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Abstract Strongly interacting two-dimensional (2D) car-
rier system has a tendency to spontaneous spin magneti-
zation and mass divergence. Numerous experiments aimed
to reveal these instabilities were not entirely convincing. In
particular, spin susceptibility of itinerant electrons, deter-
mined from quantum oscillations, remains finite at the crit-
ical density of the 2D metal-insulator transition (MIT), n =
nc. In contrast, the susceptibility and effective mass deter-
mined from high field magnetotransport were reported to
diverge. Later, it became clear that as interactions grow, the
homogeneous 2D Fermi liquid breaks into a two phase state
which hampers interpretation of the experimental data. The
thermodynamic magnetization measurements have revealed
spontaneous formation of the spin-polarized collective elec-
tron droplets (“nanomagnets”) in the correlated 2D Fermi
liquid, while the spin susceptibility of itinerant electrons in
the surrounding 2D “Fermi sea” remains finite. Here, we
report how the non Fermi-liquid two-phase state (dilute fer-
romagnet) reveals itself in magnetotransport and zero field
transport. We found in the correlated 2D system a novel
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energy scale T ∗ < TF . At T ≈ T ∗ the in-plane field
magnetotransport and zero field transport exhibit features.
Finally, in thermodynamic magnetization, the spin suscep-
tibility per electron, ∂χ/∂n changes sign at T ≈ T ∗. All
three notable temperatures are close to each other, behave
critically, ∝ (n − nc); we associate, therefore, T ∗ with a
novel energy scale caused by interactions in the two-phase
2DE system.
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1 Introduction: Spin Magnetization in the In-plane
Field

The low-density two-dimensional (2D) electron system has
a tendency to ordering in the spin or charge channels, due to
the interplay between Coulomb interaction and Pauli prin-
ciple. Particularly, as density decreases, the ratio rs between
the interaction and Fermi energies increases pushing the
system towards a ferromagnetic instability. In the Hartree-
Fock approximation, the Bloch instability was predicted to
occur as a first-order phase transition to fully polarized state.
In the limit of short-range interactions, the Stoner instability,
a second-order phase transition characterized by divergent
spin susceptibility, is expected. Numerical simulations for
a clean single-valley 2D electron system [1] predict Bloch
instability at rs ≈ 25 followed by Wigner crystallization
at rs ≈ 37, whereas clean two-valley system is believed
to be stable against spontaneous spin polarization. Numer-
ous experimental attempts to reveal the spin susceptibility
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divergence were inconsistent. Thermodynamic spin magne-
tization measurements [2] has clarified the reason of the
inconsistency: the 2D interacting electron system experi-
ences a transition from Fermi liquid to a two-phase state,
that hampers interpretation of the data.

The spin polarized phase has been revealed in thermody-
namic measurements of the spin magnetization M in weak
in-plane magnetic fields [2–4]. In these measurements,
∂M/∂n = −∂μ/∂B was determined from modulation of
the 2D layer chemical potential μ in the weak in-plane
magnetic field B [4]. The main result of the measurements
[2] is the observation of “spin-droplets”—spin polarized
collective electron states with a total spin of the order of
two [2]. These easily polarized “nanomagnets” exist as a
minority phase on the background of the majority Fermi liq-
uid phase even though the density and the dimensionless
conductance are high, kF l � 1; the latter inequality is com-
monly considered as the criterion of a well-defined Fermi
liquid state.

Figure 1a, b shows typical ∂M/∂n signal for several den-
sities. For low densities, ∂M/∂n is positive, much exceeding
the Pauli spin susceptibility (Fig. 1a) at low temperatures.
Its magnetic field behavior is reminiscent of that for free
spins, ∂M/∂n = μB tanh(b), where b = μBB/T �
1 is the dimensionless magnetic field (� and kB are set
to unity throughout the paper). However, ∂M/∂n exceeds
Bohr magneton, the fact that evidences for ferromagnetic
alignment of spins. For high densities, in the metallic
regime, the ratio of the interaction energy to the kinetic
Fermi energy is not great. As expected for the Fermi gas
with density-independent Pauli spin susceptibility, ∂M/∂n

in low magnetic fields approaches zero [2]. At interme-
diate densities, well in the metallic phase (e.g., at n =
1.5 × 1011 cm−2 in Fig. 1), ∂M/∂n changes sign with
temperature. Indeed, negative ∂M/∂n is expected in the
metallic phase, since increase in density reduces interaction
and spin polarization of the 2D system. Thermal fluctua-
tions suppress magnetic ordering; therefore, as temperature
increases, ∂M/∂n becomes less negative, changes sign
and approaches the dependence expected for noninteracting
non-degenerate electrons (see Fig. 1b).

