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Abstract A critical problem arises when current distribu-
tion in a high-temperature superconductor and its stability
against quench shall be predicted: is it correct to assume
homogeneous temperature distribution in superconductors,
in general or only in LHe-cooled devices? The finite ele-
ment analysis presented in this paper shows that during
the very first instants following a disturbance, like single
Dirac or periodic heat pulses, or large fault currents, tem-
perature distribution in a BSCCO 2223 conductor is highly
inhomogeneous. This is because disturbances, of transient
or continuous, isolated or extended types in conductor vol-
umes, create hot spots of comparatively long life cycle. As
a consequence, separation between Ohmic and flux flow
current limiter types, or decisions on the mechanism that ini-
tialises current sharing, cannot be made definitely. A semi-
empirical cell model is presented in this paper to estimate
flux flow resistivity in multi-filamentary superconductors
in a successive approximation approach. Weak links are
modelled, as nano- and microscopic surface irregularities
and corresponding resistances, in analogy to thermal trans-
port. Though the model requests input of a large amount
of data (dimensions, porosities, field-dependent quantities)
that still have to be verified experimentally, it is by its
flexibility superior to ideas relying on, for example, imag-
ination of separate, non-interacting chains of strong and
weak links switched in parallel. In particular, and in contrast
to the standard expression to calculate flux flow resistivity,

� Harald Reiss
harald.reiss@physik.uni-wuerzburg.de

1 Department of Physics, University of Wuerzburg,
Am Hubland, 97074 Wuerzburg, Germany

the cell model suggests to replace solid conduction by an
effective resistivity, a method that is more appropriate for
multi-filamentary conductors. The paper also discusses inte-
gration time steps in numerical simulations that have to be
selected in conformity with several characteristic times of
current and thermal transport.
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1 Stability of Superconductors Against Quench—a
Summary

Basic principles of superconductor stability are shortly
described (repeated from previous work) in this section, as
a starting point for introduction of a flux flow resistance cell
model (Section 3).

1.1 Stability Models

A superconductor is stable if it does not quench under a dis-
turbance, i. e. perform an undesirable phase transition from
superconducting to normal conducting state. Disturbances
involve conductor movement under Lorentz forces followed
by transformation of the released mechanical to thermal
energy, or absorption of radiation, or fault currents and cool-
ing failure. Disturbances frequently are transient, but there
are also permanent disturbances like flux flow losses if
transport current density exceeds critical current density, or,
under AC currents, hysteretic and, in multi-filamentary con-
ductors, coupling losses. Quenching proceeds on timescales
in the order of milliseconds or less.
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Stability models predict under which conditions (con-
ductor geometry, electrical and thermal transport properties,
magnetic and cooling conditions) quench can be avoided.

On the other hand, fast transitions from superconducting
to normal conducting state, like in a quench, offer potential
of self-regulating fault current limiting, like in short cir-
cuits in an electrical distribution system, compare [1–3] for
technical concepts. Successful realisation of this advanced
safety device is an important technical step forward. Both
developments, stability models and fault current limiting,
contribute to understanding of short-time, superconductor
materials behaviour under extreme load.

Traditional stability models are described in [4, 5]. Like
all standard volumes on theory of superconductivity, for
example [6–8], or on applied superconductivity [9, 10],
stability models rely on the following:

(a) Homogeneous temperature distribution in the conduc-
tor; compare, for example, the differential equations in
[10], pp. 101, 112, 158, 160 or 301.

(b) Instantaneous, diffusive distribution or thermalisation
of a local disturbance.

(c) The models do not specify location and intensity of a
disturbance in the conductor.

(d) Stekly, adiabatic or dynamic stability models derive
results under quasi-stationary and adiabatic conditions.

(e) Flux flow resistive states are not included.

Among these, items (a), (b) and (e) are the most critical.
Traditional stability models also rely on solely conduction
heat transfer in the superconductor filaments or thin films.
While this is acceptable for LHe-cooled metallic or alloy
superconductors, the impact of also radiation heat trans-
fer on high-temperature superconductor stability has been
included only very recently [11, 12]. In ceramic materi-
als, like high-temperature superconductors, radiation may
substantially alter local conductor temperature and stability
predictions, and the same applies to current limiting.

Numerical treatments of the stability problem in LHe-
cooled superconductor coils are referenced in [10]; see the
citations made on p. 541 to corresponding papers. Stability
calculations comprise 1D and 3D finite element studies.

First numerical studies of high-temperature superconduc-
tor stability were presented in [13] focused on impact of
materials properties on stability. Further microscopic stud-
ies were reported in [14–17], with results obtained by a
finite difference scheme that was conceived by the present
author.

1.2 Traditional Calculation of the Stability Function

The stability function, �(t), serves for calculating max-
imum zero loss transport current in a superconductor. If
it relies on critical current density only, which in turn is

considered to solely depend on conductor temperature, there
are non-zero contributions to the stability integral in (1a)

0 ≤ �(t) = 1−
∫

JCrit(x, y, t)dA/

∫
JCrit(x, y, t0)dA ≤ 1

(1a)

provided element temperature T (x, y, t) < TCrit(x, y, t0);
otherwise, the critical current density, JCrit(x, y, t), is zero.
This simple explanation accordingly does not consider mag-
netic field dependence of critical current density and flux
flow conductor states.

Equation (1a) is approximated by the following

0 ≤ �(t) = 1 − �JCrit(x, y, t)dA/�JCrit(x, y, t0)dA ≤ 1

(1b)

Summations are taken over all superconductor elements
in planes located at increasing distances from a disturbance,
and then compiled over all planes and finally divided by
the total number of planes in the conductor; the result is
the stability function averaged over conductor volume. The
differential dA denotes element cross section in the finite
element scheme.

The stability function assumes values 0 ≤ �(t) ≤ 1 of
which �(t) = 0 are the optimum and �(t) = 1 the worst
case (no zero loss transport current at all). Maximum zero
loss transport current, Imax(t), with ASC the total conductor
cross section, is predicted as follows:

Imax(t) = JCrit[T (x, y, t0), B(x, y, t0)][1 − �(t)]ASC (2)

In a stability analysis, one investigates the behaviour of
the stability function over an extended period of time during
which the conductor might experience disturbances. Con-
servative stability analysis looks for the instant, t ′, when
during this period the stability function �(t ′) might attain a
maximum. Zero loss transport current, and conductor stabil-
ity against quench, will be obtained when transport current,
at all times, t , is limited to below Imax(t

′). Dimensioning the
conductor to keep �(t) < �(t ′) provides stability. But this
decision would be made with respect to Ohmic losses only.

A possible correlation between conductor stability, cur-
rent propagation and current limiting, now with inclusion
of flux flow states, has been discussed in [18]. A bijective
correlation cannot be found between conductor stability and
current limiting, which might lead to a safety problem for
flux flow based fault current limiters.

An attempt has been made in [18] to statistically account
for imperfections arising in materials development, conduc-
tor manufacture and handling. The model applies a random
variation of the most important conductor parameters. Any
high-temperature superconductor, even if perfectly designed
and manufactured, never will exhibit perfectly homoge-
neous materials properties. Statistical variations of critical
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current density can be introduced in (1a,b), and stability
functions calculated in this way, and with the inclusion
of flux flow losses, offer a method to improve reliability
of stability predictions and of safety of electrical circuits
incorporating superconducting components.

2 Results of Stability Calculations

2.1 Single Filaments

Description of stability calculations in this subsection has
been focused on reaction of high-temperature superconduc-
tors under direct current (DC) transport to either (i) single,
transient disturbances or (ii) periodic disturbances.

(i) Transient disturbances numerically investigated in
[11]: a single (Dirac) heat pulse locally released in the
conductor; see below, Fig. 1a–c.

Conductor temperature distribution may become highly
inhomogeneous, with temperature variations in the con-
ductor cross sections in the order of tens of Kelvin, and
with corresponding impacts on critical current density and
superconductor stability.

(ii) Periodic disturbances [12]: exposure of a sample to
periodic energy pulses

As local disturbances, they lead to periodic variations of
local temperature and, correspondingly, periodic variations
of critical current density and stability functions (Fig. 2).

Like in case (i), conductor temperature and, accordingly,
critical current and transport current density distribution
become strongly inhomogeneous. The stability function is
not constant but oscillates like the disturbance, and its shape
varies with position, in axial direction, along the conduc-
tor (Fig. 2): times, t1 and t2, at which the stability function
attains a constant value, for example, � = 0.4, differ by
�t1,2 of about 30 ms, between axial positions y = 325 and
525 μm, respectively. This means magnitude of zero loss
transport current will depend on time and on position.

