ORIGINAL PAPER

Improving the Critical Temperature of MgB2 Superconducting Metamaterials Induced by Electroluminescence

Zhiwei Zhang¹ · Shuo Tao¹ · Guowei Chen¹ · Xiaopeng Zhao1

Received: 2 December 2015 / Accepted: 16 December 2015 / Published online: 12 January 2016 © Springer Science+Business Media New York 2016

Abstract The MgB₂ superconductor was doped with electroluminescent Y_2O_3 : Eu, to synthesise a superconducting metamaterial. The temperature dependence of the resistivity of the superconductor indicates that the critical temperature (T_C) of samples decreases when increasing the amount of doped Y_2O_3 nanorods, due to impurity $(Y_2O_3,$ MgO and YB_4). However, the T_C of the samples increase with increasing amount of doped Y_2O_3 :Eu³⁺ nanorods, which are opposite to doped Y_2O_3 nanorods. Moreover, the transition temperature of the sample doped with 8 wt % Y_2O_3 :Eu³⁺nanorods is higher than those of doped and pure MgB₂. The *T*_C of the sample doped with 8 wt % Y_2O_3 :Eu³⁺ nanorods is 1.15 K higher than that of the sample doped with 8 wt $\%$ Y₂O₃. The T_C of sample doped with 8 wt% Y_2O_3 :Eu³⁺ is 0.4 K higher than that of pure MgB₂. Results indicate that doping electroluminescent materials into $MgB₂$ increases the transition temperature; this novel strategy may also be applicable to other superconductors.

Keywords Y₂O₃:Eu³⁺ nanorods \cdot MgB_2 superconductor \cdot Solid-state method \cdot T_C

1 Introduction

The binary metal boride superconductor MgB_2 has attracted considerable attention in theoretical studies and applications

⊠ Xiaopeng Zhao xpzhao@nwpu.edu.cn $[1–6]$ $[1–6]$. MgB₂ presents a great potential in superconductive device applications because of its advantages, namely, relatively high critical temperature $(T_C$ nearly 40 K) [\[1\]](#page-3-0), large superconducting correlation length [\[7\]](#page-3-2), high critical current density, wide energy gap [\[8\]](#page-3-3) and facile preparation.

 $MgB₂$ is an inexpensive type II superconductor with a simple structure and can be easily synthesised [\[3\]](#page-3-4). However, the application of MgB_2 is restricted by its lower T_C compared with those of high-temperature superconductors. Several studies attempted to increase T_C by using doping agents. Results indicated that dopants decrease the $T_{\rm C}$ of the MgB₂ superconductor [\[9\]](#page-3-5) and affect its physical properties, such as carrier concentration, lattice constant and crystallinity [\[10\]](#page-3-6). For example, doping aluminium (or carbon) in place of Mg (or B) in $MgB₂$ significantly decreases the $T_{\rm C}$ of MgB₂ [\[11\]](#page-3-7). Recently, Ma et al. increased the $T_{\rm C}$ of commercial MgB_2 from 33.0 to 37.8 K through nonsubstitutional hole-doping of the $MgB₂$ structure with small, single-wall carbon nanotube inclusions [\[12\]](#page-3-8).

Metamaterials have gained increased attention because of their special properties and application potential [\[13–](#page-3-9) [17\]](#page-3-10). In 2007, our group proposed that combining inorganic electroluminescent (EL) materials with metamaterials can induce a substantial change in superconducting materials, left-handed materials, photonic crystals and so on [\[18\]](#page-3-11). In the same year, Jang et al. studied the effects of ZnO doping on the superconductivity and crystal structure of the (Bi, Pb)-2233 superconductor [\[19\]](#page-3-12). Light-induced superconductivity has recently been considered as a research hotspot. In 2011, Cavalleri et al. used mid-infrared femtosecond pulses to transform a stripe-ordered compound, namely, nonsuperconducting La_{1.675}Eu_{0.2}Sr_{0.125}CuO₄, into a transient three-dimensional superconductor [\[20\]](#page-3-13). In 2013, Cavalleri et al. experimentally demonstrated the excitation of Josephson plasma in La1*.*84Sr0*.*16CuO4, by using intense

¹ Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University, Xi'an 710129, People's Republic of China

narrowband radiation from infrared free-electron laser tuned to the 2-THz Josephson plasma resonance [\[21\]](#page-3-14). The group believed that laser pulse led to deformed crystal structures and induced superconductivity [\[22\]](#page-3-15).

 Y_2O_3 :Eu³⁺ phosphor is a well-known red phosphor used in fluorescent light, field emission displays and cathode ray tubes, because of its excellent luminescence efficiency, narrow spectra, high brightness and environmental and chemical stability $[23, 24]$ $[23, 24]$ $[23, 24]$. In this paper, we examined the effect of electroluminescence on T_C by doping Y_2O_3 , Y_2O_3 :Sm³⁺ and Y_2O_3 :Eu³⁺ nanorods into the MgB₂ superconductor to produce a superconducting metamaterial. The appropriate doping content for increasing the T_C of the MgB₂ superconducting metamaterial was demonstrated by controlling the concentration of Y_2O_3 :Eu³⁺ nanorods.