Figure 1c shows a phase diagram, based on the exper-
imental results of ref. [2]. Here, the dashed line TdM/dn,
corresponding to the sign change of ∂M/∂n separates
regions (I) with dominating spin droplets, ∂M/∂n > 0, and
(II) Fermi liquid, ∂M/∂n < 0. In the lower-density phase
(II), as density increases, the number of droplets increases,
reaching its maximum at the temperature-dependent criti-
cal border (dash line). In the high-density phase (I), the spin
droplets disappear gradually as density increases. The phase
diagram, therefore, shows a critical magnetic behavior for
the 2D electron system in the regime of strong interactions
[5].

2 Two Phase State and Charge Transport

One may expect that the presence of the localized “spin-
droplets” with a non-zero magnetic moment will be seen in
transport of the itinerant electrons. However, the effect of
droplets is rather delicate. This is discussed in the following
sections.

Fig. 1 a, b Spin magnetization ∂M/∂n vs. dimensionless field for two
densities and at various temperatures, measured in ref. [2]. Vertical
arrow depicts nc = 0.88. Densities are in units of 1011cm−2. c Empir-
ical phase diagram of the 2DE system. Dashed areas are (I) – SD in
the majority FL phase, (II) – FL in the majority SD phase, (III) – non-
degenerate correlated system, blank area – localized phase. Full dots

show the kink temperature Tkink in magnetoconductance, open dots –
inflection Tinfl in ρ(T ). Dash-dotted line – bare (TF ), dashed line –
renormalized (T ∗

F ) Fermi temperatures. Bold blue dash line is TdM/dn

from ref. [2]. Solid lines are guide to the eye. Vertical arrow marks
critical density nc
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2.1 In-plane Field Magnetoresistance

Variations of the conductivity and resistivity with weak in-
plane field are parabolic:

σ = σ0−aσ B2+o
(
B2

)
ρ = ρ0+aρB2+o

(
B2

)
, (1)

where by definition

aσ ≡ −1

2
∂2σ/∂B2

∣∣∣∣
B=0

aρ ≡ 1

2
∂2ρ/∂B2

∣∣∣∣
B=0

.

In order to probe true spin effects, the magnetic field
gμBB should be less than T , (T 2τ), and TF . The magneto-
conductivity in the in-plane field is purely Zeeman effect on
the e-e interaction correction [6], and is predicted to follow:

aσ (T ) ∝
{

(1/T )2, T τ � 1
(1/T ), T τ � 1.

(2)

As we found, for low-mobility samples, indeed, aσ (T )

developed in accord with the interaction correction theory
[6]. However, for high mobility samples where electron-
electron interactions are strong in the dilute regime, the
agrement with theory is no longer valid. In Fig. 2, we
plotted the prefactor aσ (T , n) for a high mobility sample
versus temperature. One can see that aσ (T ) indeed devel-
ops in a ballistic fashion, ∝ (1/T ), up to temperatures
1.5–2 K which are a factor of 10 higher than the predicted
T ∼ 1/τ ∼ 0.2 K, then it sharply changes to the novel
unforseen dependence, aσ (T ) ∝ (1/T )2, making the over-
all picture inconsistent with (2). The kink and the overall
type of behavior is observed in the wide range of densities
and for all studied high mobility samples. Though the high-
temperature behavior, aσ ∝ T −2, formally coincides with
the upper line of (2), it cannot be associated with the dif-
fusive interactions and in fact is the novel high-temperature
phenomenon. As carrier density decreases, the kink in Fig.
2a moves down and the (1/T 2)–regime occupies more and

more space and eventually at n = nc extends down to the
lowest explored temperature T ≈ 0.3 K.

