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Abstract The spin-1 model is studied on the Bethe lattice
by including the bilinear J and biquadratic K exchange
interactions into the Hamiltonian. The effects of J is ran-
domized by using a bimodal random distribution with an
adjustable parameter α which allows to study the cases of
±J -model and bond-dilution. The thermal variations of the
order-parameters are studied to obtain the possible phase
diagrams of the model. It is found that second-order phase
transitions lines separate the ordered-phases, ferromagnetic,
or antiferromagnetic, from the disordered one, i.e., the para-
magnetic phase. The staggered quadrupolar phase lines are
also found and only seen for higher negative K values for
coordination number q = 4 and 6, only. The reentrant
behavior is also found for some of the phase transitions
lines.

Keywords Exchange interaction · Staggered
quadrupolar · Phase transition · Reentrance

1 Introduction

The Blume-Emery-Grifftihs (BEG) model is a spin-1 Ising
model with nearest-neighbor interactions and up-down sym-
metry and has originally been studied in the context of
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superfluidity and phase separation in helium mixtures [1].
Since then, many variations of this model were carried
out by using different techniques to investigate its various
aspects.

It’s phase diagrams were studied by using Monte Carlo
(MC) simulations [2], reentrant behavior by using real
space renormalization group [3], multicritical phase dia-
grams by the mean-field theory [4], new phases and mul-
tiple re-entrance behavior in terms of MC renormalization-
group theory [5], random-anisotropy effects by using mean-
field theory, transfer-matrix calculations, and position-space
renormalization-group calculations [6], the model on the
square lattice using a real-space renormalization group pro-
cedure [7], global Bethe lattice consideration in terms of
exact recursion relations [8], phase diagrams on the sim-
ple cubic lattice by the linear chain approximation [9],
MC study at the ferromagnetic-antiquadrupolar-disordered
phase interface [10], the ferrimagnetic phase on the cellu-
lar automaton [11], magnetic behavior in one dimension by
means of the Green’s functions and equations of motion
formalism [12], the phase diagrams on simple-cubic lattice
investigated using mean field theory and MC simulation
[13], and so on.

In recent years, there has been considerable interest in
understanding the effects of randomness on phase tran-
sitions. A new decoration method was presented which
allows the quenched spin-1 Ising model on a regular lattice
along a line in the plane of exchange interaction parame-
ters versus temperature to be mapped onto a certain class
of mixed-spin decorated-lattice problem [14]. The equilib-
rium properties of the BEG model with bilinear quenched
disorder were studied for both attractive and repulsive
biquadratic interactions [15]. The three-dimensional ±J

Ising spin model with uniform biquadratic exchange inter-
action, K , was studied by MC simulations [16]. The spin-1
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±J Ising model with uniform biquadratic couplings on
simp]e cubic lattice was studied by the non-equilibrium
relaxation and the equilibrium MC methods [17]. The spin-
1 ±J Ising model with uniform biquadratic couplings on
a simple cubic lattice was studied by the MC simulation
using the non-equilibrium relaxation method [18]. The crit-
ical behavior of the spin-1 bond and crystal field dilution
of the BEG model have been investigated on simple cubic
lattice within the framework of the effective field theory
(EFT) [19]. The spin-1 BEG spin-glass model was stud-
ied by using the extended mean-field renormalization group
approximation and the pair approximation based on Bogoli-
ubov inequality for the free energy [20]. ±J model was
exploited on the Bethe lattice for the spin-1 Blume-Capel
model [21].