2 Experimental Section

Bulk MgB₂ sample was synthesised with Y₂O₃:Eu³⁺ nanorods by traditional solid-state sintering [\[25\]](#page-3-18). Briefly, 0.22 g of magnesium (Mg, 97 % purity, 10 μ m in size), 0.18 g of boron (B, 99.99 % purity, 1 *μ*m in size) and Y_2O_3 :Eu³⁺ (nanorods, 1–2 μ m in length, 150–200 nm in diameter) were uniformly mixed at different mass ratios and ground for 20 min in an agate mortar. The mixture was transferred into a mould and pressed into cylindrical tablets at 20 MPa for 30 min. The samples were then sintered at 850 ◦ C for 2 h under flowing high-purity Ar gas (99.99 % purity) at a heating rate of 5 \degree C min⁻¹. These procedures were also used to prepare $MgB₂$ doped with Y2O3 or Y2O3:Sm nanorods. Afterwards, the crystal structure was investigated through X-ray diffraction (XRD) by using a BRUKER D8 Advanced X-ray diffractometer with Cu K*α* irradiation. Resistivity was measured using the fourprobe technique. Electric field was imported through the electrodes. The measuring current was 100 mA.

3 Results and Discussion

The image in Fig. [1](#page-1-0) shows the X-ray diffraction patterns of the series of MgB_2 doped with different amounts of Y_2O_3 and Y_2O_3 : Eu³⁺ nanorods. Similar with other reports, the XRD results of pure $MgB₂$ indicate that the MgO phase exists in $MgB₂$. In comparison, the XRD results of the doping samples show that YB4 phase, which is generated from the reaction of B and Y_2O_3 , appears in the other samples. Surplus Y_2O_3 presents in XRD patterns with increasing amount of doping material. The XRD patterns also indicate that samples doped with Y_2O_3 nanorods are similar to those

Fig. 1 X-ray diffraction patterns of Y₂O₃- and Y₂O₃:Eu³⁺-doped MgB2 samples after sintering

doped with Y_2O_3 :Eu nanorods, because of the effective incorporation of Eu into the lattice of Y_2O_3 .

This study aims to prepare a composite superconducting metamaterial consisting of $MgB₂$ superconductor and Y_2O_3 :Eu electroluminescent material. Firstly, we synthesised Y_2O_3 :Eu nanorods on the basis of relevant research about Y_2O_3 Y_2O_3 Y_2O_3 :Eu powders [\[26\]](#page-3-19). Figure 2 shows the EL spectrum of Y_2O_3 : Eu nanorods. The spectrum indicates that the strongest peak centred at 613 nm corresponds to Eu^{3+} ions typical of transition from ${}^{5}D_0$ to ${}^{7}F_2$. Moreover, the full width at half maximum of the main emission peak is only 7 nm, suggesting superior monochromaticity, which is

Fig. 2 Electroluminescence spectrum of Y₂O₃:Eu nanorods and Y2O3:Sm nanorods

Fig. 3 Temperature dependence of resistivity of the undoped and 4, 6, and 8 wt% doped MgB₂ samples. **a** Doped Y₂O₃ nanorods; **b** doped Y_2O_3 :Eu³⁺ nanorods

consistent with other reports. Secondly, the superconducting metamaterials were prepared by doping Y_2O_3 : Eu nanorods into MgB_2 . Electric field in bulk MgB_2 stimulates the electroluminescence of Y_2O_3 :Eu. To further demonstrate the effect of electroluminescence in $MgB₂$, we synthesised Y_2O_3 :Sm nanorods whose electroluminescence intensity is much lower than that of Y_2O_3 :Eu (Fig. [2\)](#page-1-1).

Figure [3](#page-2-0) presents the temperature dependence of the resistivity of the series of $MgB₂$ samples doped with different amounts of Y_2O_3 or Y_2O_3 : Eu³⁺ nanorods. As is observed in Fig. [3a](#page-2-0), the superconducting $T_{\rm C}$ of pure MgB₂ is 37 K, which is higher than those of other doped samples. The transition width of pure $MgB₂$ is only 0.4 K, which is also the minimum value in all samples. The superconducting $T_{\rm C}$ decreases, whereas the width of transition increases with increasing doping amount. For instance, the $T_{\rm C}$ of the sample doped with 8 wt% Y₂O₃ is 36.25 K, which is lower than that of pure samples. The presence of impurities, such as Y_2O_3 , MgO and YB₄, induced the deterioration of intercrystalline connectivity [\[27,](#page-3-20) [28\]](#page-3-21).