2.2 Resistivity in Zero Field

Searching for a manifestation of the two-phase state in zero
field transport, we analyze the ρ(T ) dependence for high-
mobility samples (see Fig. 2b). Its variations are large (up
to a factor of 10), making the interaction correction the-
ory inapplicable in this “high temperature” regime. Each
ρ(T ) curve has two remarkable points: ρ(T ) maximum
at Tmax, and inflection at Tinfl [7]. Whereas Tmax is an
order of the renormalized Fermi energy, the inflection hap-
pens at lower temperatures, in the degenerate regime. In
Fig. 1b, we plotted three temperatures, Tkink, Tinfl, and
TdM/dn. They all develop critically versus electron density,
vanishing∝ (n−nc) at the same density nc; the latter, within
the experimental uncertainty, coincides with the MIT criti-
cal density in transport [7, 8]. The proximity of these three
notable temperatures (which are inherent to high mobility
samples solely) supports the existence of a new energy scale
T ∗ in the correlated 2D system.

2.3 Phenomenological Description of the Data

We suggest below a phenomenological model that links the
“high temperature” transport and magnetotransport behav-
ior in a unified picture. One can see from Fig. 2 that ρ(T )

follows one and the same additive resistivity functional form
over a wide density range:

ρ(T ) = ρ0 + ρ1 exp(−�(n)/T ),

�(n) = α(n − nc(B)), (3)

where ρ1(n, B) is a slowly decaying function of n, and
ρ0(n, T ) includes Drude resistivity and quantum corrections
of various origin.

Fig. 2 a Temperature dependencies of the prefactor aσ (T ) measured
in weak fields B < T at two densities. For clarity, one curve is scaled
by 0.1×. The similarity of the two sets of data measured with two
different high-mobility samples illustrate a general character of the

knee-type dependence. b Zero field temperature dependence of resis-
tivity at low densities measured for sample Si-2. The densities are in
1011 cm−2. Dots mark inflection points
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This empiric functional resistivity form fits well the
ρ(T ) dependence for a number of material systems [9,
10]. It also satisfies the general requirements for trans-
port behavior in the vicinity of a critical point [7, 11–13],
and explains the apparent success of the earlier attempts
of one-parameter scaling (namely, of the ρ(T ) steep rise
and the mirror reflection symmetry between ρ(T ) and
σ(T ) on the metallic and insulating sides of the MIT)
[8, 13]. Equation (3) correctly describes the inflection in
ρ(T ) and linear density dependence of the inflection tem-
perature [9]. Obviously, in this model, Tinfl = �/2. To
take magnetic field into account, we include to (�/T )

all the lowest order in B/T (and even-in-B) terms, as
follows:

�(T , B, n)/T = �0(n)/T −β(n)B2/T −ξ(n)B2/T 2, (4)

with �0 = α[n − nc(0)].
Equations (3) and (4) link the magnetoconductance with

the zero-field ρ(T ) temperature dependence. As a result, the
ρ(T , B) dependence becomes as follows:

ρ(B, T ) = [
σD − δσ · exp (−T/TB)

]−1

+ρ1 exp

(
−α

n − nc(0)

T
− β

B2

T
− ξ

B2

T 2

)
(5)

The term in the square brackets includes Drude conductiv-
ity and interaction quantum corrections [6, 14]. The latter,
δσ (T ) = γ (B2/T ) + ηT , was calculated using the exper-
imentally determined Fermi-liquid coupling constants [15,
16], and σD was found in the conventional way [17]. In
order to cut-off the corrections above a certain temperature
[18] and, thus, to disentangle the exponential- and linear-

in-T contributions, the calculated interaction correction is
cut-off with an exponential crossover function above TB
which for simplicity we set equal to �(n)/2.

