperature exceeds 91.925 K, relax-
ation to a new dynamic equilibrium no longer can be
completed within the given time intervals. The temperature
91.925 K results from the intersection of the three curves
in Fig. 8 with the ordinate (integration time axis) at 1 or 50
μs (horizontal dashed lines). The intersection is observed at
a time tQuench. This time can be interpreted as a “time of
no return”. After this time, in this thin film superconduc-
tor, a quench will inevitably proceed if in an application no
immediate actions would be taken by experimentalists or
automatically with conventional safety switches (and if no
alterations of cooling conditions are possible). This is a new
approach in stability considerations since it defines a time
limit, while conventionally a temperature limit, T < TCrit,
is set as stability criterion.

Figure 9 shows relaxation time in the centroids of turns
96 and 100; this figure applies the same data as in Fig. 8
but the results are plotted vs. process time (instead of being
plotted vs. temperature). In Fig. 9, temperature is close to
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Fig. 8 Relaxation time (the time needed to obtain dynamic equilib-
rium in the centroids of turns 96 (light-green, lilac, orange and blue
diamonds, respectively) and 100 (red diamonds), after a thermal distur-
bance originating from transport current density locally exceeding crit-
ical current density (the corresponding flux flow losses increase local
conductor temperature and finally lead to a quench). The light-green,
lilac, orange and blue diamonds refer to element temperature calcu-
lated in the finite element simulation; dark-green circles are calculated

for an arbitrary sequence of element temperatures. Differences of the
calculated relaxation times originate solely from the random distances
between two electrons in the volume VC. As soon as element tem-
perature exceeds 91.925 K, coupling of all electrons in this thin film
superconductor to a new dynamic equilibrium can no longer be com-
pleted within the integration times (1 or 50 μs, indicated as length of
process time intervals (lilac horizontal dashed lines) in this figure)

the quench but still below TCrit. The strong increase with
time of the relaxation time in turn 96 is the consequence
of (i) its more or less thermally insulated position within
the coil (it is, contrary to the outermost turn, encapsulated
between neighbouring turns) and thus (ii) its much higher
losses (lower JCrit but constant JTransp) that it experiences
near the quench.

The more the centroid temperature approaches TCrit, the
more electrons become uncoupled and the more time is
needed for relaxation of the strongly increasing number of
excited states. As a consequence, the relaxation rates are
expected to decrease at element temperatures near TCrit.

This is confirmed in Fig. 10 that shows relaxation rates
(per unit volume) of thermally excited electron states in the
centroids of turns 96 and 100 vs. (process) time (again the
simulated time intervals). The much stronger decrease of
relaxation rate in turn 96 originates from the strong increase,
dT/dt, of centroid temperature, T ; compare Fig. 5b.

4.2 Difference Between the Two Timescales

The strong increase of relaxation time near TCrit in Fig. 8
suggests that like in the previous study ([2], Figs. 2a, b,
12a, b, and 13a, b), we again observe a temporal mismatch

Fig. 9 Relaxation time in the
centroids of turns 96 and 100;
this figure applies the same data
as in Fig. 8 but the results,
instead of being plotted vs.
temperature, are in this figure
plotted vs. (process) time (the
simulated time intervals).
Centroid temperature still is
below TCrit. The strong increase
with time of the results in turn
96 is the consequence of much
higher losses that the centroid
experiences in this turn in
comparison to turn 100, near the
quench 1,0E-13
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Fig. 10 Relaxation rates (per unit volume) of thermally excited elec-
tron states in the centroids of turns 96 and 100, vs. (process) time, t .
The much stronger decrease of relaxation rate in turn 96 originates
from the strong increase, dT/dt, of centroid temperature, T , compare
Fig. 5b. The more the centroid temperature approaches TCrit, the more

electrons become uncoupled and the longer periods is needed for relax-
ation of the strongly increasing number of excited states, in accordance
with the increasing time needed for completion of relaxation shown in
Fig. 9

between timescales t (the phonon timescale) and t ′ (the
electron timescale). The scale t ′, and thus the difference
between both timescales, is not a constant but may be dif-
ferent in different regions of the superconductor. As long as
temperature distribution within the superconductor remains
homogeneous (only small losses), there will be no signif-
icant variations of t ′ with position. Below 4.3 ms, this is

fulfilled in the simulations (compare Figs. 4a, b and 5a).
The difference between the two timescales will now be
determined.