The spin-1 BEG model gives a staggered quadrupole
(SQ) phase, which owes its existence to the biquadratic
exchange interaction K , in addition to the other regular
phases. There are some works indicating the existence of
this phase as follows: A SQ phase for a spin-1 Ising system
with K and anisotropic energy was studied by using the MC
simulation and it was found that for SQ phase to be seen the
addition of J is not necessary [22]. The spin-1 Ising model
on the simple cubic lattice with bilinear and biquadratic
interactions and anisotropic energy was investigated and it

was found that SQ phase occurs as long as K is negative
large enough [23]. The re-entrant phase transition of the
BEG model with no bilinear interaction was studied by map-
ping into the spin-1/2 Ising model [24]. EFT based on a
finite cluster theory that correctly incorporates the single-
site kinematic relations was applied to the BEG model with
positive K interactions in order to test its ability to deal with
magnetic systems having competing interactions [25]. The
spin-1 BEG model was studied using the mean field the-
ory for a thin film [26]. The SQ ordering of the biquadratic
exchange model on layered square lattices was examined,
and it was found that the ground state are multiply degener-
ated in this model, the SQ phase appears at sufficiently low
finite temperatures on the three-dimensional lattice but does
not appear on the two-dimensional lattice [27]. Within the
EFT, the SQ phase and bicritical point of spin-1 bond and
anisotropy dilution of the BEG model was studied on simple
cubic lattice in the restricted range of K and J interaction
ratio α ≤-1 [28].

In this work, the spin-1 model with J and K exchange
interactions is analyzed on the Bethe lattice (BL) in terms
of exact recursion relations. By using a bimodal ran-
dom distribution with an adjustable parameter α, we study
both ±J -model and bond-dilution. The possible phase dia-
grams of the model are obtained by studying the thermal

Fig. 1 The phase diagrams on
the (K, T ) planes for given
values of p when α = −1.0
corresponding to the ±J model
a q = 3.0, b q = 4.0, and c
q = 6.0
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variations of order-parameters. It was found that the model
gives second-order phase transitions line which separate the
ferromagnetic (F) or antiferromagnetic (AF) phases from
the paramagnetic (P) phase. The staggered quadrupolar
phase is also found at high enough negative K values and
the lines of which are also separated from the P phase.

The rest of the work is set up as follows: Section 2 is
devoted to the formulation on the BL. Section 3 contains the
results, i.e., the phase diagrams, and their discussions and, a
brief summary.

2 The Thermodynamic Functions in Terms of
Exact Recursion Relations

In order to simulate the random J model, we assume a
bimodal distribution of J interactions given in the form as

P(Jij ) = pδ(Jij − J ) + (1 − p)δ(Jij − αJ ) (1)

where the first term turns on the J interactions ferromag-
netically with probability p and the second term with an
adjustable parameter α either turns on J interactions ferro-
magnetically (α > 0) or antiferromagnetically (α < 0) or
turns off J interactions (α = 0) with probability 1 − p.

This distribution is to be applied to the thermodynamic
functions obtained from the Hamiltonian containing only J

and K interactions acting only nearest-neighbor sites on the
BL and given as

H = −
∑

<ij>

Jij SiSj − K
∑

<ij>

S2
i S2

j . (2)

with Si taking the values ±1 and 0 for the spin-1.
In order to obtain the phase diagrams for the given system

parameters, first the order-parameters must be obtained in
terms of the recursion relations on the BL. In doing so, one
should start with the partition function as in many statistical
physics problems which is given as

Z =
∑

All Conf ig.

e−βH =
∑

Spc

P (Spc), (3)

where P(Spc) can be thought of as an unnormalized prob-
ability distribution and β = 1/(kT ), k is the Boltzmann
constant which is set equal to 1 for convenience.

After some straightforward calculations on the BL [21],
the recursion relations are found from the ratios of partial

Fig. 2 The phase diagrams on
the (p, T ) planes for given
values of K when α = −1.0
corresponding to the ±J model
a q = 3.0, b q = 4.0, and c
q = 6.0
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partition functions, gn’s, and are given as

X
(ij)
n = gn(+1)

gn(0)

= eβ(Jij +K)[X(ij)

n−1]q−1 + eβ(−Jij +K)[Y (ij)

n−1]q−1 + 1

[X(ij)

n−1]q−1 + [Y (ij)

n−1]q−1 + 1
,

Y
(ij)
n = gn(−1)

gn(0)

= eβ(−Jij +K)[X(ij)

n−1]q−1 + eβ(Jij +K)[Y (ij)

n−1]q−1 + 1

[X(ij)

n−1]q−1 + [Y (ij)

n−1]q−1 + 1

(4)

where q is the number of the nearest-neighbors, i.e., coordi-
nation number.