2.2 Multi-filamentary Conductors

Cases (i) and (ii) in Section 2.1 apply single or oscillating
disturbances under constant direct currents (DC). A very
interesting case (iii) appears when density of an alternating
current (AC) itself initiates periodic disturbances. The dis-
turbances then are no longer point-like, isolated from each
other or of only very short duration, but may be extended
over the total superconductor cross section and exist during
extended periods of time. As long as conductor tempera-
ture is below critical temperature, losses that result from this
situation are flux flow losses.

Fig. 1 a, b Co-ordinate system and YBaCuO filament (schematic);
the filament is exposed to a thermal disturbance (case (i), compare
text), a single heat pulse of Q = 0.1 mJ deposited during 8 ns in the
target plane (red circle, 0 ≤ r ≤ rTarget, z = 0). The shaded area con-
taining plane finite elements is rotated around the symmetry (z) axis
(thin dotted line) to generate concentric cylindrical shells that con-
stitute volume elements, for calculation of absorption and scattering.
Orientation of the crystallographic c-axis of superconductor YBaCO
material in this study was parallel to y-axis. c Nodal temperature at
central front position (x = y = z = 0) of the YBaCuO filament. Tem-
perature evolution is calculated by a combined finite element/Monte
Carlo model that serves for solution of Fourier’s differential equa-
tion and for simulation of absorption/emission and scattering events,
respectively. Data are given either for solely solid thermal conduc-
tion (solid black circles) or for conduction plus radiation heat transfer
under different values of the extinction coefficient, E (solid coloured
diamonds), respectively. The extinction coefficient is considered as
independent of wavelength in the interval between about 20 and 100
μm (compare the explanations in [11])

Before we concentrate on stability analysis in a multi-
filamentary, high-temperature superconductor, we shortly
return to papers cited in [10] on quench analysis of large
superconducting, LHe-cooled magnets. The analysis pre-
sented in [19, 20] assumes the conductor temperature
(superconductor filaments plus copper matrix) as homoge-
neous so that in direction parallel to LHe flow, a 1D simula-
tion of fluid, electrical and thermal transport is appropriate.
The corresponding transport channels in the conductor (1D
“chains”), after further simplifications (like homogeneous
temperature also in steel jacket and insulation, but with tem-
perature gradients in-between these components), finally
are coupled to a 3D grid, by thermal convective and con-
tact resistance, nodal links. Electrical and thermal properties
of the materials involved, in particular their isotropy, favour
application of this procedure and greatly simplify numerical
computation.
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Fig. 2 a Orientation of crystallographic ab-plane and c-axis direc-
tions and of orthotropic thermal diffusivity components of YBaCuO
with respect to overall (x, y) coordinate system. Thick red solid lines
assigned “ab” indicate direction of the (large) diffusivity in the crystal-
lographic ab-planes, the much smaller diffusivity component parallel
to the c-axis is represented by the blue line. b Stability function for
periodic point-like disturbance (case (ii)) of DC transport in the 1G
filament conductor calculated with the c-axis solid thermal diffusiv-
ity oriented parallel to the y-axis of the overall coordinate system (a,
upper diagram), for rigorous solid conduction plus radiation and solely
solid conduction (solid and open coloured diamonds, respectively).
The disturbance is deposited in the red target plane (like in Fig. 1b), 0
≤ r ≤ rTarget, y = 0. Results are given, at increasing axial distances
(planes), y, from the target. The disturbance amounts to Q(t) = 2 Q0
sin(2πωt)+Q0 [W], with Q0 = 0.0125 W. Light and dark green, blue
and black solid circles, introduced at t = 36, 67 and 106 ms, help to
identify significant differences (advance in time) of about 30 and 39
ms, at y = 325 and 525 μm, respectively, by which the conductor, for
stability function � = const, reacts earlier to a disturbance. The figure
is taken from [12]

Reasonable alternatives to [19, 20] for stability analysis
in large, LHe-cooled magnets, which in particular would
include approximate solution of the fluid flow equations,
are hardly imaginable, at least from the point of presently
available numerical tools and computing facilities. This is
excellent work, but in high-temperature superconductors,
the problems associated with inhomogeneous temperature
fields remain.

The following finite element stability analysis is not
focused on large devices like a superconducting magnet

but on microscopic conductor geometry, in this paper a
multi-filament, first-generation (1G) BSCCO 2223 high-
temperature conductor (Fig. 3). But the numerical procedure
could also be applied to any other superconductor material
and conductor architecture.

The simulations apply a finite element programme
(Ansys 16) that is embedded in a general simulation scheme
conceived by the author. A disturbance is initiated by a sud-
den increase of (nominal) transport current in an electrical
circuit.

For description of the stability problem, overall dimen-
sion of the electrical circuit is of little importance. We could
in principle take any large- or small-scale electrical grid, like
in a laboratory experiment, with an appropriately dimen-
sioned superconducting component; the point is the analysis
of this component under high current load.

In contrast to [19, 20], the stability analysis is focused on
electrical and thermal transport in a single conductor within
its filaments and its Ag-matrix material, to improve under-
standing of the physics behind superconductor stability:

(a) Longitudinal current transport (parallel to coolant) is
modelled like in [19, 20] but (instantaneous) transverse
current distribution, calculated in small time steps,
follows from application of Kirchhoff’s law. The cal-
culation incorporates both superconductor and matrix
elements in planes located at several longitudinal posi-
tions; the planes are perpendicular to overall current
flow, and in each plane, total transport current (includ-
ing current shared with the matrix) is conserved,

Fig. 3 Cross section of the 1G BSCCO 2223/Ag Long Island super-
conductor (above, the figure is taken from (21)), and finite element
model cross section (present work, below) that schematically shows
filaments (black) and matrix material (Ag, light grey). The crystallo-
graphic c-axis is vertical to the filament planes. All superconductor
materials parameters used in the finite element calculations (thermal
diffusivity, critical temperature and current density, critical magnetic
field, anisotropy, weak link behaviour) are random values scattered
around their nominal values (to take into account imperfections in
materials development, manufacture and during handling of the sen-
sitive 1G conductors). The Meissner effect is checked individually in
each of the finite elements. Thin white lines indicate finite element
mesh. Dimensions of filaments and of multi-filamentary conductor in
x (horizontal) and y (vertical) directions are as follows: x = 280
µm (filament) and 3.84 mm (total conductor width), and y = 20 μm
(filament) and 264 μm (total conductor thickness), respectively
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(b) Longitudinal and transversal thermal transport and the
resulting temperature distribution are calculated in a
global 3D finite element scheme covering the total
cross section, not by coupling 1D solutions by ther-
mal convective and contact nodal resistances to a 3D
scheme.

(c) Both flux flow losses, and Joule heating also in the
Ag-matrix material, are accounted for in the present
analysis. Current sharing is possible if resistance of the
matrix material becomes less than the resistance of the
superconductor, which may occur either in case of flux
flow or Ohmic conductor resistance.

In order to study the effect of flux flow on tempera-
ture distribution in the superconductor, a divisor, NCutoff,
is applied to total AC resistance of the simulated electrical
circuit, beginning like in [18, 22] at t = 6.5 ms after start
of the simulation with NCutoff = 1. The divisor in the fol-
lowing increases gradually from its initial value to the final
NCutoff = 20 at t = 9 ms, and then is kept constant. The
variation of NCutoff simulates a strong disturbance.

Results of the simulations are shown in Fig. 4a, b. Tem-
perature distributions in the conductor again are strongly
inhomogeneous. Inhomogeneity, even in the tiny filaments,
arises already before conductor temperature exceeds critical
temperature (Fig. 4a), at any position in the cross section.

In Fig. 4b, only tiny parts of the individual cross sec-
tions have become normal conducting (hot spots generated
at these positions) while most of the conductor cross section
remains at temperature below critical temperature, TCrit.
Current limitation, if any, accordingly would rely on Ohmic
resistance in only these parts of the filament while in the
remaining parts, zero resistance or flux flow resistance
would co-exist, side by side. If the disturbance by a fault
current is continuous, at least during 100 ms, and both redis-
tribution of losses in the conductor volume and transfer to
coolant is insufficient, conductor temperature in all parts
of the cross section will increase steadily but temperature
inhomogeneity will remain.