The image in Fig. [3b](#page-2-0) shows that the T_C of samples doped with 4 or 6 wt % Y_2O_3 :Eu³⁺ nanorods is lower than that of pure MgB2, which is consistent with those of samples doped with Y₂O₃. However, the T_C of sample doped with 8 wt % Y_2O_3 :Eu³⁺ nanorods is the highest among all samples, including pure MgB_2 . The T_c of sample doped with 8 wt % Y_2O_3 :Eu³⁺ nanorods is 1.15 K higher than that of the sample doped with 8 wt $\%$ Y₂O₃nanorods. It is peculiar that the $T_{\rm C}$ of sample doped with 8 wt % Y₂O₃:Eu³⁺ nanorods is 0.4 K higher than that of pure MgB_2 . The curve of MgB_2 doped with 8 wt % Y_2O_3 : Sm is also shown in Fig. [3b](#page-2-0) to confirm whether electroluminescence or rare earth element affects the transition temperature. The transition temperature of MgB_2 doped with 8 wt % Y_2O_3 : Sm is 0.9 K lower than that of MgB_2 doped with 8 wt % Y_2O_3 :Eu (Fig. [3b](#page-2-0)). Europium, which results in bright red light, is critical for $T_{\rm C}$.

The images in Fig. [4](#page-2-1) presents the T_C of the series of MgB_2 samples doped with different amounts of Y_2O_3 or Y_2O_3 :Eu³⁺ nanorods. The T_C values of samples decrease with increasing amount of doped Y_2O_3 nanorods, which is consistent with previous reports. However, it is fantastic that the $T_{\rm C}$ values of samples increase with the amount of doped Y₂O₃:Eu³⁺ nanorods. Additionally, the T_C of sample doped with 8 wt% Y_2O_3 :Eu³⁺ nanorods is 0.4 K higher than that of pure $MgB₂$. However, the transition temperature decreases rapidly when the doping percentage of Y_2O_3 : Eu is larger than 8. The phenomenon cannot be explained by existing theories. The mechanism of increasing superconducting $T_{\rm C}$ still needs further studies. The transition temperature is one of the most crucial factors that limits

Fig. 4 The T_C of the series MgB_2 samples doped different contents of Y_2O_3 or Y_2O_3 : Eu³⁺ nanorods

the application of superconductors. As such, increasing the transition temperature of superconductors is of great interest. Hence, doping EL materials in $MgB₂$ is a novel strategy for increasing the transition temperature and may also be applicable to other superconductors.

4 Conclusion

We synthesised a composite material, $MgB₂$ superconductor doped with the EL materials Y_2O_3 : Eu, which is called a superconducting metamaterial. The XRD results indicate that the crystallinity and the purity of $MgB₂$ decrease with increasing the doping content. However, more Y_2O_3 :Eu³⁺ would remain in the samples at a high doping content. The temperature dependence of resistivity indicates that the $T_{\rm C}$ values of samples decrease with increasing amount of doped Y_2O_3 nanorods; this finding is consistent with previous reports. However, it is remarkable that the $T_{\rm C}$ values of samples increase with increasing amount of doped Y_2O_3 :Eu³⁺ nanorods. The T_C of the sample doped with 8 wt% Y_2O_3 :Eu³⁺is 1.15 K higher than that of sample doped with 8 wt% Y_2O_3 . It is remarkable that the T_C of the sample doped with 8 wt% Y_2O_3 :Eu³⁺ is 0.4 K higher than that of pure MgB2. However, the transition temperature of the sample doped with 8 wt% Y_2O_3 : Sm nanorods is 0.9 K lower than that of the sample doped with 8 wt% Y_2O_3 : Eu nanorods. Transition temperature is one of the most crucial factors that limits the application of superconductors. Doping EL materials in $MgB₂$ is a novel strategy for increasing the transition temperature and may also be applicable to other superconductors.

Acknowledgments This work was supported by the National Natural Science Foundation of China for Distinguished Young Scholar under Grant No. 50025207.

