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Abstract This paper is focused on simulations of how a
superconductor reacts to extreme, suddenly changing opera-
tion conditions imposed by strong over-currents. An attempt
is made to shed light on the physics of current transport
behind, as far as this can be achieved with numerical simula-
tions. For this purpose, temperature and current distribution
in multi-filamentary high-temperature superconductors is
investigated in a finite element analysis with high spatial
and time resolution. An extra subsection is devoted to the
involved heat transfer problem. As a result, resistive (Ohmic
and flux flow) and zero loss states would co-exist in paral-
lel if over-current cannot be compensated, for example, by
switching it to a shunt. Anisotropic thermal diffusivity of
high-temperature superconductors, in particular of BSCCO,
would obstruct thermalisation of losses, and compensat-
ing of field and current in-homogeneities would become
impossible within acceptable periods of time.

Keywords Superconductor · Finite element analysis ·
Local conductor temperature · Random variables ·
Current distribution · Conductor stability · Heat transfer ·
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1 Survey

When investigating current propagation in superconductors,
a standard assumption is to consider temperature and current
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distribution in conductor cross sections as homogeneous,
compare traditional volumes on theory of superconductivity
like [1–3] or more recent contributions on applied super-
conductivity, for example [4–6]. While all these volumes
consider temperature dependence of superconductor mate-
rials properties, they at the same time assume homogeneity
of temperature and current distribution. The number of
theoretical and experimental reports that apply the same
simplifying assumption is almost unlimited. The question
is whether this is fulfilled, in reality, in low- and high-
temperature superconductors and in any conductor geome-
try.

A numerical (finite element) analysis of temperature
fields, current distribution and stability against quench
recently was presented in [7] for a 1G high-temperature
superconductor. Results demonstrated that, under large cur-
rent load, conductor temperature and transport current dis-
tribution may become highly inhomogeneous, with tem-
perature variations in the conductor cross sections in the
order of dozens of Kelvin and with corresponding impacts
on conductor stability. While [8] investigated a thin film
(monolithic) conductor, the present paper addresses multi-
filamentary geometry and takes in account also the strong
anisotropic materials properties of the high-temperature
superconductor BSCCO (2223).

In a first numerical approximation, the finite element
(FE) analysis presented in [7] was limited to a quasi-
continuum, cylindrical conductor model. As a second com-
promise, the analysis had to apply a model conductor suit-
able for manufacture of 1G filaments but with essentially
the materials properties of YBaCuO. Thermal diffusivity,
electrical resistance and critical current density of BSCCO,
though highly desirable, were not available over the wide
range of temperature necessary to cover the whole field
between zero resistance and flux flow and Ohmic resistive
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states. Meanwhile, both problems have partly been over-
come, and the present paper introduces FE simulations with
strongly improved spatial resolution and applies proper,
anisotropic materials properties of BSCCO (2223).

Figure 1a shows cross section of the “first generation”
(1G) BSCCO Long Island conductor [9], the operation of
which in the following shall be simulated under nominal
and, as a disturbance, under large over-current. Figure 1b
presents the corresponding FE scheme (the figure shows
only the left half of the total, multi-filamentary conductor
cross section).

The simulations are applied to a bundle of identical
multi-filamentary conductors all switched in parallel. Like
in [7], the bundle is integrated into an electrical circuit that
allows comparison with a similar system described in [10]
with same root mean square phase voltage and same con-
ductor cross section. We could instead take any large- or
small-scale electrical grid, like in a laboratory experiment,
with an appropriately dimensioned superconducting compo-
nent; the point is the physics of transport processes behind.
The paper is focused on simulation of extreme operation
conditions; an extra subsection had to be devoted, under
these conditions, to the involved, transient heat transfer
problem.

2 Description of the Numerical Calculation Steps

The numerical concept is as before (mapped meshing, same
thermal boundary conditions and FE solution scheme); it is
applied to a single 1G conductor, with the exception that
we in the present paper provisionally neglect dependency

Fig. 1 a, b Cross section (a, above) of the 1G BSCCO 2223/Ag Long
Island Cable superconductor [9]) and finite element model (b, below)
of the left half of the conductor cross section showing superconduc-
tor filaments (black) and matrix material (Ag, light grey). The thick,
dashed dotted line denotes axis of symmetry. A number N = 91
identical filaments is integrated in the total cross section of one
multi-filamentary conductor, and a number M = 196 of identical con-
ductors (switched in parallel) is bundled to a cable, with 10−4 m2 total
superconductor cross section. Thin white lines indicate finite element
mesh (NEl = 4032 in this case, compare text). Dimensions of fila-
ments and of conductor in x (horizontal) and y (vertical) directions
are x = 280 μm (filament) and 3.84 mm (total conductor width)
and y = 20 μm (filament) and 264 μm (total conductor thickness),
respectively