Accordingly, the point is that the mechanism (purely flux
flow or Ohmic resistance) that would trigger switching the
over-current to a shunt cannot uniquely be identified. The
same applies to current limiters operating without shunt
(these were the first concepts of fault current limiters).
Inhomogeneity of conductor temperature neither allows to
definitely identify the limitation mechanism (Ohmic, flux
flow?) nor the achievable limitation factor and the time of
onset of current limitation or of current sharing.

Besides imbalances between generated local losses and
redistribution (thermalisation) of these losses within con-
ductor volume and to the coolant, inhomogeneity of temper-
ature distribution in cases (i) to (iii) results also from strong

Fig. 4 Temperature field (nodal temperatures) in the cross section of
the BSCCO 2223 multi-filamentary conductor (Fig. 3; because of sym-
metry, only the left half of total conductor cross section needs to be
shown, and symmetry axis is on the right). Results are observed at
a t = 8.3 ms (top, with all temperatures below critical temperature,
TCrit = 108 K at zero magnetic field) and b at t = 8.6 ms (bottom),
respectively (1.8 and 2.1 ms after start of a permanent disturbance ini-
tiated by a large fault current). The disturbance results from a sudden
increase, within 2.5 ms, beginning at t = 6.5 ms, of AC transport cur-
rent to a multiple of 20 times its nominal value. Local temperatures

are identified by the corresponding horizontal bars. Symbols MX and
MN indicate positions in the cross section where minimum and maxi-
mum temperature is observed. b is taken from [22]. Temperature in the
upper half of (a) and (b) is larger than in their lower half cross sec-
tions; in this example of field orientation, magnetic flux density arising
at the Ag/filament interfaces in the upper half cross section is settled to
exceed flux density in the corresponding lower half sections, which by
reduction of JCrit initiates non-zero flux flow resistances in the (upper)
regions. Transport and fault over-currents thus preferentially occupy
the lower half of the cross sections
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anisotropic thermal diffusivity: parallel to c-axis, towards
the solid/coolant interface, diffusivity in BSSCO 2223 is
about a factor 60 to 100 smaller than in the crystallographic
ab-plane, see later. Characteristic time, τTh, for conduction
heat transfer thus is in the order of 0.6 ms, much larger than
in the other directions. AC voltage and, accordingly, AC
losses under frequency ω = 50 Hz become zero at t = 10
ms, but even if losses would be set to zero for all t >10 ms,
recovery from the strongly inhomogeneous temperature dis-
tributions in Fig. 4a, b to below TCrit would not be achieved
before hundred milliseconds, as a consequence of the large
anisotropy ratio of the diffusivity. This period would be too
long for technical applications.

The temperature distributions shown in Fig. 4a, b must be
reflected by the distribution of critical and of transport cur-
rent density (in zero-loss situations, transport current den-
sity exactly reflects critical transport current density). Spa-
tial distribution of the obtained temperature field, T (x, y),
of the flux flow resistivity, ρFF(x, y) and of transport cur-
rent, I (x, y) in the cross sections, all at the same time, t =
8.3 ms, is shown in Fig. 5a–c (the figure is taken from [22]).
Flux flow resistances exist in parallel to Ohmic resistances
(location of Ohmic resistances, not given in Fig. 5b, can
be identified from Fig. 4a, b). Transport current obviously
prefers regions of low temperature and avoids regions of
increased resistance.

The results shown in Fig. 4a, b and 5a–c rely on a variety
of parameters of which flux flow resistivity is one of the
most important. How can flux flow resistivity be calculated?
This will be addressed in Section 3.

3 Finite Element Treatment of Flux Flow
Resistance

3.1 Survey

A finite element mesh with fine spatial resolution has to
be constructed for the conductor cross section shown in
Fig. 3. But conductor dimensions are between nanometres
(weak link structures), micrometres (grains) and millimetres
(filaments and overall dimension of the multi-filamentary
conductor). Mapping each superconductor grain, and in par-
ticular its surface, with at least some tens of appropriate
elements (even a conservative approach) inevitably leads to
a total element number of nodes and elements too large to
obtain results within acceptable computation time.

Simulation of only substructures of the multi-filamentary
conductor, like only 1 or 2 of the 91 filaments in Fig. 3, cer-
tainly would reduce computation time, but it would not be
very helpful for temperature and current distribution and for
stability analysis: we need simulation of the total number of
filaments in the conductor, because it is the surface of the

conductor, not of the filaments, that faces the coolant. Only
the distribution of disturbances in all filaments, and the cor-
responding local losses, will in sufficient detail provide the
temperature field in the total conductor cross section and
qualify predictions of conductor stability as reliable.

Instead, calculation of an effective resistivity, ρeff, of
filaments, by application of a cell model, as an average
taken over all relevant superconductor filament components,
presently appears to be a manageable way. This step circum-
vents the problem that would arise from detailed mapping.
A series of approximations (steps 1 to 4) will be necessary,
and is described below.

Application of the cell model is restricted to the level
before start of the proper finite element simulations. The
effective resistivity, ρeff, is applied in the finite element
solution procedure as if the filaments were a continuum. The
total numerical procedure thus is a continuum approach, like
the finite element simulations in [18] and [22], in the present
paper with improved spatial resolution.

3.2 Standard Model for Calculation of Flux Flow
Resistance

In the low-temperature limit, the empirical relation between
the specific resistivity, ρFF, initiated by flux flow to cur-
rent transport and, ρNC, of normal conducting state reads as
follows:

ρFF = ρNCB/BCrit,2 (3a)

See [23], p. 230, and the cited reference to original
literature, or compare other standard volumes on supercon-
ductivity. It has been shown that this relation is applicable
to also high-temperature superconductors [24].

In (3a), the resistivity, ρNC, usually is considered the
room temperature (constant) normal conduction value of the
superconductor solid material. However, the simple (3a) is
valid for homogeneous superconductor solids, and it is also
not clear that ρNC should be kept constant in calculations
of flux flow resistivity. In particular, (3a) without modifi-
cations does not appear to appropriately include weak links
between solid constituents (grains, domains) in microporous
conductors as they might contain a variety of different struc-
ture (1D to 3D geometry) and materials composition that
each contribute to electrical resistance. Further, as [25], p.
128, indicates, there may be deviations from (3a) in type II
superconductors, like YBaCuO or BSCCO, with large val-
ues of the Ginzburg-Landau parameter, but this will not be
considered here.

Direct experimental determination of ρFF would be dif-
ficult, not only because flux creep, a competition to flux
flow operating in the background and of different origin that
inevitably raises with increasing temperature.
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Fig. 5 Distribution of
conductor temperature (top),
flux flow resistivity, ρFF
(below), and of transport (fault)
current, I (bottom of the figure),
in the x, y-cross section (Fig. 3)
of the multi-filamentary BSCCO
2223 conductor. Like in Fig. 4a,
b, only the left half of the cross
section, x ≤ 1.92 mm, y ≤ 264
μm, is shown. Results are
presented at t = 8.3 ms (1.8 ms
after start of the disturbance).
Flux flow resistivity ρFF >0
exists only if transport current
density exceeds critical current
density, JTransp >JCrit, and if
local conductor temperature,
T (x, y, t), is below local critical
temperature. The figure is taken
from [22]. Transport current
avoids regions of increased
resistance
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The idea to extract flux flow resistivity from the slope of
the I/V or J/E-curves performed in [24] with YBaCuO low-
angle tilt grain boundaries basically appears to be reason-
able, and the measurements are straightforward. But when
the field was perpendicular to the ab-plane, the authors
assumed the vortices were pinned by dislocations. Pinning
of vortices in high-temperature superconductors (because of
their large anisotropy of current transport and of field pen-
etration) neither can be limited to an atomistic structural
view (like dislocations) nor do pinned vortices reflect the
comparatively simple geometrical structures (flux lines, vor-
tices) found in low-temperature (metallic) superconductors.
Instead, flux lines or vortices may strongly be distorted from
external field direction and, depending on temperature and
magnetic field, may be twisted.

3.3 Modelling of Weak Links

Weak links, on the one hand (and on a nanoscopic scale),
exist as electrically insulating inter-layers between neigh-
bouring crystallographic ab-planes, which means as natural
Josephson junctions, or weak links appear, on microscopic
dimensions, as 3D materials “bridges” between neighbour-
ing grains and domains (in high-temperature superconduc-
tors of good quality, as clusters of orthorhombic, parallel
oriented grains). There are also weak links consisting of 2D
interfacial or 1D point contacts only.