From (5), the prefactor aσ = −(1/2)∂2σ/∂B2 is cal-
culated straightforwardly and in Fig. 3 is compared with
the experimental data. In the ρ(T ) fitting (Fig. 3a, c, e),
basically, there is only one adjustable parameter, ρ1(n), for
each density. Indeed, nc(0) is determined from the con-
ventional scaling analysis at B = 0 [7], and the slope,
α = 2∂Tinfl(n)/∂n may be determined from Fig. 1b. At the
next step, in the aσ (T ) fitting (Fig. 3b, d, f), we fixed the
parameters determined from the ρ(T ) fit, and varied β(n)

and ξ(n).
One can see that both ρ(T ) and aσ (T ) are well-fitted;

the model captures correctly the major data features: the
steep ρ(T ) rise (including the inflection), and the aσ (T )

kink. Within this model, the kink signifies a transition
from the low-temperature regime (I), T < T ∗), where the
linear σ(T ) temperature dependence dominates, to the high-
temperature regime (II), T > T ∗, governed by the steep
exponential ρ(T ) rise; both regimes are irrelevant to the
diffusive-type interaction.

3 Discussion: Impact on the Transport and
Magnetotransport

The additive resistivity form is intrinsic to the two-phase
state of the low-density 2D electronic system (Matthiessen’s
rule). The phase separation and the two-channel transport
are also common in the vicinity of the phase transition [19].
Dealing with the two-phase state, the two channel scattering

Fig. 3 Fitting ρ(T , B = 0)
dependencies (left panels) and
aσ (T ) (right panels) with the
same set of the fitting
parameters, for three
representative densities. Dots
are the data, solid curves—fit
with (5), dashed lines show
calculated quantum corrections
in the ballistic regime [6, 14].
Sample Si-2; carrier densities
are indicated in 1011 cm−2
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or additive resistivity approach seems quite adequate to the
problem.

The two parallel dissipation channels in our models are
presumably (i) ordinary impurity scattering of the itinerant
electrons in the 2D Fermi liquid, and (ii) resonant scattering
and hybridization of itinerant electrons and collective local-
ized states (“spin-droplets”). The latter may be viewed as
quantum dots confining four or more electrons [2]. At low
temperatures, the large-sized spin droplets scatter itinerant
electrons ineffectively and elastically, and do not contribute
to the phase breaking. It might be for this reason we did
not see any hysteresis effects that are often observed in
the two-phase state in the vicinity of the phase boundary
[19, 20]. Besides the low-lying ground energy state, the
spin droplets have excited levels which may be temporarily
occupied by itinerant electrons at high enough temperatures.
Capture and emitting electrons from/to the droplets is a slow
process, requiring rearrangement of all electrons inside the
dot. Only at temperatures above T ∗ the hybridization pro-
cesses become effective and contribute to the DC transport.
At these temperatures, however, the phase coherence is lost
[18, 21].

In conclusion, we have explored how the spontaneously
formed spin-polarized collective droplets affect transport
and magnetotransport of itinerant electrons in the corre-
lated 2D electron system. We have found that their effect
takes place above a characteristic temperature T ∗ that sets
a novel energy scale in the two-phase electronic system.
At the crossover T ∗(n), the spin magnetization per electron
changes sign, the in-plane field magnetoconuctance crosses
over from the conventional ballistic type −(B2/T ) to the
novel −(B2/T 2) dependence, and the zero field resistiv-
ity ρ(T ) exhibits an inflection. The three respective borders
develop critically, ∝ (n − nc), and are rather close to each
other. Since the crossover at T ∗ is related to the transition
from the minority to majority SD phase, we conjecture that
T ∗ might be related with the energy of exited levels in the
spin droplets.

We suggested a phenomenological description of the
transport and magnetotransport data, based on the two scat-
tering channels. Already at this phenomenological level, our
results explain why the Fermi-liquid parameters extracted
from the σ(B‖) data scatter significantly in various
experiments and why they differ from those obtained from
the zero-field σ(T ) data. Indeed, by fitting the data in
the nominally ballistic regime, one would observe aσ

(and deduce Fσ
0 values) dependent on the particular tem-

perature range, above or below the kink temperature.

The microscopic mechanism behind the two-scattering
model requires a special theoretical consideration.

Acknowledgements VMP acknowledges support by Russian Sci-
ence Foundation (No. 14-12-00879). LAM acknowledges Russian
Foundation for Basic research (Nos. 14-02-31697 and 15-02-07715).
The measurements have been done using research equipment of the
Shared facility Center at LPI.