Fig. 2 Schematic view of an electrical grid for numerically test-
ing how a superconductor multi-filamentary wire reacts to a sudden
current load increase. The circuit in this figure either refers to a small-
scale laboratory experiment, or in large scale, to a medium voltage
distribution system. The normal conductor of resistance RNC serves as
an auxiliary variable; it is assumed its sudden decrease, within 2.5 ms
to finally 1/20 of its original magnitude, initiates increase of transport
current to a multiple of its nominal value (a fault). In the present calcu-
lations, voltage, conductor cross sections and impedance are the same
as in [10]. The figure is taken from [7]

of materials parameters on z-positions (Fig. 1b; the con-
ductor and its performance shall be homogeneous over its
total length); otherwise, computation time would increase
too strongly. It is assumed the conductor is located near the
periphery (close to the coolant) of a bundle of 196 iden-
tical conductors. Each conductor incorporates 91 BSCCO
filaments (black rectangles in Fig. 1b). The matrix material
again is Ag. With the dimensions indicated in the caption to
Fig. 1b, the ratio of superconductor to total 1G conductor
cross section amounts to about 0.45.

2.1 Data Input

Electrical resistances of the superconductor filaments cover
Ohmic, inductive, flux flow, hysteresis and, within the Ag
matrix material, coupling resistances. All parameters of the
conductor applied in the simulations take into account cross-
wise physical dependencies, like TCrit vs. BCrit1,2 or BCrit1,2

vs. T , or thermal diffusivity vs. temperature, T .
Modelling of Ohmic resistive states is straight-forward.

The specific Ohmic resistance of BSCCO 2223 material
is shown in Fig. 10 in the Appendix. Critical temperature,
TCrit, of solid BSCCO (2223) is 108 K (mean value), at
very small magnetic field. Modelling of flux flow resistivity
to axial current is again made according to [11, 12]. Weak
link, grain boundary structure of a polycrystalline conductor
constitutes potential obstacles to current flow in z-direction
that is laid upon its solid constituents. But the obstacles
not only concern electrical transport (electron charges).Also
magnetic (movement of vortices, well known as flux flow)
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Fig. 3 a Comparison of the results for total transport current obtained
in [7], Fig. 8 (solid blue diamonds and solid black triangles), and in the
present paper (open symbols). Results are given for different conductor
lengths, LSC, and different normal resistances RNC = 0.18 and 1.8 �

indicated by the lengths LNC of 103 and 104 m, respectively, and using
the specific resistance ρCu = 1.8 10−8 � m of Cu and a cross section,
ANC = 10−4 m2 (compare the circuit in Fig. 2). As explained in the
text, the results from [7] were calculated using a cylindrical geome-
try and a model conductor while the data obtained in the present paper
result from the conductor geometry shown in Fig. 1b but with same
(model) materials properties. Accordingly, the comparison, to be made
separately in blue and black symbols, is between two different finite

element models, not between different conductor materials. b Distri-
bution of transport current (nominal plus fault) in planes z = const
in the cylindrical filament modelled in [7]. Solid diamonds, triangles
and circles correspond to t = 3, 6 and 9 ms, respectively, after start
of the simulations. Results are plotted in dependence of radial posi-
tion (the vertical black line at 300 μ m separates superconductor, left
part of the figure, from matrix material). Axial positions (z-direction
in Fig. 1b) of the planes are identified by different colours: blue, red,
dark green, light green, dark yellow and lilac symbols correspond to
0.1, 0.7, 1.3, 1.9, 2.5 and 3.1 mm distance from the lower end of the
conductor, respectively

and thermal transport is subject to obstacles induced by a
grain boundary structure.

Resistance to magnetic transport has to be considered
separately in grains and in grain boundaries. A schematic,
rather optimistic, c-axis orientation of plate-like grains that
constitute the filaments, and a circumferential magnetic
field, under axial (z-) direction of current, is assumed. Flux

flow, under this condition, would occur in horizontal (x-)
directions only.

The low-temperature, empirical relation, ρFF = ρNC
B/BCrit,2, between specific resistivity of flux flow, ρFF,
and normal conduction, ρNC, should be applicable to also
high-temperature superconductors, as explained in [11].
However, this relation is valid for superconductor solids,
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Fig. 4 a–d Temperature field
(nodal temperatures) in the cross
section of the BSCCO (2223)
multi-filamentary conductor
observed at the beginning
(t = 6.5 ms, top) and at t = 7.9,
8.5 and 8.6 ms (below), with
1.4, 2.0 and 2.1 ms after start of
the disturbance, respectively.
Temperatures are identified by
the corresponding horizontal
bars. SymbolsMX and MN
indicate positions in the cross
section where minimum and
maximum temperature is
observed. The number of
elements is NEl = 4032. e, f
Temperature field calculated
with NEl = 1440 (above) and
12384 (below) elements; data
are plotted at 1.7 ms after start
of the disturbance. The figure
serves for comparison of results
when the number of elements,
NEl, is strongly different
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a

b

Fig. 5 a, b 3D-plot of temperature field in the cross section of the BSCCO (2223) multi-filamentary conductor observed at t = 8.3 (top) and
8.6 ms (below), 1.8 and 2.1 ms after start of the disturbance, respectively. The number of elements is NEl = 4032

not to a network of solid particles surrounded by weak
link, possibly porous materials shells. The overall struc-
ture of this relation shall be maintained but modifi-

cations like in [7] are applied to this expression to
account for weak-link behaviour. Details of the method
will be reported elsewhere. The result, axial resistivity,
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a

b

Fig. 6 a, b 3D-plot of transport current in the cross section of the
BSCCO (2223) multi-filamentary conductor observed at t = 8.3 (top)
and 8.6 ms (below), 1.8 and 2.1 ms after start of the disturbance,

respectively. The number of elements is NEl = 4032. Comparison
with Fig. 5a, b confirms that transport current, as is to be expected,
avoids flowing through elements of high temperature