The difference t – t ′ between both timescales, if it exists,
is given by the period tCrit – tQuench, with tCrit and tQuench
the times when the superconductor reaches temperatures
TQuench (the onset of the quench at T = 91.925 K) and
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Fig. 11 Residual number of potential (open) coupling interactions
(“channels”, relaxation of electrons to pairs) within a given integration
time interval (here 1 μs) during a quench. The figure shows the relative
extent to which coupling can be completed before, after 1 μs, the next
temperature increase is observed, to obtain a new dynamic equilibrium.
As soon as element temperature exceeds the limit TQuench = 91.925 K,
all coupling channels become closed, and the electron system remains

in a local, highly disturbed, dynamic non-equilibrium state (the curve
is valid for any of the YBaCuO conductor elements, which means an
electron temperature of this state cannot be defined). The difference
between times tQuench and tCrit, at which the curve reaches tempera-
tures TQuench and TCrit (light-green and red dashed lines), defines the
length of a dead time interval (definite assignments of superconductor
temperature not possible within this interval
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TCrit, respectively. During tCrit – tQuench, safe operation of
superconductor equipment using this thin film conductor
becomes questionable.

Progress of relaxation is shown in Fig. 11, i.e. the residual
number, NRes, of potential, still open, coupling interactions
(subsequent sequential relaxation steps) within an inte-
gration time interval. Below TCrit, the number 1 − NRes

accordingly is the number of relaxation processes that still
have to be completed before the next temperature increase is
simulated; the data in Fig. 11 refer to the interval �t = 1 μs.
When the number NRes finally becomes zero, the number 1
−NRes = 1 indicates that relaxation processes no longer can
be realised; this is the normal conducting state.

Compared with [2], Eq. (15), the difference t − t ′ in
the present paper no longer relies on t − t ′ = (dτEl/dT)
(dT/dt) �t , with the first and second factors (derivative of
τEl with respect to temperature and derivative of supercon-
ductor temperature field, T (x, y, t) with real time). Instead
the mismatch between scales t and t ′ is calculated directly
from the difference between time tQuench and tCrit:

From Fig. 11 and from the temperature evolution,
T (x, y, t), of the centroids in turns 96 and 100 (Fig. 5b),
the mismatch is extracted as 4.717 10−10 s and 3.702 10−8

s, respectively. The difference between in both turns results
from the very fast increase of centroid temperature in turn
96, in comparison to turn 100. Mismatch in the thin film
YBaCuO superconductor thus is very small, in accordance
with the result found in [2], Fig. 12b, for a YBaCuO fila-
ment (approximately 4 10−10 s). In addition, it is contrary
to the enormous mismatch found in a NbTi filament in the
order of seconds! (Compare [2], Fig. 12a).

In a strict thermodynamic view, electron temperature,
TEl, of whatever magnitude, or the temperature of any other
energetic state of a many-particle system, cannot be iden-
tified if this state is not in its thermodynamic equilibrium.
This means, as soon as element temperature exceeds the
limit TQuench, the electron system remains in a local, highly
disturbed, non-equilibrium state. Temperature of this state,
within the interval TQuench < T < TCrit or, correspond-
ingly, within tQuench < t < tCrit, then cannot uniquely be
identified.

Accordingly, there are open questions: Since there should
be a bijective (one to one) correspondence between temper-
ature and time, T (x, y, t), at any fixed position (x, y)within
the conductor cross section, are we sure, again on a strict
thermodynamic ground, that a timescale t’ in this time inter-
val really does exist? Moreover, since critical temperature,
T = TCrit, should correspond to t’ = tCrit that both obvi-
ously are interval limits, does this imply that even critical
temperature might become meaningless? Or do we simply
have to replace equalities T = TCrit at t’ = tCrit by T →

TCrit at t’ → tCrit? (note that the equality sign is replaced by
an arrow). If we approach TCrit from temperatures below or
from above? This requires more investigation.

5 Summary and Open Questions

We have simulated the evolution of transient tempera-
ture fields in the upper windings of a flat pancake coil.
While temperature within the windings initially is very
homogeneous, important temperature differences between
neighbouring turns come up if transport current increases
to values near critical current. We have again included
statistical variations of the most important superconduc-
tor parameters (TCrit, JCrit, BCrit, ratio of anisotropy); the
applied statistical variations against a mean value of JCrit
are between 0.1 and 10%. If transport current is limited
below the ratio ITransp/ICrit = 0.95, there will be no quench
provided there are no other disturbances that locally might
increase conductor temperature. However, if the 2G coated
YBaCuO conductor quenches, which with a statistical vari-
ation of 1% of JCrit happens for ratios ITransp/ICrit exceeding
0.95, the quench will be observed first in the inner turns of
the magnetic coil.

Current transport through the inner superconductor wind-
ings then is limited immediately to the then given (residual)
critical current. Current sharing with the Ag-layer might be
observed. The outermost windings remain in superconduct-
ing state.