In general, two paths are open to current transport
through a particle bed, like in a multi-filamentary conduc-
tor: the conductor is composed of superconductor particles
and empty or filled voids. In powder in tube (PIT) conduc-
tors, voids might partly be filled with Ag-matrix or with
weak link material, or the voids result from pores that result
from materials or manufacture imperfections and are simply
filled with air. Currents paths are described as follows:

(a) Intra-granular currents that in the Meissner state, as
zero loss displacement and screening currents, yield
zero internal magnetic field.

(b) Inter-granular currents flowing through 3D, 2D and
1D contacts between neighbouring particles and mul-
tiples thereof; these currents not necessarily would be
zero loss currents. Inter-grain paths are of practical
importance.

Either path can be assigned a corresponding resistivity. A
total, effective resistivity, ρeff, then integrates all resistances
opposed to intra- and inter-grain currents within an appro-
priately designed geometrical cell. We will use in (3a) and
in the finite element simulations the ρeff as a function of
temperature instead of a constant ρNC.

The dependence of ρFF on magnetic field, given by the
factor B/BCrit2, is taken into account solely in the finite ele-
ment procedure, with local flux density, B = B(x, y, t).

The overall structure of (3a) then is conserved. Tempera-
ture dependency of both ρeff and BCrit,2 has to be considered
(the latter is considered also in [24], but is apparently often
neglected).

An improved theory, still to be developed, might give up
standard assumptions like a viscosity opposed to flow of
flux quanta, and even suspend (3a), except for application to
homogeneous solids. However, a practical way is to calcu-
late ρFF presently in a network composed of superconductor
grains and domains and weak links in between.

It is assumed in the following that the domains are built
by staples of a large number of plate-like single grains
that during sample preparation in powder in tube processes
are pressed to an ordered particle “bed” with the crystal-
lographic ab-planes parallel to current flow (in Fig. 6a, in
parallel to the x, z-plane, see below).

A corresponding model reported by [26] describes total
current of a 2223 tape conductor through a network of paral-
lel weak and “strong” links, with strong field dependence of
critical current density, JCrit, in weak, but with dependence
of JCrit on flux pinning, in strong links. Weak links in this
model are regarded as Josephson junctions, and strong links
are represented by the solid grain material. While separation
with respect to field dependence of JCrit principally appears
to be sound, we believe the assumption of parallel (which
strictly speaking means, contactless) paths, like the imag-
ination of separate “chains” (two current paths) would be
too much an approximation to be successful. On the micro-
and nanoscopic size level, grains and their weak links in
reality are disorderly arranged; ordered structures become
obvious not before grains are compressed to domains and to
filaments, under thermo-mechanical treatment during PIT
manufacture.

3.4 Flux Flow Resistance from a Cell Model

Instead of assuming separate chains (current paths), a bet-
ter solution in a resistance network is to account for the
interplay between weak and strong links by appropriate cell
models. Different field dependency of weak links between
neighbouring grains and domains then can be accounted
for, and the resulting effective resistivity incorporates both
geometry of grains, filaments and weak links and their
material composition. But this is a difficult task, too.

In the cell approximation, we in the first step extract
the resistivity of the proper (ideal, zero porosity) solid
(bulk) material from measurements of the resistivity of a
multi-filamentary, polycrystalline PIT conductor (that to
all experience is not ideal at all). Applying the resistiv-
ity of simple bulk material is not recommended for this
step: The material does not undergo the special mechanical
and thermal treatments usually applied to PIT conductors.
Instead, preparation of bulk material yield samples that are
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geometrically as well as structurally different from samples
prepared in the PIT process that applies a tape encapsulated
in a Ag-jacket.

Extraction will be made from the resistivity of BSCCO
2223; resistivity of this material is accessible from the lit-
erature. After the first step, with the same cell model,
the extracted resistivity is converted to the resistivity of
weak link material, resident on the periphery of grains and
domains.

A survey on cell models is given, for example, in [27],
p. 7 to 15, and in [28]. The underlying Russell cell model
[29] (see below, (3b)) is easy to handle since it just con-
tains porosity and the resistivity of both (solid and porous)
phases, either for electrical or thermal transport. It is flex-
ible (the role of particles and voids without much effort
can be interchanged), the results roughly are independent of
size of the constituents, and though the model in its origi-
nal scope applies to a regular distribution of cubic particles,
it is according to experience applicable to particulates of

�Fig. 6 a Geometrical cell model for the calculation of the resistiv-
ity, ρNC, to be applied in (3a), and in the finite element simulations
as an effective resistivity, ρeff. Above, the figure shows three arbitrar-
ily selected filaments (schematic, no to scale; this is a detail of Fig.
3). Filaments are indicated by black rectangles (cross sections in a
could be modelled with circular cross sections as well). Each fila-
ment (first detail, right, below) consists of a number M ×N domains
(clusters of orthorhombic plate-like, parallel-oriented grains) each of
which incorporate a superconductor core (large black rectangle) and a
shell of weak link material (light grey). Each of the M ×N domains is
divided into a number N = m × n grains (second detail, bottom part
of the figure, left) each with again a superconductor core (small black
rectangles) and a thin sub-shell of weak link material (white lines);
this hierarchy of large and small superconductor cores in domains
and grains and of correspondingly thick and thin shells and sub-shells
facilitates modelling resistances of grains and weak link materials of
different size, thickness, materials composition, physical properties
and field dependence, respectively. See (c) for dimensions of domains
and of grains and of the corresponding weak links sections. Total simu-
lated conductor length, z, taken over large numbers of grains, domains
and filaments is arbitrary. Numerical values indicating size of cross
section of one filament are in micrometre. Resistances to current flow
in z-direction of all domains and grains, filaments and Ag-matrix mate-
rial are switched in parallel. The geometrical model assumes roughly
layered grains and filaments. The multi-filament conductor in Fig.
3 incorporates 91 filaments. b Resistivity of BSCCO 2223: material
properties, not including the effect of magnetic field. Red diamonds
indicate experimental values reported in [30] for micro-crystalline
BSCCO 2223. The reported porosity 	1 = 0.0842 (volume fraction
91.6 %) and the Russell cell model, in steps 1 to 2 (compare text),
allow to extract the resistivity of the proper (ideal), solid grain core
material, blue diamonds, inner porosity 	2 = 10−4. In step 3 (the cell
model now applied to the blue diamonds), the resistivity of the weak
link materials enclosing domains and grains (porosity 	3 = 0.99 and
0.01, respectively) is estimated (light-green and light-blue diamonds,
respectively; at T ≥ 120 K, values of the anisotropy coefficient, r ,
are missing, but the light-green diamonds are extrapolated to this tem-
perature range. The resistivity of the proper solid grain (bulk) material
(blue diamonds), the proper solid, because of its almost zero poros-
ity), necessarily must be smaller than the experimental resistivity (red
diamonds) that refers to porous polycrystalline 2223 superconductor.
c Flux flow resistivity, ρFF, calculated from the effective ρeff (com-
pare text) and with the field factor B/BCrit,2 in (3a) to current transport
of a multi-filamentary BSCCO 2223 conductor, for local (constant)
magnetic flux density,B = 10 and 100 mT (solid dark-green and light-
green diamonds, respectively). Dimensions of domains, x1, y1 and z1,
are 70, 6 and 70 µm, thicknesses dx1,dy1and dz1 of weak link shells
enclosing domains are 100, 10 and 100 nm, respectively. Dimensions
of grains, x2, y2 and z2,are 20, 1 and 20 µm, thicknesses dx2,dy2and
dz2of weak link shells surrounding grains are 1, 1 and 1 nm, respec-
tively. Solid blue circles indicate ρGrain as solely the grain core (bulk)
material without magnetic field and under zero current (note the tem-
perature range is reduced to 98 ≤ T ≤ 108 K). Open dark green
diamonds denote ρFF from [22] calculated with B = 10 mT. For
comparison, dark-grey diamonds indicate resistivity of the Ag-matrix
material. The upper critical magnetic field, at T = 4.2 K, is BCrit,20 =
200 T giving BCrit,2(T ) = BCrit,20[1 − (T /TCrit)2]. Critical tempera-
ture (vertical, dashed red line, for B = 0 and under very small current)
is 108 K

also other shape and of modestly irregular spatial distribu-
tion. In the present case, for application of Russell’s cell
model, the “particulates” are grains and domains distributed
in a filament, and tiny voids of nanoscopic dimensions that
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represent weak links provided their geometry and material
composition can adequately be indicated.