ρFF, to current transport, under horizontal flux flow in
the porous, poly-crystalline, roughly layered, material, is

shown in Fig. 11 (see Appendix). The resistivity ρFF is
larger than ρNC, contrary to what would be expected from
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Fig. 7 a Temperature difference (nodal values), �T , at the
solid/liquid interface, at increasing time, vs. nodal position (x-
coordinate) on the conductor surface. Location of the peak values of
�T reflects position of the filaments (hot spots) in the conductor.
Increase of the�T is due to increasing thermal load. Note that location
of the temperature maxima depends on time. The thick Ag-“block”,
with smaller volume density of heat sources in the interior of the con-
ductor, is on the left (compare Fig. 1b). The number of elements is
NEl = 12384. b Heat flux, dq/dt, emitted in y-direction from Ag-
surface elements to the coolant, at increasing time, vs. nodal position
(x-coordinate) on the conductor surface. Like in a, location of peak
heat flux values reflects position of the filaments in the conductor. Data
are given at t = 6.5 (start of the disturbance) and 7.5 ms (red and

blue diamonds, respectively). In both cases, heat transfer is by convec-
tion only, while at t > 8 ms, the calculated heat flux would increase
too strongly (beyond 106 W/m2) to allow application of the stationary
heat transfer data from [15], and any adiabatic assumption would be
erroneous. The number of elements is NEl = 12384. c Dependence
of temperature difference, �T (schematic), at the heated solid/coolant
interface, on time and on thermal load (cases a and b, given as param-
eter). Load (b) exceeds load (a), both of constant strength (W/m2).
Deviation of curve (b) from the �T ∼ t1/2-relation at the time
tb indicates onset of boiling (strictly speaking: onset of heat trans-
fer mechanisms other than conduction or convection as long as these
would follow a linear dq/dt ∼ �T -law, at all times)
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Fig. 8 Stability functions calculated for a BSCCO (2223) multi-
filamentary conductor (and, for comparison, using YBaCuO materials
properties). Both calculations were performed in the same 1G conduc-
tor geometry (same finite element scheme; manufacture of a 1G con-
ductor using YBaCuO is impractical, however, and the results obtained
for YBaCuO simply reflect the lower TCrit). All results (BSCCO) are
calculated with identical conductor length, LSC = 5000 m, and with a

normal resistance, RNC = 1.8 � (compare the circuit in Fig. 2) using
the specific resistance ρCu = 1.8 10−8 � m of Cu, a cross section,
ANC = 10−4 m2, and length LNC = 104 m. Results indicated with
BSCCO 1, 4 and 12 k have been obtained with increasing number of
elements, NEl = 1440, 4032 and 12384 (lilac, dark blue and light red
diamonds, respectively). For YBaCuO, LNC = 103 m, NEl = 4032

the standard assumption, but it accounts for transport of
current under flux flow conditions in a series of obsta-
cles constituted by both solids and weak links. The com-
paratively large ρFF not necessarily indicates strong flux
pinning.

Thermal diffusivity, DTh, of the BSCCO solid super-
conductor material is between about 1.2 10−5 and
5.9 10−6 m2/s in the ab-conductor plane, at temperatures
of 77 and 120 K. Thermal conductivity and specific heat
are given in Figs. 12 and 13, respectively; see Appendix.
This is much smaller than the magnetic/electrical diffusiv-
ity, DEl = ρNC/μ0 ≈ 10 m2/s, of solid superconductor
material under normal (Ohmic) conduction. If, for example,
T = 110 K, the characteristic times, τ , at this temper-
ature are τEl = 3.9 10−12 and τTh = 5.5 10−6 s,
respectively, in the grains. Current redistribution thus
occurs quasi-instantaneously, while diffusive thermalisa-
tion of losses from disturbances that propagate through the
poly-crystalline network takes much longer. This inevitably
leads to at least transient inhomogeneous conductor tem-
perature distributions, except perhaps in elements located
closely to the solid/liquid interface to the coolant or to
another heat sink provided coupling to the heat sinks is
strong. The question is how long it would take a conduc-
tor, with anisotropic thermal transport properties, to smooth
out such temperature variations under continuous high load
(this is not simply a straight-ahead cool-down of a conduc-
tor with initially increased, but homogeneous temperature
distribution).

Like in our previous reports [7, 13, 14], we use data
for heat transfer from metallic surfaces to boiling LN2

[15] including its dependency on temperature and circum-
ferential position If there were isolated, oscillating single
heat sources within the filament volumes, oscillations of
T (x, y, t) at the solid/liquid interface again would be small.
But heat sources in the present case are distributed in the
conductor (see Fig. 4a–f), and as soon as there is cur-
rent sharing from superconductor to matrix material, heat
sources will be located not only in the interior of the conduc-
tor but in close neighbourhood of the solid/liquid interface,
at distances only a few micrometres away.