It should be mentioned that an averaging procedure
must be carried out over the bilinear interaction distribution
P(Jij ) to get the correct recursion relations for the random
J model, i.e.,

Xn =
∫

X
(ij)
n P (Jij )dJij =

∫
X

(ij)
n [pδ(Jij − J )

+(1 − p)δ(Jij − αJ )]dJij ,

Yn =
∫

Y
(ij)
n P (Jij )dJij =

∫
Y

(ij)
n [pδ(Jij − J )

+(1 − p)δ(Jij − αJ )]dJij . (5)

Note also that in order to study the AF interactions, one
needs to partition the BL into two sub-lattices A and B,
therefore, the recursion relations take the form

XA
n = f (XB

n−1, Y
B
n−1),

YB
n = f (XA

n−2, Y
A
n−2). (6)

Since all the sites are equivalent deep inside the BL, one
can pick a central spin, S0, and calculate its order parameters
accordingly. Thus, the first-order parameter, i.e., magneti-
zation, is given in terms of the recursion relations for the
sub-lattices respectively as

MA = [XA
n ]q − [YA

n ]q
[XA

n ]q + [YA
n ]q + 1

(7)

and

MB = [XB
n−1]q − [YB

n−1]q
[XB

n−1]q + [YB
n−1]q + 1

(8)

and the quadrupolar moments for the sub-lattices are given
as

QA = [XA
n ]q + [YA

n ]q
[XA

n ]q + [YA
n ]q + 1

(9)

Fig. 3 The phase diagrams on
the (K, T ) planes for given
values of p when α = 0.0
corresponding to bond diluted
model with only Tc-lines a
q = 3.0, b q = 4.0, and c
q = 6.0
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Fig. 4 The phase diagrams on
the (p, T ) planes for given
values of K when α = 0.0
corresponding to bond diluted
model with only Tc-lines a
q = 3.0, b q = 4.0, and c
q = 6.0

a b

c

and

QB = [XB
n−1]q + [YB

n−1]q
[XB

n−1]q + [YB
n−1]q + 1

. (10)

To obtain the phase diagrams, the thermal variation of the
order parameters is to be studied. The procedure is as fol-
lows: first the recursion relations are calculated by using an
iteration scheme, then the found values of the recursion rela-
tions are inserted into the definitions of the order-parameters
to obtain their thermal variations for given K , q and p.

Thus, the next section is devoted to the phase diagrams
of the model in addition to our results, discussions and
comparisons whenever possible.

3 The Phase Diagrams, Results, and Comparisons

The phase diagrams of the model are calculated for q =
3, 4, and 6 which correspond to the honeycomb, square, and
simple cubic lattices, respectively. The solid lines, Tc-lines,

a b

Fig. 5 The phase diagrams on the (K, T ) planes for given values of p when α = 0.0 corresponding to bond diluted model with only TSQ-lines a
q = 4.0 and b q = 6.0
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Fig. 6 The phase diagrams on
the (p, T ) planes for given
values of K when α = 0.0
corresponding to bond diluted
model with only TSQ-lines a
q = 4.0 and b q = 6.0

a b

separate the ordered phases F and AF from the P phase while
the dotted-dashed lines, TSQ-lines, separate the SQ phase
from the P phase. Note also that the SQ lines are the com-
binations of points at which magnetization is zero and the
sublattice quadrupolar moments, QA and QB , coincide.