Small porosity in this picture indicates that weak links
constitute only a small volume fraction in relation to the
superconductor phases (grains, domains). The cell model
does not assume particles or voids arranged in coherently
connected, non-interacting chains. Instead, particles and
voids are interpreted as distributed obstacles to current flow.
The cell model treats all resistances that contribute to the
(spatial) average ρeff as if they would be randomly dis-
tributed. Calculation using the Russell or other cell models
thus is straightforward, but the Russell cell model is partic-
ularly preferable when in the first step, the reverse of (3b)
(see below) has to be used.

The conductor cross section (Fig. 3) is mapped upon a
geometrical (schematic) model (Fig. 6a). The geometrical
structure allows to assign each of its particular cross sections
a specific resistivity (grains, domains, filaments and voids
specifying weak links). These have to be calculated from
repeated application of the Russell cell model, in a series
of successive approximations, and for this purpose, all these
have to be assigned a specific porosity.

3.5 Application of Russell’s Cell Model

Each of the 91 filaments in the multi-filamentary conduc-
tor (black rectangles in Fig. 3) is divided into M × N

domains, and each domain in m × n grains (Fig. 6a).
This implies division of the solid constituents of the fila-
ments into a three-level hierarchy (“large” domains, “small”
grains, “tiny” weak links) the benefit of which is to assign
specific, position and field-dependent values of resistiv-
ity to each section of the whole filament. Each domain
is composed of a solid core (the proper superconductor,
black rectangles) and of “shells” (light-grey sections) that
at the moment and only schematically indicate weak link
materials arranged around the black cores. In the proper cal-
culation of the effective resistivity, the shells’ cross sections
are in z-direction reduced to point-like contacts (this shall
be realised with the help of results from analogous ther-
mal transport problems through particle beds, see Section
3.6). Each grain incorporates its own superconductor core
(again black rectangles) and corresponding sub-shells (thin
white lines, the weak links between grains). Electrical trans-
port through the matrix material, of well-known resistivity,
is accounted for solely in the finite element scheme.

Manufacture of 1G PIT filamentary conductors results in
plate-like grains with dimensions x, y, z = 10, 1, 10 µm
or also in needle-like particles of 10 to 30 µm length, with
a diameter of about 1 µm. Range of grain size distribution
may be wide, but results of the flux flow resistivity cal-

culations differed only slightly between both plate-like or
needle-like grain geometry; the present paper applies plate-
like gain geometry. Size of domains increases with number
of grains but remains in the micrometre range, thickness of
corresponding shell and sub-shell, weak link materials are in
the order of one to tens of nanometre. Dimensions are given
in the caption of Fig. 6c; with these dimensions, shell vol-
umes in Fig. 6a, even before reduction to point-like contacts,
are much smaller, by a factor of about 400, than BSCCO
superconductor (solid grain and domain) volumes.

Within the present geometry (Fig. 6a), principal porosity,
	1, of superconductor components in the multi-filamentary
conductor (91 filaments distributed in the Ag-matrix) is
about 0.5 (related to total conductor volume). Though there
are comparatively thick Ag-sections in Fig. 3a (left and right
to the black filaments), the percentage of BSCCO is larger
than frequently reported 30 to 40 % of BSCCO in OPIT
BSCCO/Ag superconductors (	1 = 0.6 to 0.7). But the
most important result (inhomogeneous temperature distri-
bution) does not change if either principal porosity 	1(0.5
in the present case, or 0.6 to 0.7 from literature) is applied
in the simulations.

If kCore denotes thermal or electrical conductivity of solid
particles that are completely embedded in a “shell” of con-
ductivity, kShell, the integral conductivity, k, in the Russell
model of an open cell structure with porosity 	 reads as
follows:

k = kCore[	2/3 + (kCore/kShell)(1 − 	2/3)]/[	2/3 − 	

+ (kCore/kShell)(1 − 	2/3 + 	)] (3b)

We apply (3b) to measured resistivity, ρ = 1/k = 1/kexp,
with kexp from [30] (red diamonds in Fig. 6b) of a PIT
conductor (grains and domains distributed in a Ag-matrix).
The reported critical current density is 7 × 108 A/m2, and
that the superconductor BSCCO 2223 core was prepared in
solid-state reaction.

The measured kexp then are converted to the resistivity
of a corresponding ideal, almost zero porosity solid (core)
grain material (like a basis vector from which solids or
porous structures of any porosity can be derived). Probably
existing contributions from BSCCO phases other than 2223
and weak link materials are included in the red diamonds.
This is step 1: Russell’s (3b), with the principal porosity
	 = 	1 =0.084 given in [30], has to be solved for kCore.

For this step, the conductivity kShell has to be defined. We
roughly assume kShell ≈ 1/100 kexp. In BSCCO 2223, the
factor 1/100 reflects experimentally determined anisotropy
of thermal conductivity. The anisotropy ratio r(T ) =
λab(T )/λc(T ), of thermal conductivity, λ, approximately
may be considered as also the anisotropy of current flow



J Supercond Nov Magn (2016) 29:1405–1422 1415

or of field penetration. The idea is that electrical resistiv-
ity of superconductor components in weak links, if they are
at least partly composed of the BSCCO 2223 phase (or of
other phases of approximately the same anisotropy ratio),
hardly will be larger than resistivity against current trans-
port in c-axis direction between neighbouring ab-planes in
the crystallographic unit cells.

If ab-planes in crystallites or grains in the weak link
material are randomly (but with small tilt angles) oriented
against current flow, the resistivity, ρShell(T ), then would
be smaller than ρexp(T )r(T ) which means application of
kShell = 1/ρShell(T ) = 1/[ρexp(T )r(T )] in (3b) yields an
underestimate of total k, or an overestimate ρCore(T ) = 1/k.
This happens in step 1 and in all following steps that apply
(3b). Because of the small percentage of shell volumes in
the total cross section, uncertainty arising from overestimate
of ρCore(T ) will at leastpartly be compensated. Experimen-
tal ratios r(T ) using bare core material of a BSCCO 2223
PIT conductor, after removal of the Ag-jacket, are shown in
Appendix A2 (Fig. 8).

In step 2, the result is transformed, again by (3b), to the
resistivity of a real solid of non-zero (but very small) poros-
ity, say for example, 	2 = 	Core = 10−4. This small
correction (blue diamonds in Fig. 6b) assures that the struc-
tural composition (no voids) of the basic core material is
almost perfect and consists solely of the BSCCO 2223 phase
(voids originally resident in the red diamonds are eliminated
in step 1). As mentioned, the blue diamonds not necessar-
ily represent the resistivity of ordinary bulk material: the red
diamonds in Fig. 6b apply to the bare core of the filaments
that are prepared in a PIT process. Preparation of bulk mate-
rial instead yields samples of clearly different mechanical
and current transport properties.

In step 3, the blue diamonds in Fig. 6b shall be converted
to resistivity of weak link material, again by application of
(3b), but now with much larger (see below) shell porosity,
	3 = 	Shell. In this case, large porosity means that the solid
component, now of the weak link material, contributes only
marginally to resistance of weak links.

Micro- or nanoscopic metallurgical sections or SEM pic-
tures are not available the resolution of which would allow
more than just getting very rough impressions of spatial
structure and porosity of 3D weak link materials. Also, the
tiny dimensions of weak links cannot be concluded from
experiments. Weak links in addition might even consist of
only 2D interfacial or 1D point-like contacts.

In a qualitative view, porosity 	Shell of weak link mate-
rials between domains probably is much larger than the
corresponding 	Shell of weak links between grains, and
porosity will increase with radial distance from position
of inner-lying grains. This is because manufacture of PIT

superconductors is subject to robust thermo-mechanical
treatments; the conductors experience large frictional (from
thermal expansion, winding) and compressive forces, the
latter due to mechanical shock treatment (forging, down-
hammering, rolling). Though the superconductor material
is very hard, the very first ”receiver” of compressive and
frictional load is the domain periphery, so that particle sur-
faces at these positions, in very thin surface layers, may be
ground to almost a powder, in contrast to grains located (and
thus mechanically protected) in the deep interior. Weak links
between grains thus would contribute stronger to mechani-
cal stability of the bed, in parallel to the matrix jacket, than
weak links between domains. Assigning large 	Shell (close
to 1) to domain weak links simultaneously assumes that the
corresponding weak links are poor phases, in the proper
BSCCO 2223 material.

As before, values of 	Shell of weak links between grains
can be estimated only but this material would be rich in the
superconductor phase. Whether in a melt the periphery of
grains and domains is sharply defined depending on surface
tension and decay rate of temperature, but we can expect
that concentration of the proper superconductor material
does not sharply break down to almost zero at the periphery;
a finite concentration gradient is more probable.