The same heat transfer data were applied in [8] to ceramic
superconductor and polymer surfaces. Though the obtained
successful overall comparison with experiment is remark-
able, this assumption yet might be questionable. Original
data [15], Fig. 104, were obtained on optically smooth,
metallic surfaces and under stationary (not periodic) bound-
ary conditions.

2.2 Calculation Scheme

We will again apply random critical superconductor param-
eters (critical temperature, current density, magnetic field,
weak link behaviour), as a method to account for short-
ages in materials development, manufacture and handling of
the sensitive 1G conductors (for example, micro-pores and
cracks might come up during winding). The Meissner effect
will be checked separately in each of the finite elements
(several thousands) of the numerical calculation scheme.

As previously, a divisor, NCut off, applied to total AC
resistance of the electrical circuit, beginning at t = 6.5 ms
after start of the simulation with NCut off = 1, gradually
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Fig. 9 Distribution of specific flux flow resistances, ρFF, in the BSCCO (2223) conductor cross section; results are observed at t = 8.3 and
8.6 ms (1.8 and 2.1 ms after start of the disturbance), respectively. The number of elements is NEl = 4032

increases from its initial value to the final NCut off = 20, at
t = 9 ms, and then is kept constant. The variation ofNCut off

accordingly simulates a fault.

The present calculations can be considered a start-
ing point for simulation of current propagation in gen-
eral. We wish to demonstrate the existence of strongly
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in-homogeneous temperature fields in an 1G multi-
filamentary superconductor and the consequences for cur-
rent transport. Design calculations of current limiters or of
other technical devices are not the aim of this paper.

2.3 Solution Scheme

The solution scheme applies the finite element programme
Ansys 16. The FE programme is embedded into an overall,
four-level calculation scheme explained in [7], Section 2.2.

Accuracy of the FE method to a large extent belongs on
adequate meshing. The total number NEl of elements in the
half cross section (Fig. 1b) was between 1440 and 12384.
Though theNEl = 1440 mesh yields overall agreement with
integral results like total transport current, distribution of hot
spots, stability functions that were obtained with larger NEl,
its resolution was too coarse for a detailed study of tem-
perature and current distributions. The number NEl = 4032
probably is the smallest that can be tolerated for transient
simulations in this complicated conductor geometry (and
this, too, is an economical measure).

Temperature fields that result from three differentNEl are
shown below (compare Figs. 4d vs. e, f). Overall agreement
is seen concerning position of hot spots, but the larger the
number NEl (the finer the spatial resolution), the more will
peak temperature dominate over temperature of neighbou-
ring elements. Yet almost no differences between the three
NEl are observed in the calculated stability functions (Fig. 8).

Computation time became increasingly impractical on a
standard PC (4-core processor) when using NEl >104. Total
simulated period then had to be limited to about t ≤ 12.5 ms.
It took about 26 h to simulate this period (this is in the same
order or magnitude as reported in [8] for investigation of a
thin film superconductor with less complicated geometry).

The total period (one swing of 20 ms) has been split into
200 equal length periods, �t = 10−4 s. To obtain conver-
gence, the procedure within each �t had to be split into up
to N = 10 sub-steps of appropriate, variable length. Inte-
gration time δt within each sub-step �t /N ≥ 10−5 s is
between 10−14 and 10−7 s; convergence shall be achieved
at the end of each sub-step and, finally, at the end of each
�T period. This procedure reflects the strong non-linearity
of almost all involved parameters and transport processes. It
yields a series of converged, quasi-stationary solutions.

Within the period t ≤ 12.5 ms (up to 6 ms after start of
the disturbance), no divergences (T < 77 K, or run-away
to extremely high temperature) were observed that could
result from too large �t /N and δt , or from a mismatch
between δt and size of element volumes. After repeated (re-)
distributions of total transport current to the finite elements

(each of them considered, in a geometrical sense, a cur-
rent carrying “channel” in z-direction), transport current
density taken within each element finally converges to crit-
ical current density, the standard requirement to be fulfilled
with operation of superconductors, with any over-current
switched to the Ag-matrix.

In-homogeneity of temperature and thus of current dis-
tribution becomes obvious already for times t = 2 or
3 ms after start of the disturbance; see below, Section 3. If
over-current is not eliminated, for example, by shifting it
to a shunt, hot spots cannot be compensated by only ther-
mal capacity of conductor and matrix material or by heat
transfer to the coolant. The questions then are, from the
solely physics aspects, which type of resistances really is
obtained in the volume, whether a shunt or equivalent exper-
imental measures inevitably would be necessary, and which
type of resistance then could be responsible for switching
an over-current to the shunt. In particular, it is not clear
whether current limitation by solely flux flow resistance
could successfully be realised at all.