References

1. Attaccalite, C., Moroni, S., Gori-Giorgi, P., Bachelet, G.B.: Phys.
Rev. Lett. 88, 256601 (2002)

2. Teneh, N., Kuntsevich, A.Yu., Pudalov, V.M., Reznikov, M.:
Phys. Rev. Lett. 109, 226403 (2012)

3. Prus, O., Yaish, Y., Reznikov, M., Sivan, U., Pudalov, V.M.: Phys.
Rev. B 67, 205407 (2003)

4. Reznikov, M., Kuntsevich, A.Yu., Teneh, N., Pudalov, V.M.:
JETP Lett. 92, 470 (2010)

5. All measurements have been done with (100) Si-MOS samples: (i)
of the high mobility (μ = (2 − 3)m2/Vs) and, for comparison, of
the low mobility (= (0.1 − 0.2)m2/Vs).

6. Zala, G., Narozhny, B.N., Aleiner, I.L.: Phys. Rev. B 65, 020201
(2001)

7. Knyazev, D.A., Omelyanovskii, O.E., Pudalov, V.M., Burmistrov,
I.S.: Phys. Rev. Lett. 100, 046405 (2008)

8. Kravchenko, S.V., Mason, W.E., Bowker, G.E., Furneaux, J.E.,
Pudalov, V.M., D’Iorio, M.: Phys. Rev. B 51, 7038 (1995)

9. Pudalov, V.M.: Pis’ma v ZhETF 66, 168 (1997). [JETP Lett. 66,
175 (1997)]

10. Morgun, L.A., Pudalov, V.M., Kunsevich, A.Yu.: Phys. Rev. B
93, 235145 (2016)

11. Altshuler, B.L., Maslov, D.L., Pudalov, V.M.: Phys. E. 9(2), 209
(2001)

12. Altshuler, B.L., Maslov, D.L., Pudalov, V.M.: Phys. Stat. Sol. (b)
218, 193 (2000)

13. Pudalov, V.M., Brunthaler, G., Prinz, A., Bauer, G.: Phys. E. 3,
79 (1998)

14. Zala, G., Narozhny, B.N., Aleiner, I.L.: Phys. Rev. B 64, 214204
(2001)

15. Pudalov, V.M., Gershenson, M.E., Kojima, H., et al.: Phys. Rev.
Lett. 88(19), 196404 (2002)

16. Klimov, N.N., Knyazev, D.A., Omel’yanovskii, O.E., Pudalov,
V.M., Kojima, H., Gershenson, M.E.: Phys.Rev. B 78, 195308
(2008)

17. Pudalov, V.M., Gershenson, M.E., Kojima, H., Brunthaler, G.,
Prinz, A., Bauer, G.: Phys. Rev. Lett. 91, 126403 (2003)

18. Brunthaler, G., Prinz, A., Bauer, G., Pudalov, V.M.: Phys. Rev.
Lett. 87, 096802 (2001)

19. Kornilov, A.V., Pudalov, V.M., Kitaoka, Y., Ishida, K., Zheng,
G.Q., Mito, T., Qualls, J.S.: Phys. Rev. B 69(22), 224404 (2004)

20. Kornilov, A.V., Pudalov, V.M., Kitaoka, Y., Ishida, K., Mito,
T., Brooks, J.S., Qualls, J.S., Perenboom, J.A.A.J., Tateiwa, N.,
Kobayashi, T.C.: Phys. Rev. B 65, 060404 (2002)

21. Pudalov, V.M., Brunthaler, G., Prinz, A., Bauer, G.: JETP Lett.
68, 534 (1998)


	Probing Spontaneous Spin Magnetization and Two-Phase State in Two-Dimensional Correlated Electron System
	Abstract
	Introduction: Spin Magnetization in the In-plane Field
	Two Phase State and Charge Transport
	In-plane Field Magnetoresistance
	Resistivity in Zero Field
	Phenomenological Description of the Data

	Discussion: Impact on the Transport and Magnetotransport
	Acknowledgements
	References