Sensitivity analysis performed with a variation of 0.1
≤ 	Shell ≤ 0.5 of shells around grains shows that ρeff does
not depend very strongly on 	Shell. Again, a merely qualita-
tive view suggests that	Shell of grains should be very small;
thus 	Shell = 0.01 for weak links interconnecting grains
was finally chosen, which means the BSCCO 2223 phase
contributes almost exclusively to the grain weak links (con-
trary to weak links interconnecting domains). Experiments
are needed to confirm these expectations.

But other BSCCO superconductor phases (compare
Appendix A1) and probably existing contaminations may
contribute to the resistivity of weak links, in different ways,
however. This has been accounted for by separation of weak
link resistivity according to magnetic field dependence: the
resistivity from step 3 is in step 4 split into the proper
field-dependent BSCCO phase (which means, below its T

<TCrit = 108 K) and in the other BSCCO phases that do not
(or no longer, at elevated temperature) depend on magnetic
field, and thus cannot contribute to ρFF. Normal conducting
“foreign” contributions (contaminations) to the resistivity of
weak links have to be eliminated from ρFF, too.

In weak links between neighbouring domains and grains,
considerable potentials exist not only for variations of geo-
metrical structure and porosity but also for internal materials
composition, see Appendix A1.

Finally, the resistivity resulting from steps 1 to 4 is used
to calculate resistances, Rj (1 ≤ j ≤ 9, counting horizon-
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Fig. 7 Thermal resistance units 1 to 4 between two spheres
(schematic). Geometry of contact area, and dimensions of deforma-
tions are adapted from [33]. Resistances 1 to 4 may arise in thermal
conduction problems or in electrical current flow and are identified
as follows: 1 = solid material (for example, sphere or fibre), 2 =
macroscopic contact area with size following from elastic deformation,
3 = point contacts arising from surface irregularities like roughness
(weak links can be considered as a nano- to microscopic analogue of
such irregularities in electrical current transport). Resistance 4 applies
preferentially to thermal conduction and in this case causes a film
resistance arising from condensation of a gas in the periphery of the
macroscopic contact area; this is not considered here. The atomistic
view in this figure reflects principles of cell models. The figure is taken
from [32]

tally the light-grey and black cross sections within a grain or
a domain in Fig. 6a). TheRi in grains and domains are final-
ly switched in parallel (in z-direction). The light-blue and
light-green diamonds in Fig. 6b include only steps 1 and 2.

3.6 Thermal Analogue to Weak Links

After application of Russell’s cell model to estimate mate-
rial properties in grain, domain and shell cross sections,
the geometrical aspect of calculating the effective resistiv-
ity of the cell remains to be solved: shell cross sections
(light-grey-shaded areas in Fig. 6a) have to be reduced to
point-like contacts to represent weak links.

No experimental values are available on size or on
number of electrical contacts and on their distribution on
superconductor particle surfaces. Modelling of electrical
resistance in particle beds originally goes back to Rayleigh
and Maxwell and has been revisited more recently by Holm
[31]. Kaganer [27] and several authors cited in this refer-
ence have converted the results from electrical transport to
the analogous thermal transport problem. In turn, refine-
ments achieved in heat flow-related studies can be used

for solution of the present electrical transport problem in a
two-phase medium (grains or domains, and weak links).

Figure 7 (schematic) shows a resistance cell unit between
two spheres, with partial thermal or electrical resistances
R1 to R4. The atomistic view in this figure reflects princi-
ples of cell models (as mentioned, the effective resistivity,
ρeff, finally is operated as a continuum approximation).
Resistance 1 refers to solid material (for example, contact-
ing spheres or fibres), resistance 2 contains a macroscopic
contact area (2) with a size following from elastic defor-
mation, and resistance 3 considers point contacts (3) within
the contacting area (2). Point contacts in the thermal model
arise from surface irregularities like roughness. Roughness
either exists as natural surface roughness (a solely particle
materials property) before contact, or it develops when
contacting bodies are exposed to high pressure load or to
thermal treatment (sintering, melting).

In electrical current transport, weak links can be consid-
ered the nano- to microscopic analogue of surface irregu-
larities (3). For electrical contacts, Holm [31] has shown
that the component R2 = RCont in this figure is dominat-
ing among R1 to R3. By analogy, it is sufficient to apply
for the electrical resistance R3 (the resistance of weak links)
the contact area (2); the procedure delivers an upper limit
for R3. It is thus R2 that is used in the cell model to cal-
culate resistance of weak links against current transport in
z-direction through grains, domains and filaments.

Contact radii of the surface (2) in Fig. 7 for two touching
spheres or fibres or for contacts between particles of other
geometry can be estimated from Hertz’ theory for elastic or
inelastic deformations; compare [27], p. 19, if pressure load,
p, modulus of elasticity, Y , and Poison’s ratio, µ, are known.
A constriction zone arising from deformation of contacting
3D bodies (spherical or of other geometry) ends in a 2D
contact surface. Details are described in [27, 28] and [32]
and in Appendix A2.

3.7 Results from the Cell Model

Summation of all Rj obtained in the foregoing subsections,
of all grains, domains and filaments, all switched in paral-
lel, yields the total conductor resistance, RTotal = ρeff L/A,
for current flow in z-direction, with L the length of the con-
ductor and A its total cross section. This equation is solved
for the effective resistivity, ρeff, opposed to current flow in
axial (z-) direction.

In Fig. 6c, flux flow resistivity, ρFF, is calculated from
the effective ρeff (obtained in the cell model) by multiplica-
tion with the ratio B/BCrit,2(T ), using constant B = 10 and
100 mT. In the finite element calculations, B = B(x, y, t)

will be applied instead, with really existing local temper-
ature and local magnetic fields. Local flux density in the
filaments, at the superconductor/Ag interface, is in the order
of 1 ≤ B ≤ 10 mT, using transport current through the
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multi-filamentary conductor from the simulated electrical
grid under a fault. Grain, domain and filament dimensions
are indicated in the caption of this figure.

The resistivity ρFF, for B = 1 and 10 mT, in Fig. 6c is
larger than ρGrain because weak links drive flux flow resis-
tivity of grains and domains to values greater than the proper
solid resistivity (ρGrain). For the given flux densities, the
resistivity ρFF is also larger than the ρFF = 10−6� m, a con-
stant value used in [34], and it greatly exceeds the resistivity
of the Ag-matrix material. There will be current-sharing
between superconductor and matrix provided transport cur-
rent density in the filaments exceeds critical current density,
and temperature is below TCrit.

But the resistivity ρFF at T < 98 K in Fig. 6c is much
smaller than the result reported in [35]; they find ρFF ≈
1.5 × 10−3� m at T = 87 K in a single-filament BSCCO
2223 PIT tape. Contributions from the 2212-phase (TCrit =
94 K) to resistivity, and perhaps more normal conduct-
ing components in the weak links, and the absence of an
external magnetic field, could explain this discrepancy (we
note at T = 87 K, the critical current density of a multi-
filament BSCCO 2223 PIT tape in this reference was clearly
below 108 A/m2, a comparatively small value which could
be explained by increased weak link resistivity from insuf-
ficient pinning). As is to be expected, also the resistivity
reported for an unordered polycrystalline BSCCO 2223 sam-
ple exceed, at least by one order of magnitude, the results
obtained in Fig. 6c: in [36], the authors find ρFF ≈ 3 ×
10−3�m at temperature very close to TCrit (108 K) in DC
field experiments with overlaid small AC ripples. But part
of the material looks like needles (Fig. 1 in [36]), without
any preferential ordering, which as a priori induces higher
resistivity.

The model described in this paper differs from the
weak link path model reported in [37] where differentia-
tion between superconductor operational states is restricted
to “superconducting” or “normal conducting” only. But flux
flow, too a superconductor state (because T < TCrit), is
also responsible for conductor resistance to electrical trans-
port, under the conditions mentioned above. Instead, the
present cell model not only allows flux flow per se but takes
into account parameters like grain and weak link materials
dimensions and compositions. However, the cell model still
suffers from a series of critical approximations and missing
experiments to determine porosity.