2.4 Conductor Geometry, Critical and Depairing
Current Density

Total conductor length is 5000 m; this assumption from [7]
tends to current limitation by flux flow resistance. A mean
value of JCrit = 3.75 108 A/m2 at T = 77 K and at mag-
netic field B = 100 mT is applied again (this is referenced
to as the “higher” JCrit in [7]). Depairing current density, JD,
is shown in Fig. 14 in the Appendix. At temperature close to
critical temperature, we have the Ginzburg/Landau relation

JD = (2/3)(2/3)0.5BCrit,tth/(μ0λL) (1)

with BCrit,th the thermodynamic critical magnetic field (its
flux density), μ0 the electromagnetic vacuum constant and
λL the field penetration depth; the derivation of JD is
explained, e.g. in [16]. Strictly speaking, Eq. (1) is valid
for type I superconductors only. If we tentatively insert
the lower critical field, BCrit,1, of a type II superconduc-
tor like BSCCO (instead of BCrit,th, to obtain an estimate
of a lower limit of JD), we even then have very large JD
(the results shown in Fig. 14). These are much larger than
the JCrit that, as usual, are limited by flux flow. Yet trans-
port current density, JTransp, at temperature close to TCrit
might exceed JD (because of its temperature dependence)
and create quasi-particle (normal resistive) states.

If JTransp exceeds JD, electron pairs will decay, and a time
τR is needed to establish new equilibrium charge distribu-
tions in the superconductor; this time has to be estimated in
order not to collide with integration times, δt , of Fourier’s
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equation, compare [17]. This period covers total redistribu-
tion of electron pairs to ground state, at a given temperature,
of the superconductor; in an FE scheme, it would request
also exchange of charge between neighbouring elements.
Estimates yield τR <10−6 s [17] except for temperatures
very close to critical temperature. Integration times, δt , have
to be chosen safely larger than this value. A value τTh < τR
would be meaningless.

Accordingly, in order to determine transient resistive
states of all kinds and in all constituents of the conductor,
the following relations have to be checked, separately in
each superconductor element of the FE scheme, and with
appropriately chosen time integration steps,

T ≤TCrit(B), with T = T (x, y, t) and B = B(x, y, t) and

(2a)

JTransp ≤ JCrit(T , B), with JTransp = JTransp(x, y, t),

T = T (x, y, t) and B = B(x, y, t) and (2b)

JTransp ≤ JD(T , B). (2c)

and the total resistance of superconductor elements be
compared with the total resistance of the Ag-matrix.

In summary of Section 2, the new FE scheme allows
to visibly (and more clearly than before) correlate spatial
distribution of the resistances (flux flow and Ohmic vs.
zero loss resistance states) and the resulting distribution of
transport and over-currents.

3 Results

3.1 Comparison Between Results from Different Finite
Element Schemes

A first calculation serves for comparison of total transport
current shown in the previous ([7], Fig. 8) with the present
paper (Fig. 3). Data obtained in [7] are indicated by solid
blue diamonds and solid black triangles; those calculated in
the present paper are given by corresponding open symbols.
Results are shown for two different conductor lengths and
two different magnitudes of normal conductor resistance
(the normal conductor component in Fig. 2).

As mentioned, the results obtained in [7] were calculated
using a cylindrical geometry of a quasi-continuous distri-
bution of “threads” (a model conductor). Data obtained in
the present paper are calculated using the conductor geom-
etry shown in Fig. 1b. Comparison in Fig. 3a accordingly is

made between two different finite element models (quasi-
continuum vs. multi-filamentary) but with same (model
conductor) materials properties. Overall agreement shows
that the previously modelled conductor was an acceptable
approximation, at least for calculation of integral properties
like conductor stability functions.

It is tempting to assume that current transport not only
in monolithic (like thin film) but also in multi-filamentary,
poly-crystalline superconductors could be analysed in terms
of percolation theory. A first result supports this expecta-
tion: Fig. 3b shows current re-distribution in the conductor
cross section in different planes z = const in the con-
ductor x, y-cross section; planes are identified by different
colours. Results have been obtained with the continuum
model applied in [7]. Data are shown at t = 3, 6 and 9 ms
(diamonds, triangles and spheres, respectively).

Comparison at t = 3 and 9 ms (or between t = 6
and 9 ms) shows that different symbols (diamonds and
circles, or triangles and circles, respectively) but of same
colour do not coincide, at any radial position. This indi-
cates transport current is continuously re-distributed, from
z = const planes to the next planes (including current shar-
ing by its transfer to the matrix) as if current percolates
through the superconductor. If this is indeed a still to be
verified, appropriate approach, it might help to more specif-
ically analyse conductor stability against quench (only some
comments can be made presently, to stimulate discussion of
this concept; see Section 3.4).

3.2 Temperature Fields

Ttemperature fields and stability functions are presented in
the following using solely the new (discrete) FE geome-
try (Fig. 1b) and appropriate BSCCO 2223 materials and
transport properties.

In-homogeneity of temperature, even in the tiny fil-
aments, arises already before conductor temperature
exceeds critical temperature (Fig. 4a–c). In-homogeneity is
enhanced, and hot spots become more pronounced, at still
higher temperatures (Fig. 4d).

Relative temperature maxima in Fig. 4a–d are located at
large co-ordinates, y, and this must be reflected by the dis-
tribution of transport currents since critical current density,
JCrit(x, y, t), that limits transport current density in zero
loss situations, depends on temperature. Figures 5a, b and
6a, b confirm this expectation (and this conclusion can be
made already by inspection of Fig. 3b).