References

- 1. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., Akimitsu, J.: Nature **410**, 63 (2001)
- 2. Larbalestier, D.C., Cooley, L.D., Rikel, M.O., Polyanskii, A.A., Jiang, J., Patnaik, S., Cai, X.Y., Feldmann, D.M., Gurevich, A., Squitieri, A.A., Naus, M.T., Eom, C.B., Hellstrom, E.E., Cava, R.J., Regan, K.A., Rogado, N., Hayward, M.A., He, T., Slusky, J.S., Khalifah, P., Inumaru, K., Haas, M.: Nature **410**, 186 (2001)
- 3. Hinks, D.G., Claus, H., Jorgensen, J.D.: Nature **411**, 457 (2001)
- 4. Kang, W.N., Kim, H.J., Choi, E.M., Jung, C.U., Lee, S.I.: Science **292**, 1521 (2001)
- 5. Jin, S., Mavoori, H., Bower, C., Van Dover, R.B.: Nature **411**, 563 (2001)
- 6. Canfield, P.C., Finnemore, D.K., Bud'ko, S.L., Ostenson, J.E., Lapertot, G., Cunningham, C.E., Petrovic, C.: Phys. Rev. Lett. **86**, 2423 (2001)
- 7. Finnemore, D.K., Ostenson, J.E., Bud'ko, S.L., Lapertot, G., Canfield, P.C.: Phys. Rev. Lett. **86**, 2420 (2001)
- 8. Tsuda, S., Yokoya, T., Kiss, T., Takano, Y., Togano, K., Kito, H., Ihara, H., Shin, S.: vol. 87, pp. 177–006 (2001)
- 9. Cava, R.J., Zandbergen, H.W., Inumaru, K.: Phys. C **385**, 8 (2003)
- 10. Vinod, K., Neson, V., Syamaprasad, U.: Supercond. Sci. Technol. **20**, 31 (2007)
- 11. Rui, X.F., Chen, J., Chen, X., Guo, W., Zhang, H.: Phys. C **412**, 312 (2004)
- 12. Ma, D., Jayasingha, R., Hess, D.T., Adu, K.W., Sumanasekera, G.U., Terrones, M.: Phys. C **497**, 43 (2014)
- 13. Pendry, J.B., Holden, A.J., Stewart, W.J., Youngs, I.: Phys. Rev. Lett. **76**, 4773 (1996)
- 14. Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J., Trans, I.E.E.E.: Microw. Theory Tech. **47**, 2075 (1999)
- 15. Shelby, R.A., Smith, D.R., Schultz, S.: Science **292**, 77 (2001)
- 16. Liu, H., Zhao, X., Yang, Y., Li, Q., Lv, J.: Adv. Mate. **20**, 2050 (2008)
- 17. Zhao, X.P.: J. Mater. Chem. **22**, 9439 (2012)
- 18. Xu, S.H., Zhou, Y.W., Zhao, X.P.: Mater. Rev. **21**, 162 (2007). in Chinese, available at [http://www.cnki.com.cn/Article/](http://www.cnki.com.cn/Article/CJFDTotal-CLDB2007S3048.htm) [CJFDTotal-CLDB2007S3048.htm](http://www.cnki.com.cn/Article/CJFDTotal-CLDB2007S3048.htm)
- 19. Jiang, W.T., Xu, Z.L., Chen, Z., Zhao, X.P.: J. Funct. Mater. **38**, 157 (2007). in Chinese, available at [http://www.cnki.com.cn/](http://www.cnki.com.cn/Article/CJFDTOTAL-GNCL200701046.htm) [Article/CJFDTOTAL-GNCL200701046.htm](http://www.cnki.com.cn/Article/CJFDTOTAL-GNCL200701046.htm)
- 20. Fausti, D., Tobey, R.I., Dean, N., Kaiser, S., Dienst, A., Hoffmann, M.C., Pyon, S., Takayama, T., Takagi, H., Cavalleri, A.: Science **331**, 189 (2011)
- 21. Dienst, A., Casandruc, E., Fausti, D., Zhang, L., Eckstein, M., Hoffmann, M., Khanna, V., Dean, N., Gensch, M., Winnerl, S., Seidel, W., Pyon, S., Takayama, T., Takagi, H., Cavalleri, A.: Nat. Mater. **12**, 535 (2013)
- 22. Mankowsky, R., Subedi, A., Forst, M., Mariager, S.O., Chollet, M., Lemke, H.T., Robinson, J.S., Glownia, J.M., Minitti, M.P., Frano, A., Fechner, M., Spaldin, N.A., Loew, T., Keimer, B., Georges, A., Cavalleri, A.: Nature **516**, 71 (2014)
- 23. Patra, A., Friend, C.S., Kapoor, R., Prasad, P.N.: Phys, J. Chem. B **106**, 1909 (2002)
- 24. Zhang, Y.X., Guo, J., White, T., Tan, T.T.Y., Xu, R.: J. Phys. Chem. C **111**, 7893 (2007)
- 25. Zhao, X.P., Zhang, Z.W., Tao, S., Chen, G.W.: Chinese Patent 201510121032.1
- 26. Chen, G.W., Tao, S., Yang, C.S., Zhao, X.P.: J Mater Sci: Mater Electron **26**, 5970 (2015)
- 27. Cai, Q., Liu, Y., Ma, Z., Dong, Z.: J. Supercond. Nov. Magn. **25**, 357 (2012)
- 28. Ojha, N., Malik, V.K., Rashmi, S., Bernhard, C., Varma, G.D.: vol. 23, pp. 045–005 (2010)