We recall that one of the main objectives of the present
paper and of and [11, 12, 18, 22] was to demonstrate
high temperature inhomogeneity in filaments and multi-
filamentary conductors under disturbances. The main result,
inhomogeneous temperature distribution in the conductor
(compare Fig. 4a, b and corresponding figures in [18,
22]), does not change when instead of the values for flux
flow resistivity (obtained from the cell model) the normal

conduction resistivity of BSCCO 2223, ρNC = 2.87 ×
10−5� m at T = 300 K, from [30], would inserted into the
finite element scheme (the main result thus can compara-
tively simply be confirmed, one only needs finite element
or finite differences computer programmes, even analyt-
ical estimates of temperature gradients might already be
sufficient). Accordingly, all consequences for current distri-
bution, conductor stability against quench and predictions
concerning current limiting that originate from strong inho-
mogeneity of the temperature field are conserved when
using ρNC instead of ρFF.

4 Integration Times in the Finite Element
Calculations

4.1 Problems with Thermal Diffusivity

In standard stability analysis, besides a dependence on
magnetic field, the variation dJCrit[T (x, y, t > t0)]/dt , of
critical current density (t0 the time indicating start of the
disturbance) is considered to closely follow the variation
dT (x, y, t)/dt of local temperature in the superconductor.
Local temperature, T (x, y, t), after a disturbance, reflects
thermal transport properties, which means phonon and elec-
tron contributions to thermal conductivity and to specific
heat. For transient analysis of stability or current limiting
problems, a corresponding characteristic, thermal relaxation
time, τTh, is defined; it is as usual derived from the thermal
diffusivity applied in Fourier’s differential equation. Local
temperature in a superconductor can hardly be measured;
what is usually measured is its surface temperature or the
temperature of a cold head to which a superconductor sam-
ple is thermally connected (the question is how perfect such
connections, or remote measurement of sample temperature
by IR thermography, can be realised).

But JCrit[T (x, y, t)] depends strongly on properties of
the sample’s electron system. Electrons that contribute to
superconductivity are largely decoupled from propagation
of thermal waves, and reflect their own dynamic response to
this or other specific excitations by a corresponding relax-
ation time, τEl. The lattice, i.e. its phonon spectrum, if
excited, behave differently; coupling of both systems in the
BCS model may even be infinitely weak. The characteristic
time, τEl, for decay of electron pairs, the “electron aspect”
of propagation of a disturbance, and subsequent recombi-
nation of excited electron states to a new dynamic equi-
librium, at different temperature and carrier concentration,
thus would be quite different from τTh though the number
of electrons coupled to Cooper pairs near critical tem-
perature is comparatively small. Nevertheless, it is τTh
that as a function of total thermal diffusivity is usually
applied in finite element calculations (total means: phonon
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plus electron contributions), and the stability function is
calculated on this “phononic” basis.

In the same way, the normal/superconductor phase transi-
tion that in reality corresponds to solely the electron system
during warm-up or cool-down periods traditionally is con-
sidered to occur at exactly a time, t ′, when measured solid
temperature, T (x, y, t ′), coincides with critical temperature.
In standard experiment, TCrit is determined from observa-
tion of an electrical field suddenly arising over the sample
when transport current exceeds critical current, again a
completely electron-based aspect while temperature mea-
surement is based on phonon plus electron contributions
to thermal transport. But it is not clear that during cool-
down a previously normal conducting electron system, in
any of the superconductor volume elements, already had
completed its return to a new dynamic equilibrium mixture
of normal conducting and superconducting electron compo-
nents in this volume, at the lower temperature and at exactly
this time, t ′. Thermal diffusivity usually applied in finite
element calculations thus might contain contributions from
super- and normal conducting electrons that have not yet
returned to dynamic equilibrium. The finite element pro-
gramme does not know the “history” of the total phonon
plus electron system under a temperature variation. Uncer-
tainty of results obtained from finite element calculation
thus is unavoidable, not from computational but from phys-
ical aspects though such uncertainties might be small (but
this is not clear). Uncertainty of this kind may become crit-
ical when temperature distribution in the conductor is not
homogeneous.

Characteristic (relaxation or life-) times, τEl,of thermally
excited electron states were numerically calculated in [38]
from their decay rates using a sequential model with con-
tributions (a) from a formal analogy to an aspect of the
nucleon-nucleon, pion-mediated Yukawa interaction, (b)
from the Racah-problem (expansion of an anti-symmetric
N-particle wave function from a N− 1 parent state; this
aspect is to be observed in summations of individual decay
widths to total lifetime, τEl, of the excited electron system),
and (c) from the uncertainty principle.

4.2 Time-Steps Applied in the Finite Element
Calculations

Different characteristic (relaxation or life-) times, τEl, τTh
and τB (the latter for propagation of magnetic flux at T

> TCrit in a multi-filamentary superconductor) accordingly
have to be taken into account in the numerical simulations:
below TCrit, the electron system, after a temperature vari-
ation, must be given sufficient time to complete the said
re-organisation before a new local temperature should be
calculated. Time steps, �t or, as in [12, 18, 22], the large
number of iteration sub-steps of variable length within each

�t , for which the solution of Fourier’s differential equation
shall be solved, accordingly must be larger than characteris-
tic times τEl and τTh. The proper integration time, δt , within
each sub-step �t /N ≥ 10−5 s, is between 10−14 and 10−7

s; convergence shall be achieved with these δt at the end of
each sub-step. The situation is relaxed only at temperatures
above TCrit.

Multi-physics elements for appropriately handling the
coupled superconductor electrical/magnetic/thermal con-
ductive/radiative transport problems in finite element cal-
culations, and in particular the re-organisation problem of
electron states, are not available, and this situation will cer-
tainly remain in near future. Collisions between time-steps
�t (or their sub-steps) and τEl thus may arise, in particu-
lar if local conductor temperature is below but very close
to critical temperature; there, τEl becomes large (compare
Fig. 2a, b in [38]); re-organisation of the total electron state
takes longer the larger the number of electrons involved.
Analytic or finite element calculations performed with time
steps chosen solely in relation to thermal diffusivity and
element size but that do not observe conformity with the
characteristic times τEl, τTh and τB may deliver questionable
results although the achieved numerical convergence might
be excellent.

There is also a spatial aspect to be observed in finite ele-
ment calculations that involve superconductors exposed to
magnetic field. Strictly speaking, local field in (3a) has to
be taken as an average over the Ginzburg-Landau coherence
length; nodal distances within the finite element mesh must
be large enough not to collide with this condition. This in turn
requests reconsideration of the proper integration time steps δt .

5 Conclusions and Outlook

Under transient or permanent load, analysis of current trans-
port in a multi-filamentary superconductor, including the
stability and current limiting problems, requires simula-
tions with high spatial and time resolution, with time-steps
that are conform with three different characteristic times,
τEl, τTh and τB. Analytic or finite element calculations that
do not observe this conformity might deliver results that
have limited correspondence to reality although numeri-
cal convergence might be fine. Superconductor tempera-
ture is not homogeneous, even in the tiny filaments in
a multi-filamentary conductor. Clear distinction between
purely Ohmic or flux flow resistance thus is not possible.
Contrary to what is frequently reported in the literature,
differentiation between corresponding flux flow or Ohmic
resistance-type fault current limiters, or between corre-
sponding triggering mechanisms to initiate current sharing,
becomes highly questionable. A cell model calculation of
flux flow resistivity has been presented in this paper that as
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an approach appears to be suitable for application in finite
element calculations of temperature fields and current dis-
tribution in superconductors. But a variety of uncertainties
arising with parameters selection is obvious, like in many
numerical simulations. The model could perhaps be refined
by adopting an idea of the weak link path model, i.e. a
random distribution of weak link interfacial and “bridge”
contacts on grains and domains. While (3a) applies well
to solid superconductors, a cardinal rectification, strictly
speaking, could perhaps be obtained when a new theoretical
model is conceived without reference to normal resistance
or viscosity in micro-porous conductors. More investiga-
tions will also be required to find a perhaps existing but still
not identified, correlation between stability functions and
current percolation.

Appendix A1: Material Composition of Weak
Links

Microporous materials of any kind inevitably contain weak
links. They constitute obstacles, at least against the follow-
ing:

(i) Electrical transport (Ohmic resistance to flow of elec-
tron charges)

(ii) Magnetic transport (movement of vortices under flux
flow)

(iii) Thermal transport (propagation of lattice excitations),
and even against fluid transport, if any is involved

Electrical resistance calculations to items (i) and (iii) are
straightforward; a very large number of experimental data
exists. The proper problem concerns item (ii) in case it is not
a homogeneous solid but a micro-porous superconductor the
flux flow resistivity of which has to be determined.

In the finite element calculations, as described in the text,
this problem is tentatively circumvented by calculation of
an effective resistivity, ρeff, by application of a cell model.
Weak links between grains and domains built up from crys-
tallites and grains are electrically conducting or insulating,
which means they can be composed of superconductor and
of normal conductor components or of contaminations.