In-homogeneity of temperature distribution results from
an imbalance between generation of local losses and
redistribution (thermalisation) of these losses within the
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conductor and to the coolant. Thermal diffusivity parallel to
c-axis, toward the solid/coolant interface, in BSSCO (2223)
is about a factor 100 smaller than in x-direction (τTh then is
in the order of 0.6 ms). All superconductor temperatures are
above Tcrit already at 9 ms. Even if losses would be set to
zero for all t ≥ 10 ms, recovery to below TCrit will not be
achieved before several hundred milliseconds.

Figure 7a shows temperature difference
�T (x, y = 260 μm) between solid/liquid interface
and (constant) coolant temperature in dependence of
the x-coordinate (the axis of symmetry is located at
x = 1920 μm). Because of the comparatively large Ag-
“block” at small x (less density of heat sources), conductor
temperature and �T naturally become considerably smaller
than at positions close to the axis. All these results rely on
applicability of the stationary heat transfer data reported in
[15]. This needs more discussion.

3.3 Heat Transfer

Assume in the following that parallel to and through the
conductor bundle, coolant flows in narrow channels and
directly wets the conductor on its upper surface (Fig. 1b).
Formation of single, isolated nitrogen vapour bubbles on
a flat surface, in a variety of liquids, takes about 5 to
10 ms after onset of a disturbance like a heat pulse; the
period depends on strength of the disturbance and on surface
roughness (difference between flat and curves surfaces will
be neglected in the following). Fully developed, stationary
pool boiling is not accomplished before about 200 ms; see
Fig. 7 in [21] (measurements taken with a directly wetted
metallic surface; neither orientation of the vertical channel
nor its width of 4 mm should be too serious a handicap when
comparing with the present case). The “jump”, from ini-
tial conduction to pool and film boiling, would take at least
this period of time. The same argument, at earlier periods,
applies to onset of convection (no phase-change).

The following comment concerns the frequently made
assumption of adiabatic conditions and modelling of sta-
tionary heat transfer. If there is a periodic heat source
in the interior of the conductor, we can imagine three
situations:

(i) If its position is far from conductor surface, and if the
frequency is large enough, thermal waves emitted from the
source will strongly be damped, and there will be hardly
any oscillation of surface temperature. Stationary heat trans-
fer and approximately adiabatic conditions thus are justified
although conductor temperature will steadily increase under
heat flow continuously emitted by the source (this increase,
at least as in the present situation, is small).

The situation is different if (ii) position of the oscillating
source is close to conductor surface, which is the case when
current is directed to the outer Ag-matrix elements (current
sharing between filaments and matrix). This is demonstrated
in Fig. 7a. With increasing load (at increasing time), sur-
face (nodal) temperature becomes variable with position
(x-coordinate). These variations, at constant time, reflect
position of filaments in the interior of the conductor (the
centrally located hot spots in the filaments) but location of
the maxima of �T also depends on time (this is not to be
confused with a phase difference). Obviously, assumption
of stationary heat transfer would be erroneous since local
variation of surface temperature is too strong, for example,
about 6 K at t = 8.71 ms. Curves �T like in Fig. 7a of
course could be fabricated also for larger times, but this col-
lides with the observation that already at t ≤ 8 ms, thermal
losses increase very strongly, due to the strong non-linearity
of all parameters and processes involved, so that application
of the stationary heat transfer data from [15] would become
very questionable.

One could argue that application of an insulating layer
that covers the conductor surface would justify applica-
tion of stationary heat transfer data as well as the adiabatic
approximation. Such an insulating layer is generated by
the liquid when it enters the film boiling regime. But this
will happen only if there is a large temperature differ-
ence between surface and coolant, in contradiction to the
adiabatic assumption.

Heat fluxes are shown in Fig. 7b. The values, at
these positions and at these times, are below 0.1 W/cm2,
heat transfer accordingly is still in the convection regime
and comparison with the data reported in [21] is mean-
ingful. The situation changes drastically when t >9 ms
is considered; heat fluxes then become in the order of
100 W/cm2. This is the situation (iii): under very large
load, onset of boiling heat transfer is realised the ear-
lier the higher the load (compare Fig. 7c for explanation).
The adiabatic assumption then is no longer valid, and it is
also highly questionable whether this situation still could
correctly be handled with the stationary heat transfer data
from [15].

An alternative is to reduce the load but then surface
temperature hardly increases (compare the lower curves in
Fig. 7a); the strong non-linearity of the transport problem is
obvious.

Investigation of extreme load cases thus should be per-
formed only when reliable, transient heat transfer data
will become available; this would also be helpful to avoid
convergence problems. Calculations under very large load
presently cannot be successful.
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In the present paper, with the Ag/coolant interface (and
not with non-conductor surfaces), and as long as load is
small (to yield heat flux at the solid/liquid interface of
below 0.6 W/cm2, compare [21] for this limit), a mismatch
is obvious between calculated (by the FE scheme) time to
arrive at convection, pool and film boiling, and time phys-
ically needed to trigger initial movement of the liquid and
to create bubbles and films (these are the data reported in
[21]; the concept is illustrated in Fig. 7c). Calculated time
is much smaller than physically needed time. This mis-
match can allow application of the heat transfer data from
[15], with thermal load below 0.6 W/cm2 on the solid/liquid
interface.