The calculated transient temperature evolution has served
as input data to a sequential model to estimate the time
needed for relaxation of the disturbed electron system to a
new dynamic equilibrium (the time needed for completion
of relaxation from excited states). A time limit, tQuench, has
been identified beyond which completion of relaxation is
no longer possible. Only a limited number of electron pairs
then remain available for current transport, which may cause
safety problems in superconductor applications. This time
limit accordingly appears to be the real onset of the quench.
This is a new approach in stability considerations: Conven-
tionally, a temperature limit, T < TCrit, not a time limit, is
set as stability criterion.

From the preceding analysis, it has to be expected that
temporal mismatch occurs between timescales, t and t ′, of
which the scale t ′ is not a constant but a local quantity
that may be different in different regions of the supercon-
ductor cross section. The effect apparently is very small
in the simulated thin film YBaCuO conductor but, as a
previous analysis has shown, could be strong in NbTi at
temperatures near conductor phase transition. The question
is whether at times exceeding the limit tQuench, temperature
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of the superconductor, strictly speaking, of its electronic
states, can be indicated at all. This in addition might raise
the principal question whether even the critical temperature
is a uniquely defined quantity.

Appendix

For current sharing, transport current, if it exceeds criti-
cal current, has to overcome electrical (resistive) obstacles
between superconductor and Ag. These obstacles are char-
acterised by measurable electrical surface resistances; they
usually are reported as per unit surface, with little or no
spatial (x, z) resolution.

The surface roughness of the superconductor is very
small provided it is deposited on almost perfectly smooth
substrates and buffer layers; roughness of polished sub-
strates (Ni alloys) and buffer layers like MgO of between 1
and 5 nm are reported in the literature, and the achieved crit-
ical current densities accordingly are very large. However, it
is not clear that Ag after deposition will always completely
cover the superconductor surface.

By analogy, heat flow from superconductor to the buffer
layer is limited by obstacles, now between two hard materials.

All obstacles in the present simulations have been col-
lected in one entity, namely, by modeling the interfacial
layers as thin films. The problem shall be solved using solid
2D elements, not ideal 2D surface contact resistances. In the
finite element mesh, electrical and thermal interconnection
between neighbouring layers and their elements are handled
by glueing neighbouring nodes. Compared with applica-
tion of (locally unspecified) surface resistances, the present
method has the advantage that the resulting solid electri-
cal resistances can be calculated as local quantities, for all
contact pairs (elements) that face each other and are firmly
bonded.

The electrical resistance of the interfacial layers between
superconductor and Ag is estimated again by application of
the Russell cell model (compare [2] for explanations and
citation to the original literature): Porosity of the interfacial
layers (percentages of YBaCuO and Ag) is approximated
roughly as 0.5, with open cell structure. During deposition,
Ag penetrates into voids in the superconductor surface; thus
the superconductor material (core) at right the solid/solid
surface contacts can be imagined as embedded in a matrix
(shell) of highly conducting Ag (this is the general idea of a
cell model).

For application of the Russell shell model, the resis-
tances of both components, superconductor material and
Ag, have to be known. No information is available whether
the YBaCuO materials component within the interfacial
layers would safely remain in superconducting state, even

if temperature in the layers is below nominal TCrit. Inter-
diffusion between YBaCuO/Ag and YBaCuO/MgO and
other chemical disturbances might induce suppression of
TCrit, a result that yet could be critical for the present sim-
ulations. This is because we deal with situations very close
to a quench.

The normal conduction electrical resistivity, ρNC,e, of the
superconductor component in a highly complicated inter-
facial layer is certainly larger than the normal conduction
resistivity, ρNC, of an epitaxially grown, c-axis oriented,
thin film superconductor. Electric resistivity of the thin
interfacial layers therefore is simulated using, for its super-
conductor component, the normal conduction value while
for the Ag component the resistivity of highly clean Ag is
applied.

Because of the high conductivity Ag, onset of a quench
and breakdown of transport current through the supercon-
ductor does not decisively depend on interfacial layer thick-
ness, dIFL; this thickness at the most has indirect impacts
on onset of transport current breakdown. This expectation is
confirmed in Fig. 5b (compare the open black circles with
the other curves).

Instead of application of the Russell shell model to also
thermal resistances of the interfacial layers, we use in the
standard expression RTh = d/(λ A) variations of thermal
conductivity, λ, and of cross section, A, for conduction heat
flow, with constant layer thickness, d. Contrary to ρNC,e,
no data for the thermal resistivity, ρNC,Th, are available
that would correspond to its electrical counterpart of the
same materials structures and composition (superconductor
embedded in Ag) and at the same local contact positions.
Therefore, we cannot apply the Russel cell model, but sen-
sitivity tests using an effective thermal conductivity, λ, can
be performed: Ratios d/λ = 4 10−10 [m2 K/W] (standard)
and 10−8 or 10−6 (for sensitivity tests) are applied in the
calculations. Results are again shown in Fig. 5b.
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