Because of the small coherence length, weak link geom-
etry in high temperature superconductors ranges from
Josephson junctions with nanoscopic dimensions to solid
bridges of finite, but tiny volume; all of these form a net-
work of resistances to current flow and most of them are
related to materials manufacture. Different crystalline and
amorphous structures, variations between low to large angle
tilt grain boundaries, twist boundaries and different textures,
may contribute to electrical resistances within grains and
contacts between grains; among these, low-angle tilt grain

boundaries may be considered as (relatively) “strong” links
(essentially, these are the superconductor grains). Results
for critical current density reported in [36] may be the
consequence of “current sharing”, here not between super-
conductor grains and matrix material, but between said
strong links and current paths via tiny spatial or interfacial
or contact weak links.

Besides spatial (contact) inhomogeneity of weak links,
there are also variations of material composition, like in
grains. Variations of materials properties in grains comprise
mixtures of residual 2212 and 2223 phases of the BSCCO
family (the 2223 phase emanates during solid-state reac-
tion from the 2212 phase). This means relative contributions
from different phases depend on temperature, length of sin-
tering steps and their repetitions, and on phase stabilising
measures like Pb doping to achieve high stability of the 2223
phase (and to reduce synthesis temperature). There is also
strong anisotropy of flux flow not only in grains but also in
grain boundaries [39], much larger than the anisotropy of
resistance to standard current transport.

More variations of grain materials properties result from
different oxygen contents, different additions like Sr, as well
as from presence of the BSCCO 2201 phase. The 2223
phase is surrounded by a manifold of undesired Bi-, Pb- and
Cu-containing phases; their relative contribution by volume
is about 10% [40]. It is hardly possible to obtain a one-phase
2223 in PIT industrial conductor manufacture. But under the
superconducting secondary phases, the 2212 is dominating,
at low enough temperature.

Bi-containing phases other than BSCCO 2223, like 2201,
2212 and 2234, have TCrit = 13, 94 and 104 K, respec-
tively. Since it is difficult to synthesise the 2234 phase,
it will hardly appear, neither as a grain nor as a possible
weak link component, which means, at T ≥ 77 K, proba-
bly the only competitor to 2223 precipitation in grain and
weak link materials is the phase 2212. But at given work-
ing core temperature, T > 94 K, still below the TCrit =
108 K of the 2223 phase, the TCrit of the 2212 phase is
exceeded, and it will enter into its normal conducting state.
Contributions from this phase by flux flow to resistivity
ρFF accordingly disappear (the same considerations apply to
corresponding critical current density and critical magnetic
fields). This applies to all non-superconductor components
of the weak links if their critical temperature is below the
TCrit of the BSCCO 2223 phase. Their contributions to flux
flow resistivity are zero at all temperatures.

However, all materials other than BSCCO 2223 may con-
tribute to Ohmic resistance between grains and domains
and corresponding losses in the bridges, at all temperatures.
These materials bridges accordingly have to be consid-
ered separately in the finite element calculations. A rough
estimate assumes that at T > 94 K, normal conducting con-
tributions by the 2212 phase (and from foreign constituents)
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to the resistivity of weak links, all independent of magnetic
field, are in the order of 1 to 10 %, at the most, in good
quality 1G conductors.

Possible contributions to the (proper) flux flow resistiv-
ity, ρFF, from phases other than 2223 (because of their lower
TCrit) thus depend on working temperature,not only on their
volume fractions. In principal, (3b) has to be considered sep-
arately for each superconductor component that grains and
weak links (if they contain superconductor phases) might
consist of: the higher the working temperature, the less the
contribution to ρeff from phases other than 2223.

Flux flow resistivity, ρFF, not the normal resistivity, ρNC,
of the same grain or weak link material, in the present sim-
ulations (98 ≤ T ≤ 108 K) accordingly can be expected as
being solely determined by the BSCCO 2223 phase.

Voids arise during manufacture and handling, like pores
and longitudinal or transversal cracks (compare, for exam-
ple, Fig. 5.30 in [40]). All these can be taken into account
in the resistivity, ρeff, though in rough approximations only.
For this purpose, the resistivity of the field-independent part
of the solid material (contaminations) is increased in calcu-
lation of ρeff by at the most 5 or 10 % of grains, domains
and weak links, respectively.

Accordingly, like in grains, inhomogeneity of weak link
properties probably resembles the same broad spectrum of
material composition. But structural and physical/chemical
properties of weak link materials are not identical with,
and may not even be close to, properties of the proper
superconductor solids.

For step 1 (compare text), the conductivity kShell has to
be inserted into (3b). We roughly have assumed kShell ≈
1/100 kexp. The factor 1/100 results from measurements
[41] of the anisotropy of thermal conductivity in c-axis vs.
ab-plane directions. Measurements were performed using
the 3ω method on the bare superconductor core, after
removal of the Ag-jacket, of a BSCCO/Ag PIT conductor
prepared by ABB Corporate Research. Principal porosity
was 	Solid = 0.11. The 3ω method is explained in [41],
and the measured anisotropy, r(T ), is shown in Fig. 8.
In an approximation, we assume that the ratio of electri-
cal conductivity between c-axis and ab-plane is about the
same as the r(T ) of thermal conductivity. The conductivity
of the weak link materials with porosity 	Weaklink then is
estimated as kShell = (kexp/r)/(	Weaklink/	Solid).

Step 4 assigns another porosity to domains and grains to
simulate separation of field dependency of the weak link
components again by application of the Russell cell model.
We applied 	4 = 	Split = 0.75 and 10−4, for domain and
grain weak links, respectively. The field-dependent part of
the grain weak links to resistivity thus is rather close to the
total value that results from step 3 while only 1/4 of the total
weak link resistivity from domain weak links is assumed to
depend on magnetic field. The latter estimate is uncertain
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Fig. 8 Measured anisotropy ratio, r(T ) = λab(T )/λc(T ), of thermal
conductivity, λ(T ), of the BSCCO 2223 PIT bare core (after removal
of the Ag-jacket) in ab-plane vs. c-axis direction. The conductor was
provided by ABB Corporate Research, Heidelberg (Germany). Results
are reported in [41]; the applied 3ω method is explained in [42]

but at least qualitatively reflects the poor concentration of
BSCCO 2223 phase in domain weak link material.

Appendix A2: Weak Links and Solid Point
Contacts in Particle Beds

The contact radius, a, between two crossed cylinders, each
of radius, r , according to [27] reads as follows:

a = Cr[(1 − μ2)p/Y (1 −	)2]1/3 (4)

with C = 1.55 a constant. Equation 4 is applicable to elastic
deformations; below their fracture load, elastic deformation
applies to most ceramics. Because of their platelet geom-
etry, (4) is a better approximation to the contact radius
between grains and domains, touching one superimposed
upon the other in plane-parallel or transversally, than the
contact radius of two contacting spheres.

Young’s modulus for BSCCO 2223 prepared in the PIT
process is in the order of 100 GPa [42], as estimated by
the authors, and the real intrinsic modulus may be higher.
In the present calculations, Y ≈ 240 GPa and μ ≈ 0.2
are used; both values are characteristic for hard ceramics of
very small porosity (compare Fig. 2.9 in [32]). The impact
of the Ag-jacket on size of the contact radii, though is
inner surface is indented and interleaved with the ceramic
components, is neglected since its modulus of elasticity is
much smaller, below 10 GPa (the stress vs. strain curve of
the filaments thus is expected to depend only on the mod-
ulus of the ceramic superconductor). Pressure load, p, in
y-direction, applied during manufacturing is in the order of
108 Pa if a critical current density larger than 108 A/m2 shall
be achieved with PIT ([41], Fig. 12 in Sect. A). But in x- and
z-directions, an effective pressure load applies that is expe-
rienced by the superconductor material; it is much smaller,
probably by at least two orders of magnitude.
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Under these conditions, contact radii, a, of weak links
in z-direction, in core and shell cross sections of Fig. 6a,
between either domains or grains, ranges from 2.2 to 6.1μm
and from 13 to 288 nm, respectively. This procedure can be
applied to BSCCO 2223 only if the bed of superconductor
platelets is highly densified, under strong pressure load in y-
directions during manufacture, yielding ab-planes oriented
parallel to the x, z-plane.

These estimates urgently need experimental verification
with superconductor particles. A statistically contact model
formulated to PIT conductors, like the cell model described
in [43], might be helpful for development steps to obtain the
desired flux flow resistivity.
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