In summary of this subsection, there are in general no
uniform heat transfer conditions in transient experiments
over the entire interface, neither in time (stationary con-
ditions) nor with respect to surface position (adiabatic
assumption).

3.4 Stability functions

Stability functions provide an integral view of critical cur-
rent density distribution in a conductor and thus of its
ability to transport current without losses. Calculations of
the stability functions have been performed following the
explanations given in [7], Section 4. We emphasise that
again, the calculations have to be made with critical cur-
rent densities depending not only on local temperature
but also on local magnet flux density because JTransp >

JCrit, too, constitutes a disturbance (by generation of flux
flow losses; these alter local temperature and thus local
JCrit).

We apply as an approximation the standard relation

JCrit(T , B) = JCrit(T )/(B0 + B(t)) (3)

with local flux density,B(t), andB0 a constant. The stability
function reads

0 ≤ �(t) = 1 − ∫ JCrit[T (x, y, t), B(x, y, t)]dA/

∫ JCrit[T (x, y, t0), B(x, y, t0)]dA ≤ 1 (4a)

This is approximated by

0 ≤ �(t) = 1 − 	JCrit[T (x, y, t), B(x, y, t)]dA/

	JCrit[T (x, y, t0), B(x, y, t0)]dA ≤ 1 (4b)

with the summations taken over all superconductor elements
with their individual cross sections, dA.

The stability function assumes values 0 ≤ �(t) ≤ 1,
of which �(t) = 0 are the optimum and �(t) = 1 the
worst case: time t0 = 0 denotes start of the present sim-
ulation; at this time, all element temperatures are at their
original values, T (x, y, t0) = 77 K, at a given B(x, y, t0).
Critical current density, JCrit(x, y, t0), then is maximum,
and �(t0) = 0. The distribution of JCrit at t0 accordingly
is homogeneous, apart from statistical fluctuations caused
by the random JCrit0 (the materials property, compare [7],
Fig. 12). But homogeneity is quickly lost at times t > t0.

If on the other hand,�(t) = 1, zero loss current transport
is no longer possible, see below, Eq. (5).

Results for the stability function using BSCCO materials
properties are shown in Fig. 8. There are almost no differ-
ences between the results obtained with the larger or smaller
number of elements, NEl. For comparison, also results are
included that are obtained with the materials properties of
YBaCuO (123), under the same conductor geometry and
FE scheme (it is clear, from manufacture issues, that the
YBaCuO material is not very well suited for fabrication
of 1G conductors). In both cases, the stability functions at
times t >8 ms approach values close to 1. Maximum zero
loss transport current, Imax(t), with ASC the total conductor
cross section,

Imax(t) = JCrit[T (x, y, t0), B(x, y, t0)][1 − �(t)]ASC

(5)

thus becomes close to zero since many of the T (x, y, t)

within the filaments are close to or exceed TCrit(x, y, t),
compare the hot spots in Fig. 4a–d that in turn drive
conductor temperature to inhomogeneous distributions.
The onset of the sharp increase of �(t) reflects the
lower TCrit of the YBaCuO superconductor material
but predicts the in-homogeneity problem also for this
conductor.

In Fig. 4a–f, only tiny parts of their individual cross sec-
tions have become normal conducting (hot spots generated
at these positions). Current limitation, if any, in the conduc-
tor in Fig. 1b, at least until t ≤ 9 ms, accordingly would rely
on Ohmic resistance in only these small parts of the filament
cross sections while in the remaining parts zero resistance
or flux flow resistance would co-exist, side by side, with
the said Ohmic resistances. At later times, t ≤ 12.5 ms,
all element temperatures exceed the individual TCrit(x, y, t)

but in-homogeneity remains; note that these results include
already transfer of over-current to the matrix (current
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sharing). Transfer of over-current, for example, to a shunt,
may compensate this critical situation but the superconduc-
tor materials properties might already be damaged locally
before this can be realised. A mechanism (purely flux flow
or Ohmic resistance) that would trigger switching the over-
current to the shunt or to an equivalent experimental device
cannot uniquely be identified. The same applies to a situation
when no shunt would be incorporated into the circuit.

Spatial distribution of the specific resistances (zero, flux
flow and Ohmic) is illustrated in Fig. 9 (location of Ohmic
resistances, not shown in this figure, can easily be identi-
fied from Fig. 4a–f). Flux flow resistances exist in parallel
to Ohmic resistances. At least within these periods of time,
there is no clear distinction between Ohmic or flux flow
fault current limiting.

3.5 Correlation with Percolation Theory

Like a liquid through a sponge, current may percolate
through a monolithic or porous or multi-filamentary con-
ductor. Current paths are opened, under variation of mate-
rials properties or of operation conditions, as soon as a
percolation threshold is approached.