Figure 1 is obtained for α = −1.0 corresponding to the
±J model on the (K, T ) planes for given values of p. The
Tc-lines emerge from about K = −1.0 at T = 0.0, the
temperatures of which increase as K , p, and q increase. Fur-
ther increase of K stabilizes the lines at constant T ’s which
are higher for higher p and q. The TSQ-lines are only seen
for q = 4 and 6 which also emerge from K = −1.0 at
T = 0.0, but extends towards higher negative K’s. They
have the same values for all p and increase in temperature
for higher q. The reentrant behavior is only seen for q = 6
when p = 1, see Fig. 1c. These figures are similar with
Fig. 4 of [17] and Fig. 3 of [18]. The Tc-lines can also be
compared with Fig. 2 of [3].

Figure 2 are also obtained for α = −1.0, i.e., ±J model,
on the (p, T ) planes for given values of K . The Tc and TSQ-
lines are symmetric with respect to p = 0.5, since AF phase
is dominant for p = 0.5 → 0.0 and F phase for p = 0.5 →
1.0 as seen from Eq.(1). When q = 3.0, only Tc-lines are
seen separating AF and F phases from the P phase for left
and right of K = 0.5, respectively. All the lines converge to
same p at zero temperature in the AF and F regions. We still
see the same behavior for the Tc-lines when q = 4.0 and 6.0,
but for the latter the K = −1.0 line is separated from the
rest. In addition, the Tc-lines extend further towards p = 0.5
with increasing q. It should also be mentioned that the TSQ-
lines are also seen as straight lines for both q = 4.0 and 6.0,
which increase in temperature as K increases negatively, but
for these values of K no Tc-lines are seen.

The next figures, Fig. 3, are obtained for α = 0.0 corre-
sponding to the bond diluted model on the (K, T ) planes for
given values of p. All the Tc-lines emerge from K = −1.0
at zero temperature. Then, they increase in temperature with
increasing K , p, and q. They eventually become constant

at some temperatures for further increase of K . It also clear
that Tc-lines separate the F phase from the P phase only. The
reentrant behavior is also seen for q = 6 when p = 0.9 and
1.0.

The next figures are obtained on the (p, T ) planes for
given values of K for the bond diluted model again and
given in Fig. 4. Only Tc-lines are seen which separate F
and P phase regions. Again, as K, p, and q increase, their
temperatures increase. The lines for higher positive K’s are
straight, except very close to p = 0. The straightness is
somewhat spoiled as K becomes more negative.

Figures 5 and 6 only show the existence and behavior of
the TSQ-lines for q = 4 and 6, which was not observed
for q = 3, for α = 0.0. In the first ones, i.e., Fig. 5 on
the (K, T ) planes for given p, all the lines emerge from
K = −1.0 and are almost straight for higher K’s but as
K gets smaller the reentrant behavior appears for K =
0.1, 0.05, 0.01 and K = 0.6−0.01 for q = 4 and 6, respec-
tively. They become much clear for lower p values. Figure 6
are plotted on the (p, T ) planes for given K when q = 4
and 6, again the TSQ was not observed for q = 3. For higher
negative K’s, the lines are almost straight but as K grows,
the lines turn back to p = 0, which were emerged from
higher temperatures at zero p = 0, presenting reentrant
behavior again.

To end this, we again note the the spin-1 model is stud-
ied on the BL with random bilinear J and biquadratic K

exchange interactions. The randomization effects of J is
studied by using a bimodal random distribution with an
adjustable parameter α which let us study the cases of ±J -
model (α = −1.0) and bond-dilution α = 0.0. The phase
diagrams are obtained on the (K, T ) and (p, T ) planes
for given values of p and K , respectively. It is found that
the model gives only second-order phase transitions lines
separating the F and AF phases from the P phase. The stag-
gered quadrupolar phase is only seen for higher negative K

values at lower temperatures for the coordination numbers
q = 4 and 6, only and present reentrant behavior for lower
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K values, i.e in the range 0.0 to −1.0. It should also be men-
tioned that our results are in total agreement with itself and
the literature.
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