Transition to superconductivity could be correlated with
a percolation threshold that is based on regions of, for exam-
ple, different critical temperature, compare [22]. But it is
not clear that any percolation concept would be applicable
to also multi-filamentary conductors.

There will always be current flow, under zero or under
flux flow or Ohmic resistive conditions, through the con-
ductor cross section and also under current sharing with the
matrix. A threshold thus may reasonably be defined only
with respect to zero losses. This would be observed when
at least one path (channel) is open to current flow over the
whole conductor length, and if it incorporates only elements
in the Meissner state. Under current sharing with matrix ele-
ments, or if the over-current is fed to a shunt, there is no
zero loss current transport at all. In an attempt to describe
current transport as a percolation process, the analysis has
to be restricted to only the superconductor filaments in the
cross section; otherwise, definition of the threshold becomes
meaningless.

Under this restriction, the question is whether a correla-
tion might exist between stability functions and percolation
threshold: non-zero loss current transport is possible only
if the stability function �(t) <1. Percolation thresholds
then may be observed if �(t) is checked with different
(mean) values of critical current density, critical temperature
or magnetic fields. A threshold is identified when suddenly,
under such parameter variations, �(t) breaks down to val-
ues close to zero. But �(t) <1 does not indicate there will

be one and only one zero loss transport channel: Extended
domains composed of zero loss, coherent channels can exist
in the cross section, and this may be different in different
planes z = const. Also, �(t) < 1 does not guarantee there
will necessarily be any nonzero number of open, straight-
ahead channels coherently connected over total conductor
length. Note that Eq. (4a,b) contains only local values of
JCrit; no restriction is incorporated in this equation that
the elements might be inter-connected; elements with large
JCrit can be distributed almost arbitrarily in the whole con-
ductor volume without generation of such open channels.
Apparently, there is no clear correlation between stability
functions and standard percolation models.

This question will be investigated in more detail in
a subsequent paper; the analysis needs inclusion of a z-
dependence of material parameters, a challenging task in
view of the present numerical problems.

4 Conclusion

Under a transient load, analysis of current transport in a
multi-filamentary superconductor requires simulations with
high spatial and time resolution. Time integration has to
take into account at least three characteristic times that
concern electric/magnetic current and field propagation,
thermal transport and depairing (decay) and electron pair
re-combination and re-population processes of the energy
levels (times τEl, τTh, τR, respectively). Ohmic, flux flow
and zero resistance states may co-exist in the conductor if
transport and fault over-currents cannot be compensated (for
example, shifted to a shunt). With or without shunt or equiv-
alent experimental measures, a clear distinction, taken over
the total conductor volume, between purely Ohmic resis-
tance or flux flow resistance is not possible for periods
immediately following onset of a disturbance. Traditional
differentiation between, for example, flux flow or Ohmic
resistance type fault current limiters becomes highly ques-
tionable. Stability functions apparently are not correlated
with standard current percolation theory. An appropriate
percolation model could be helpful for stability analysis in
multi-filamentary conductors; this needs more discussion.
In transient experiments, there are in general no uniform
heat transfer conditions over the entire interface, neither in
time nor with respect to surface position; application of sta-
tionary heat transfer data and assuming adiabatic conditions
may be acceptable only under very limited thermal load.
The achieved results may become important to improve
understanding of current transport in general and in a vari-
ety of technical applications of superconductivity (cables,
magnets, current limiters).
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Fig. 10 Specific electrical Ohmic resistance to current transport in z-direction of solid BSCCO 2223 material (solid blue diamonds). Data are
from [18]. Solid light green diamonds indicate approximation to the experimental data
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Fig. 11 Specific flux flow resistance (solid green diamonds) to cur-
rent transport in z-direction under moving flux quanta in x-direction
(Fig. 1b) in porous BSCCO 2223 material (grains, with weak links in-
between). Because of the temperature dependence of the upper critical
magnetic field, the curve diverges near TCrit. The solid blue diamonds

indicate specific electrical resistance without inclusion of flux flow
(same data as in Fig. 10), both curves within 98 ≤ T ≤ TCrit
(B = 0), of solid BSCCO material. The large difference between the
two curves results from the estimated contribution of grain boundaries
(weak links). Results are obtained with B = 100 mT.

Appendix
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Fig. 12 Thermal conductivity of BSCCO 2223 (solid red and blue diamonds). Data are from [19]. In both curves, solid light green diamonds
indicate approximations to the experimental data
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Fig. 13 Specific heat of BSCCO 2223 (solid blue diamonds). Data are from [20]. Solid light green diamonds indicate approximations to the data
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Fig. 14 Depairing current density, JD, of BSCCO (2223) in a- and b-
directions (solid red and green diamonds, respectively) of the ab-plane.
For this calculation, Eq. (1) is tentatively applied to BSCCO though it
is strictly valid only close to TCrit and for type I superconductors. The
figure shows lower values of JD because BCrit,1 instead of BCrit,th has

been used in Eq. (1). Values of the mean penetration depth, λa and λb,
of a- and b-directions have been applied for this calculation. For the λ

values, see [16], Tab.2. 7 (in Fig. 4.8 of the same reference, values of λa
and λb are mentioned for YBaCuO, and may be taken for comparison)
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